| 1 | // Copyright (C) 2020 The Qt Company Ltd. |
| 2 | // Copyright (C) 2019 Intel Corporation. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 4 | |
| 5 | #include "qbitarray.h" |
| 6 | #include <qalgorithms.h> |
| 7 | #include <qdatastream.h> |
| 8 | #include <qdebug.h> |
| 9 | #include <qendian.h> |
| 10 | |
| 11 | #include <limits> |
| 12 | |
| 13 | #include <string.h> |
| 14 | |
| 15 | QT_BEGIN_NAMESPACE |
| 16 | |
| 17 | /*! |
| 18 | \class QBitArray |
| 19 | \inmodule QtCore |
| 20 | \brief The QBitArray class provides an array of bits. |
| 21 | |
| 22 | \ingroup tools |
| 23 | \ingroup shared |
| 24 | \reentrant |
| 25 | |
| 26 | \compares equality |
| 27 | |
| 28 | A QBitArray is an array that gives access to individual bits and |
| 29 | provides operators (\l{operator&()}{AND}, \l{operator|()}{OR}, |
| 30 | \l{operator^()}{XOR}, and \l{operator~()}{NOT}) that work on |
| 31 | entire arrays of bits. It uses \l{implicit sharing} (copy-on-write) |
| 32 | to reduce memory usage and to avoid the needless copying of data. |
| 33 | |
| 34 | The following code constructs a QBitArray containing 200 bits |
| 35 | initialized to false (0): |
| 36 | |
| 37 | \snippet code/src_corelib_tools_qbitarray.cpp 0 |
| 38 | |
| 39 | To initialize the bits to true, either pass \c true as second |
| 40 | argument to the constructor, or call fill() later on. |
| 41 | |
| 42 | QBitArray uses 0-based indexes, just like C++ arrays. To access |
| 43 | the bit at a particular index position, you can use operator[](). |
| 44 | On non-const bit arrays, operator[]() returns a reference to a |
| 45 | bit that can be used on the left side of an assignment. For |
| 46 | example: |
| 47 | |
| 48 | \snippet code/src_corelib_tools_qbitarray.cpp 1 |
| 49 | |
| 50 | For technical reasons, it is more efficient to use testBit() and |
| 51 | setBit() to access bits in the array than operator[](). For |
| 52 | example: |
| 53 | |
| 54 | \snippet code/src_corelib_tools_qbitarray.cpp 2 |
| 55 | |
| 56 | QBitArray supports \c{&} (\l{operator&()}{AND}), \c{|} |
| 57 | (\l{operator|()}{OR}), \c{^} (\l{operator^()}{XOR}), |
| 58 | \c{~} (\l{operator~()}{NOT}), as well as |
| 59 | \c{&=}, \c{|=}, and \c{^=}. These operators work in the same way |
| 60 | as the built-in C++ bitwise operators of the same name. For |
| 61 | example: |
| 62 | |
| 63 | \snippet code/src_corelib_tools_qbitarray.cpp 3 |
| 64 | |
| 65 | For historical reasons, QBitArray distinguishes between a null |
| 66 | bit array and an empty bit array. A \e null bit array is a bit |
| 67 | array that is initialized using QBitArray's default constructor. |
| 68 | An \e empty bit array is any bit array with size 0. A null bit |
| 69 | array is always empty, but an empty bit array isn't necessarily |
| 70 | null: |
| 71 | |
| 72 | \snippet code/src_corelib_tools_qbitarray.cpp 4 |
| 73 | |
| 74 | All functions except isNull() treat null bit arrays the same as |
| 75 | empty bit arrays; for example, QBitArray() compares equal to |
| 76 | QBitArray(0). We recommend that you always use isEmpty() and |
| 77 | avoid isNull(). |
| 78 | |
| 79 | \sa QByteArray, QList |
| 80 | */ |
| 81 | |
| 82 | #if QT_VERSION < QT_VERSION_CHECK(7, 0, 0) |
| 83 | /*! |
| 84 | \fn QBitArray::QBitArray(QBitArray &&other) |
| 85 | |
| 86 | Move-constructs a QBitArray instance, making it point at the same |
| 87 | object that \a other was pointing to. |
| 88 | |
| 89 | \since 5.2 |
| 90 | */ |
| 91 | #endif |
| 92 | |
| 93 | /*! \fn QBitArray::QBitArray() |
| 94 | |
| 95 | Constructs an empty bit array. |
| 96 | |
| 97 | \sa isEmpty() |
| 98 | */ |
| 99 | |
| 100 | /* |
| 101 | * QBitArray construction note: |
| 102 | * |
| 103 | * We overallocate the byte array by 1 byte. The first user bit is at |
| 104 | * d.data()[1]. On the extra first byte, we store the difference between the |
| 105 | * number of bits in the byte array (including this byte) and the number of |
| 106 | * bits in the bit array. Therefore, for a non-empty QBitArray, it's always a |
| 107 | * number between 8 and 15. For the empty one, d is the an empty QByteArray and |
| 108 | * *d.constData() is the QByteArray's terminating NUL (0) byte. |
| 109 | * |
| 110 | * This allows for fast calculation of the bit array size: |
| 111 | * inline qsizetype size() const { return (d.size() << 3) - *d.constData(); } |
| 112 | */ |
| 113 | |
| 114 | static constexpr qsizetype storage_size(qsizetype size) |
| 115 | { |
| 116 | // avoid overflow when adding 7, by doing the arithmetic in unsigned space: |
| 117 | return qsizetype((size_t(size) + 7) / 8); |
| 118 | } |
| 119 | |
| 120 | static constexpr qsizetype allocation_size(qsizetype size) |
| 121 | { |
| 122 | return size <= 0 ? 0 : storage_size(size) + 1; |
| 123 | } |
| 124 | |
| 125 | static void adjust_head_and_tail(char *data, qsizetype storageSize, qsizetype logicalSize) |
| 126 | { |
| 127 | quint8 *c = reinterpret_cast<quint8 *>(data); |
| 128 | // store the difference between storage and logical size in d[0]: |
| 129 | *c = quint8(size_t(storageSize) * 8 - logicalSize); |
| 130 | // reset unallocated bits to 0: |
| 131 | if (logicalSize & 7) |
| 132 | *(c + 1 + logicalSize / 8) &= (1 << (logicalSize & 7)) - 1; |
| 133 | } |
| 134 | |
| 135 | /*! |
| 136 | Constructs a bit array containing \a size bits. The bits are |
| 137 | initialized with \a value, which defaults to false (0). |
| 138 | */ |
| 139 | QBitArray::QBitArray(qsizetype size, bool value) |
| 140 | : d(allocation_size(size), value ? 0xFF : 0x00) |
| 141 | { |
| 142 | Q_ASSERT_X(size >= 0, "QBitArray::QBitArray" , "Size must be greater than or equal to 0." ); |
| 143 | if (size <= 0) |
| 144 | return; |
| 145 | |
| 146 | adjust_head_and_tail(data: d.data(), storageSize: d.size(), logicalSize: size); |
| 147 | } |
| 148 | |
| 149 | /*! \fn qsizetype QBitArray::size() const |
| 150 | |
| 151 | Returns the number of bits stored in the bit array. |
| 152 | |
| 153 | \sa resize() |
| 154 | */ |
| 155 | |
| 156 | /*! \fn qsizetype QBitArray::count() const |
| 157 | |
| 158 | Same as size(). |
| 159 | */ |
| 160 | |
| 161 | /*! |
| 162 | If \a on is true, this function returns the number of |
| 163 | 1-bits stored in the bit array; otherwise the number |
| 164 | of 0-bits is returned. |
| 165 | */ |
| 166 | qsizetype QBitArray::count(bool on) const |
| 167 | { |
| 168 | qsizetype numBits = 0; |
| 169 | const quint8 *bits = reinterpret_cast<const quint8 *>(d.data()) + 1; |
| 170 | |
| 171 | // the loops below will try to read from *end |
| 172 | // it's the QByteArray implicit NUL, so it will not change the bit count |
| 173 | const quint8 *const end = reinterpret_cast<const quint8 *>(d.end()); |
| 174 | |
| 175 | while (bits + 7 <= end) { |
| 176 | quint64 v = qFromUnaligned<quint64>(src: bits); |
| 177 | bits += 8; |
| 178 | numBits += qsizetype(qPopulationCount(v)); |
| 179 | } |
| 180 | if (bits + 3 <= end) { |
| 181 | quint32 v = qFromUnaligned<quint32>(src: bits); |
| 182 | bits += 4; |
| 183 | numBits += qsizetype(qPopulationCount(v)); |
| 184 | } |
| 185 | if (bits + 1 < end) { |
| 186 | quint16 v = qFromUnaligned<quint16>(src: bits); |
| 187 | bits += 2; |
| 188 | numBits += qsizetype(qPopulationCount(v)); |
| 189 | } |
| 190 | if (bits < end) |
| 191 | numBits += qsizetype(qPopulationCount(v: bits[0])); |
| 192 | |
| 193 | return on ? numBits : size() - numBits; |
| 194 | } |
| 195 | |
| 196 | /*! |
| 197 | Resizes the bit array to \a size bits. |
| 198 | |
| 199 | If \a size is greater than the current size, the bit array is |
| 200 | extended to make it \a size bits with the extra bits added to the |
| 201 | end. The new bits are initialized to false (0). |
| 202 | |
| 203 | If \a size is less than the current size, bits are removed from |
| 204 | the end. |
| 205 | |
| 206 | \sa size() |
| 207 | */ |
| 208 | void QBitArray::resize(qsizetype size) |
| 209 | { |
| 210 | Q_ASSERT_X(size >= 0, "QBitArray::resize" , "Size must be greater than or equal to 0." ); |
| 211 | if (size <= 0) { |
| 212 | d.resize(size: 0); |
| 213 | } else { |
| 214 | d.resize(size: allocation_size(size), c: 0x00); |
| 215 | adjust_head_and_tail(data: d.data(), storageSize: d.size(), logicalSize: size); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | /*! \fn bool QBitArray::isEmpty() const |
| 220 | |
| 221 | Returns \c true if this bit array has size 0; otherwise returns |
| 222 | false. |
| 223 | |
| 224 | \sa size() |
| 225 | */ |
| 226 | |
| 227 | /*! \fn bool QBitArray::isNull() const |
| 228 | |
| 229 | Returns \c true if this bit array is null; otherwise returns \c false. |
| 230 | |
| 231 | Example: |
| 232 | \snippet code/src_corelib_tools_qbitarray.cpp 5 |
| 233 | |
| 234 | Qt makes a distinction between null bit arrays and empty bit |
| 235 | arrays for historical reasons. For most applications, what |
| 236 | matters is whether or not a bit array contains any data, |
| 237 | and this can be determined using isEmpty(). |
| 238 | |
| 239 | \sa isEmpty() |
| 240 | */ |
| 241 | |
| 242 | /*! \fn bool QBitArray::fill(bool value, qsizetype size = -1) |
| 243 | |
| 244 | Sets every bit in the bit array to \a value, returning true if successful; |
| 245 | otherwise returns \c false. If \a size is different from -1 (the default), |
| 246 | the bit array is resized to \a size beforehand. |
| 247 | |
| 248 | Example: |
| 249 | \snippet code/src_corelib_tools_qbitarray.cpp 6 |
| 250 | |
| 251 | \sa resize() |
| 252 | */ |
| 253 | |
| 254 | /*! |
| 255 | \overload |
| 256 | |
| 257 | Sets bits at index positions \a begin up to (but not including) \a end |
| 258 | to \a value. |
| 259 | |
| 260 | \a begin must be a valid index position in the bit array |
| 261 | (0 <= \a begin < size()). |
| 262 | |
| 263 | \a end must be either a valid index position or equal to size(), in |
| 264 | which case the fill operation runs until the end of the array |
| 265 | (0 <= \a end <= size()). |
| 266 | |
| 267 | Example: |
| 268 | \snippet code/src_corelib_tools_qbitarray.cpp 15 |
| 269 | */ |
| 270 | |
| 271 | void QBitArray::fill(bool value, qsizetype begin, qsizetype end) |
| 272 | { |
| 273 | while (begin < end && begin & 0x7) |
| 274 | setBit(i: begin++, val: value); |
| 275 | qsizetype len = end - begin; |
| 276 | if (len <= 0) |
| 277 | return; |
| 278 | qsizetype s = len & ~qsizetype(0x7); |
| 279 | uchar *c = reinterpret_cast<uchar *>(d.data()); |
| 280 | memset(s: c + (begin >> 3) + 1, c: value ? 0xff : 0, n: s >> 3); |
| 281 | begin += s; |
| 282 | while (begin < end) |
| 283 | setBit(i: begin++, val: value); |
| 284 | } |
| 285 | |
| 286 | /*! |
| 287 | \fn const char *QBitArray::bits() const |
| 288 | \since 5.11 |
| 289 | |
| 290 | Returns a pointer to a dense bit array for this QBitArray. Bits are counted |
| 291 | upwards from the least significant bit in each byte. The number of bits |
| 292 | relevant in the last byte is given by \c{size() % 8}. |
| 293 | |
| 294 | \sa fromBits(), size() |
| 295 | */ |
| 296 | |
| 297 | /*! |
| 298 | \since 5.11 |
| 299 | |
| 300 | Creates a QBitArray with the dense bit array located at \a data, with \a |
| 301 | size bits. The byte array at \a data must be at least \a size / 8 (rounded up) |
| 302 | bytes long. |
| 303 | |
| 304 | If \a size is not a multiple of 8, this function will include the lowest |
| 305 | \a size % 8 bits from the last byte in \a data. |
| 306 | |
| 307 | \sa bits() |
| 308 | */ |
| 309 | QBitArray QBitArray::fromBits(const char *data, qsizetype size) |
| 310 | { |
| 311 | Q_ASSERT_X(size >= 0, "QBitArray::fromBits" , "Size must be greater than or equal to 0." ); |
| 312 | QBitArray result; |
| 313 | if (size <= 0) |
| 314 | return result; |
| 315 | |
| 316 | auto &d = result.d; |
| 317 | d.resize(size: allocation_size(size)); |
| 318 | memcpy(dest: d.data() + 1, src: data, n: d.size() - 1); |
| 319 | adjust_head_and_tail(data: d.data(), storageSize: d.size(), logicalSize: size); |
| 320 | return result; |
| 321 | } |
| 322 | |
| 323 | /*! |
| 324 | \since 6.0 |
| 325 | |
| 326 | Returns the array of bit converted to an int. The conversion is based on \a endianness. |
| 327 | Converts up to the first 32 bits of the array to \c quint32 and returns it, |
| 328 | obeying \a endianness. If \a ok is not a null pointer, and the array has more |
| 329 | than 32 bits, \a ok is set to false and this function returns zero; otherwise, |
| 330 | it's set to true. |
| 331 | */ |
| 332 | quint32 QBitArray::toUInt32(QSysInfo::Endian endianness, bool *ok) const noexcept |
| 333 | { |
| 334 | const qsizetype _size = size(); |
| 335 | if (_size > 32) { |
| 336 | if (ok) |
| 337 | *ok = false; |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | if (ok) |
| 342 | *ok = true; |
| 343 | |
| 344 | quint32 factor = 1; |
| 345 | quint32 total = 0; |
| 346 | for (qsizetype i = 0; i < _size; ++i, factor *= 2) { |
| 347 | const auto index = endianness == QSysInfo::Endian::LittleEndian ? i : (_size - i - 1); |
| 348 | if (testBit(i: index)) |
| 349 | total += factor; |
| 350 | } |
| 351 | |
| 352 | return total; |
| 353 | } |
| 354 | |
| 355 | /*! \fn bool QBitArray::isDetached() const |
| 356 | |
| 357 | \internal |
| 358 | */ |
| 359 | |
| 360 | /*! \fn void QBitArray::detach() |
| 361 | |
| 362 | \internal |
| 363 | */ |
| 364 | |
| 365 | /*! \fn void QBitArray::clear() |
| 366 | |
| 367 | Clears the contents of the bit array and makes it empty. |
| 368 | |
| 369 | \sa resize(), isEmpty() |
| 370 | */ |
| 371 | |
| 372 | /*! \fn void QBitArray::truncate(qsizetype pos) |
| 373 | |
| 374 | Truncates the bit array at index position \a pos. |
| 375 | |
| 376 | If \a pos is beyond the end of the array, nothing happens. |
| 377 | |
| 378 | \sa resize() |
| 379 | */ |
| 380 | |
| 381 | /*! \fn bool QBitArray::toggleBit(qsizetype i) |
| 382 | |
| 383 | Inverts the value of the bit at index position \a i, returning the |
| 384 | previous value of that bit as either true (if it was set) or false (if |
| 385 | it was unset). |
| 386 | |
| 387 | If the previous value was 0, the new value will be 1. If the |
| 388 | previous value was 1, the new value will be 0. |
| 389 | |
| 390 | \a i must be a valid index position in the bit array (i.e., 0 <= |
| 391 | \a i < size()). |
| 392 | |
| 393 | \sa setBit(), clearBit() |
| 394 | */ |
| 395 | |
| 396 | /*! \fn bool QBitArray::testBit(qsizetype i) const |
| 397 | |
| 398 | Returns \c true if the bit at index position \a i is 1; otherwise |
| 399 | returns \c false. |
| 400 | |
| 401 | \a i must be a valid index position in the bit array (i.e., 0 <= |
| 402 | \a i < size()). |
| 403 | |
| 404 | \sa setBit(), clearBit() |
| 405 | */ |
| 406 | |
| 407 | /*! \fn bool QBitArray::setBit(qsizetype i) |
| 408 | |
| 409 | Sets the bit at index position \a i to 1. |
| 410 | |
| 411 | \a i must be a valid index position in the bit array (i.e., 0 <= |
| 412 | \a i < size()). |
| 413 | |
| 414 | \sa clearBit(), toggleBit() |
| 415 | */ |
| 416 | |
| 417 | /*! \fn void QBitArray::setBit(qsizetype i, bool value) |
| 418 | |
| 419 | \overload |
| 420 | |
| 421 | Sets the bit at index position \a i to \a value. |
| 422 | */ |
| 423 | |
| 424 | /*! \fn void QBitArray::clearBit(qsizetype i) |
| 425 | |
| 426 | Sets the bit at index position \a i to 0. |
| 427 | |
| 428 | \a i must be a valid index position in the bit array (i.e., 0 <= |
| 429 | \a i < size()). |
| 430 | |
| 431 | \sa setBit(), toggleBit() |
| 432 | */ |
| 433 | |
| 434 | /*! \fn bool QBitArray::at(qsizetype i) const |
| 435 | |
| 436 | Returns the value of the bit at index position \a i. |
| 437 | |
| 438 | \a i must be a valid index position in the bit array (i.e., 0 <= |
| 439 | \a i < size()). |
| 440 | |
| 441 | \sa operator[]() |
| 442 | */ |
| 443 | |
| 444 | /*! \fn QBitRef QBitArray::operator[](qsizetype i) |
| 445 | |
| 446 | Returns the bit at index position \a i as a modifiable reference. |
| 447 | |
| 448 | \a i must be a valid index position in the bit array (i.e., 0 <= |
| 449 | \a i < size()). |
| 450 | |
| 451 | Example: |
| 452 | \snippet code/src_corelib_tools_qbitarray.cpp 7 |
| 453 | |
| 454 | The return value is of type QBitRef, a helper class for QBitArray. |
| 455 | When you get an object of type QBitRef, you can assign to |
| 456 | it, and the assignment will apply to the bit in the QBitArray |
| 457 | from which you got the reference. |
| 458 | |
| 459 | The functions testBit(), setBit(), and clearBit() are slightly |
| 460 | faster. |
| 461 | |
| 462 | \sa at(), testBit(), setBit(), clearBit() |
| 463 | */ |
| 464 | |
| 465 | /*! \fn bool QBitArray::operator[](qsizetype i) const |
| 466 | |
| 467 | \overload |
| 468 | */ |
| 469 | |
| 470 | #if QT_VERSION < QT_VERSION_CHECK(7, 0, 0) |
| 471 | /*! \fn QBitArray::QBitArray(const QBitArray &other) noexcept |
| 472 | |
| 473 | Constructs a copy of \a other. |
| 474 | |
| 475 | This operation takes \l{constant time}, because QBitArray is |
| 476 | \l{implicitly shared}. This makes returning a QBitArray from a |
| 477 | function very fast. If a shared instance is modified, it will be |
| 478 | copied (copy-on-write), and that takes \l{linear time}. |
| 479 | |
| 480 | \sa operator=() |
| 481 | */ |
| 482 | |
| 483 | /*! \fn QBitArray &QBitArray::operator=(const QBitArray &other) noexcept |
| 484 | |
| 485 | Assigns \a other to this bit array and returns a reference to |
| 486 | this bit array. |
| 487 | */ |
| 488 | |
| 489 | /*! \fn QBitArray &QBitArray::operator=(QBitArray &&other) |
| 490 | \since 5.2 |
| 491 | |
| 492 | Moves \a other to this bit array and returns a reference to |
| 493 | this bit array. |
| 494 | */ |
| 495 | #endif // Qt 6 |
| 496 | |
| 497 | /*! \fn void QBitArray::swap(QBitArray &other) |
| 498 | \since 4.8 |
| 499 | \memberswap{bit array} |
| 500 | */ |
| 501 | |
| 502 | /*! \fn bool QBitArray::operator==(const QBitArray &lhs, const QBitArray &rhs) |
| 503 | |
| 504 | Returns \c true if \a lhs is equal to \a rhs bit array; otherwise |
| 505 | returns \c false. |
| 506 | |
| 507 | \sa operator!=() |
| 508 | */ |
| 509 | |
| 510 | /*! \fn bool QBitArray::operator!=(const QBitArray &lhs, const QBitArray &rhs) |
| 511 | |
| 512 | Returns \c true if \a lhs is not equal to \a rhs bit array; |
| 513 | otherwise returns \c false. |
| 514 | |
| 515 | \sa operator==() |
| 516 | */ |
| 517 | |
| 518 | // Returns a new QBitArray that has the same size as the bigger of \a a1 and |
| 519 | // \a a2, but whose contents are uninitialized. |
| 520 | static QBitArray sizedForOverwrite(const QBitArray &a1, const QBitArray &a2) |
| 521 | { |
| 522 | QBitArray result; |
| 523 | const QByteArrayData &d1 = a1.data_ptr(); |
| 524 | const QByteArrayData &d2 = a2.data_ptr(); |
| 525 | qsizetype n1 = d1.size; |
| 526 | qsizetype n2 = d2.size; |
| 527 | qsizetype n = qMax(a: n1, b: n2); |
| 528 | |
| 529 | QByteArrayData bytes(n, n); |
| 530 | |
| 531 | // initialize the count of bits in the last byte (see construction note) |
| 532 | // and the QByteArray null termination (some of our algorithms read it) |
| 533 | if (n1 > n2) { |
| 534 | *bytes.ptr = *d1.ptr; |
| 535 | bytes.ptr[n1] = 0; |
| 536 | } else if (n2 > n1) { |
| 537 | *bytes.ptr = *d2.ptr; |
| 538 | bytes.ptr[n2] = 0; |
| 539 | } else if (n1) { // n1 == n2 |
| 540 | *bytes.ptr = qMin(a: *d1.ptr, b: *d2.ptr); |
| 541 | bytes.ptr[n1] = 0; |
| 542 | } |
| 543 | |
| 544 | result.data_ptr() = std::move(bytes); |
| 545 | return result; |
| 546 | } |
| 547 | |
| 548 | template <typename BitwiseOp> Q_NEVER_INLINE static |
| 549 | QBitArray &performBitwiseOperationHelper(QBitArray &out, const QBitArray &a1, |
| 550 | const QBitArray &a2, BitwiseOp op) |
| 551 | { |
| 552 | const QByteArrayData &d1 = a1.data_ptr(); |
| 553 | const QByteArrayData &d2 = a2.data_ptr(); |
| 554 | |
| 555 | // Sizes in bytes (including the initial bit difference counter) |
| 556 | qsizetype n1 = d1.size; |
| 557 | qsizetype n2 = d2.size; |
| 558 | Q_ASSERT(out.data_ptr().size == qMax(n1, n2)); |
| 559 | Q_ASSERT(out.data_ptr().size == 0 || !out.data_ptr().needsDetach()); |
| 560 | |
| 561 | // Bypass QByteArray's emptiness verification; we won't dereference |
| 562 | // these pointers if their size is zero. |
| 563 | auto dst = reinterpret_cast<uchar *>(out.data_ptr().data()); |
| 564 | auto p1 = reinterpret_cast<const uchar *>(d1.data()); |
| 565 | auto p2 = reinterpret_cast<const uchar *>(d2.data()); |
| 566 | |
| 567 | // Main: perform the operation in the range where both arrays have data |
| 568 | if (n1 < n2) { |
| 569 | std::swap(a&: n1, b&: n2); |
| 570 | std::swap(a&: p1, b&: p2); |
| 571 | } |
| 572 | for (qsizetype i = 1; i < n2; ++i) |
| 573 | dst[i] = op(p1[i], p2[i]); |
| 574 | |
| 575 | // Tail: operate as if both arrays had the same data by padding zeroes to |
| 576 | // the end of the shorter of the two (for std::bit_or and std::bit_xor, this is |
| 577 | // a memmove; for std::bit_and, it's memset to 0). |
| 578 | for (qsizetype i = qMax(a: n2, b: qsizetype(1)); i < n1; ++i) |
| 579 | dst[i] = op(p1[i], uchar(0)); |
| 580 | |
| 581 | return out; |
| 582 | } |
| 583 | |
| 584 | template <typename BitwiseOp> Q_NEVER_INLINE static |
| 585 | QBitArray &performBitwiseOperationInCopy(QBitArray &self, const QBitArray &other, BitwiseOp op) |
| 586 | { |
| 587 | QBitArray tmp(std::move(self)); |
| 588 | self = sizedForOverwrite(a1: tmp, a2: other); |
| 589 | return performBitwiseOperationHelper(self, tmp, other, op); |
| 590 | } |
| 591 | |
| 592 | template <typename BitwiseOp> Q_NEVER_INLINE static |
| 593 | QBitArray &performBitwiseOperationInPlace(QBitArray &self, const QBitArray &other, BitwiseOp op) |
| 594 | { |
| 595 | if (self.size() < other.size()) |
| 596 | self.resize(size: other.size()); |
| 597 | return performBitwiseOperationHelper(self, self, other, op); |
| 598 | } |
| 599 | |
| 600 | template <typename BitwiseOp> static |
| 601 | QBitArray &performBitwiseOperation(QBitArray &self, const QBitArray &other, BitwiseOp op) |
| 602 | { |
| 603 | if (self.data_ptr().needsDetach()) |
| 604 | return performBitwiseOperationInCopy(self, other, op); |
| 605 | return performBitwiseOperationInPlace(self, other, op); |
| 606 | } |
| 607 | |
| 608 | // SCARY helper |
| 609 | enum { InCopy, InPlace }; |
| 610 | static auto prepareForBitwiseOperation(QBitArray &self, QBitArray &other) |
| 611 | { |
| 612 | QByteArrayData &d1 = self.data_ptr(); |
| 613 | QByteArrayData &d2 = other.data_ptr(); |
| 614 | bool detached1 = !d1.needsDetach(); |
| 615 | bool detached2 = !d2.needsDetach(); |
| 616 | if (!detached1 && !detached2) |
| 617 | return InCopy; |
| 618 | |
| 619 | // at least one of the two is detached, we'll reuse its buffer |
| 620 | bool swap = false; |
| 621 | if (detached1 && detached2) { |
| 622 | // both are detached, so choose the larger of the two |
| 623 | swap = d1.allocatedCapacity() < d2.allocatedCapacity(); |
| 624 | } else if (detached2) { |
| 625 | // we can re-use other's buffer but not self's, so swap the two |
| 626 | swap = true; |
| 627 | } |
| 628 | if (swap) |
| 629 | self.swap(other); |
| 630 | return InPlace; |
| 631 | } |
| 632 | |
| 633 | template <typename BitwiseOp> static |
| 634 | QBitArray &performBitwiseOperation(QBitArray &self, QBitArray &other, BitwiseOp op) |
| 635 | { |
| 636 | auto choice = prepareForBitwiseOperation(self, other); |
| 637 | if (choice == InCopy) |
| 638 | return performBitwiseOperationInCopy(self, other, std::move(op)); |
| 639 | return performBitwiseOperationInPlace(self, other, std::move(op)); |
| 640 | } |
| 641 | |
| 642 | /*! |
| 643 | \fn QBitArray &QBitArray::operator&=(const QBitArray &other) |
| 644 | \fn QBitArray &QBitArray::operator&=(QBitArray &&other) |
| 645 | |
| 646 | Performs the AND operation between all bits in this bit array and |
| 647 | \a other. Assigns the result to this bit array, and returns a |
| 648 | reference to it. |
| 649 | |
| 650 | The result has the length of the longest of the two bit arrays, |
| 651 | with any missing bits (if one array is shorter than the other) |
| 652 | taken to be 0. |
| 653 | |
| 654 | Example: |
| 655 | \snippet code/src_corelib_tools_qbitarray.cpp 8 |
| 656 | |
| 657 | \sa operator&(), operator|=(), operator^=(), operator~() |
| 658 | */ |
| 659 | |
| 660 | QBitArray &QBitArray::operator&=(QBitArray &&other) |
| 661 | { |
| 662 | return performBitwiseOperation(self&: *this, other, op: std::bit_and<uchar>()); |
| 663 | } |
| 664 | |
| 665 | QBitArray &QBitArray::operator&=(const QBitArray &other) |
| 666 | { |
| 667 | return performBitwiseOperation(self&: *this, other, op: std::bit_and<uchar>()); |
| 668 | } |
| 669 | |
| 670 | /*! |
| 671 | \fn QBitArray &QBitArray::operator|=(const QBitArray &other) |
| 672 | \fn QBitArray &QBitArray::operator|=(QBitArray &&other) |
| 673 | |
| 674 | Performs the OR operation between all bits in this bit array and |
| 675 | \a other. Assigns the result to this bit array, and returns a |
| 676 | reference to it. |
| 677 | |
| 678 | The result has the length of the longest of the two bit arrays, |
| 679 | with any missing bits (if one array is shorter than the other) |
| 680 | taken to be 0. |
| 681 | |
| 682 | Example: |
| 683 | \snippet code/src_corelib_tools_qbitarray.cpp 9 |
| 684 | |
| 685 | \sa operator|(), operator&=(), operator^=(), operator~() |
| 686 | */ |
| 687 | |
| 688 | QBitArray &QBitArray::operator|=(QBitArray &&other) |
| 689 | { |
| 690 | return performBitwiseOperation(self&: *this, other, op: std::bit_or<uchar>()); |
| 691 | } |
| 692 | |
| 693 | QBitArray &QBitArray::operator|=(const QBitArray &other) |
| 694 | { |
| 695 | return performBitwiseOperation(self&: *this, other, op: std::bit_or<uchar>()); |
| 696 | } |
| 697 | |
| 698 | /*! |
| 699 | \fn QBitArray &QBitArray::operator^=(const QBitArray &other) |
| 700 | \fn QBitArray &QBitArray::operator^=(QBitArray &&other) |
| 701 | |
| 702 | Performs the XOR operation between all bits in this bit array and |
| 703 | \a other. Assigns the result to this bit array, and returns a |
| 704 | reference to it. |
| 705 | |
| 706 | The result has the length of the longest of the two bit arrays, |
| 707 | with any missing bits (if one array is shorter than the other) |
| 708 | taken to be 0. |
| 709 | |
| 710 | Example: |
| 711 | \snippet code/src_corelib_tools_qbitarray.cpp 10 |
| 712 | |
| 713 | \sa operator^(), operator&=(), operator|=(), operator~() |
| 714 | */ |
| 715 | |
| 716 | QBitArray &QBitArray::operator^=(QBitArray &&other) |
| 717 | { |
| 718 | return performBitwiseOperation(self&: *this, other, op: std::bit_xor<uchar>()); |
| 719 | } |
| 720 | |
| 721 | QBitArray &QBitArray::operator^=(const QBitArray &other) |
| 722 | { |
| 723 | return performBitwiseOperation(self&: *this, other, op: std::bit_xor<uchar>()); |
| 724 | } |
| 725 | |
| 726 | /*! |
| 727 | \fn QBitArray QBitArray::operator~(QBitArray a) |
| 728 | Returns a bit array that contains the inverted bits of the bit |
| 729 | array \a a. |
| 730 | |
| 731 | Example: |
| 732 | \snippet code/src_corelib_tools_qbitarray.cpp 11 |
| 733 | |
| 734 | \sa operator&(), operator|(), operator^() |
| 735 | */ |
| 736 | |
| 737 | Q_NEVER_INLINE QBitArray QBitArray::inverted_inplace() && |
| 738 | { |
| 739 | qsizetype n = d.size(); |
| 740 | uchar *dst = reinterpret_cast<uchar *>(data_ptr().data()); |
| 741 | const uchar *src = dst; |
| 742 | QBitArray result([&] { |
| 743 | if (d.isDetached() || n == 0) |
| 744 | return std::move(d.data_ptr()); // invert in-place |
| 745 | |
| 746 | QByteArrayData tmp(n, n); |
| 747 | dst = reinterpret_cast<uchar *>(tmp.data()); |
| 748 | return tmp; |
| 749 | }()); |
| 750 | |
| 751 | uchar bitdiff = 8; |
| 752 | if (n) |
| 753 | bitdiff = dst[0] = src[0]; // copy the count of bits in the last byte |
| 754 | |
| 755 | for (qsizetype i = 1; i < n; ++i) |
| 756 | dst[i] = ~src[i]; |
| 757 | |
| 758 | if (int tailCount = 16 - bitdiff; tailCount != 8) { |
| 759 | // zero the bits beyond our size in the last byte |
| 760 | Q_ASSERT(n > 1); |
| 761 | uchar tailMask = (1U << tailCount) - 1; |
| 762 | dst[n - 1] &= tailMask; |
| 763 | } |
| 764 | |
| 765 | return result; |
| 766 | } |
| 767 | |
| 768 | /*! |
| 769 | \fn QBitArray QBitArray::operator&(const QBitArray &a1, const QBitArray &a2) |
| 770 | \fn QBitArray QBitArray::operator&(QBitArray &&a1, const QBitArray &a2) |
| 771 | \fn QBitArray QBitArray::operator&(const QBitArray &a1, QBitArray &&a2) |
| 772 | \fn QBitArray QBitArray::operator&(QBitArray &&a1, QBitArray &&a2) |
| 773 | |
| 774 | Returns a bit array that is the AND of the bit arrays \a a1 and \a |
| 775 | a2. |
| 776 | |
| 777 | The result has the length of the longest of the two bit arrays, |
| 778 | with any missing bits (if one array is shorter than the other) |
| 779 | taken to be 0. |
| 780 | |
| 781 | Example: |
| 782 | \snippet code/src_corelib_tools_qbitarray.cpp 12 |
| 783 | |
| 784 | \sa {QBitArray::}{operator&=()}, {QBitArray::}{operator|()}, {QBitArray::}{operator^()} |
| 785 | */ |
| 786 | |
| 787 | QBitArray operator&(const QBitArray &a1, const QBitArray &a2) |
| 788 | { |
| 789 | QBitArray tmp = sizedForOverwrite(a1, a2); |
| 790 | performBitwiseOperationHelper(out&: tmp, a1, a2, op: std::bit_and<uchar>()); |
| 791 | return tmp; |
| 792 | } |
| 793 | |
| 794 | /*! |
| 795 | \fn QBitArray QBitArray::operator|(const QBitArray &a1, const QBitArray &a2) |
| 796 | \fn QBitArray QBitArray::operator|(QBitArray &&a1, const QBitArray &a2) |
| 797 | \fn QBitArray QBitArray::operator|(const QBitArray &a1, QBitArray &&a2) |
| 798 | \fn QBitArray QBitArray::operator|(QBitArray &&a1, QBitArray &&a2) |
| 799 | |
| 800 | Returns a bit array that is the OR of the bit arrays \a a1 and \a |
| 801 | a2. |
| 802 | |
| 803 | The result has the length of the longest of the two bit arrays, |
| 804 | with any missing bits (if one array is shorter than the other) |
| 805 | taken to be 0. |
| 806 | |
| 807 | Example: |
| 808 | \snippet code/src_corelib_tools_qbitarray.cpp 13 |
| 809 | |
| 810 | \sa QBitArray::operator|=(), operator&(), operator^() |
| 811 | */ |
| 812 | |
| 813 | QBitArray operator|(const QBitArray &a1, const QBitArray &a2) |
| 814 | { |
| 815 | QBitArray tmp = sizedForOverwrite(a1, a2); |
| 816 | performBitwiseOperationHelper(out&: tmp, a1, a2, op: std::bit_or<uchar>()); |
| 817 | return tmp; |
| 818 | } |
| 819 | |
| 820 | /*! |
| 821 | \fn QBitArray QBitArray::operator^(const QBitArray &a1, const QBitArray &a2) |
| 822 | \fn QBitArray QBitArray::operator^(QBitArray &&a1, const QBitArray &a2) |
| 823 | \fn QBitArray QBitArray::operator^(const QBitArray &a1, QBitArray &&a2) |
| 824 | \fn QBitArray QBitArray::operator^(QBitArray &&a1, QBitArray &&a2) |
| 825 | |
| 826 | Returns a bit array that is the XOR of the bit arrays \a a1 and \a |
| 827 | a2. |
| 828 | |
| 829 | The result has the length of the longest of the two bit arrays, |
| 830 | with any missing bits (if one array is shorter than the other) |
| 831 | taken to be 0. |
| 832 | |
| 833 | Example: |
| 834 | \snippet code/src_corelib_tools_qbitarray.cpp 14 |
| 835 | |
| 836 | \sa {QBitArray}{operator^=()}, {QBitArray}{operator&()}, {QBitArray}{operator|()} |
| 837 | */ |
| 838 | |
| 839 | QBitArray operator^(const QBitArray &a1, const QBitArray &a2) |
| 840 | { |
| 841 | QBitArray tmp = sizedForOverwrite(a1, a2); |
| 842 | performBitwiseOperationHelper(out&: tmp, a1, a2, op: std::bit_xor<uchar>()); |
| 843 | return tmp; |
| 844 | } |
| 845 | |
| 846 | /*! |
| 847 | \class QBitRef |
| 848 | \inmodule QtCore |
| 849 | \reentrant |
| 850 | \brief The QBitRef class is an internal class, used with QBitArray. |
| 851 | |
| 852 | \internal |
| 853 | |
| 854 | The QBitRef is required by the indexing [] operator on bit arrays. |
| 855 | It is not for use in any other context. |
| 856 | */ |
| 857 | |
| 858 | /*! \fn QBitRef::QBitRef (QBitArray& a, qsizetype i) |
| 859 | |
| 860 | Constructs a reference to element \a i in the QBitArray \a a. |
| 861 | This is what QBitArray::operator[] constructs its return value |
| 862 | with. |
| 863 | */ |
| 864 | |
| 865 | /*! \fn QBitRef::operator bool() const |
| 866 | |
| 867 | Returns the value referenced by the QBitRef. |
| 868 | */ |
| 869 | |
| 870 | /*! \fn bool QBitRef::operator!() const |
| 871 | |
| 872 | \internal |
| 873 | */ |
| 874 | |
| 875 | /*! \fn QBitRef& QBitRef::operator= (const QBitRef& v) |
| 876 | |
| 877 | Sets the value referenced by the QBitRef to that referenced by |
| 878 | QBitRef \a v. |
| 879 | */ |
| 880 | |
| 881 | /*! \fn QBitRef& QBitRef::operator= (bool v) |
| 882 | \overload |
| 883 | |
| 884 | Sets the value referenced by the QBitRef to \a v. |
| 885 | */ |
| 886 | |
| 887 | /***************************************************************************** |
| 888 | QBitArray stream functions |
| 889 | *****************************************************************************/ |
| 890 | |
| 891 | #ifndef QT_NO_DATASTREAM |
| 892 | /*! |
| 893 | \relates QBitArray |
| 894 | |
| 895 | Writes bit array \a ba to stream \a out. |
| 896 | |
| 897 | \sa {Serializing Qt Data Types}{Format of the QDataStream operators} |
| 898 | */ |
| 899 | |
| 900 | QDataStream &operator<<(QDataStream &out, const QBitArray &ba) |
| 901 | { |
| 902 | const qsizetype len = ba.size(); |
| 903 | if (out.version() < QDataStream::Qt_6_0) { |
| 904 | if (Q_UNLIKELY(len > qsizetype{(std::numeric_limits<qint32>::max)()})) { |
| 905 | out.setStatus(QDataStream::Status::SizeLimitExceeded); |
| 906 | return out; |
| 907 | } |
| 908 | out << quint32(len); |
| 909 | } else { |
| 910 | out << quint64(len); |
| 911 | } |
| 912 | if (len > 0) |
| 913 | out.writeRawData(ba.d.data() + 1, len: ba.d.size() - 1); |
| 914 | return out; |
| 915 | } |
| 916 | |
| 917 | /*! |
| 918 | \relates QBitArray |
| 919 | |
| 920 | Reads a bit array into \a ba from stream \a in. |
| 921 | |
| 922 | \sa {Serializing Qt Data Types}{Format of the QDataStream operators} |
| 923 | */ |
| 924 | |
| 925 | QDataStream &operator>>(QDataStream &in, QBitArray &ba) |
| 926 | { |
| 927 | ba.clear(); |
| 928 | qsizetype len; |
| 929 | if (in.version() < QDataStream::Qt_6_0) { |
| 930 | quint32 tmp; |
| 931 | in >> tmp; |
| 932 | if (Q_UNLIKELY(tmp > quint32((std::numeric_limits<qint32>::max)()))) { |
| 933 | in.setStatus(QDataStream::ReadCorruptData); |
| 934 | return in; |
| 935 | } |
| 936 | len = tmp; |
| 937 | } else { |
| 938 | quint64 tmp; |
| 939 | in >> tmp; |
| 940 | if (Q_UNLIKELY(tmp > quint64((std::numeric_limits<qsizetype>::max)()))) { |
| 941 | in.setStatus(QDataStream::Status::SizeLimitExceeded); |
| 942 | return in; |
| 943 | } |
| 944 | len = tmp; |
| 945 | } |
| 946 | if (len == 0) { |
| 947 | ba.clear(); |
| 948 | return in; |
| 949 | } |
| 950 | |
| 951 | const qsizetype Step = 8 * 1024 * 1024; |
| 952 | const qsizetype totalBytes = storage_size(size: len); |
| 953 | qsizetype allocated = 0; |
| 954 | |
| 955 | while (allocated < totalBytes) { |
| 956 | qsizetype blockSize = qMin(a: Step, b: totalBytes - allocated); |
| 957 | ba.d.resize(size: allocated + blockSize + 1); |
| 958 | if (in.readRawData(ba.d.data() + 1 + allocated, len: blockSize) != blockSize) { |
| 959 | ba.clear(); |
| 960 | in.setStatus(QDataStream::ReadPastEnd); |
| 961 | return in; |
| 962 | } |
| 963 | allocated += blockSize; |
| 964 | } |
| 965 | |
| 966 | const auto fromStream = ba.d.back(); |
| 967 | adjust_head_and_tail(data: ba.d.data(), storageSize: ba.d.size(), logicalSize: len); |
| 968 | if (ba.d.back() != fromStream) { |
| 969 | ba.clear(); |
| 970 | in.setStatus(QDataStream::ReadCorruptData); |
| 971 | return in; |
| 972 | } |
| 973 | return in; |
| 974 | } |
| 975 | #endif // QT_NO_DATASTREAM |
| 976 | |
| 977 | #ifndef QT_NO_DEBUG_STREAM |
| 978 | QDebug operator<<(QDebug dbg, const QBitArray &array) |
| 979 | { |
| 980 | QDebugStateSaver saver(dbg); |
| 981 | dbg.nospace() << "QBitArray(" ; |
| 982 | for (qsizetype i = 0; i < array.size();) { |
| 983 | if (array.testBit(i)) |
| 984 | dbg << '1'; |
| 985 | else |
| 986 | dbg << '0'; |
| 987 | i += 1; |
| 988 | if (!(i % 4) && (i < array.size())) |
| 989 | dbg << ' '; |
| 990 | } |
| 991 | dbg << ')'; |
| 992 | return dbg; |
| 993 | } |
| 994 | #endif |
| 995 | |
| 996 | /*! |
| 997 | \fn DataPtr &QBitArray::data_ptr() |
| 998 | \internal |
| 999 | */ |
| 1000 | |
| 1001 | /*! |
| 1002 | \typedef QBitArray::DataPtr |
| 1003 | \internal |
| 1004 | */ |
| 1005 | |
| 1006 | QT_END_NAMESPACE |
| 1007 | |