1 | // Copyright (C) 2016 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | /* |
5 | |
6 | | *property* | *Used for type* | |
7 | | period | QEasingCurve::{In,Out,InOut,OutIn}Elastic | |
8 | | amplitude | QEasingCurve::{In,Out,InOut,OutIn}Bounce, QEasingCurve::{In,Out,InOut,OutIn}Elastic | |
9 | | overshoot | QEasingCurve::{In,Out,InOut,OutIn}Back | |
10 | |
11 | */ |
12 | |
13 | |
14 | |
15 | |
16 | /*! |
17 | \class QEasingCurve |
18 | \inmodule QtCore |
19 | \since 4.6 |
20 | \ingroup animation |
21 | \brief The QEasingCurve class provides easing curves for controlling animation. |
22 | |
23 | Easing curves describe a function that controls how the speed of the interpolation |
24 | between 0 and 1 should be. Easing curves allow transitions from |
25 | one value to another to appear more natural than a simple constant speed would allow. |
26 | The QEasingCurve class is usually used in conjunction with the QVariantAnimation and |
27 | QPropertyAnimation classes but can be used on its own. It is usually used to accelerate |
28 | the interpolation from zero velocity (ease in) or decelerate to zero velocity (ease out). |
29 | Ease in and ease out can also be combined in the same easing curve. |
30 | |
31 | To calculate the speed of the interpolation, the easing curve provides the function |
32 | valueForProgress(), where the \a progress argument specifies the progress of the |
33 | interpolation: 0 is the start value of the interpolation, 1 is the end value of the |
34 | interpolation. The returned value is the effective progress of the interpolation. |
35 | If the returned value is the same as the input value for all input values the easing |
36 | curve is a linear curve. This is the default behaviour. |
37 | |
38 | For example, |
39 | |
40 | \snippet code/src_corelib_tools_qeasingcurve.cpp 0 |
41 | |
42 | will print the effective progress of the interpolation between 0 and 1. |
43 | |
44 | When using a QPropertyAnimation, the associated easing curve will be used to control the |
45 | progress of the interpolation between startValue and endValue: |
46 | |
47 | \snippet code/src_corelib_tools_qeasingcurve.cpp 1 |
48 | |
49 | The ability to set an amplitude, overshoot, or period depends on |
50 | the QEasingCurve type. Amplitude access is available to curves |
51 | that behave as springs such as elastic and bounce curves. Changing |
52 | the amplitude changes the height of the curve. Period access is |
53 | only available to elastic curves and setting a higher period slows |
54 | the rate of bounce. Only curves that have "boomerang" behaviors |
55 | such as the InBack, OutBack, InOutBack, and OutInBack have |
56 | overshoot settings. These curves will interpolate beyond the end |
57 | points and return to the end point, acting similar to a boomerang. |
58 | |
59 | The \l{Easing Curves Example} contains samples of QEasingCurve |
60 | types and lets you change the curve settings. |
61 | |
62 | */ |
63 | |
64 | /*! |
65 | \enum QEasingCurve::Type |
66 | |
67 | The type of easing curve. |
68 | |
69 | \value Linear \image qeasingcurve-linear.png |
70 | \caption Easing curve for a linear (t) function: |
71 | velocity is constant. |
72 | \value InQuad \image qeasingcurve-inquad.png |
73 | \caption Easing curve for a quadratic (t^2) function: |
74 | accelerating from zero velocity. |
75 | \value OutQuad \image qeasingcurve-outquad.png |
76 | \caption Easing curve for a quadratic (t^2) function: |
77 | decelerating to zero velocity. |
78 | \value InOutQuad \image qeasingcurve-inoutquad.png |
79 | \caption Easing curve for a quadratic (t^2) function: |
80 | acceleration until halfway, then deceleration. |
81 | \value OutInQuad \image qeasingcurve-outinquad.png |
82 | \caption Easing curve for a quadratic (t^2) function: |
83 | deceleration until halfway, then acceleration. |
84 | \value InCubic \image qeasingcurve-incubic.png |
85 | \caption Easing curve for a cubic (t^3) function: |
86 | accelerating from zero velocity. |
87 | \value OutCubic \image qeasingcurve-outcubic.png |
88 | \caption Easing curve for a cubic (t^3) function: |
89 | decelerating to zero velocity. |
90 | \value InOutCubic \image qeasingcurve-inoutcubic.png |
91 | \caption Easing curve for a cubic (t^3) function: |
92 | acceleration until halfway, then deceleration. |
93 | \value OutInCubic \image qeasingcurve-outincubic.png |
94 | \caption Easing curve for a cubic (t^3) function: |
95 | deceleration until halfway, then acceleration. |
96 | \value InQuart \image qeasingcurve-inquart.png |
97 | \caption Easing curve for a quartic (t^4) function: |
98 | accelerating from zero velocity. |
99 | \value OutQuart \image qeasingcurve-outquart.png |
100 | \caption |
101 | Easing curve for a quartic (t^4) function: |
102 | decelerating to zero velocity. |
103 | \value InOutQuart \image qeasingcurve-inoutquart.png |
104 | \caption |
105 | Easing curve for a quartic (t^4) function: |
106 | acceleration until halfway, then deceleration. |
107 | \value OutInQuart \image qeasingcurve-outinquart.png |
108 | \caption |
109 | Easing curve for a quartic (t^4) function: |
110 | deceleration until halfway, then acceleration. |
111 | \value InQuint \image qeasingcurve-inquint.png |
112 | \caption |
113 | Easing curve for a quintic (t^5) easing |
114 | in: accelerating from zero velocity. |
115 | \value OutQuint \image qeasingcurve-outquint.png |
116 | \caption |
117 | Easing curve for a quintic (t^5) function: |
118 | decelerating to zero velocity. |
119 | \value InOutQuint \image qeasingcurve-inoutquint.png |
120 | \caption |
121 | Easing curve for a quintic (t^5) function: |
122 | acceleration until halfway, then deceleration. |
123 | \value OutInQuint \image qeasingcurve-outinquint.png |
124 | \caption |
125 | Easing curve for a quintic (t^5) function: |
126 | deceleration until halfway, then acceleration. |
127 | \value InSine \image qeasingcurve-insine.png |
128 | \caption |
129 | Easing curve for a sinusoidal (sin(t)) function: |
130 | accelerating from zero velocity. |
131 | \value OutSine \image qeasingcurve-outsine.png |
132 | \caption |
133 | Easing curve for a sinusoidal (sin(t)) function: |
134 | decelerating to zero velocity. |
135 | \value InOutSine \image qeasingcurve-inoutsine.png |
136 | \caption |
137 | Easing curve for a sinusoidal (sin(t)) function: |
138 | acceleration until halfway, then deceleration. |
139 | \value OutInSine \image qeasingcurve-outinsine.png |
140 | \caption |
141 | Easing curve for a sinusoidal (sin(t)) function: |
142 | deceleration until halfway, then acceleration. |
143 | \value InExpo \image qeasingcurve-inexpo.png |
144 | \caption |
145 | Easing curve for an exponential (2^t) function: |
146 | accelerating from zero velocity. |
147 | \value OutExpo \image qeasingcurve-outexpo.png |
148 | \caption |
149 | Easing curve for an exponential (2^t) function: |
150 | decelerating to zero velocity. |
151 | \value InOutExpo \image qeasingcurve-inoutexpo.png |
152 | \caption |
153 | Easing curve for an exponential (2^t) function: |
154 | acceleration until halfway, then deceleration. |
155 | \value OutInExpo \image qeasingcurve-outinexpo.png |
156 | \caption |
157 | Easing curve for an exponential (2^t) function: |
158 | deceleration until halfway, then acceleration. |
159 | \value InCirc \image qeasingcurve-incirc.png |
160 | \caption |
161 | Easing curve for a circular (sqrt(1-t^2)) function: |
162 | accelerating from zero velocity. |
163 | \value OutCirc \image qeasingcurve-outcirc.png |
164 | \caption |
165 | Easing curve for a circular (sqrt(1-t^2)) function: |
166 | decelerating to zero velocity. |
167 | \value InOutCirc \image qeasingcurve-inoutcirc.png |
168 | \caption |
169 | Easing curve for a circular (sqrt(1-t^2)) function: |
170 | acceleration until halfway, then deceleration. |
171 | \value OutInCirc \image qeasingcurve-outincirc.png |
172 | \caption |
173 | Easing curve for a circular (sqrt(1-t^2)) function: |
174 | deceleration until halfway, then acceleration. |
175 | \value InElastic \image qeasingcurve-inelastic.png |
176 | \caption |
177 | Easing curve for an elastic |
178 | (exponentially decaying sine wave) function: |
179 | accelerating from zero velocity. The peak amplitude |
180 | can be set with the \e amplitude parameter, and the |
181 | period of decay by the \e period parameter. |
182 | \value OutElastic \image qeasingcurve-outelastic.png |
183 | \caption |
184 | Easing curve for an elastic |
185 | (exponentially decaying sine wave) function: |
186 | decelerating to zero velocity. The peak amplitude |
187 | can be set with the \e amplitude parameter, and the |
188 | period of decay by the \e period parameter. |
189 | \value InOutElastic \image qeasingcurve-inoutelastic.png |
190 | \caption |
191 | Easing curve for an elastic |
192 | (exponentially decaying sine wave) function: |
193 | acceleration until halfway, then deceleration. |
194 | \value OutInElastic \image qeasingcurve-outinelastic.png |
195 | \caption |
196 | Easing curve for an elastic |
197 | (exponentially decaying sine wave) function: |
198 | deceleration until halfway, then acceleration. |
199 | \value InBack \image qeasingcurve-inback.png |
200 | \caption |
201 | Easing curve for a back (overshooting |
202 | cubic function: (s+1)*t^3 - s*t^2) easing in: |
203 | accelerating from zero velocity. |
204 | \value OutBack \image qeasingcurve-outback.png |
205 | \caption |
206 | Easing curve for a back (overshooting |
207 | cubic function: (s+1)*t^3 - s*t^2) easing out: |
208 | decelerating to zero velocity. |
209 | \value InOutBack \image qeasingcurve-inoutback.png |
210 | \caption |
211 | Easing curve for a back (overshooting |
212 | cubic function: (s+1)*t^3 - s*t^2) easing in/out: |
213 | acceleration until halfway, then deceleration. |
214 | \value OutInBack \image qeasingcurve-outinback.png |
215 | \caption |
216 | Easing curve for a back (overshooting |
217 | cubic easing: (s+1)*t^3 - s*t^2) easing out/in: |
218 | deceleration until halfway, then acceleration. |
219 | \value InBounce \image qeasingcurve-inbounce.png |
220 | \caption |
221 | Easing curve for a bounce (exponentially |
222 | decaying parabolic bounce) function: accelerating |
223 | from zero velocity. |
224 | \value OutBounce \image qeasingcurve-outbounce.png |
225 | \caption |
226 | Easing curve for a bounce (exponentially |
227 | decaying parabolic bounce) function: decelerating |
228 | from zero velocity. |
229 | \value InOutBounce \image qeasingcurve-inoutbounce.png |
230 | \caption |
231 | Easing curve for a bounce (exponentially |
232 | decaying parabolic bounce) function easing in/out: |
233 | acceleration until halfway, then deceleration. |
234 | \value OutInBounce \image qeasingcurve-outinbounce.png |
235 | \caption |
236 | Easing curve for a bounce (exponentially |
237 | decaying parabolic bounce) function easing out/in: |
238 | deceleration until halfway, then acceleration. |
239 | \omitvalue InCurve |
240 | \omitvalue OutCurve |
241 | \omitvalue SineCurve |
242 | \omitvalue CosineCurve |
243 | \value BezierSpline Allows defining a custom easing curve using a cubic bezier spline |
244 | \sa addCubicBezierSegment() |
245 | \value TCBSpline Allows defining a custom easing curve using a TCB spline |
246 | \sa addTCBSegment() |
247 | \value Custom This is returned if the user specified a custom curve type with |
248 | setCustomType(). Note that you cannot call setType() with this value, |
249 | but type() can return it. |
250 | \omitvalue NCurveTypes |
251 | */ |
252 | |
253 | /*! |
254 | \typedef QEasingCurve::EasingFunction |
255 | |
256 | This is a typedef for a pointer to a function with the following |
257 | signature: |
258 | |
259 | \snippet code/src_corelib_tools_qeasingcurve.cpp typedef |
260 | */ |
261 | |
262 | #include "qeasingcurve.h" |
263 | #include <cmath> |
264 | |
265 | #ifndef QT_NO_DEBUG_STREAM |
266 | #include <QtCore/qdebug.h> |
267 | #include <QtCore/qstring.h> |
268 | #endif |
269 | |
270 | #ifndef QT_NO_DATASTREAM |
271 | #include <QtCore/qdatastream.h> |
272 | #endif |
273 | |
274 | #include <QtCore/qpoint.h> |
275 | #include <QtCore/qlist.h> |
276 | |
277 | QT_BEGIN_NAMESPACE |
278 | |
279 | static bool isConfigFunction(QEasingCurve::Type type) |
280 | { |
281 | return (type >= QEasingCurve::InElastic |
282 | && type <= QEasingCurve::OutInBounce) || |
283 | type == QEasingCurve::BezierSpline || |
284 | type == QEasingCurve::TCBSpline; |
285 | } |
286 | |
287 | struct TCBPoint |
288 | { |
289 | QPointF _point; |
290 | qreal _t; |
291 | qreal _c; |
292 | qreal _b; |
293 | |
294 | TCBPoint() {} |
295 | TCBPoint(QPointF point, qreal t, qreal c, qreal b) : _point(point), _t(t), _c(c), _b(b) {} |
296 | |
297 | bool operator==(const TCBPoint &other) const |
298 | { |
299 | return _point == other._point && |
300 | qFuzzyCompare(p1: _t, p2: other._t) && |
301 | qFuzzyCompare(p1: _c, p2: other._c) && |
302 | qFuzzyCompare(p1: _b, p2: other._b); |
303 | } |
304 | }; |
305 | Q_DECLARE_TYPEINFO(TCBPoint, Q_PRIMITIVE_TYPE); |
306 | |
307 | QDataStream &operator<<(QDataStream &stream, const TCBPoint &point) |
308 | { |
309 | stream << point._point |
310 | << point._t |
311 | << point._c |
312 | << point._b; |
313 | return stream; |
314 | } |
315 | |
316 | QDataStream &operator>>(QDataStream &stream, TCBPoint &point) |
317 | { |
318 | stream >> point._point |
319 | >> point._t |
320 | >> point._c |
321 | >> point._b; |
322 | return stream; |
323 | } |
324 | |
325 | typedef QList<TCBPoint> TCBPoints; |
326 | |
327 | class QEasingCurveFunction |
328 | { |
329 | public: |
330 | QEasingCurveFunction(QEasingCurve::Type type, qreal period = 0.3, qreal amplitude = 1.0, |
331 | qreal overshoot = 1.70158) |
332 | : _t(type), _p(period), _a(amplitude), _o(overshoot) |
333 | { } |
334 | virtual ~QEasingCurveFunction() {} |
335 | virtual qreal value(qreal t); |
336 | virtual QEasingCurveFunction *copy() const; |
337 | bool operator==(const QEasingCurveFunction &other) const; |
338 | |
339 | QEasingCurve::Type _t; |
340 | qreal _p; |
341 | qreal _a; |
342 | qreal _o; |
343 | QList<QPointF> _bezierCurves; |
344 | TCBPoints _tcbPoints; |
345 | |
346 | }; |
347 | |
348 | QDataStream &operator<<(QDataStream &stream, QEasingCurveFunction *func) |
349 | { |
350 | if (func) { |
351 | stream << func->_p; |
352 | stream << func->_a; |
353 | stream << func->_o; |
354 | if (stream.version() > QDataStream::Qt_5_12) { |
355 | stream << func->_bezierCurves; |
356 | stream << func->_tcbPoints; |
357 | } |
358 | } |
359 | return stream; |
360 | } |
361 | |
362 | QDataStream &operator>>(QDataStream &stream, QEasingCurveFunction *func) |
363 | { |
364 | if (func) { |
365 | stream >> func->_p; |
366 | stream >> func->_a; |
367 | stream >> func->_o; |
368 | if (stream.version() > QDataStream::Qt_5_12) { |
369 | stream >> func->_bezierCurves; |
370 | stream >> func->_tcbPoints; |
371 | } |
372 | } |
373 | return stream; |
374 | } |
375 | |
376 | static QEasingCurve::EasingFunction curveToFunc(QEasingCurve::Type curve); |
377 | |
378 | qreal QEasingCurveFunction::value(qreal t) |
379 | { |
380 | QEasingCurve::EasingFunction func = curveToFunc(curve: _t); |
381 | return func(t); |
382 | } |
383 | |
384 | QEasingCurveFunction *QEasingCurveFunction::copy() const |
385 | { |
386 | QEasingCurveFunction *rv = new QEasingCurveFunction(_t, _p, _a, _o); |
387 | rv->_bezierCurves = _bezierCurves; |
388 | rv->_tcbPoints = _tcbPoints; |
389 | return rv; |
390 | } |
391 | |
392 | bool QEasingCurveFunction::operator==(const QEasingCurveFunction &other) const |
393 | { |
394 | return _t == other._t && |
395 | qFuzzyCompare(p1: _p, p2: other._p) && |
396 | qFuzzyCompare(p1: _a, p2: other._a) && |
397 | qFuzzyCompare(p1: _o, p2: other._o) && |
398 | _bezierCurves == other._bezierCurves && |
399 | _tcbPoints == other._tcbPoints; |
400 | } |
401 | |
402 | QT_BEGIN_INCLUDE_NAMESPACE |
403 | #include "../../3rdparty/easing/easing.cpp" |
404 | QT_END_INCLUDE_NAMESPACE |
405 | |
406 | class QEasingCurvePrivate |
407 | { |
408 | public: |
409 | QEasingCurvePrivate() |
410 | : type(QEasingCurve::Linear), |
411 | config(nullptr), |
412 | func(&easeNone) |
413 | { } |
414 | QEasingCurvePrivate(const QEasingCurvePrivate &other) |
415 | : type(other.type), |
416 | config(other.config ? other.config->copy() : nullptr), |
417 | func(other.func) |
418 | { } |
419 | ~QEasingCurvePrivate() { delete config; } |
420 | void setType_helper(QEasingCurve::Type); |
421 | |
422 | QEasingCurve::Type type; |
423 | QEasingCurveFunction *config; |
424 | QEasingCurve::EasingFunction func; |
425 | }; |
426 | |
427 | struct BezierEase : public QEasingCurveFunction |
428 | { |
429 | struct SingleCubicBezier { |
430 | qreal p0x, p0y; |
431 | qreal p1x, p1y; |
432 | qreal p2x, p2y; |
433 | qreal p3x, p3y; |
434 | }; |
435 | |
436 | QList<SingleCubicBezier> _curves; |
437 | QList<qreal> _intervals; |
438 | int _curveCount; |
439 | bool _init; |
440 | bool _valid; |
441 | |
442 | BezierEase(QEasingCurve::Type type = QEasingCurve::BezierSpline) |
443 | : QEasingCurveFunction(type), _curves(10), _intervals(10), _init(false), _valid(false) |
444 | { } |
445 | |
446 | void init() |
447 | { |
448 | if (_bezierCurves.constLast() == QPointF(1.0, 1.0)) { |
449 | _init = true; |
450 | _curveCount = _bezierCurves.size() / 3; |
451 | |
452 | for (int i=0; i < _curveCount; i++) { |
453 | _intervals[i] = _bezierCurves.at(i: i * 3 + 2).x(); |
454 | |
455 | if (i == 0) { |
456 | _curves[0].p0x = 0.0; |
457 | _curves[0].p0y = 0.0; |
458 | |
459 | _curves[0].p1x = _bezierCurves.at(i: 0).x(); |
460 | _curves[0].p1y = _bezierCurves.at(i: 0).y(); |
461 | |
462 | _curves[0].p2x = _bezierCurves.at(i: 1).x(); |
463 | _curves[0].p2y = _bezierCurves.at(i: 1).y(); |
464 | |
465 | _curves[0].p3x = _bezierCurves.at(i: 2).x(); |
466 | _curves[0].p3y = _bezierCurves.at(i: 2).y(); |
467 | |
468 | } else if (i == (_curveCount - 1)) { |
469 | _curves[i].p0x = _bezierCurves.at(i: _bezierCurves.size() - 4).x(); |
470 | _curves[i].p0y = _bezierCurves.at(i: _bezierCurves.size() - 4).y(); |
471 | |
472 | _curves[i].p1x = _bezierCurves.at(i: _bezierCurves.size() - 3).x(); |
473 | _curves[i].p1y = _bezierCurves.at(i: _bezierCurves.size() - 3).y(); |
474 | |
475 | _curves[i].p2x = _bezierCurves.at(i: _bezierCurves.size() - 2).x(); |
476 | _curves[i].p2y = _bezierCurves.at(i: _bezierCurves.size() - 2).y(); |
477 | |
478 | _curves[i].p3x = _bezierCurves.at(i: _bezierCurves.size() - 1).x(); |
479 | _curves[i].p3y = _bezierCurves.at(i: _bezierCurves.size() - 1).y(); |
480 | } else { |
481 | _curves[i].p0x = _bezierCurves.at(i: i * 3 - 1).x(); |
482 | _curves[i].p0y = _bezierCurves.at(i: i * 3 - 1).y(); |
483 | |
484 | _curves[i].p1x = _bezierCurves.at(i: i * 3).x(); |
485 | _curves[i].p1y = _bezierCurves.at(i: i * 3).y(); |
486 | |
487 | _curves[i].p2x = _bezierCurves.at(i: i * 3 + 1).x(); |
488 | _curves[i].p2y = _bezierCurves.at(i: i * 3 + 1).y(); |
489 | |
490 | _curves[i].p3x = _bezierCurves.at(i: i * 3 + 2).x(); |
491 | _curves[i].p3y = _bezierCurves.at(i: i * 3 + 2).y(); |
492 | } |
493 | } |
494 | _valid = true; |
495 | } else { |
496 | _valid = false; |
497 | } |
498 | } |
499 | |
500 | QEasingCurveFunction *copy() const override |
501 | { |
502 | BezierEase *rv = new BezierEase(); |
503 | rv->_t = _t; |
504 | rv->_p = _p; |
505 | rv->_a = _a; |
506 | rv->_o = _o; |
507 | rv->_bezierCurves = _bezierCurves; |
508 | rv->_tcbPoints = _tcbPoints; |
509 | return rv; |
510 | } |
511 | |
512 | void getBezierSegment(SingleCubicBezier * &singleCubicBezier, qreal x) |
513 | { |
514 | |
515 | int currentSegment = 0; |
516 | |
517 | while (currentSegment < _curveCount) { |
518 | if (x <= _intervals.data()[currentSegment]) |
519 | break; |
520 | currentSegment++; |
521 | } |
522 | |
523 | singleCubicBezier = &_curves.data()[currentSegment]; |
524 | } |
525 | |
526 | |
527 | qreal static inline newtonIteration(const SingleCubicBezier &singleCubicBezier, qreal t, qreal x) |
528 | { |
529 | qreal currentXValue = evaluateForX(singleCubicBezier, t); |
530 | |
531 | const qreal newT = t - (currentXValue - x) / evaluateDerivateForX(singleCubicBezier, t); |
532 | |
533 | return newT; |
534 | } |
535 | |
536 | qreal value(qreal x) override |
537 | { |
538 | Q_ASSERT(_bezierCurves.size() % 3 == 0); |
539 | |
540 | if (_bezierCurves.isEmpty()) { |
541 | return x; |
542 | } |
543 | |
544 | if (!_init) |
545 | init(); |
546 | |
547 | if (!_valid) { |
548 | qWarning(msg: "QEasingCurve: Invalid bezier curve" ); |
549 | return x; |
550 | } |
551 | |
552 | // The bezier computation is not always precise on the endpoints, so handle explicitly |
553 | if (!(x > 0)) |
554 | return 0; |
555 | if (!(x < 1)) |
556 | return 1; |
557 | |
558 | SingleCubicBezier *singleCubicBezier = nullptr; |
559 | getBezierSegment(singleCubicBezier, x); |
560 | |
561 | return evaluateSegmentForY(singleCubicBezier: *singleCubicBezier, t: findTForX(singleCubicBezier: *singleCubicBezier, x)); |
562 | } |
563 | |
564 | qreal static inline evaluateSegmentForY(const SingleCubicBezier &singleCubicBezier, qreal t) |
565 | { |
566 | const qreal p0 = singleCubicBezier.p0y; |
567 | const qreal p1 = singleCubicBezier.p1y; |
568 | const qreal p2 = singleCubicBezier.p2y; |
569 | const qreal p3 = singleCubicBezier.p3y; |
570 | |
571 | const qreal s = 1 - t; |
572 | |
573 | const qreal s_squared = s * s; |
574 | const qreal t_squared = t * t; |
575 | |
576 | const qreal s_cubic = s_squared * s; |
577 | const qreal t_cubic = t_squared * t; |
578 | |
579 | return s_cubic * p0 + 3 * s_squared * t * p1 + 3 * s * t_squared * p2 + t_cubic * p3; |
580 | } |
581 | |
582 | qreal static inline evaluateForX(const SingleCubicBezier &singleCubicBezier, qreal t) |
583 | { |
584 | const qreal p0 = singleCubicBezier.p0x; |
585 | const qreal p1 = singleCubicBezier.p1x; |
586 | const qreal p2 = singleCubicBezier.p2x; |
587 | const qreal p3 = singleCubicBezier.p3x; |
588 | |
589 | const qreal s = 1 - t; |
590 | |
591 | const qreal s_squared = s * s; |
592 | const qreal t_squared = t * t; |
593 | |
594 | const qreal s_cubic = s_squared * s; |
595 | const qreal t_cubic = t_squared * t; |
596 | |
597 | return s_cubic * p0 + 3 * s_squared * t * p1 + 3 * s * t_squared * p2 + t_cubic * p3; |
598 | } |
599 | |
600 | qreal static inline evaluateDerivateForX(const SingleCubicBezier &singleCubicBezier, qreal t) |
601 | { |
602 | const qreal p0 = singleCubicBezier.p0x; |
603 | const qreal p1 = singleCubicBezier.p1x; |
604 | const qreal p2 = singleCubicBezier.p2x; |
605 | const qreal p3 = singleCubicBezier.p3x; |
606 | |
607 | const qreal t_squared = t * t; |
608 | |
609 | return -3*p0 + 3*p1 + 6*p0*t - 12*p1*t + 6*p2*t + 3*p3*t_squared - 3*p0*t_squared + 9*p1*t_squared - 9*p2*t_squared; |
610 | } |
611 | |
612 | qreal static inline _cbrt(qreal d) |
613 | { |
614 | qreal sign = 1; |
615 | if (d < 0) |
616 | sign = -1; |
617 | d = d * sign; |
618 | |
619 | qreal t = _fast_cbrt(d); |
620 | |
621 | //one step of Halley's Method to get a better approximation |
622 | const qreal t_cubic = t * t * t; |
623 | const qreal f = t_cubic + t_cubic + d; |
624 | if (f != qreal(0.0)) |
625 | t = t * (t_cubic + d + d) / f; |
626 | |
627 | //another step |
628 | /*qreal t_i = t; |
629 | t_i_cubic = pow(t_i, 3); |
630 | t = t_i * (t_i_cubic + d + d) / (t_i_cubic + t_i_cubic + d);*/ |
631 | |
632 | return t * sign; |
633 | } |
634 | |
635 | float static inline _fast_cbrt(float x) |
636 | { |
637 | union { |
638 | float f; |
639 | quint32 i; |
640 | } ux; |
641 | |
642 | const unsigned int B1 = 709921077; |
643 | |
644 | ux.f = x; |
645 | ux.i = (ux.i / 3 + B1); |
646 | |
647 | return ux.f; |
648 | } |
649 | |
650 | double static inline _fast_cbrt(double d) |
651 | { |
652 | union { |
653 | double d; |
654 | quint32 pt[2]; |
655 | } ut, ux; |
656 | |
657 | const unsigned int B1 = 715094163; |
658 | |
659 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
660 | const int h0 = 1; |
661 | #else |
662 | const int h0 = 0; |
663 | #endif |
664 | ut.d = 0.0; |
665 | ux.d = d; |
666 | |
667 | quint32 hx = ux.pt[h0]; //high word of d |
668 | ut.pt[h0] = hx / 3 + B1; |
669 | |
670 | return ut.d; |
671 | } |
672 | |
673 | qreal static inline _acos(qreal x) |
674 | { |
675 | return std::sqrt(x: 1-x)*(1.5707963267948966192313216916398f + x*(-0.213300989f + x*(0.077980478f + x*-0.02164095f))); |
676 | } |
677 | |
678 | qreal static inline _cos(qreal x) //super fast _cos |
679 | { |
680 | const qreal pi_times2 = 2 * M_PI; |
681 | const qreal pi_neg = -1 * M_PI; |
682 | const qreal pi_by2 = M_PI / 2.0; |
683 | |
684 | x += pi_by2; //the polynom is for sin |
685 | |
686 | if (x < pi_neg) |
687 | x += pi_times2; |
688 | else if (x > M_PI) |
689 | x -= pi_times2; |
690 | |
691 | const qreal a = 0.405284735; |
692 | const qreal b = 1.27323954; |
693 | |
694 | const qreal x_squared = x * x; |
695 | |
696 | if (x < 0) { |
697 | qreal cos = b * x + a * x_squared; |
698 | |
699 | if (cos < 0) |
700 | return 0.225 * (cos * -1 * cos - cos) + cos; |
701 | return 0.225 * (cos * cos - cos) + cos; |
702 | } //else |
703 | |
704 | qreal cos = b * x - a * x_squared; |
705 | |
706 | if (cos < 0) |
707 | return 0.225 * (cos * 1 * -cos - cos) + cos; |
708 | return 0.225 * (cos * cos - cos) + cos; |
709 | } |
710 | |
711 | bool static inline inRange(qreal f) |
712 | { |
713 | return (f >= -0.01 && f <= 1.01); |
714 | } |
715 | |
716 | void static inline cosacos(qreal x, qreal &s1, qreal &s2, qreal &s3 ) |
717 | { |
718 | //This function has no proper algebraic representation in real numbers. |
719 | //We use approximations instead |
720 | |
721 | const qreal x_squared = x * x; |
722 | const qreal x_plus_one_sqrt = qSqrt(v: 1.0 + x); |
723 | const qreal one_minus_x_sqrt = qSqrt(v: 1.0 - x); |
724 | |
725 | //cos(acos(x) / 3) |
726 | //s1 = _cos(_acos(x) / 3); |
727 | s1 = 0.463614 - 0.0347815 * x + 0.00218245 * x_squared + 0.402421 * x_plus_one_sqrt; |
728 | |
729 | //cos(acos((x) - M_PI) / 3) |
730 | //s3 = _cos((_acos(x) - M_PI) / 3); |
731 | s3 = 0.463614 + 0.402421 * one_minus_x_sqrt + 0.0347815 * x + 0.00218245 * x_squared; |
732 | |
733 | //cos((acos(x) + M_PI) / 3) |
734 | //s2 = _cos((_acos(x) + M_PI) / 3); |
735 | s2 = -0.401644 * one_minus_x_sqrt - 0.0686804 * x + 0.401644 * x_plus_one_sqrt; |
736 | } |
737 | |
738 | qreal static inline singleRealSolutionForCubic(qreal a, qreal b, qreal c) |
739 | { |
740 | //returns the real solutiuon in [0..1] |
741 | //We use the Cardano formula |
742 | |
743 | //substituiton: x = z - a/3 |
744 | // z^3+pz+q=0 |
745 | |
746 | if (c < 0.000001 && c > -0.000001) |
747 | return 0; |
748 | |
749 | const qreal a_by3 = a / 3.0; |
750 | |
751 | const qreal a_cubic = a * a * a; |
752 | |
753 | const qreal p = b - a * a_by3; |
754 | const qreal q = 2.0 * a_cubic / 27.0 - a * b / 3.0 + c; |
755 | |
756 | const qreal q_squared = q * q; |
757 | const qreal p_cubic = p * p * p; |
758 | const qreal D = 0.25 * q_squared + p_cubic / 27.0; |
759 | |
760 | if (D >= 0) { |
761 | const qreal D_sqrt = qSqrt(v: D); |
762 | qreal u = _cbrt(d: -q * 0.5 + D_sqrt); |
763 | qreal v = _cbrt(d: -q * 0.5 - D_sqrt); |
764 | qreal z1 = u + v; |
765 | |
766 | qreal t1 = z1 - a_by3; |
767 | |
768 | if (inRange(f: t1)) |
769 | return t1; |
770 | qreal z2 = -1 * u; |
771 | qreal t2 = z2 - a_by3; |
772 | return t2; |
773 | } |
774 | |
775 | //casus irreducibilis |
776 | const qreal p_minus_sqrt = qSqrt(v: -p); |
777 | |
778 | //const qreal f = sqrt(4.0 / 3.0 * -p); |
779 | const qreal f = qSqrt(v: 4.0 / 3.0) * p_minus_sqrt; |
780 | |
781 | //const qreal sqrtP = sqrt(27.0 / -p_cubic); |
782 | const qreal sqrtP = -3.0*qSqrt(v: 3.0) / (p_minus_sqrt * p); |
783 | |
784 | |
785 | const qreal g = -q * 0.5 * sqrtP; |
786 | |
787 | qreal s1; |
788 | qreal s2; |
789 | qreal s3; |
790 | |
791 | cosacos(x: g, s1, s2, s3); |
792 | |
793 | qreal z1 = -1 * f * s2; |
794 | qreal t1 = z1 - a_by3; |
795 | if (inRange(f: t1)) |
796 | return t1; |
797 | |
798 | qreal z2 = f * s1; |
799 | qreal t2 = z2 - a_by3; |
800 | if (inRange(f: t2)) |
801 | return t2; |
802 | |
803 | qreal z3 = -1 * f * s3; |
804 | qreal t3 = z3 - a_by3; |
805 | return t3; |
806 | } |
807 | |
808 | bool static inline almostZero(qreal value) |
809 | { |
810 | // 1e-3 might seem excessively fuzzy, but any smaller value will make the |
811 | // factors a, b, and c large enough to knock out the cubic solver. |
812 | return value > -1e-3 && value < 1e-3; |
813 | } |
814 | |
815 | qreal static inline findTForX(const SingleCubicBezier &singleCubicBezier, qreal x) |
816 | { |
817 | const qreal p0 = singleCubicBezier.p0x; |
818 | const qreal p1 = singleCubicBezier.p1x; |
819 | const qreal p2 = singleCubicBezier.p2x; |
820 | const qreal p3 = singleCubicBezier.p3x; |
821 | |
822 | const qreal factorT3 = p3 - p0 + 3 * p1 - 3 * p2; |
823 | const qreal factorT2 = 3 * p0 - 6 * p1 + 3 * p2; |
824 | const qreal factorT1 = -3 * p0 + 3 * p1; |
825 | const qreal factorT0 = p0 - x; |
826 | |
827 | // Cases for quadratic, linear and invalid equations |
828 | if (almostZero(value: factorT3)) { |
829 | if (almostZero(value: factorT2)) { |
830 | if (almostZero(value: factorT1)) |
831 | return 0.0; |
832 | |
833 | return -factorT0 / factorT1; |
834 | } |
835 | const qreal discriminant = factorT1 * factorT1 - 4.0 * factorT2 * factorT0; |
836 | if (discriminant < 0.0) |
837 | return 0.0; |
838 | |
839 | if (discriminant == 0.0) |
840 | return -factorT1 / (2.0 * factorT2); |
841 | |
842 | const qreal solution1 = (-factorT1 + std::sqrt(x: discriminant)) / (2.0 * factorT2); |
843 | if (solution1 >= 0.0 && solution1 <= 1.0) |
844 | return solution1; |
845 | |
846 | const qreal solution2 = (-factorT1 - std::sqrt(x: discriminant)) / (2.0 * factorT2); |
847 | if (solution2 >= 0.0 && solution2 <= 1.0) |
848 | return solution2; |
849 | |
850 | return 0.0; |
851 | } |
852 | |
853 | const qreal a = factorT2 / factorT3; |
854 | const qreal b = factorT1 / factorT3; |
855 | const qreal c = factorT0 / factorT3; |
856 | |
857 | return singleRealSolutionForCubic(a, b, c); |
858 | |
859 | //one new iteration to increase numeric stability |
860 | //return newtonIteration(singleCubicBezier, t, x); |
861 | } |
862 | }; |
863 | |
864 | struct TCBEase : public BezierEase |
865 | { |
866 | TCBEase() |
867 | : BezierEase(QEasingCurve::TCBSpline) |
868 | { } |
869 | |
870 | qreal value(qreal x) override |
871 | { |
872 | Q_ASSERT(_bezierCurves.size() % 3 == 0); |
873 | |
874 | if (_bezierCurves.isEmpty()) { |
875 | qWarning(msg: "QEasingCurve: Invalid tcb curve" ); |
876 | return x; |
877 | } |
878 | |
879 | return BezierEase::value(x); |
880 | } |
881 | |
882 | QEasingCurveFunction *copy() const override |
883 | { |
884 | return new TCBEase{*this}; |
885 | } |
886 | }; |
887 | |
888 | struct ElasticEase : public QEasingCurveFunction |
889 | { |
890 | ElasticEase(QEasingCurve::Type type) |
891 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0)) |
892 | { } |
893 | |
894 | QEasingCurveFunction *copy() const override |
895 | { |
896 | ElasticEase *rv = new ElasticEase(_t); |
897 | rv->_p = _p; |
898 | rv->_a = _a; |
899 | rv->_bezierCurves = _bezierCurves; |
900 | rv->_tcbPoints = _tcbPoints; |
901 | return rv; |
902 | } |
903 | |
904 | qreal value(qreal t) override |
905 | { |
906 | qreal p = (_p < 0) ? qreal(0.3) : _p; |
907 | qreal a = (_a < 0) ? qreal(1.0) : _a; |
908 | switch (_t) { |
909 | case QEasingCurve::InElastic: |
910 | return easeInElastic(t, a, p); |
911 | case QEasingCurve::OutElastic: |
912 | return easeOutElastic(t, a, p); |
913 | case QEasingCurve::InOutElastic: |
914 | return easeInOutElastic(t, a, p); |
915 | case QEasingCurve::OutInElastic: |
916 | return easeOutInElastic(t, a, p); |
917 | default: |
918 | return t; |
919 | } |
920 | } |
921 | }; |
922 | |
923 | struct BounceEase : public QEasingCurveFunction |
924 | { |
925 | BounceEase(QEasingCurve::Type type) |
926 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0)) |
927 | { } |
928 | |
929 | QEasingCurveFunction *copy() const override |
930 | { |
931 | BounceEase *rv = new BounceEase(_t); |
932 | rv->_a = _a; |
933 | rv->_bezierCurves = _bezierCurves; |
934 | rv->_tcbPoints = _tcbPoints; |
935 | return rv; |
936 | } |
937 | |
938 | qreal value(qreal t) override |
939 | { |
940 | qreal a = (_a < 0) ? qreal(1.0) : _a; |
941 | switch (_t) { |
942 | case QEasingCurve::InBounce: |
943 | return easeInBounce(t, a); |
944 | case QEasingCurve::OutBounce: |
945 | return easeOutBounce(t, a); |
946 | case QEasingCurve::InOutBounce: |
947 | return easeInOutBounce(t, a); |
948 | case QEasingCurve::OutInBounce: |
949 | return easeOutInBounce(t, a); |
950 | default: |
951 | return t; |
952 | } |
953 | } |
954 | }; |
955 | |
956 | struct BackEase : public QEasingCurveFunction |
957 | { |
958 | BackEase(QEasingCurve::Type type) |
959 | : QEasingCurveFunction(type, qreal(0.3), qreal(1.0), qreal(1.70158)) |
960 | { } |
961 | |
962 | QEasingCurveFunction *copy() const override |
963 | { |
964 | BackEase *rv = new BackEase(_t); |
965 | rv->_o = _o; |
966 | rv->_bezierCurves = _bezierCurves; |
967 | rv->_tcbPoints = _tcbPoints; |
968 | return rv; |
969 | } |
970 | |
971 | qreal value(qreal t) override |
972 | { |
973 | // The *Back() functions are not always precise on the endpoints, so handle explicitly |
974 | if (!(t > 0)) |
975 | return 0; |
976 | if (!(t < 1)) |
977 | return 1; |
978 | qreal o = (_o < 0) ? qreal(1.70158) : _o; |
979 | switch (_t) { |
980 | case QEasingCurve::InBack: |
981 | return easeInBack(t, s: o); |
982 | case QEasingCurve::OutBack: |
983 | return easeOutBack(t, s: o); |
984 | case QEasingCurve::InOutBack: |
985 | return easeInOutBack(t, s: o); |
986 | case QEasingCurve::OutInBack: |
987 | return easeOutInBack(t, s: o); |
988 | default: |
989 | return t; |
990 | } |
991 | } |
992 | }; |
993 | |
994 | static QEasingCurve::EasingFunction curveToFunc(QEasingCurve::Type curve) |
995 | { |
996 | switch (curve) { |
997 | case QEasingCurve::Linear: |
998 | return &easeNone; |
999 | case QEasingCurve::InQuad: |
1000 | return &easeInQuad; |
1001 | case QEasingCurve::OutQuad: |
1002 | return &easeOutQuad; |
1003 | case QEasingCurve::InOutQuad: |
1004 | return &easeInOutQuad; |
1005 | case QEasingCurve::OutInQuad: |
1006 | return &easeOutInQuad; |
1007 | case QEasingCurve::InCubic: |
1008 | return &easeInCubic; |
1009 | case QEasingCurve::OutCubic: |
1010 | return &easeOutCubic; |
1011 | case QEasingCurve::InOutCubic: |
1012 | return &easeInOutCubic; |
1013 | case QEasingCurve::OutInCubic: |
1014 | return &easeOutInCubic; |
1015 | case QEasingCurve::InQuart: |
1016 | return &easeInQuart; |
1017 | case QEasingCurve::OutQuart: |
1018 | return &easeOutQuart; |
1019 | case QEasingCurve::InOutQuart: |
1020 | return &easeInOutQuart; |
1021 | case QEasingCurve::OutInQuart: |
1022 | return &easeOutInQuart; |
1023 | case QEasingCurve::InQuint: |
1024 | return &easeInQuint; |
1025 | case QEasingCurve::OutQuint: |
1026 | return &easeOutQuint; |
1027 | case QEasingCurve::InOutQuint: |
1028 | return &easeInOutQuint; |
1029 | case QEasingCurve::OutInQuint: |
1030 | return &easeOutInQuint; |
1031 | case QEasingCurve::InSine: |
1032 | return &easeInSine; |
1033 | case QEasingCurve::OutSine: |
1034 | return &easeOutSine; |
1035 | case QEasingCurve::InOutSine: |
1036 | return &easeInOutSine; |
1037 | case QEasingCurve::OutInSine: |
1038 | return &easeOutInSine; |
1039 | case QEasingCurve::InExpo: |
1040 | return &easeInExpo; |
1041 | case QEasingCurve::OutExpo: |
1042 | return &easeOutExpo; |
1043 | case QEasingCurve::InOutExpo: |
1044 | return &easeInOutExpo; |
1045 | case QEasingCurve::OutInExpo: |
1046 | return &easeOutInExpo; |
1047 | case QEasingCurve::InCirc: |
1048 | return &easeInCirc; |
1049 | case QEasingCurve::OutCirc: |
1050 | return &easeOutCirc; |
1051 | case QEasingCurve::InOutCirc: |
1052 | return &easeInOutCirc; |
1053 | case QEasingCurve::OutInCirc: |
1054 | return &easeOutInCirc; |
1055 | // Internal - needed for QTimeLine backward-compatibility: |
1056 | case QEasingCurve::InCurve: |
1057 | return &easeInCurve; |
1058 | case QEasingCurve::OutCurve: |
1059 | return &easeOutCurve; |
1060 | case QEasingCurve::SineCurve: |
1061 | return &easeSineCurve; |
1062 | case QEasingCurve::CosineCurve: |
1063 | return &easeCosineCurve; |
1064 | default: |
1065 | return nullptr; |
1066 | }; |
1067 | } |
1068 | |
1069 | static QEasingCurveFunction *curveToFunctionObject(QEasingCurve::Type type) |
1070 | { |
1071 | switch (type) { |
1072 | case QEasingCurve::InElastic: |
1073 | case QEasingCurve::OutElastic: |
1074 | case QEasingCurve::InOutElastic: |
1075 | case QEasingCurve::OutInElastic: |
1076 | return new ElasticEase(type); |
1077 | case QEasingCurve::OutBounce: |
1078 | case QEasingCurve::InBounce: |
1079 | case QEasingCurve::OutInBounce: |
1080 | case QEasingCurve::InOutBounce: |
1081 | return new BounceEase(type); |
1082 | case QEasingCurve::InBack: |
1083 | case QEasingCurve::OutBack: |
1084 | case QEasingCurve::InOutBack: |
1085 | case QEasingCurve::OutInBack: |
1086 | return new BackEase(type); |
1087 | case QEasingCurve::BezierSpline: |
1088 | return new BezierEase; |
1089 | case QEasingCurve::TCBSpline: |
1090 | return new TCBEase; |
1091 | default: |
1092 | return new QEasingCurveFunction(type, qreal(0.3), qreal(1.0), qreal(1.70158)); |
1093 | } |
1094 | |
1095 | return nullptr; |
1096 | } |
1097 | |
1098 | /*! |
1099 | \fn QEasingCurve::QEasingCurve(QEasingCurve &&other) |
1100 | |
1101 | Move-constructs a QEasingCurve instance, making it point at the same |
1102 | object that \a other was pointing to. |
1103 | |
1104 | \since 5.2 |
1105 | */ |
1106 | |
1107 | /*! |
1108 | Constructs an easing curve of the given \a type. |
1109 | */ |
1110 | QEasingCurve::QEasingCurve(Type type) |
1111 | : d_ptr(new QEasingCurvePrivate) |
1112 | { |
1113 | setType(type); |
1114 | } |
1115 | |
1116 | /*! |
1117 | Construct a copy of \a other. |
1118 | */ |
1119 | QEasingCurve::QEasingCurve(const QEasingCurve &other) |
1120 | : d_ptr(new QEasingCurvePrivate(*other.d_ptr)) |
1121 | { |
1122 | // ### non-atomic, requires malloc on shallow copy |
1123 | } |
1124 | |
1125 | /*! |
1126 | Destructor. |
1127 | */ |
1128 | |
1129 | QEasingCurve::~QEasingCurve() |
1130 | { |
1131 | delete d_ptr; |
1132 | } |
1133 | |
1134 | /*! |
1135 | \fn QEasingCurve &QEasingCurve::operator=(const QEasingCurve &other) |
1136 | Copy \a other. |
1137 | */ |
1138 | |
1139 | /*! |
1140 | \fn QEasingCurve &QEasingCurve::operator=(QEasingCurve &&other) |
1141 | |
1142 | Move-assigns \a other to this QEasingCurve instance. |
1143 | |
1144 | \since 5.2 |
1145 | */ |
1146 | |
1147 | /*! |
1148 | \fn void QEasingCurve::swap(QEasingCurve &other) |
1149 | \since 5.0 |
1150 | |
1151 | Swaps curve \a other with this curve. This operation is very |
1152 | fast and never fails. |
1153 | */ |
1154 | |
1155 | /*! |
1156 | Compare this easing curve with \a other and returns \c true if they are |
1157 | equal. It will also compare the properties of a curve. |
1158 | */ |
1159 | bool QEasingCurve::operator==(const QEasingCurve &other) const |
1160 | { |
1161 | bool res = d_ptr->func == other.d_ptr->func |
1162 | && d_ptr->type == other.d_ptr->type; |
1163 | if (res) { |
1164 | if (d_ptr->config && other.d_ptr->config) { |
1165 | // catch the config content |
1166 | res = d_ptr->config->operator==(other: *(other.d_ptr->config)); |
1167 | |
1168 | } else if (d_ptr->config || other.d_ptr->config) { |
1169 | // one one has a config object, which could contain default values |
1170 | res = qFuzzyCompare(p1: amplitude(), p2: other.amplitude()) |
1171 | && qFuzzyCompare(p1: period(), p2: other.period()) |
1172 | && qFuzzyCompare(p1: overshoot(), p2: other.overshoot()); |
1173 | } |
1174 | } |
1175 | return res; |
1176 | } |
1177 | |
1178 | /*! |
1179 | \fn bool QEasingCurve::operator!=(const QEasingCurve &other) const |
1180 | Compare this easing curve with \a other and returns \c true if they are not equal. |
1181 | It will also compare the properties of a curve. |
1182 | |
1183 | \sa operator==() |
1184 | */ |
1185 | |
1186 | /*! |
1187 | Returns the amplitude. This is not applicable for all curve types. |
1188 | It is only applicable for bounce and elastic curves (curves of type() |
1189 | QEasingCurve::InBounce, QEasingCurve::OutBounce, QEasingCurve::InOutBounce, |
1190 | QEasingCurve::OutInBounce, QEasingCurve::InElastic, QEasingCurve::OutElastic, |
1191 | QEasingCurve::InOutElastic or QEasingCurve::OutInElastic). |
1192 | */ |
1193 | qreal QEasingCurve::amplitude() const |
1194 | { |
1195 | return d_ptr->config ? d_ptr->config->_a : qreal(1.0); |
1196 | } |
1197 | |
1198 | /*! |
1199 | Sets the amplitude to \a amplitude. |
1200 | |
1201 | This will set the amplitude of the bounce or the amplitude of the |
1202 | elastic "spring" effect. The higher the number, the higher the amplitude. |
1203 | \sa amplitude() |
1204 | */ |
1205 | void QEasingCurve::setAmplitude(qreal amplitude) |
1206 | { |
1207 | if (!d_ptr->config) |
1208 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1209 | d_ptr->config->_a = amplitude; |
1210 | } |
1211 | |
1212 | /*! |
1213 | Returns the period. This is not applicable for all curve types. |
1214 | It is only applicable if type() is QEasingCurve::InElastic, QEasingCurve::OutElastic, |
1215 | QEasingCurve::InOutElastic or QEasingCurve::OutInElastic. |
1216 | */ |
1217 | qreal QEasingCurve::period() const |
1218 | { |
1219 | return d_ptr->config ? d_ptr->config->_p : qreal(0.3); |
1220 | } |
1221 | |
1222 | /*! |
1223 | Sets the period to \a period. |
1224 | Setting a small period value will give a high frequency of the curve. A |
1225 | large period will give it a small frequency. |
1226 | |
1227 | \sa period() |
1228 | */ |
1229 | void QEasingCurve::setPeriod(qreal period) |
1230 | { |
1231 | if (!d_ptr->config) |
1232 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1233 | d_ptr->config->_p = period; |
1234 | } |
1235 | |
1236 | /*! |
1237 | Returns the overshoot. This is not applicable for all curve types. |
1238 | It is only applicable if type() is QEasingCurve::InBack, QEasingCurve::OutBack, |
1239 | QEasingCurve::InOutBack or QEasingCurve::OutInBack. |
1240 | */ |
1241 | qreal QEasingCurve::overshoot() const |
1242 | { |
1243 | return d_ptr->config ? d_ptr->config->_o : qreal(1.70158); |
1244 | } |
1245 | |
1246 | /*! |
1247 | Sets the overshoot to \a overshoot. |
1248 | |
1249 | 0 produces no overshoot, and the default value of 1.70158 produces an overshoot of 10 percent. |
1250 | |
1251 | \sa overshoot() |
1252 | */ |
1253 | void QEasingCurve::setOvershoot(qreal overshoot) |
1254 | { |
1255 | if (!d_ptr->config) |
1256 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1257 | d_ptr->config->_o = overshoot; |
1258 | } |
1259 | |
1260 | /*! |
1261 | Adds a segment of a cubic bezier spline to define a custom easing curve. |
1262 | It is only applicable if type() is QEasingCurve::BezierSpline. |
1263 | Note that the spline implicitly starts at (0.0, 0.0) and has to end at (1.0, 1.0) to |
1264 | be a valid easing curve. |
1265 | \a c1 and \a c2 are the control points used for drawing the curve. |
1266 | \a endPoint is the endpoint of the curve. |
1267 | */ |
1268 | void QEasingCurve::addCubicBezierSegment(const QPointF & c1, const QPointF & c2, const QPointF & endPoint) |
1269 | { |
1270 | if (!d_ptr->config) |
1271 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1272 | d_ptr->config->_bezierCurves << c1 << c2 << endPoint; |
1273 | } |
1274 | |
1275 | QList<QPointF> static inline tcbToBezier(const TCBPoints &tcbPoints) |
1276 | { |
1277 | const int count = tcbPoints.size(); |
1278 | QList<QPointF> bezierPoints; |
1279 | bezierPoints.reserve(size: 3 * (count - 1)); |
1280 | |
1281 | for (int i = 1; i < count; i++) { |
1282 | const qreal t_0 = tcbPoints.at(i: i - 1)._t; |
1283 | const qreal c_0 = tcbPoints.at(i: i - 1)._c; |
1284 | qreal b_0 = -1; |
1285 | |
1286 | qreal const t_1 = tcbPoints.at(i)._t; |
1287 | qreal const c_1 = tcbPoints.at(i)._c; |
1288 | qreal b_1 = 1; |
1289 | |
1290 | QPointF c_minusOne; //P1 last segment - not available for the first point |
1291 | const QPointF c0(tcbPoints.at(i: i - 1)._point); //P0 Hermite/TBC |
1292 | const QPointF c3(tcbPoints.at(i)._point); //P1 Hermite/TBC |
1293 | QPointF c4; //P0 next segment - not available for the last point |
1294 | |
1295 | if (i > 1) { //first point no left tangent |
1296 | c_minusOne = tcbPoints.at(i: i - 2)._point; |
1297 | b_0 = tcbPoints.at(i: i - 1)._b; |
1298 | } |
1299 | |
1300 | if (i < (count - 1)) { //last point no right tangent |
1301 | c4 = tcbPoints.at(i: i + 1)._point; |
1302 | b_1 = tcbPoints.at(i)._b; |
1303 | } |
1304 | |
1305 | const qreal dx_0 = 0.5 * (1-t_0) * ((1 + b_0) * (1 + c_0) * (c0.x() - c_minusOne.x()) + (1- b_0) * (1 - c_0) * (c3.x() - c0.x())); |
1306 | const qreal dy_0 = 0.5 * (1-t_0) * ((1 + b_0) * (1 + c_0) * (c0.y() - c_minusOne.y()) + (1- b_0) * (1 - c_0) * (c3.y() - c0.y())); |
1307 | |
1308 | const qreal dx_1 = 0.5 * (1-t_1) * ((1 + b_1) * (1 - c_1) * (c3.x() - c0.x()) + (1 - b_1) * (1 + c_1) * (c4.x() - c3.x())); |
1309 | const qreal dy_1 = 0.5 * (1-t_1) * ((1 + b_1) * (1 - c_1) * (c3.y() - c0.y()) + (1 - b_1) * (1 + c_1) * (c4.y() - c3.y())); |
1310 | |
1311 | const QPointF d_0 = QPointF(dx_0, dy_0); |
1312 | const QPointF d_1 = QPointF(dx_1, dy_1); |
1313 | |
1314 | QPointF c1 = (3 * c0 + d_0) / 3; |
1315 | QPointF c2 = (3 * c3 - d_1) / 3; |
1316 | bezierPoints << c1 << c2 << c3; |
1317 | } |
1318 | return bezierPoints; |
1319 | } |
1320 | |
1321 | /*! |
1322 | Adds a segment of a TCB bezier spline to define a custom easing curve. |
1323 | It is only applicable if type() is QEasingCurve::TCBSpline. |
1324 | The spline has to start explicitly at (0.0, 0.0) and has to end at (1.0, 1.0) to |
1325 | be a valid easing curve. |
1326 | The tension \a t changes the length of the tangent vector. |
1327 | The continuity \a c changes the sharpness in change between the tangents. |
1328 | The bias \a b changes the direction of the tangent vector. |
1329 | \a nextPoint is the sample position. |
1330 | All three parameters are valid between -1 and 1 and define the |
1331 | tangent of the control point. |
1332 | If all three parameters are 0 the resulting spline is a Catmull-Rom spline. |
1333 | The begin and endpoint always have a bias of -1 and 1, since the outer tangent is not defined. |
1334 | */ |
1335 | void QEasingCurve::addTCBSegment(const QPointF &nextPoint, qreal t, qreal c, qreal b) |
1336 | { |
1337 | if (!d_ptr->config) |
1338 | d_ptr->config = curveToFunctionObject(type: d_ptr->type); |
1339 | |
1340 | d_ptr->config->_tcbPoints.append(t: TCBPoint(nextPoint, t, c, b)); |
1341 | |
1342 | if (nextPoint == QPointF(1.0, 1.0)) { |
1343 | d_ptr->config->_bezierCurves = tcbToBezier(tcbPoints: d_ptr->config->_tcbPoints); |
1344 | d_ptr->config->_tcbPoints.clear(); |
1345 | } |
1346 | |
1347 | } |
1348 | |
1349 | /*! |
1350 | \since 5.0 |
1351 | |
1352 | Returns the cubicBezierSpline that defines a custom easing curve. |
1353 | If the easing curve does not have a custom bezier easing curve the list |
1354 | is empty. |
1355 | */ |
1356 | QList<QPointF> QEasingCurve::toCubicSpline() const |
1357 | { |
1358 | return d_ptr->config ? d_ptr->config->_bezierCurves : QList<QPointF>(); |
1359 | } |
1360 | |
1361 | /*! |
1362 | Returns the type of the easing curve. |
1363 | */ |
1364 | QEasingCurve::Type QEasingCurve::type() const |
1365 | { |
1366 | return d_ptr->type; |
1367 | } |
1368 | |
1369 | void QEasingCurvePrivate::setType_helper(QEasingCurve::Type newType) |
1370 | { |
1371 | qreal amp = -1.0; |
1372 | qreal period = -1.0; |
1373 | qreal overshoot = -1.0; |
1374 | QList<QPointF> bezierCurves; |
1375 | QList<TCBPoint> tcbPoints; |
1376 | |
1377 | if (config) { |
1378 | amp = config->_a; |
1379 | period = config->_p; |
1380 | overshoot = config->_o; |
1381 | bezierCurves = std::move(config->_bezierCurves); |
1382 | tcbPoints = std::move(config->_tcbPoints); |
1383 | |
1384 | delete config; |
1385 | config = nullptr; |
1386 | } |
1387 | |
1388 | if (isConfigFunction(type: newType) || (amp != -1.0) || (period != -1.0) || (overshoot != -1.0) || |
1389 | !bezierCurves.isEmpty()) { |
1390 | config = curveToFunctionObject(type: newType); |
1391 | if (amp != -1.0) |
1392 | config->_a = amp; |
1393 | if (period != -1.0) |
1394 | config->_p = period; |
1395 | if (overshoot != -1.0) |
1396 | config->_o = overshoot; |
1397 | config->_bezierCurves = std::move(bezierCurves); |
1398 | config->_tcbPoints = std::move(tcbPoints); |
1399 | func = nullptr; |
1400 | } else if (newType != QEasingCurve::Custom) { |
1401 | func = curveToFunc(curve: newType); |
1402 | } |
1403 | Q_ASSERT((func == nullptr) == (config != nullptr)); |
1404 | type = newType; |
1405 | } |
1406 | |
1407 | /*! |
1408 | Sets the type of the easing curve to \a type. |
1409 | */ |
1410 | void QEasingCurve::setType(Type type) |
1411 | { |
1412 | if (d_ptr->type == type) |
1413 | return; |
1414 | if (type < Linear || type >= NCurveTypes - 1) { |
1415 | qWarning(msg: "QEasingCurve: Invalid curve type %d" , type); |
1416 | return; |
1417 | } |
1418 | |
1419 | d_ptr->setType_helper(type); |
1420 | } |
1421 | |
1422 | /*! |
1423 | Sets a custom easing curve that is defined by the user in the function \a func. |
1424 | The signature of the function is qreal myEasingFunction(qreal progress), |
1425 | where \e progress and the return value are considered to be normalized between 0 and 1. |
1426 | (In some cases the return value can be outside that range) |
1427 | After calling this function type() will return QEasingCurve::Custom. |
1428 | \a func cannot be zero. |
1429 | |
1430 | \sa customType() |
1431 | \sa valueForProgress() |
1432 | */ |
1433 | void QEasingCurve::setCustomType(EasingFunction func) |
1434 | { |
1435 | if (!func) { |
1436 | qWarning(msg: "Function pointer must not be null" ); |
1437 | return; |
1438 | } |
1439 | d_ptr->func = func; |
1440 | d_ptr->setType_helper(Custom); |
1441 | } |
1442 | |
1443 | /*! |
1444 | Returns the function pointer to the custom easing curve. |
1445 | If type() does not return QEasingCurve::Custom, this function |
1446 | will return 0. |
1447 | */ |
1448 | QEasingCurve::EasingFunction QEasingCurve::customType() const |
1449 | { |
1450 | return d_ptr->type == Custom ? d_ptr->func : nullptr; |
1451 | } |
1452 | |
1453 | /*! |
1454 | Return the effective progress for the easing curve at \a progress. |
1455 | Whereas \a progress must be between 0 and 1, the returned effective progress |
1456 | can be outside those bounds. For example, QEasingCurve::InBack will |
1457 | return negative values in the beginning of the function. |
1458 | */ |
1459 | qreal QEasingCurve::valueForProgress(qreal progress) const |
1460 | { |
1461 | progress = qBound<qreal>(min: 0, val: progress, max: 1); |
1462 | if (d_ptr->func) |
1463 | return d_ptr->func(progress); |
1464 | else if (d_ptr->config) |
1465 | return d_ptr->config->value(t: progress); |
1466 | else |
1467 | return progress; |
1468 | } |
1469 | |
1470 | #ifndef QT_NO_DEBUG_STREAM |
1471 | QDebug operator<<(QDebug debug, const QEasingCurve &item) |
1472 | { |
1473 | QDebugStateSaver saver(debug); |
1474 | debug << "type:" << item.d_ptr->type |
1475 | << "func:" << reinterpret_cast<const void *>(item.d_ptr->func); |
1476 | if (item.d_ptr->config) { |
1477 | debug << QString::fromLatin1(ba: "period:%1" ).arg(a: item.d_ptr->config->_p, fieldWidth: 0, format: 'f', precision: 20) |
1478 | << QString::fromLatin1(ba: "amp:%1" ).arg(a: item.d_ptr->config->_a, fieldWidth: 0, format: 'f', precision: 20) |
1479 | << QString::fromLatin1(ba: "overshoot:%1" ).arg(a: item.d_ptr->config->_o, fieldWidth: 0, format: 'f', precision: 20); |
1480 | } |
1481 | return debug; |
1482 | } |
1483 | #endif // QT_NO_DEBUG_STREAM |
1484 | |
1485 | #ifndef QT_NO_DATASTREAM |
1486 | /*! |
1487 | \fn QDataStream &operator<<(QDataStream &stream, const QEasingCurve &easing) |
1488 | \relates QEasingCurve |
1489 | |
1490 | Writes the given \a easing curve to the given \a stream and returns a |
1491 | reference to the stream. |
1492 | |
1493 | \sa {Serializing Qt Data Types} |
1494 | */ |
1495 | |
1496 | QDataStream &operator<<(QDataStream &stream, const QEasingCurve &easing) |
1497 | { |
1498 | stream << quint8(easing.d_ptr->type); |
1499 | stream << quint64(quintptr(easing.d_ptr->func)); |
1500 | |
1501 | bool hasConfig = easing.d_ptr->config; |
1502 | stream << hasConfig; |
1503 | if (hasConfig) { |
1504 | stream << easing.d_ptr->config; |
1505 | } |
1506 | return stream; |
1507 | } |
1508 | |
1509 | /*! |
1510 | \fn QDataStream &operator>>(QDataStream &stream, QEasingCurve &easing) |
1511 | \relates QEasingCurve |
1512 | |
1513 | Reads an easing curve from the given \a stream into the given \a |
1514 | easing curve and returns a reference to the stream. |
1515 | |
1516 | \sa {Serializing Qt Data Types} |
1517 | */ |
1518 | |
1519 | QDataStream &operator>>(QDataStream &stream, QEasingCurve &easing) |
1520 | { |
1521 | QEasingCurve::Type type; |
1522 | quint8 int_type; |
1523 | stream >> int_type; |
1524 | type = static_cast<QEasingCurve::Type>(int_type); |
1525 | easing.setType(type); |
1526 | |
1527 | quint64 ptr_func; |
1528 | stream >> ptr_func; |
1529 | easing.d_ptr->func = QEasingCurve::EasingFunction(quintptr(ptr_func)); |
1530 | |
1531 | bool hasConfig; |
1532 | stream >> hasConfig; |
1533 | delete easing.d_ptr->config; |
1534 | easing.d_ptr->config = nullptr; |
1535 | if (hasConfig) { |
1536 | QEasingCurveFunction *config = curveToFunctionObject(type); |
1537 | stream >> config; |
1538 | easing.d_ptr->config = config; |
1539 | } |
1540 | return stream; |
1541 | } |
1542 | #endif // QT_NO_DATASTREAM |
1543 | |
1544 | QT_END_NAMESPACE |
1545 | |
1546 | #include "moc_qeasingcurve.cpp" |
1547 | |