1 | // Copyright (C) 2022 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qimage.h" |
5 | |
6 | #include "qbuffer.h" |
7 | #include "qdatastream.h" |
8 | #include "qcolortransform.h" |
9 | #include "qfloat16.h" |
10 | #include "qmap.h" |
11 | #include "qtransform.h" |
12 | #include "qimagereader.h" |
13 | #include "qimagewriter.h" |
14 | #include "qrgbafloat.h" |
15 | #include "qstringlist.h" |
16 | #include "qvariant.h" |
17 | #include "qimagepixmapcleanuphooks_p.h" |
18 | #include <qpa/qplatformintegration.h> |
19 | #include <private/qguiapplication_p.h> |
20 | #include <ctype.h> |
21 | #include <stdlib.h> |
22 | #include <limits.h> |
23 | #include <qpa/qplatformpixmap.h> |
24 | #include <private/qcolortransform_p.h> |
25 | #include <private/qmemrotate_p.h> |
26 | #include <private/qimagescale_p.h> |
27 | #include <private/qpixellayout_p.h> |
28 | #include <private/qsimd_p.h> |
29 | |
30 | #include <qhash.h> |
31 | |
32 | #include <private/qpaintengine_raster_p.h> |
33 | |
34 | #include <private/qimage_p.h> |
35 | #include <private/qfont_p.h> |
36 | |
37 | #if QT_CONFIG(thread) |
38 | #include <qsemaphore.h> |
39 | #include <qthreadpool.h> |
40 | #include <private/qthreadpool_p.h> |
41 | #endif |
42 | |
43 | #include <qtgui_tracepoints_p.h> |
44 | |
45 | #include <memory> |
46 | |
47 | QT_BEGIN_NAMESPACE |
48 | |
49 | using namespace Qt::StringLiterals; |
50 | |
51 | // MSVC 19.28 does show spurious warning "C4723: potential divide by 0" for code that divides |
52 | // by height() in release builds. Anyhow, all the code paths in this file are only executed |
53 | // for valid QImage's, where height() cannot be 0. Therefore disable the warning. |
54 | QT_WARNING_DISABLE_MSVC(4723) |
55 | |
56 | #if defined(Q_CC_DEC) && defined(__alpha) && (__DECCXX_VER-0 >= 50190001) |
57 | #pragma message disable narrowptr |
58 | #endif |
59 | |
60 | |
61 | #define QIMAGE_SANITYCHECK_MEMORY(image) \ |
62 | if ((image).isNull()) { \ |
63 | qWarning("QImage: out of memory, returning null image"); \ |
64 | return QImage(); \ |
65 | } |
66 | |
67 | Q_TRACE_PREFIX(qtgui, |
68 | "#include <qimagereader.h>" |
69 | ); |
70 | |
71 | Q_TRACE_METADATA(qtgui, |
72 | "ENUM { } QImage::Format;" \ |
73 | "FLAGS { } Qt::ImageConversionFlags;" |
74 | ); |
75 | |
76 | Q_TRACE_PARAM_REPLACE(Qt::AspectRatioMode, int); |
77 | Q_TRACE_PARAM_REPLACE(Qt::TransformationMode, int); |
78 | |
79 | static QImage rotated90(const QImage &src); |
80 | static QImage rotated180(const QImage &src); |
81 | static QImage rotated270(const QImage &src); |
82 | |
83 | static int next_qimage_serial_number() |
84 | { |
85 | Q_CONSTINIT static QBasicAtomicInt serial = Q_BASIC_ATOMIC_INITIALIZER(0); |
86 | return 1 + serial.fetchAndAddRelaxed(valueToAdd: 1); |
87 | } |
88 | |
89 | QImageData::QImageData() |
90 | : ref(0), width(0), height(0), depth(0), nbytes(0), devicePixelRatio(1.0), data(nullptr), |
91 | format(QImage::Format_ARGB32), bytes_per_line(0), |
92 | ser_no(next_qimage_serial_number()), |
93 | detach_no(0), |
94 | dpmx(qt_defaultDpiX() * 100 / qreal(2.54)), |
95 | dpmy(qt_defaultDpiY() * 100 / qreal(2.54)), |
96 | offset(0, 0), own_data(true), ro_data(false), has_alpha_clut(false), |
97 | is_cached(false), cleanupFunction(nullptr), cleanupInfo(nullptr), |
98 | paintEngine(nullptr) |
99 | { |
100 | } |
101 | |
102 | /*! \fn QImageData * QImageData::create(const QSize &size, QImage::Format format) |
103 | |
104 | \internal |
105 | |
106 | Creates a new image data. |
107 | Returns \nullptr if invalid parameters are give or anything else failed. |
108 | */ |
109 | QImageData * Q_TRACE_INSTRUMENT(qtgui) QImageData::create(const QSize &size, QImage::Format format) |
110 | { |
111 | if (size.isEmpty() || format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
112 | return nullptr; // invalid parameter(s) |
113 | |
114 | Q_TRACE_SCOPE(QImageData_create, size, format); |
115 | |
116 | int width = size.width(); |
117 | int height = size.height(); |
118 | int depth = qt_depthForFormat(format); |
119 | auto params = calculateImageParameters(width, height, depth); |
120 | if (!params.isValid()) |
121 | return nullptr; |
122 | |
123 | auto d = std::make_unique<QImageData>(); |
124 | |
125 | switch (format) { |
126 | case QImage::Format_Mono: |
127 | case QImage::Format_MonoLSB: |
128 | d->colortable.resize(size: 2); |
129 | d->colortable[0] = QColor(Qt::black).rgba(); |
130 | d->colortable[1] = QColor(Qt::white).rgba(); |
131 | break; |
132 | default: |
133 | break; |
134 | } |
135 | |
136 | d->width = width; |
137 | d->height = height; |
138 | d->depth = depth; |
139 | d->format = format; |
140 | d->has_alpha_clut = false; |
141 | d->is_cached = false; |
142 | |
143 | d->bytes_per_line = params.bytesPerLine; |
144 | d->nbytes = params.totalSize; |
145 | d->data = (uchar *)malloc(size: d->nbytes); |
146 | |
147 | if (!d->data) |
148 | return nullptr; |
149 | |
150 | d->ref.ref(); |
151 | return d.release(); |
152 | } |
153 | |
154 | QImageData::~QImageData() |
155 | { |
156 | if (cleanupFunction) |
157 | cleanupFunction(cleanupInfo); |
158 | if (is_cached) |
159 | QImagePixmapCleanupHooks::executeImageHooks(key: (((qint64) ser_no) << 32) | ((qint64) detach_no)); |
160 | delete paintEngine; |
161 | if (data && own_data) |
162 | free(ptr: data); |
163 | data = nullptr; |
164 | } |
165 | |
166 | #if defined(_M_ARM) && defined(_MSC_VER) |
167 | #pragma optimize("", off) |
168 | #endif |
169 | |
170 | bool QImageData::checkForAlphaPixels() const |
171 | { |
172 | bool has_alpha_pixels = false; |
173 | |
174 | switch (format) { |
175 | |
176 | case QImage::Format_Mono: |
177 | case QImage::Format_MonoLSB: |
178 | case QImage::Format_Indexed8: |
179 | has_alpha_pixels = has_alpha_clut; |
180 | break; |
181 | case QImage::Format_Alpha8: |
182 | has_alpha_pixels = true; |
183 | break; |
184 | case QImage::Format_ARGB32: |
185 | case QImage::Format_ARGB32_Premultiplied: { |
186 | const uchar *bits = data; |
187 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
188 | uint alphaAnd = 0xff000000; |
189 | for (int x=0; x<width; ++x) |
190 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
191 | has_alpha_pixels = (alphaAnd != 0xff000000); |
192 | bits += bytes_per_line; |
193 | } |
194 | } break; |
195 | |
196 | case QImage::Format_RGBA8888: |
197 | case QImage::Format_RGBA8888_Premultiplied: { |
198 | const uchar *bits = data; |
199 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
200 | uchar alphaAnd = 0xff; |
201 | for (int x=0; x<width; ++x) |
202 | alphaAnd &= bits[x * 4+ 3]; |
203 | has_alpha_pixels = (alphaAnd != 0xff); |
204 | bits += bytes_per_line; |
205 | } |
206 | } break; |
207 | |
208 | case QImage::Format_A2BGR30_Premultiplied: |
209 | case QImage::Format_A2RGB30_Premultiplied: { |
210 | const uchar *bits = data; |
211 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
212 | uint alphaAnd = 0xc0000000; |
213 | for (int x=0; x<width; ++x) |
214 | alphaAnd &= reinterpret_cast<const uint*>(bits)[x]; |
215 | has_alpha_pixels = (alphaAnd != 0xc0000000); |
216 | bits += bytes_per_line; |
217 | } |
218 | } break; |
219 | |
220 | case QImage::Format_ARGB8555_Premultiplied: |
221 | case QImage::Format_ARGB8565_Premultiplied: { |
222 | const uchar *bits = data; |
223 | const uchar *end_bits = data + bytes_per_line; |
224 | |
225 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
226 | uchar alphaAnd = 0xff; |
227 | while (bits < end_bits) { |
228 | alphaAnd &= bits[0]; |
229 | bits += 3; |
230 | } |
231 | has_alpha_pixels = (alphaAnd != 0xff); |
232 | bits = end_bits; |
233 | end_bits += bytes_per_line; |
234 | } |
235 | } break; |
236 | |
237 | case QImage::Format_ARGB6666_Premultiplied: { |
238 | const uchar *bits = data; |
239 | const uchar *end_bits = data + bytes_per_line; |
240 | |
241 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
242 | uchar alphaAnd = 0xfc; |
243 | while (bits < end_bits) { |
244 | alphaAnd &= bits[0]; |
245 | bits += 3; |
246 | } |
247 | has_alpha_pixels = (alphaAnd != 0xfc); |
248 | bits = end_bits; |
249 | end_bits += bytes_per_line; |
250 | } |
251 | } break; |
252 | |
253 | case QImage::Format_ARGB4444_Premultiplied: { |
254 | const uchar *bits = data; |
255 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
256 | ushort alphaAnd = 0xf000; |
257 | for (int x=0; x<width; ++x) |
258 | alphaAnd &= reinterpret_cast<const ushort*>(bits)[x]; |
259 | has_alpha_pixels = (alphaAnd != 0xf000); |
260 | bits += bytes_per_line; |
261 | } |
262 | } break; |
263 | case QImage::Format_RGBA64: |
264 | case QImage::Format_RGBA64_Premultiplied: { |
265 | uchar *bits = data; |
266 | for (int y=0; y<height && !has_alpha_pixels; ++y) { |
267 | for (int x=0; x<width; ++x) { |
268 | has_alpha_pixels |= !(((QRgba64 *)bits)[x].isOpaque()); |
269 | } |
270 | bits += bytes_per_line; |
271 | } |
272 | } break; |
273 | case QImage::Format_RGBA16FPx4: |
274 | case QImage::Format_RGBA16FPx4_Premultiplied: { |
275 | uchar *bits = data; |
276 | for (int y = 0; y < height && !has_alpha_pixels; ++y) { |
277 | for (int x = 0; x < width; ++x) |
278 | has_alpha_pixels |= ((qfloat16 *)bits)[x * 4 + 3] < 1.0f; |
279 | bits += bytes_per_line; |
280 | } |
281 | } break; |
282 | case QImage::Format_RGBA32FPx4: |
283 | case QImage::Format_RGBA32FPx4_Premultiplied: { |
284 | uchar *bits = data; |
285 | for (int y = 0; y < height && !has_alpha_pixels; ++y) { |
286 | for (int x = 0; x < width; ++x) |
287 | has_alpha_pixels |= ((float *)bits)[x * 4 + 3] < 1.0f; |
288 | bits += bytes_per_line; |
289 | } |
290 | } break; |
291 | |
292 | case QImage::Format_RGB32: |
293 | case QImage::Format_RGB16: |
294 | case QImage::Format_RGB444: |
295 | case QImage::Format_RGB555: |
296 | case QImage::Format_RGB666: |
297 | case QImage::Format_RGB888: |
298 | case QImage::Format_BGR888: |
299 | case QImage::Format_RGBX8888: |
300 | case QImage::Format_BGR30: |
301 | case QImage::Format_RGB30: |
302 | case QImage::Format_Grayscale8: |
303 | case QImage::Format_Grayscale16: |
304 | case QImage::Format_RGBX64: |
305 | case QImage::Format_RGBX16FPx4: |
306 | case QImage::Format_RGBX32FPx4: |
307 | break; |
308 | case QImage::Format_Invalid: |
309 | case QImage::NImageFormats: |
310 | Q_UNREACHABLE(); |
311 | break; |
312 | } |
313 | |
314 | return has_alpha_pixels; |
315 | } |
316 | #if defined(_M_ARM) && defined(_MSC_VER) |
317 | #pragma optimize("", on) |
318 | #endif |
319 | |
320 | /*! |
321 | \class QImage |
322 | |
323 | \inmodule QtGui |
324 | \ingroup painting |
325 | \ingroup shared |
326 | |
327 | \reentrant |
328 | |
329 | \brief The QImage class provides a hardware-independent image |
330 | representation that allows direct access to the pixel data, and |
331 | can be used as a paint device. |
332 | |
333 | Qt provides four classes for handling image data: QImage, QPixmap, |
334 | QBitmap and QPicture. QImage is designed and optimized for I/O, |
335 | and for direct pixel access and manipulation, while QPixmap is |
336 | designed and optimized for showing images on screen. QBitmap is |
337 | only a convenience class that inherits QPixmap, ensuring a |
338 | depth of 1. Finally, the QPicture class is a paint device that |
339 | records and replays QPainter commands. |
340 | |
341 | Because QImage is a QPaintDevice subclass, QPainter can be used to |
342 | draw directly onto images. When using QPainter on a QImage, the |
343 | painting can be performed in another thread than the current GUI |
344 | thread. |
345 | |
346 | The QImage class supports several image formats described by the |
347 | \l Format enum. These include monochrome, 8-bit, 32-bit and |
348 | alpha-blended images which are available in all versions of Qt |
349 | 4.x. |
350 | |
351 | QImage provides a collection of functions that can be used to |
352 | obtain a variety of information about the image. There are also |
353 | several functions that enables transformation of the image. |
354 | |
355 | QImage objects can be passed around by value since the QImage |
356 | class uses \l{Implicit Data Sharing}{implicit data |
357 | sharing}. QImage objects can also be streamed and compared. |
358 | |
359 | \note If you would like to load QImage objects in a static build of Qt, |
360 | refer to the \l{How to Create Qt Plugins}{Plugin HowTo}. |
361 | |
362 | \warning Painting on a QImage with the format |
363 | QImage::Format_Indexed8 is not supported. |
364 | |
365 | \tableofcontents |
366 | |
367 | \section1 Reading and Writing Image Files |
368 | |
369 | QImage provides several ways of loading an image file: The file |
370 | can be loaded when constructing the QImage object, or by using the |
371 | load() or loadFromData() functions later on. QImage also provides |
372 | the static fromData() function, constructing a QImage from the |
373 | given data. When loading an image, the file name can either refer |
374 | to an actual file on disk or to one of the application's embedded |
375 | resources. See \l{The Qt Resource System} overview for details |
376 | on how to embed images and other resource files in the |
377 | application's executable. |
378 | |
379 | Simply call the save() function to save a QImage object. |
380 | |
381 | The complete list of supported file formats are available through |
382 | the QImageReader::supportedImageFormats() and |
383 | QImageWriter::supportedImageFormats() functions. New file formats |
384 | can be added as plugins. By default, Qt supports the following |
385 | formats: |
386 | |
387 | \table |
388 | \header \li Format \li Description \li Qt's support |
389 | \row \li BMP \li Windows Bitmap \li Read/write |
390 | \row \li GIF \li Graphic Interchange Format (optional) \li Read |
391 | \row \li JPG \li Joint Photographic Experts Group \li Read/write |
392 | \row \li JPEG \li Joint Photographic Experts Group \li Read/write |
393 | \row \li PNG \li Portable Network Graphics \li Read/write |
394 | \row \li PBM \li Portable Bitmap \li Read |
395 | \row \li PGM \li Portable Graymap \li Read |
396 | \row \li PPM \li Portable Pixmap \li Read/write |
397 | \row \li XBM \li X11 Bitmap \li Read/write |
398 | \row \li XPM \li X11 Pixmap \li Read/write |
399 | \endtable |
400 | |
401 | \section1 Image Information |
402 | |
403 | QImage provides a collection of functions that can be used to |
404 | obtain a variety of information about the image: |
405 | |
406 | \table |
407 | \header |
408 | \li \li Available Functions |
409 | |
410 | \row |
411 | \li Geometry |
412 | \li |
413 | |
414 | The size(), width(), height(), dotsPerMeterX(), and |
415 | dotsPerMeterY() functions provide information about the image size |
416 | and aspect ratio. |
417 | |
418 | The rect() function returns the image's enclosing rectangle. The |
419 | valid() function tells if a given pair of coordinates is within |
420 | this rectangle. The offset() function returns the number of pixels |
421 | by which the image is intended to be offset by when positioned |
422 | relative to other images, which also can be manipulated using the |
423 | setOffset() function. |
424 | |
425 | \row |
426 | \li Colors |
427 | \li |
428 | |
429 | The color of a pixel can be retrieved by passing its coordinates |
430 | to the pixel() function. The pixel() function returns the color |
431 | as a QRgb value independent of the image's format. |
432 | |
433 | In case of monochrome and 8-bit images, the colorCount() and |
434 | colorTable() functions provide information about the color |
435 | components used to store the image data: The colorTable() function |
436 | returns the image's entire color table. To obtain a single entry, |
437 | use the pixelIndex() function to retrieve the pixel index for a |
438 | given pair of coordinates, then use the color() function to |
439 | retrieve the color. Note that if you create an 8-bit image |
440 | manually, you have to set a valid color table on the image as |
441 | well. |
442 | |
443 | The hasAlphaChannel() function tells if the image's format |
444 | respects the alpha channel, or not. The allGray() and |
445 | isGrayscale() functions tell whether an image's colors are all |
446 | shades of gray. |
447 | |
448 | See also the \l {QImage#Pixel Manipulation}{Pixel Manipulation} |
449 | and \l {QImage#Image Transformations}{Image Transformations} |
450 | sections. |
451 | |
452 | \row |
453 | \li Text |
454 | \li |
455 | |
456 | The text() function returns the image text associated with the |
457 | given text key. An image's text keys can be retrieved using the |
458 | textKeys() function. Use the setText() function to alter an |
459 | image's text. |
460 | |
461 | \row |
462 | \li Low-level information |
463 | \li |
464 | |
465 | The depth() function returns the depth of the image. The supported |
466 | depths are 1 (monochrome), 8, 16, 24 and 32 bits. The |
467 | bitPlaneCount() function tells how many of those bits that are |
468 | used. For more information see the |
469 | \l {QImage#Image Formats}{Image Formats} section. |
470 | |
471 | The format(), bytesPerLine(), and sizeInBytes() functions provide |
472 | low-level information about the data stored in the image. |
473 | |
474 | The cacheKey() function returns a number that uniquely |
475 | identifies the contents of this QImage object. |
476 | \endtable |
477 | |
478 | \section1 Pixel Manipulation |
479 | |
480 | The functions used to manipulate an image's pixels depend on the |
481 | image format. The reason is that monochrome and 8-bit images are |
482 | index-based and use a color lookup table, while 32-bit images |
483 | store ARGB values directly. For more information on image formats, |
484 | see the \l {Image Formats} section. |
485 | |
486 | In case of a 32-bit image, the setPixel() function can be used to |
487 | alter the color of the pixel at the given coordinates to any other |
488 | color specified as an ARGB quadruplet. To make a suitable QRgb |
489 | value, use the qRgb() (adding a default alpha component to the |
490 | given RGB values, i.e. creating an opaque color) or qRgba() |
491 | function. For example: |
492 | |
493 | \table |
494 | \header |
495 | \li {2,1}32-bit |
496 | \row |
497 | \li \inlineimage qimage-32bit_scaled.png |
498 | \li |
499 | \snippet code/src_gui_image_qimage.cpp 0 |
500 | \endtable |
501 | |
502 | In case of a 8-bit and monchrome images, the pixel value is only |
503 | an index from the image's color table. So the setPixel() function |
504 | can only be used to alter the color of the pixel at the given |
505 | coordinates to a predefined color from the image's color table, |
506 | i.e. it can only change the pixel's index value. To alter or add a |
507 | color to an image's color table, use the setColor() function. |
508 | |
509 | An entry in the color table is an ARGB quadruplet encoded as an |
510 | QRgb value. Use the qRgb() and qRgba() functions to make a |
511 | suitable QRgb value for use with the setColor() function. For |
512 | example: |
513 | |
514 | \table |
515 | \header |
516 | \li {2,1} 8-bit |
517 | \row |
518 | \li \inlineimage qimage-8bit_scaled.png |
519 | \li |
520 | \snippet code/src_gui_image_qimage.cpp 1 |
521 | \endtable |
522 | |
523 | For images with more than 8-bit per color-channel. The methods |
524 | setPixelColor() and pixelColor() can be used to set and get |
525 | with QColor values. |
526 | |
527 | QImage also provide the scanLine() function which returns a |
528 | pointer to the pixel data at the scanline with the given index, |
529 | and the bits() function which returns a pointer to the first pixel |
530 | data (this is equivalent to \c scanLine(0)). |
531 | |
532 | \section1 Image Formats |
533 | |
534 | Each pixel stored in a QImage is represented by an integer. The |
535 | size of the integer varies depending on the format. QImage |
536 | supports several image formats described by the \l Format |
537 | enum. |
538 | |
539 | Monochrome images are stored using 1-bit indexes into a color table |
540 | with at most two colors. There are two different types of |
541 | monochrome images: big endian (MSB first) or little endian (LSB |
542 | first) bit order. |
543 | |
544 | 8-bit images are stored using 8-bit indexes into a color table, |
545 | i.e. they have a single byte per pixel. The color table is a |
546 | QList<QRgb>, and the QRgb typedef is equivalent to an unsigned |
547 | int containing an ARGB quadruplet on the format 0xAARRGGBB. |
548 | |
549 | 32-bit images have no color table; instead, each pixel contains an |
550 | QRgb value. There are three different types of 32-bit images |
551 | storing RGB (i.e. 0xffRRGGBB), ARGB and premultiplied ARGB |
552 | values respectively. In the premultiplied format the red, green, |
553 | and blue channels are multiplied by the alpha component divided by |
554 | 255. |
555 | |
556 | An image's format can be retrieved using the format() |
557 | function. Use the convertToFormat() functions to convert an image |
558 | into another format. The allGray() and isGrayscale() functions |
559 | tell whether a color image can safely be converted to a grayscale |
560 | image. |
561 | |
562 | \section1 Image Transformations |
563 | |
564 | QImage supports a number of functions for creating a new image |
565 | that is a transformed version of the original: The |
566 | createAlphaMask() function builds and returns a 1-bpp mask from |
567 | the alpha buffer in this image, and the createHeuristicMask() |
568 | function creates and returns a 1-bpp heuristic mask for this |
569 | image. The latter function works by selecting a color from one of |
570 | the corners, then chipping away pixels of that color starting at |
571 | all the edges. |
572 | |
573 | The mirrored() function returns a mirror of the image in the |
574 | desired direction, the scaled() returns a copy of the image scaled |
575 | to a rectangle of the desired measures, and the rgbSwapped() function |
576 | constructs a BGR image from a RGB image. |
577 | |
578 | The scaledToWidth() and scaledToHeight() functions return scaled |
579 | copies of the image. |
580 | |
581 | The transformed() function returns a copy of the image that is |
582 | transformed with the given transformation matrix and |
583 | transformation mode: Internally, the transformation matrix is |
584 | adjusted to compensate for unwanted translation, |
585 | i.e. transformed() returns the smallest image containing all |
586 | transformed points of the original image. The static trueMatrix() |
587 | function returns the actual matrix used for transforming the |
588 | image. |
589 | |
590 | There are also functions for changing attributes of an image |
591 | in-place: |
592 | |
593 | \table |
594 | \header \li Function \li Description |
595 | \row |
596 | \li setDotsPerMeterX() |
597 | \li Defines the aspect ratio by setting the number of pixels that fit |
598 | horizontally in a physical meter. |
599 | \row |
600 | \li setDotsPerMeterY() |
601 | \li Defines the aspect ratio by setting the number of pixels that fit |
602 | vertically in a physical meter. |
603 | \row |
604 | \li fill() |
605 | \li Fills the entire image with the given pixel value. |
606 | \row |
607 | \li invertPixels() |
608 | \li Inverts all pixel values in the image using the given InvertMode value. |
609 | \row |
610 | \li setColorTable() |
611 | \li Sets the color table used to translate color indexes. Only |
612 | monochrome and 8-bit formats. |
613 | \row |
614 | \li setColorCount() |
615 | \li Resizes the color table. Only monochrome and 8-bit formats. |
616 | |
617 | \endtable |
618 | |
619 | \sa QImageReader, QImageWriter, QPixmap, QSvgRenderer, |
620 | {Image Composition Example}, {Scribble Example} |
621 | */ |
622 | |
623 | /*! |
624 | \fn QImage::QImage(QImage &&other) |
625 | |
626 | Move-constructs a QImage instance, making it point at the same |
627 | object that \a other was pointing to. |
628 | |
629 | \since 5.2 |
630 | */ |
631 | |
632 | /*! |
633 | \fn QImage &QImage::operator=(QImage &&other) |
634 | |
635 | Move-assigns \a other to this QImage instance. |
636 | |
637 | \since 5.2 |
638 | */ |
639 | |
640 | /*! |
641 | \typedef QImageCleanupFunction |
642 | \relates QImage |
643 | \since 5.0 |
644 | |
645 | A function with the following signature that can be used to |
646 | implement basic image memory management: |
647 | |
648 | \code |
649 | void myImageCleanupHandler(void *info); |
650 | \endcode |
651 | */ |
652 | |
653 | /*! |
654 | \enum QImage::InvertMode |
655 | |
656 | This enum type is used to describe how pixel values should be |
657 | inverted in the invertPixels() function. |
658 | |
659 | \value InvertRgb Invert only the RGB values and leave the alpha |
660 | channel unchanged. |
661 | |
662 | \value InvertRgba Invert all channels, including the alpha channel. |
663 | |
664 | \sa invertPixels() |
665 | */ |
666 | |
667 | /*! |
668 | \enum QImage::Format |
669 | |
670 | The following image formats are available in Qt. |
671 | See the notes after the table. |
672 | |
673 | \value Format_Invalid The image is invalid. |
674 | \value Format_Mono The image is stored using 1-bit per pixel. Bytes are |
675 | packed with the most significant bit (MSB) first. |
676 | \value Format_MonoLSB The image is stored using 1-bit per pixel. Bytes are |
677 | packed with the less significant bit (LSB) first. |
678 | |
679 | \value Format_Indexed8 The image is stored using 8-bit indexes |
680 | into a colormap. |
681 | |
682 | \value Format_RGB32 The image is stored using a 32-bit RGB format (0xffRRGGBB). |
683 | |
684 | \value Format_ARGB32 The image is stored using a 32-bit ARGB |
685 | format (0xAARRGGBB). |
686 | |
687 | \value Format_ARGB32_Premultiplied The image is stored using a premultiplied 32-bit |
688 | ARGB format (0xAARRGGBB), i.e. the red, |
689 | green, and blue channels are multiplied |
690 | by the alpha component divided by 255. (If RR, GG, or BB |
691 | has a higher value than the alpha channel, the results are |
692 | undefined.) Certain operations (such as image composition |
693 | using alpha blending) are faster using premultiplied ARGB32 |
694 | than with plain ARGB32. |
695 | |
696 | \value Format_RGB16 The image is stored using a 16-bit RGB format (5-6-5). |
697 | |
698 | \value Format_ARGB8565_Premultiplied The image is stored using a |
699 | premultiplied 24-bit ARGB format (8-5-6-5). |
700 | \value Format_RGB666 The image is stored using a 24-bit RGB format (6-6-6). |
701 | The unused most significant bits is always zero. |
702 | \value Format_ARGB6666_Premultiplied The image is stored using a |
703 | premultiplied 24-bit ARGB format (6-6-6-6). |
704 | \value Format_RGB555 The image is stored using a 16-bit RGB format (5-5-5). |
705 | The unused most significant bit is always zero. |
706 | \value Format_ARGB8555_Premultiplied The image is stored using a |
707 | premultiplied 24-bit ARGB format (8-5-5-5). |
708 | \value Format_RGB888 The image is stored using a 24-bit RGB format (8-8-8). |
709 | \value Format_RGB444 The image is stored using a 16-bit RGB format (4-4-4). |
710 | The unused bits are always zero. |
711 | \value Format_ARGB4444_Premultiplied The image is stored using a |
712 | premultiplied 16-bit ARGB format (4-4-4-4). |
713 | \value Format_RGBX8888 The image is stored using a 32-bit byte-ordered RGB(x) format (8-8-8-8). |
714 | This is the same as the Format_RGBA8888 except alpha must always be 255. (added in Qt 5.2) |
715 | \value Format_RGBA8888 The image is stored using a 32-bit byte-ordered RGBA format (8-8-8-8). |
716 | Unlike ARGB32 this is a byte-ordered format, which means the 32bit |
717 | encoding differs between big endian and little endian architectures, |
718 | being respectively (0xRRGGBBAA) and (0xAABBGGRR). The order of the colors |
719 | is the same on any architecture if read as bytes 0xRR,0xGG,0xBB,0xAA. (added in Qt 5.2) |
720 | \value Format_RGBA8888_Premultiplied The image is stored using a |
721 | premultiplied 32-bit byte-ordered RGBA format (8-8-8-8). (added in Qt 5.2) |
722 | \value Format_BGR30 The image is stored using a 32-bit BGR format (x-10-10-10). (added in Qt 5.4) |
723 | \value Format_A2BGR30_Premultiplied The image is stored using a 32-bit premultiplied ABGR format (2-10-10-10). (added in Qt 5.4) |
724 | \value Format_RGB30 The image is stored using a 32-bit RGB format (x-10-10-10). (added in Qt 5.4) |
725 | \value Format_A2RGB30_Premultiplied The image is stored using a 32-bit premultiplied ARGB format (2-10-10-10). (added in Qt 5.4) |
726 | \value Format_Alpha8 The image is stored using an 8-bit alpha only format. (added in Qt 5.5) |
727 | \value Format_Grayscale8 The image is stored using an 8-bit grayscale format. (added in Qt 5.5) |
728 | \value Format_Grayscale16 The image is stored using an 16-bit grayscale format. (added in Qt 5.13) |
729 | \value Format_RGBX64 The image is stored using a 64-bit halfword-ordered RGB(x) format (16-16-16-16). |
730 | This is the same as the Format_RGBA64 except alpha must always be 65535. (added in Qt 5.12) |
731 | \value Format_RGBA64 The image is stored using a 64-bit halfword-ordered RGBA format (16-16-16-16). (added in Qt 5.12) |
732 | \value Format_RGBA64_Premultiplied The image is stored using a premultiplied 64-bit halfword-ordered |
733 | RGBA format (16-16-16-16). (added in Qt 5.12) |
734 | \value Format_BGR888 The image is stored using a 24-bit BGR format. (added in Qt 5.14) |
735 | \value Format_RGBX16FPx4 The image is stored using a 4 16-bit halfword floating point RGBx format (16FP-16FP-16FP-16FP). |
736 | This is the same as the Format_RGBA16FPx4 except alpha must always be 1.0. (added in Qt 6.2) |
737 | \value Format_RGBA16FPx4 The image is stored using a 4 16-bit halfword floating point RGBA format (16FP-16FP-16FP-16FP). (added in Qt 6.2) |
738 | \value Format_RGBA16FPx4_Premultiplied The image is stored using a premultiplied 4 16-bit halfword floating point |
739 | RGBA format (16FP-16FP-16FP-16FP). (added in Qt 6.2) |
740 | \value Format_RGBX32FPx4 The image is stored using a 4 32-bit floating point RGBx format (32FP-32FP-32FP-32FP). |
741 | This is the same as the Format_RGBA32FPx4 except alpha must always be 1.0. (added in Qt 6.2) |
742 | \value Format_RGBA32FPx4 The image is stored using a 4 32-bit floating point RGBA format (32FP-32FP-32FP-32FP). (added in Qt 6.2) |
743 | \value Format_RGBA32FPx4_Premultiplied The image is stored using a premultiplied 4 32-bit floating point |
744 | RGBA format (32FP-32FP-32FP-32FP). (added in Qt 6.2) |
745 | |
746 | \note Drawing into a QImage with QImage::Format_Indexed8 is not |
747 | supported. |
748 | |
749 | \note Avoid most rendering directly to most of these formats using QPainter. Rendering |
750 | is best optimized to the \c Format_RGB32 and \c Format_ARGB32_Premultiplied formats, and secondarily for rendering to the |
751 | \c Format_RGB16, \c Format_RGBX8888, \c Format_RGBA8888_Premultiplied, \c Format_RGBX64 and \c Format_RGBA64_Premultiplied formats |
752 | |
753 | \sa format(), convertToFormat() |
754 | */ |
755 | |
756 | /***************************************************************************** |
757 | QImage member functions |
758 | *****************************************************************************/ |
759 | |
760 | /*! |
761 | Constructs a null image. |
762 | |
763 | \sa isNull() |
764 | */ |
765 | |
766 | QImage::QImage() noexcept |
767 | : QPaintDevice() |
768 | { |
769 | d = nullptr; |
770 | } |
771 | |
772 | /*! |
773 | Constructs an image with the given \a width, \a height and \a |
774 | format. |
775 | |
776 | A \l{isNull()}{null} image will be returned if memory cannot be allocated. |
777 | |
778 | \warning This will create a QImage with uninitialized data. Call |
779 | fill() to fill the image with an appropriate pixel value before |
780 | drawing onto it with QPainter. |
781 | */ |
782 | QImage::QImage(int width, int height, Format format) |
783 | : QImage(QSize(width, height), format) |
784 | { |
785 | } |
786 | |
787 | /*! |
788 | Constructs an image with the given \a size and \a format. |
789 | |
790 | A \l{isNull()}{null} image is returned if memory cannot be allocated. |
791 | |
792 | \warning This will create a QImage with uninitialized data. Call |
793 | fill() to fill the image with an appropriate pixel value before |
794 | drawing onto it with QPainter. |
795 | */ |
796 | QImage::QImage(const QSize &size, Format format) |
797 | : QPaintDevice() |
798 | { |
799 | d = QImageData::create(size, format); |
800 | } |
801 | |
802 | |
803 | |
804 | QImageData *QImageData::create(uchar *data, int width, int height, qsizetype bpl, QImage::Format format, bool readOnly, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
805 | { |
806 | if (width <= 0 || height <= 0 || !data || format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
807 | return nullptr; |
808 | |
809 | const int depth = qt_depthForFormat(format); |
810 | auto params = calculateImageParameters(width, height, depth); |
811 | if (!params.isValid()) |
812 | return nullptr; |
813 | |
814 | if (bpl > 0) { |
815 | // can't overflow, because has calculateImageParameters already done this multiplication |
816 | const qsizetype min_bytes_per_line = (qsizetype(width) * depth + 7)/8; |
817 | if (bpl < min_bytes_per_line) |
818 | return nullptr; |
819 | |
820 | // recalculate the total with this value |
821 | params.bytesPerLine = bpl; |
822 | if (qMulOverflow<qsizetype>(v1: bpl, v2: height, r: ¶ms.totalSize)) |
823 | return nullptr; |
824 | } |
825 | |
826 | QImageData *d = new QImageData; |
827 | d->ref.ref(); |
828 | |
829 | d->own_data = false; |
830 | d->ro_data = readOnly; |
831 | d->data = data; |
832 | d->width = width; |
833 | d->height = height; |
834 | d->depth = depth; |
835 | d->format = format; |
836 | |
837 | d->bytes_per_line = params.bytesPerLine; |
838 | d->nbytes = params.totalSize; |
839 | |
840 | d->cleanupFunction = cleanupFunction; |
841 | d->cleanupInfo = cleanupInfo; |
842 | |
843 | return d; |
844 | } |
845 | |
846 | /*! |
847 | Constructs an image with the given \a width, \a height and \a |
848 | format, that uses an existing memory buffer, \a data. The \a width |
849 | and \a height must be specified in pixels, \a data must be 32-bit aligned, |
850 | and each scanline of data in the image must also be 32-bit aligned. |
851 | |
852 | The buffer must remain valid throughout the life of the QImage and |
853 | all copies that have not been modified or otherwise detached from |
854 | the original buffer. The image does not delete the buffer at destruction. |
855 | You can provide a function pointer \a cleanupFunction along with an |
856 | extra pointer \a cleanupInfo that will be called when the last copy |
857 | is destroyed. |
858 | |
859 | If \a format is an indexed color format, the image color table is |
860 | initially empty and must be sufficiently expanded with |
861 | setColorCount() or setColorTable() before the image is used. |
862 | */ |
863 | QImage::QImage(uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
864 | : QPaintDevice() |
865 | { |
866 | d = QImageData::create(data, width, height, bpl: 0, format, readOnly: false, cleanupFunction, cleanupInfo); |
867 | } |
868 | |
869 | /*! |
870 | Constructs an image with the given \a width, \a height and \a |
871 | format, that uses an existing read-only memory buffer, \a |
872 | data. The \a width and \a height must be specified in pixels, \a |
873 | data must be 32-bit aligned, and each scanline of data in the |
874 | image must also be 32-bit aligned. |
875 | |
876 | The buffer must remain valid throughout the life of the QImage and |
877 | all copies that have not been modified or otherwise detached from |
878 | the original buffer. The image does not delete the buffer at destruction. |
879 | You can provide a function pointer \a cleanupFunction along with an |
880 | extra pointer \a cleanupInfo that will be called when the last copy |
881 | is destroyed. |
882 | |
883 | If \a format is an indexed color format, the image color table is |
884 | initially empty and must be sufficiently expanded with |
885 | setColorCount() or setColorTable() before the image is used. |
886 | |
887 | Unlike the similar QImage constructor that takes a non-const data buffer, |
888 | this version will never alter the contents of the buffer. For example, |
889 | calling QImage::bits() will return a deep copy of the image, rather than |
890 | the buffer passed to the constructor. This allows for the efficiency of |
891 | constructing a QImage from raw data, without the possibility of the raw |
892 | data being changed. |
893 | */ |
894 | QImage::QImage(const uchar* data, int width, int height, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
895 | : QPaintDevice() |
896 | { |
897 | d = QImageData::create(data: const_cast<uchar*>(data), width, height, bpl: 0, format, readOnly: true, cleanupFunction, cleanupInfo); |
898 | } |
899 | |
900 | /*! |
901 | Constructs an image with the given \a width, \a height and \a |
902 | format, that uses an existing memory buffer, \a data. The \a width |
903 | and \a height must be specified in pixels. \a bytesPerLine |
904 | specifies the number of bytes per line (stride). |
905 | |
906 | The buffer must remain valid throughout the life of the QImage and |
907 | all copies that have not been modified or otherwise detached from |
908 | the original buffer. The image does not delete the buffer at destruction. |
909 | You can provide a function pointer \a cleanupFunction along with an |
910 | extra pointer \a cleanupInfo that will be called when the last copy |
911 | is destroyed. |
912 | |
913 | If \a format is an indexed color format, the image color table is |
914 | initially empty and must be sufficiently expanded with |
915 | setColorCount() or setColorTable() before the image is used. |
916 | */ |
917 | |
918 | QImage::QImage(uchar *data, int width, int height, qsizetype bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
919 | :QPaintDevice() |
920 | { |
921 | d = QImageData::create(data, width, height, bpl: bytesPerLine, format, readOnly: false, cleanupFunction, cleanupInfo); |
922 | } |
923 | |
924 | /*! |
925 | Constructs an image with the given \a width, \a height and \a |
926 | format, that uses an existing memory buffer, \a data. The \a width |
927 | and \a height must be specified in pixels. \a bytesPerLine |
928 | specifies the number of bytes per line (stride). |
929 | |
930 | The buffer must remain valid throughout the life of the QImage and |
931 | all copies that have not been modified or otherwise detached from |
932 | the original buffer. The image does not delete the buffer at destruction. |
933 | You can provide a function pointer \a cleanupFunction along with an |
934 | extra pointer \a cleanupInfo that will be called when the last copy |
935 | is destroyed. |
936 | |
937 | If \a format is an indexed color format, the image color table is |
938 | initially empty and must be sufficiently expanded with |
939 | setColorCount() or setColorTable() before the image is used. |
940 | |
941 | Unlike the similar QImage constructor that takes a non-const data buffer, |
942 | this version will never alter the contents of the buffer. For example, |
943 | calling QImage::bits() will return a deep copy of the image, rather than |
944 | the buffer passed to the constructor. This allows for the efficiency of |
945 | constructing a QImage from raw data, without the possibility of the raw |
946 | data being changed. |
947 | */ |
948 | |
949 | QImage::QImage(const uchar *data, int width, int height, qsizetype bytesPerLine, Format format, QImageCleanupFunction cleanupFunction, void *cleanupInfo) |
950 | :QPaintDevice() |
951 | { |
952 | d = QImageData::create(data: const_cast<uchar*>(data), width, height, bpl: bytesPerLine, format, readOnly: true, cleanupFunction, cleanupInfo); |
953 | } |
954 | |
955 | /*! |
956 | Constructs an image and tries to load the image from the file with |
957 | the given \a fileName. |
958 | |
959 | The loader attempts to read the image using the specified \a |
960 | format. If the \a format is not specified (which is the default), |
961 | it is auto-detected based on the file's suffix and header. For |
962 | details, see {QImageReader::setAutoDetectImageFormat()}{QImageReader}. |
963 | |
964 | If the loading of the image failed, this object is a null image. |
965 | |
966 | The file name can either refer to an actual file on disk or to one |
967 | of the application's embedded resources. See the |
968 | \l{resources.html}{Resource System} overview for details on how to |
969 | embed images and other resource files in the application's |
970 | executable. |
971 | |
972 | \sa isNull(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
973 | */ |
974 | |
975 | QImage::QImage(const QString &fileName, const char *format) |
976 | : QPaintDevice() |
977 | { |
978 | d = nullptr; |
979 | load(fileName, format); |
980 | } |
981 | |
982 | #ifndef QT_NO_IMAGEFORMAT_XPM |
983 | extern bool qt_read_xpm_image_or_array(QIODevice *device, const char * const *source, QImage &image); |
984 | |
985 | /*! |
986 | Constructs an image from the given \a xpm image. |
987 | |
988 | Make sure that the image is a valid XPM image. Errors are silently |
989 | ignored. |
990 | |
991 | Note that it's possible to squeeze the XPM variable a little bit |
992 | by using an unusual declaration: |
993 | |
994 | \snippet code/src_gui_image_qimage.cpp 2 |
995 | |
996 | The extra \c const makes the entire definition read-only, which is |
997 | slightly more efficient (e.g., when the code is in a shared |
998 | library) and able to be stored in ROM with the application. |
999 | */ |
1000 | |
1001 | QImage::QImage(const char * const xpm[]) |
1002 | : QPaintDevice() |
1003 | { |
1004 | d = nullptr; |
1005 | if (!xpm) |
1006 | return; |
1007 | if (!qt_read_xpm_image_or_array(device: nullptr, source: xpm, image&: *this)) |
1008 | // Issue: Warning because the constructor may be ambiguous |
1009 | qWarning(msg: "QImage::QImage(), XPM is not supported" ); |
1010 | } |
1011 | #endif // QT_NO_IMAGEFORMAT_XPM |
1012 | |
1013 | /*! |
1014 | Constructs a shallow copy of the given \a image. |
1015 | |
1016 | For more information about shallow copies, see the \l {Implicit |
1017 | Data Sharing} documentation. |
1018 | |
1019 | \sa copy() |
1020 | */ |
1021 | |
1022 | QImage::QImage(const QImage &image) |
1023 | : QPaintDevice() |
1024 | { |
1025 | if (image.paintingActive()) { |
1026 | d = nullptr; |
1027 | image.copy().swap(other&: *this); |
1028 | } else { |
1029 | d = image.d; |
1030 | if (d) |
1031 | d->ref.ref(); |
1032 | } |
1033 | } |
1034 | |
1035 | /*! |
1036 | Destroys the image and cleans up. |
1037 | */ |
1038 | |
1039 | QImage::~QImage() |
1040 | { |
1041 | if (d && !d->ref.deref()) |
1042 | delete d; |
1043 | } |
1044 | |
1045 | /*! |
1046 | Assigns a shallow copy of the given \a image to this image and |
1047 | returns a reference to this image. |
1048 | |
1049 | For more information about shallow copies, see the \l {Implicit |
1050 | Data Sharing} documentation. |
1051 | |
1052 | \sa copy(), QImage() |
1053 | */ |
1054 | |
1055 | QImage &QImage::operator=(const QImage &image) |
1056 | { |
1057 | if (image.paintingActive()) { |
1058 | operator=(other: image.copy()); |
1059 | } else { |
1060 | if (image.d) |
1061 | image.d->ref.ref(); |
1062 | if (d && !d->ref.deref()) |
1063 | delete d; |
1064 | d = image.d; |
1065 | } |
1066 | return *this; |
1067 | } |
1068 | |
1069 | /*! |
1070 | \fn void QImage::swap(QImage &other) |
1071 | \since 4.8 |
1072 | |
1073 | Swaps image \a other with this image. This operation is very |
1074 | fast and never fails. |
1075 | */ |
1076 | |
1077 | /*! |
1078 | \internal |
1079 | */ |
1080 | int QImage::devType() const |
1081 | { |
1082 | return QInternal::Image; |
1083 | } |
1084 | |
1085 | /*! |
1086 | Returns the image as a QVariant. |
1087 | */ |
1088 | QImage::operator QVariant() const |
1089 | { |
1090 | return QVariant::fromValue(value: *this); |
1091 | } |
1092 | |
1093 | /*! |
1094 | \internal |
1095 | |
1096 | If multiple images share common data, this image makes a copy of |
1097 | the data and detaches itself from the sharing mechanism, making |
1098 | sure that this image is the only one referring to the data. |
1099 | |
1100 | Nothing is done if there is just a single reference. |
1101 | |
1102 | \sa copy(), {QImage::isDetached()}{isDetached()}, {Implicit Data Sharing} |
1103 | */ |
1104 | void QImage::detach() |
1105 | { |
1106 | if (d) { |
1107 | if (d->is_cached && d->ref.loadRelaxed() == 1) |
1108 | QImagePixmapCleanupHooks::executeImageHooks(key: cacheKey()); |
1109 | |
1110 | if (d->ref.loadRelaxed() != 1 || d->ro_data) |
1111 | *this = copy(); |
1112 | |
1113 | if (d) |
1114 | ++d->detach_no; |
1115 | } |
1116 | } |
1117 | |
1118 | |
1119 | /*! |
1120 | \internal |
1121 | |
1122 | A variant for metadata-only detach, which will not detach readonly image data, |
1123 | and only invalidate caches of the image data if asked to. |
1124 | |
1125 | \sa detach(), isDetached() |
1126 | */ |
1127 | void QImage::detachMetadata(bool invalidateCache) |
1128 | { |
1129 | if (d) { |
1130 | if (d->is_cached && d->ref.loadRelaxed() == 1) |
1131 | QImagePixmapCleanupHooks::executeImageHooks(key: cacheKey()); |
1132 | |
1133 | if (d->ref.loadRelaxed() != 1) |
1134 | *this = copy(); |
1135 | |
1136 | if (d && invalidateCache) |
1137 | ++d->detach_no; |
1138 | } |
1139 | } |
1140 | |
1141 | static void copyPhysicalMetadata(QImageData *dst, const QImageData *src) |
1142 | { |
1143 | dst->dpmx = src->dpmx; |
1144 | dst->dpmy = src->dpmy; |
1145 | dst->devicePixelRatio = src->devicePixelRatio; |
1146 | } |
1147 | |
1148 | static void copyMetadata(QImageData *dst, const QImageData *src) |
1149 | { |
1150 | // Doesn't copy colortable and alpha_clut, or offset. |
1151 | copyPhysicalMetadata(dst, src); |
1152 | dst->text = src->text; |
1153 | dst->colorSpace = src->colorSpace; |
1154 | } |
1155 | |
1156 | static void copyMetadata(QImage *dst, const QImage &src) |
1157 | { |
1158 | dst->setDotsPerMeterX(src.dotsPerMeterX()); |
1159 | dst->setDotsPerMeterY(src.dotsPerMeterY()); |
1160 | dst->setDevicePixelRatio(src.devicePixelRatio()); |
1161 | const auto textKeys = src.textKeys(); |
1162 | for (const auto &key: textKeys) |
1163 | dst->setText(key, value: src.text(key)); |
1164 | |
1165 | } |
1166 | |
1167 | /*! |
1168 | \fn QImage QImage::copy(int x, int y, int width, int height) const |
1169 | \overload |
1170 | |
1171 | The returned image is copied from the position (\a x, \a y) in |
1172 | this image, and will always have the given \a width and \a height. |
1173 | In areas beyond this image, pixels are set to 0. |
1174 | |
1175 | */ |
1176 | |
1177 | /*! |
1178 | \fn QImage QImage::copy(const QRect& rectangle) const |
1179 | |
1180 | Returns a sub-area of the image as a new image. |
1181 | |
1182 | The returned image is copied from the position (\a |
1183 | {rectangle}.x(), \a{rectangle}.y()) in this image, and will always |
1184 | have the size of the given \a rectangle. |
1185 | |
1186 | In areas beyond this image, pixels are set to 0. For 32-bit RGB |
1187 | images, this means black; for 32-bit ARGB images, this means |
1188 | transparent black; for 8-bit images, this means the color with |
1189 | index 0 in the color table which can be anything; for 1-bit |
1190 | images, this means Qt::color0. |
1191 | |
1192 | If the given \a rectangle is a null rectangle the entire image is |
1193 | copied. |
1194 | |
1195 | \sa QImage() |
1196 | */ |
1197 | QImage Q_TRACE_INSTRUMENT(qtgui) QImage::copy(const QRect& r) const |
1198 | { |
1199 | Q_TRACE_SCOPE(QImage_copy, r); |
1200 | if (!d) |
1201 | return QImage(); |
1202 | |
1203 | if (r.isNull()) { |
1204 | QImage image(d->width, d->height, d->format); |
1205 | if (image.isNull()) |
1206 | return image; |
1207 | |
1208 | // Qt for Embedded Linux can create images with non-default bpl |
1209 | // make sure we don't crash. |
1210 | if (image.d->nbytes != d->nbytes) { |
1211 | qsizetype bpl = qMin(a: bytesPerLine(), b: image.bytesPerLine()); |
1212 | for (int i = 0; i < height(); i++) |
1213 | memcpy(dest: image.scanLine(i), src: scanLine(i), n: bpl); |
1214 | } else |
1215 | memcpy(dest: image.bits(), src: bits(), n: d->nbytes); |
1216 | image.d->colortable = d->colortable; |
1217 | image.d->offset = d->offset; |
1218 | image.d->has_alpha_clut = d->has_alpha_clut; |
1219 | copyMetadata(dst: image.d, src: d); |
1220 | return image; |
1221 | } |
1222 | |
1223 | int x = r.x(); |
1224 | int y = r.y(); |
1225 | int w = r.width(); |
1226 | int h = r.height(); |
1227 | |
1228 | int dx = 0; |
1229 | int dy = 0; |
1230 | if (w <= 0 || h <= 0) |
1231 | return QImage(); |
1232 | |
1233 | QImage image(w, h, d->format); |
1234 | if (image.isNull()) |
1235 | return image; |
1236 | |
1237 | if (x < 0 || y < 0 || x + w > d->width || y + h > d->height) { |
1238 | // bitBlt will not cover entire image - clear it. |
1239 | image.fill(pixel: 0); |
1240 | if (x < 0) { |
1241 | dx = -x; |
1242 | x = 0; |
1243 | } |
1244 | if (y < 0) { |
1245 | dy = -y; |
1246 | y = 0; |
1247 | } |
1248 | } |
1249 | |
1250 | image.d->colortable = d->colortable; |
1251 | |
1252 | int pixels_to_copy = qMax(a: w - dx, b: 0); |
1253 | if (x > d->width) |
1254 | pixels_to_copy = 0; |
1255 | else if (pixels_to_copy > d->width - x) |
1256 | pixels_to_copy = d->width - x; |
1257 | int lines_to_copy = qMax(a: h - dy, b: 0); |
1258 | if (y > d->height) |
1259 | lines_to_copy = 0; |
1260 | else if (lines_to_copy > d->height - y) |
1261 | lines_to_copy = d->height - y; |
1262 | |
1263 | bool byteAligned = true; |
1264 | if (d->format == Format_Mono || d->format == Format_MonoLSB) |
1265 | byteAligned = !(dx & 7) && !(x & 7) && !(pixels_to_copy & 7); |
1266 | |
1267 | if (byteAligned) { |
1268 | const uchar *src = d->data + ((x * d->depth) >> 3) + y * d->bytes_per_line; |
1269 | uchar *dest = image.d->data + ((dx * d->depth) >> 3) + dy * image.d->bytes_per_line; |
1270 | const qsizetype bytes_to_copy = (qsizetype(pixels_to_copy) * d->depth) >> 3; |
1271 | for (int i = 0; i < lines_to_copy; ++i) { |
1272 | memcpy(dest: dest, src: src, n: bytes_to_copy); |
1273 | src += d->bytes_per_line; |
1274 | dest += image.d->bytes_per_line; |
1275 | } |
1276 | } else if (d->format == Format_Mono) { |
1277 | const uchar *src = d->data + y * d->bytes_per_line; |
1278 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
1279 | for (int i = 0; i < lines_to_copy; ++i) { |
1280 | for (int j = 0; j < pixels_to_copy; ++j) { |
1281 | if (src[(x + j) >> 3] & (0x80 >> ((x + j) & 7))) |
1282 | dest[(dx + j) >> 3] |= (0x80 >> ((dx + j) & 7)); |
1283 | else |
1284 | dest[(dx + j) >> 3] &= ~(0x80 >> ((dx + j) & 7)); |
1285 | } |
1286 | src += d->bytes_per_line; |
1287 | dest += image.d->bytes_per_line; |
1288 | } |
1289 | } else { // Format_MonoLSB |
1290 | Q_ASSERT(d->format == Format_MonoLSB); |
1291 | const uchar *src = d->data + y * d->bytes_per_line; |
1292 | uchar *dest = image.d->data + dy * image.d->bytes_per_line; |
1293 | for (int i = 0; i < lines_to_copy; ++i) { |
1294 | for (int j = 0; j < pixels_to_copy; ++j) { |
1295 | if (src[(x + j) >> 3] & (0x1 << ((x + j) & 7))) |
1296 | dest[(dx + j) >> 3] |= (0x1 << ((dx + j) & 7)); |
1297 | else |
1298 | dest[(dx + j) >> 3] &= ~(0x1 << ((dx + j) & 7)); |
1299 | } |
1300 | src += d->bytes_per_line; |
1301 | dest += image.d->bytes_per_line; |
1302 | } |
1303 | } |
1304 | |
1305 | copyMetadata(dst: image.d, src: d); |
1306 | image.d->offset = offset(); |
1307 | image.d->has_alpha_clut = d->has_alpha_clut; |
1308 | return image; |
1309 | } |
1310 | |
1311 | |
1312 | /*! |
1313 | \fn bool QImage::isNull() const |
1314 | |
1315 | Returns \c true if it is a null image, otherwise returns \c false. |
1316 | |
1317 | A null image has all parameters set to zero and no allocated data. |
1318 | */ |
1319 | bool QImage::isNull() const |
1320 | { |
1321 | return !d; |
1322 | } |
1323 | |
1324 | /*! |
1325 | \fn int QImage::width() const |
1326 | |
1327 | Returns the width of the image. |
1328 | |
1329 | \sa {QImage#Image Information}{Image Information} |
1330 | */ |
1331 | int QImage::width() const |
1332 | { |
1333 | return d ? d->width : 0; |
1334 | } |
1335 | |
1336 | /*! |
1337 | \fn int QImage::height() const |
1338 | |
1339 | Returns the height of the image. |
1340 | |
1341 | \sa {QImage#Image Information}{Image Information} |
1342 | */ |
1343 | int QImage::height() const |
1344 | { |
1345 | return d ? d->height : 0; |
1346 | } |
1347 | |
1348 | /*! |
1349 | \fn QSize QImage::size() const |
1350 | |
1351 | Returns the size of the image, i.e. its width() and height(). |
1352 | |
1353 | \sa {QImage#Image Information}{Image Information}, deviceIndependentSize() |
1354 | */ |
1355 | QSize QImage::size() const |
1356 | { |
1357 | return d ? QSize(d->width, d->height) : QSize(0, 0); |
1358 | } |
1359 | |
1360 | /*! |
1361 | \fn QRect QImage::rect() const |
1362 | |
1363 | Returns the enclosing rectangle (0, 0, width(), height()) of the |
1364 | image. |
1365 | |
1366 | \sa {QImage#Image Information}{Image Information} |
1367 | */ |
1368 | QRect QImage::rect() const |
1369 | { |
1370 | return d ? QRect(0, 0, d->width, d->height) : QRect(); |
1371 | } |
1372 | |
1373 | /*! |
1374 | Returns the depth of the image. |
1375 | |
1376 | The image depth is the number of bits used to store a single |
1377 | pixel, also called bits per pixel (bpp). |
1378 | |
1379 | The supported depths are 1, 8, 16, 24, 32 and 64. |
1380 | |
1381 | \sa bitPlaneCount(), convertToFormat(), {QImage#Image Formats}{Image Formats}, |
1382 | {QImage#Image Information}{Image Information} |
1383 | |
1384 | */ |
1385 | int QImage::depth() const |
1386 | { |
1387 | return d ? d->depth : 0; |
1388 | } |
1389 | |
1390 | /*! |
1391 | \since 4.6 |
1392 | \fn int QImage::colorCount() const |
1393 | |
1394 | Returns the size of the color table for the image. |
1395 | |
1396 | Notice that colorCount() returns 0 for 32-bpp images because these |
1397 | images do not use color tables, but instead encode pixel values as |
1398 | ARGB quadruplets. |
1399 | |
1400 | \sa setColorCount(), {QImage#Image Information}{Image Information} |
1401 | */ |
1402 | int QImage::colorCount() const |
1403 | { |
1404 | return d ? d->colortable.size() : 0; |
1405 | } |
1406 | |
1407 | /*! |
1408 | Sets the color table used to translate color indexes to QRgb |
1409 | values, to the specified \a colors. |
1410 | |
1411 | When the image is used, the color table must be large enough to |
1412 | have entries for all the pixel/index values present in the image, |
1413 | otherwise the results are undefined. |
1414 | |
1415 | \sa colorTable(), setColor(), {QImage#Image Transformations}{Image |
1416 | Transformations} |
1417 | */ |
1418 | void QImage::setColorTable(const QList<QRgb> &colors) |
1419 | { |
1420 | if (!d) |
1421 | return; |
1422 | detachMetadata(invalidateCache: true); |
1423 | |
1424 | // In case detach() ran out of memory |
1425 | if (!d) |
1426 | return; |
1427 | |
1428 | d->colortable = colors; |
1429 | d->has_alpha_clut = false; |
1430 | for (int i = 0; i < d->colortable.size(); ++i) { |
1431 | if (qAlpha(rgb: d->colortable.at(i)) != 255) { |
1432 | d->has_alpha_clut = true; |
1433 | break; |
1434 | } |
1435 | } |
1436 | } |
1437 | |
1438 | /*! |
1439 | Returns a list of the colors contained in the image's color table, |
1440 | or an empty list if the image does not have a color table |
1441 | |
1442 | \sa setColorTable(), colorCount(), color() |
1443 | */ |
1444 | QList<QRgb> QImage::colorTable() const |
1445 | { |
1446 | return d ? d->colortable : QList<QRgb>(); |
1447 | } |
1448 | |
1449 | /*! |
1450 | Returns the device pixel ratio for the image. This is the |
1451 | ratio between \e{device pixels} and \e{device independent pixels}. |
1452 | |
1453 | Use this function when calculating layout geometry based on |
1454 | the image size: QSize layoutSize = image.size() / image.devicePixelRatio() |
1455 | |
1456 | The default value is 1.0. |
1457 | |
1458 | \sa setDevicePixelRatio(), QImageReader |
1459 | */ |
1460 | qreal QImage::devicePixelRatio() const |
1461 | { |
1462 | if (!d) |
1463 | return 1.0; |
1464 | return d->devicePixelRatio; |
1465 | } |
1466 | |
1467 | /*! |
1468 | Sets the device pixel ratio for the image. This is the |
1469 | ratio between image pixels and device-independent pixels. |
1470 | |
1471 | The default \a scaleFactor is 1.0. Setting it to something else has |
1472 | two effects: |
1473 | |
1474 | QPainters that are opened on the image will be scaled. For |
1475 | example, painting on a 200x200 image if with a ratio of 2.0 |
1476 | will result in effective (device-independent) painting bounds |
1477 | of 100x100. |
1478 | |
1479 | Code paths in Qt that calculate layout geometry based on the |
1480 | image size will take the ratio into account: |
1481 | QSize layoutSize = image.size() / image.devicePixelRatio() |
1482 | The net effect of this is that the image is displayed as |
1483 | high-DPI image rather than a large image |
1484 | (see \l{Drawing High Resolution Versions of Pixmaps and Images}). |
1485 | |
1486 | \sa devicePixelRatio(), deviceIndependentSize() |
1487 | */ |
1488 | void QImage::setDevicePixelRatio(qreal scaleFactor) |
1489 | { |
1490 | if (!d) |
1491 | return; |
1492 | |
1493 | if (scaleFactor == d->devicePixelRatio) |
1494 | return; |
1495 | |
1496 | detachMetadata(); |
1497 | if (d) |
1498 | d->devicePixelRatio = scaleFactor; |
1499 | } |
1500 | |
1501 | /*! |
1502 | Returns the size of the image in device independent pixels. |
1503 | |
1504 | This value should be used when using the image size in user interface |
1505 | size calculations. |
1506 | |
1507 | The return value is equivalent to image.size() / image.devicePixelRatio(). |
1508 | |
1509 | \since 6.2 |
1510 | */ |
1511 | QSizeF QImage::deviceIndependentSize() const |
1512 | { |
1513 | if (!d) |
1514 | return QSizeF(0, 0); |
1515 | return QSizeF(d->width, d->height) / d->devicePixelRatio; |
1516 | } |
1517 | |
1518 | |
1519 | /*! |
1520 | \since 5.10 |
1521 | Returns the image data size in bytes. |
1522 | |
1523 | \sa bytesPerLine(), bits(), {QImage#Image Information}{Image |
1524 | Information} |
1525 | */ |
1526 | qsizetype QImage::sizeInBytes() const |
1527 | { |
1528 | return d ? d->nbytes : 0; |
1529 | } |
1530 | |
1531 | /*! |
1532 | Returns the number of bytes per image scanline. |
1533 | |
1534 | This is equivalent to sizeInBytes() / height() if height() is non-zero. |
1535 | |
1536 | \sa scanLine() |
1537 | */ |
1538 | qsizetype QImage::bytesPerLine() const |
1539 | { |
1540 | return d ? d->bytes_per_line : 0; |
1541 | } |
1542 | |
1543 | |
1544 | /*! |
1545 | Returns the color in the color table at index \a i. The first |
1546 | color is at index 0. |
1547 | |
1548 | The colors in an image's color table are specified as ARGB |
1549 | quadruplets (QRgb). Use the qAlpha(), qRed(), qGreen(), and |
1550 | qBlue() functions to get the color value components. |
1551 | |
1552 | \sa setColor(), pixelIndex(), {QImage#Pixel Manipulation}{Pixel |
1553 | Manipulation} |
1554 | */ |
1555 | QRgb QImage::color(int i) const |
1556 | { |
1557 | Q_ASSERT(i < colorCount()); |
1558 | return d ? d->colortable.at(i) : QRgb(uint(-1)); |
1559 | } |
1560 | |
1561 | /*! |
1562 | \fn void QImage::setColor(int index, QRgb colorValue) |
1563 | |
1564 | Sets the color at the given \a index in the color table, to the |
1565 | given to \a colorValue. The color value is an ARGB quadruplet. |
1566 | |
1567 | If \a index is outside the current size of the color table, it is |
1568 | expanded with setColorCount(). |
1569 | |
1570 | \sa color(), colorCount(), setColorTable(), {QImage#Pixel Manipulation}{Pixel |
1571 | Manipulation} |
1572 | */ |
1573 | void QImage::setColor(int i, QRgb c) |
1574 | { |
1575 | if (!d) |
1576 | return; |
1577 | if (i < 0 || d->depth > 8 || i >= 1<<d->depth) { |
1578 | qWarning(msg: "QImage::setColor: Index out of bound %d" , i); |
1579 | return; |
1580 | } |
1581 | detachMetadata(invalidateCache: true); |
1582 | |
1583 | // In case detach() run out of memory |
1584 | if (!d) |
1585 | return; |
1586 | |
1587 | if (i >= d->colortable.size()) |
1588 | setColorCount(i+1); |
1589 | d->colortable[i] = c; |
1590 | d->has_alpha_clut |= (qAlpha(rgb: c) != 255); |
1591 | } |
1592 | |
1593 | /*! |
1594 | Returns a pointer to the pixel data at the scanline with index \a |
1595 | i. The first scanline is at index 0. |
1596 | |
1597 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
1598 | it follows the native alignment of 64-bit integers (64-bit for most |
1599 | platforms, but notably 32-bit on i386). |
1600 | |
1601 | For example, to remove the green component of each pixel in an image: |
1602 | |
1603 | \snippet code/src_gui_image_qimage.cpp scanLine |
1604 | |
1605 | \warning If you are accessing 32-bpp image data, cast the returned |
1606 | pointer to \c{QRgb*} (QRgb has a 32-bit size) and use it to |
1607 | read/write the pixel value. You cannot use the \c{uchar*} pointer |
1608 | directly, because the pixel format depends on the byte order on |
1609 | the underlying platform. Use qRed(), qGreen(), qBlue(), and |
1610 | qAlpha() to access the pixels. |
1611 | |
1612 | \sa bytesPerLine(), bits(), {QImage#Pixel Manipulation}{Pixel |
1613 | Manipulation}, constScanLine() |
1614 | */ |
1615 | uchar *QImage::scanLine(int i) |
1616 | { |
1617 | if (!d) |
1618 | return nullptr; |
1619 | |
1620 | detach(); |
1621 | |
1622 | // In case detach() ran out of memory |
1623 | if (!d) |
1624 | return nullptr; |
1625 | |
1626 | return d->data + i * d->bytes_per_line; |
1627 | } |
1628 | |
1629 | /*! |
1630 | \overload |
1631 | */ |
1632 | const uchar *QImage::scanLine(int i) const |
1633 | { |
1634 | if (!d) |
1635 | return nullptr; |
1636 | |
1637 | Q_ASSERT(i >= 0 && i < height()); |
1638 | return d->data + i * d->bytes_per_line; |
1639 | } |
1640 | |
1641 | |
1642 | /*! |
1643 | Returns a pointer to the pixel data at the scanline with index \a |
1644 | i. The first scanline is at index 0. |
1645 | |
1646 | The scanline data is as minimum 32-bit aligned. For 64-bit formats |
1647 | it follows the native alignment of 64-bit integers (64-bit for most |
1648 | platforms, but notably 32-bit on i386). |
1649 | |
1650 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1651 | sharing}, but this function does \e not perform a deep copy of the |
1652 | shared pixel data, because the returned data is const. |
1653 | |
1654 | \sa scanLine(), constBits() |
1655 | \since 4.7 |
1656 | */ |
1657 | const uchar *QImage::constScanLine(int i) const |
1658 | { |
1659 | if (!d) |
1660 | return nullptr; |
1661 | |
1662 | Q_ASSERT(i >= 0 && i < height()); |
1663 | return d->data + i * d->bytes_per_line; |
1664 | } |
1665 | |
1666 | /*! |
1667 | Returns a pointer to the first pixel data. This is equivalent to |
1668 | scanLine(0). |
1669 | |
1670 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1671 | sharing}. This function performs a deep copy of the shared pixel |
1672 | data, thus ensuring that this QImage is the only one using the |
1673 | current return value. |
1674 | |
1675 | \sa scanLine(), sizeInBytes(), constBits() |
1676 | */ |
1677 | uchar *QImage::bits() |
1678 | { |
1679 | if (!d) |
1680 | return nullptr; |
1681 | detach(); |
1682 | |
1683 | // In case detach ran out of memory... |
1684 | if (!d) |
1685 | return nullptr; |
1686 | |
1687 | return d->data; |
1688 | } |
1689 | |
1690 | /*! |
1691 | \overload |
1692 | |
1693 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1694 | sharing}, but this function does \e not perform a deep copy of the |
1695 | shared pixel data, because the returned data is const. |
1696 | */ |
1697 | const uchar *QImage::bits() const |
1698 | { |
1699 | return d ? d->data : nullptr; |
1700 | } |
1701 | |
1702 | |
1703 | /*! |
1704 | Returns a pointer to the first pixel data. |
1705 | |
1706 | Note that QImage uses \l{Implicit Data Sharing} {implicit data |
1707 | sharing}, but this function does \e not perform a deep copy of the |
1708 | shared pixel data, because the returned data is const. |
1709 | |
1710 | \sa bits(), constScanLine() |
1711 | \since 4.7 |
1712 | */ |
1713 | const uchar *QImage::constBits() const |
1714 | { |
1715 | return d ? d->data : nullptr; |
1716 | } |
1717 | |
1718 | /*! |
1719 | \fn void QImage::fill(uint pixelValue) |
1720 | |
1721 | Fills the entire image with the given \a pixelValue. |
1722 | |
1723 | If the depth of this image is 1, only the lowest bit is used. If |
1724 | you say fill(0), fill(2), etc., the image is filled with 0s. If |
1725 | you say fill(1), fill(3), etc., the image is filled with 1s. If |
1726 | the depth is 8, the lowest 8 bits are used and if the depth is 16 |
1727 | the lowest 16 bits are used. |
1728 | |
1729 | If the image depth is higher than 32bit the result is undefined. |
1730 | |
1731 | \note There are no corresponding value getter, though QImage::pixelIndex() |
1732 | will return the same value for indexed formats, and QImage::pixel() for |
1733 | RGB32, ARGB32, and ARGB32PM formats. |
1734 | |
1735 | \sa depth(), {QImage#Image Transformations}{Image Transformations} |
1736 | */ |
1737 | |
1738 | void QImage::fill(uint pixel) |
1739 | { |
1740 | if (!d) |
1741 | return; |
1742 | |
1743 | detach(); |
1744 | |
1745 | // In case detach() ran out of memory |
1746 | if (!d) |
1747 | return; |
1748 | |
1749 | if (d->depth == 1 || d->depth == 8) { |
1750 | int w = d->width; |
1751 | if (d->depth == 1) { |
1752 | if (pixel & 1) |
1753 | pixel = 0xffffffff; |
1754 | else |
1755 | pixel = 0; |
1756 | w = (w + 7) / 8; |
1757 | } else { |
1758 | pixel &= 0xff; |
1759 | } |
1760 | qt_rectfill<quint8>(dest: d->data, value: pixel, x: 0, y: 0, |
1761 | width: w, height: d->height, stride: d->bytes_per_line); |
1762 | return; |
1763 | } else if (d->depth == 16) { |
1764 | if (d->format == Format_RGB444) |
1765 | pixel |= 0xf000; |
1766 | qt_rectfill<quint16>(dest: reinterpret_cast<quint16*>(d->data), value: pixel, |
1767 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1768 | return; |
1769 | } else if (d->depth == 24) { |
1770 | if (d->format == Format_RGB666) |
1771 | pixel |= 0xfc0000; |
1772 | qt_rectfill<quint24>(dest: reinterpret_cast<quint24*>(d->data), value: pixel, |
1773 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1774 | return; |
1775 | } else if (d->format >= QImage::Format_RGBX64 && d->format <= QImage::Format_RGBA64_Premultiplied) { |
1776 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64*>(d->data), value: QRgba64::fromArgb32(rgb: pixel), |
1777 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1778 | return; |
1779 | } else if (d->format >= QImage::Format_RGBX16FPx4 && d->format <= QImage::Format_RGBA16FPx4_Premultiplied) { |
1780 | quint64 cu; |
1781 | QRgbaFloat16 cf = QRgbaFloat16::fromArgb32(rgb: pixel); |
1782 | ::memcpy(dest: &cu, src: &cf, n: sizeof(quint64)); |
1783 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64*>(d->data), value: cu, |
1784 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1785 | return; |
1786 | } else if (d->format >= QImage::Format_RGBX32FPx4 && d->format <= QImage::Format_RGBA32FPx4_Premultiplied) { |
1787 | QRgbaFloat32 cf = QRgbaFloat32::fromArgb32(rgb: pixel); |
1788 | uchar *data = d->data; |
1789 | for (int y = 0; y < d->height; ++y) { |
1790 | QRgbaFloat32 *line = reinterpret_cast<QRgbaFloat32 *>(data); |
1791 | for (int x = 0; x < d->width; ++x) |
1792 | line[x] = cf; |
1793 | data += d->bytes_per_line; |
1794 | } |
1795 | return; |
1796 | } |
1797 | Q_ASSERT(d->depth == 32); |
1798 | |
1799 | if (d->format == Format_RGB32) |
1800 | pixel |= 0xff000000; |
1801 | if (d->format == Format_RGBX8888) |
1802 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
1803 | pixel |= 0xff000000; |
1804 | #else |
1805 | pixel |= 0x000000ff; |
1806 | #endif |
1807 | if (d->format == Format_BGR30 || d->format == Format_RGB30) |
1808 | pixel |= 0xc0000000; |
1809 | |
1810 | qt_rectfill<uint>(dest: reinterpret_cast<uint*>(d->data), value: pixel, |
1811 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1812 | } |
1813 | |
1814 | |
1815 | /*! |
1816 | \fn void QImage::fill(Qt::GlobalColor color) |
1817 | \overload |
1818 | \since 4.8 |
1819 | |
1820 | Fills the image with the given \a color, described as a standard global |
1821 | color. |
1822 | */ |
1823 | |
1824 | void QImage::fill(Qt::GlobalColor color) |
1825 | { |
1826 | fill(color: QColor(color)); |
1827 | } |
1828 | |
1829 | |
1830 | |
1831 | /*! |
1832 | \fn void QImage::fill(const QColor &color) |
1833 | |
1834 | \overload |
1835 | |
1836 | Fills the entire image with the given \a color. |
1837 | |
1838 | If the depth of the image is 1, the image will be filled with 1 if |
1839 | \a color equals Qt::color1; it will otherwise be filled with 0. |
1840 | |
1841 | If the depth of the image is 8, the image will be filled with the |
1842 | index corresponding the \a color in the color table if present; it |
1843 | will otherwise be filled with 0. |
1844 | |
1845 | \since 4.8 |
1846 | */ |
1847 | |
1848 | void QImage::fill(const QColor &color) |
1849 | { |
1850 | if (!d) |
1851 | return; |
1852 | detach(); |
1853 | |
1854 | // In case we run out of memory |
1855 | if (!d) |
1856 | return; |
1857 | |
1858 | QRgba64 opaque = color.rgba64(); |
1859 | opaque.setAlpha(65535); |
1860 | switch (d->format) { |
1861 | case QImage::Format_RGB32: |
1862 | case QImage::Format_ARGB32: |
1863 | fill(pixel: color.rgba()); |
1864 | break; |
1865 | case QImage::Format_ARGB32_Premultiplied: |
1866 | fill(pixel: qPremultiply(x: color.rgba())); |
1867 | break; |
1868 | case QImage::Format_RGBX8888: |
1869 | fill(pixel: ARGB2RGBA(x: color.rgba() | 0xff000000)); |
1870 | break; |
1871 | case QImage::Format_RGBA8888: |
1872 | fill(pixel: ARGB2RGBA(x: color.rgba())); |
1873 | break; |
1874 | case QImage::Format_RGBA8888_Premultiplied: |
1875 | fill(pixel: ARGB2RGBA(x: qPremultiply(x: color.rgba()))); |
1876 | break; |
1877 | case QImage::Format_BGR30: |
1878 | fill(pixel: qConvertRgb64ToRgb30<PixelOrderBGR>(c: opaque)); |
1879 | break; |
1880 | case QImage::Format_RGB30: |
1881 | fill(pixel: qConvertRgb64ToRgb30<PixelOrderRGB>(c: opaque)); |
1882 | break; |
1883 | case QImage::Format_RGB16: |
1884 | fill(pixel: (uint) qConvertRgb32To16(c: color.rgba())); |
1885 | break; |
1886 | case QImage::Format_Indexed8: { |
1887 | uint pixel = 0; |
1888 | for (int i=0; i<d->colortable.size(); ++i) { |
1889 | if (color.rgba() == d->colortable.at(i)) { |
1890 | pixel = i; |
1891 | break; |
1892 | } |
1893 | } |
1894 | fill(pixel); |
1895 | break; |
1896 | } |
1897 | case QImage::Format_Mono: |
1898 | case QImage::Format_MonoLSB: |
1899 | if (color == Qt::color1) |
1900 | fill(pixel: (uint) 1); |
1901 | else |
1902 | fill(pixel: (uint) 0); |
1903 | break; |
1904 | case QImage::Format_RGBX64: |
1905 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64*>(d->data), value: opaque, |
1906 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1907 | break; |
1908 | case QImage::Format_RGBA64: |
1909 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64*>(d->data), value: color.rgba64(), |
1910 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1911 | break; |
1912 | case QImage::Format_RGBA64_Premultiplied: |
1913 | qt_rectfill<quint64>(dest: reinterpret_cast<quint64 *>(d->data), value: color.rgba64().premultiplied(), |
1914 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1915 | break; |
1916 | case QImage::Format_RGBX16FPx4: |
1917 | case QImage::Format_RGBA16FPx4: |
1918 | case QImage::Format_RGBA16FPx4_Premultiplied: |
1919 | case QImage::Format_RGBX32FPx4: |
1920 | case QImage::Format_RGBA32FPx4: |
1921 | case QImage::Format_RGBA32FPx4_Premultiplied:{ |
1922 | float r, g, b, a; |
1923 | color.getRgbF(r: &r, g: &g, b: &b, a: &a); |
1924 | if (!hasAlphaChannel()) |
1925 | a = 1.0f; |
1926 | if (depth() == 64) { |
1927 | QRgbaFloat16 c16{.r: qfloat16(r), .g: qfloat16(g), .b: qfloat16(b), .a: qfloat16(a)}; |
1928 | if (d->format == Format_RGBA16FPx4_Premultiplied) |
1929 | c16 = c16.premultiplied(); |
1930 | qt_rectfill<QRgbaFloat16>(dest: reinterpret_cast<QRgbaFloat16 *>(d->data), value: c16, |
1931 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1932 | } else { |
1933 | QRgbaFloat32 c32{.r: r, .g: g, .b: b, .a: a}; |
1934 | if (d->format == Format_RGBA32FPx4_Premultiplied) |
1935 | c32 = c32.premultiplied(); |
1936 | qt_rectfill<QRgbaFloat32>(dest: reinterpret_cast<QRgbaFloat32 *>(d->data), value: c32, |
1937 | x: 0, y: 0, width: d->width, height: d->height, stride: d->bytes_per_line); |
1938 | } |
1939 | break; |
1940 | } |
1941 | default: { |
1942 | QPainter p(this); |
1943 | p.setCompositionMode(QPainter::CompositionMode_Source); |
1944 | p.fillRect(rect(), color); |
1945 | }} |
1946 | } |
1947 | |
1948 | |
1949 | |
1950 | /*! |
1951 | Inverts all pixel values in the image. |
1952 | |
1953 | The given invert \a mode only have a meaning when the image's |
1954 | depth is 32. The default \a mode is InvertRgb, which leaves the |
1955 | alpha channel unchanged. If the \a mode is InvertRgba, the alpha |
1956 | bits are also inverted. |
1957 | |
1958 | Inverting an 8-bit image means to replace all pixels using color |
1959 | index \e i with a pixel using color index 255 minus \e i. The same |
1960 | is the case for a 1-bit image. Note that the color table is \e not |
1961 | changed. |
1962 | |
1963 | If the image has a premultiplied alpha channel, the image is first |
1964 | converted to an unpremultiplied image format to be inverted and |
1965 | then converted back. |
1966 | |
1967 | \sa {QImage#Image Transformations}{Image Transformations} |
1968 | */ |
1969 | |
1970 | void QImage::invertPixels(InvertMode mode) |
1971 | { |
1972 | if (!d) |
1973 | return; |
1974 | |
1975 | detach(); |
1976 | |
1977 | // In case detach() ran out of memory |
1978 | if (!d) |
1979 | return; |
1980 | |
1981 | QImage::Format originalFormat = d->format; |
1982 | // Inverting premultiplied pixels would produce invalid image data. |
1983 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) { |
1984 | if (d->format == QImage::Format_RGBA16FPx4_Premultiplied) { |
1985 | if (!d->convertInPlace(newFormat: QImage::Format_RGBA16FPx4, { })) |
1986 | *this = convertToFormat(f: QImage::Format_RGBA16FPx4); |
1987 | } else if (d->format == QImage::Format_RGBA32FPx4_Premultiplied) { |
1988 | if (!d->convertInPlace(newFormat: QImage::Format_RGBA32FPx4, { })) |
1989 | *this = convertToFormat(f: QImage::Format_RGBA32FPx4); |
1990 | } else if (depth() > 32) { |
1991 | if (!d->convertInPlace(newFormat: QImage::Format_RGBA64, { })) |
1992 | *this = convertToFormat(f: QImage::Format_RGBA64); |
1993 | } else { |
1994 | if (!d->convertInPlace(newFormat: QImage::Format_ARGB32, { })) |
1995 | *this = convertToFormat(f: QImage::Format_ARGB32); |
1996 | } |
1997 | } |
1998 | |
1999 | if (depth() < 32) { |
2000 | // This assumes no alpha-channel as the only formats with non-premultipled alpha are 32bit. |
2001 | qsizetype bpl = (qsizetype(d->width) * d->depth + 7) / 8; |
2002 | int pad = d->bytes_per_line - bpl; |
2003 | uchar *sl = d->data; |
2004 | for (int y=0; y<d->height; ++y) { |
2005 | for (qsizetype x=0; x<bpl; ++x) |
2006 | *sl++ ^= 0xff; |
2007 | sl += pad; |
2008 | } |
2009 | } else if (format() >= QImage::Format_RGBX16FPx4 && format() <= QImage::Format_RGBA16FPx4_Premultiplied) { |
2010 | qfloat16 *p = reinterpret_cast<qfloat16 *>(d->data); |
2011 | qfloat16 *end = reinterpret_cast<qfloat16 *>(d->data + d->nbytes); |
2012 | while (p < end) { |
2013 | p[0] = qfloat16(1) - p[0]; |
2014 | p[1] = qfloat16(1) - p[1]; |
2015 | p[2] = qfloat16(1) - p[2]; |
2016 | if (mode == InvertRgba) |
2017 | p[3] = qfloat16(1) - p[3]; |
2018 | p += 4; |
2019 | } |
2020 | } else if (format() >= QImage::Format_RGBX32FPx4 && format() <= QImage::Format_RGBA32FPx4_Premultiplied) { |
2021 | uchar *data = d->data; |
2022 | for (int y = 0; y < d->height; ++y) { |
2023 | float *p = reinterpret_cast<float *>(data); |
2024 | for (int x = 0; x < d->width; ++x) { |
2025 | p[0] = 1.0f - p[0]; |
2026 | p[1] = 1.0f - p[1]; |
2027 | p[2] = 1.0f - p[2]; |
2028 | if (mode == InvertRgba) |
2029 | p[3] = 1.0f - p[3]; |
2030 | p += 4; |
2031 | } |
2032 | data += d->bytes_per_line; |
2033 | } |
2034 | } else if (depth() == 64) { |
2035 | quint16 *p = (quint16*)d->data; |
2036 | quint16 *end = (quint16*)(d->data + d->nbytes); |
2037 | quint16 xorbits = 0xffff; |
2038 | while (p < end) { |
2039 | *p++ ^= xorbits; |
2040 | *p++ ^= xorbits; |
2041 | *p++ ^= xorbits; |
2042 | if (mode == InvertRgba) |
2043 | *p++ ^= xorbits; |
2044 | else |
2045 | p++; |
2046 | } |
2047 | } else { |
2048 | quint32 *p = (quint32*)d->data; |
2049 | quint32 *end = (quint32*)(d->data + d->nbytes); |
2050 | quint32 xorbits = 0xffffffff; |
2051 | switch (d->format) { |
2052 | case QImage::Format_RGBA8888: |
2053 | if (mode == InvertRgba) |
2054 | break; |
2055 | Q_FALLTHROUGH(); |
2056 | case QImage::Format_RGBX8888: |
2057 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
2058 | xorbits = 0xffffff00; |
2059 | break; |
2060 | #else |
2061 | xorbits = 0x00ffffff; |
2062 | break; |
2063 | #endif |
2064 | case QImage::Format_ARGB32: |
2065 | if (mode == InvertRgba) |
2066 | break; |
2067 | Q_FALLTHROUGH(); |
2068 | case QImage::Format_RGB32: |
2069 | xorbits = 0x00ffffff; |
2070 | break; |
2071 | case QImage::Format_BGR30: |
2072 | case QImage::Format_RGB30: |
2073 | xorbits = 0x3fffffff; |
2074 | break; |
2075 | default: |
2076 | Q_UNREACHABLE(); |
2077 | xorbits = 0; |
2078 | break; |
2079 | } |
2080 | while (p < end) |
2081 | *p++ ^= xorbits; |
2082 | } |
2083 | |
2084 | if (originalFormat != d->format) { |
2085 | if (!d->convertInPlace(newFormat: originalFormat, { })) |
2086 | *this = convertToFormat(f: originalFormat); |
2087 | } |
2088 | } |
2089 | |
2090 | // Windows defines these |
2091 | #if defined(write) |
2092 | # undef write |
2093 | #endif |
2094 | #if defined(close) |
2095 | # undef close |
2096 | #endif |
2097 | #if defined(read) |
2098 | # undef read |
2099 | #endif |
2100 | |
2101 | /*! |
2102 | \since 4.6 |
2103 | Resizes the color table to contain \a colorCount entries. |
2104 | |
2105 | If the color table is expanded, all the extra colors will be set to |
2106 | transparent (i.e qRgba(0, 0, 0, 0)). |
2107 | |
2108 | When the image is used, the color table must be large enough to |
2109 | have entries for all the pixel/index values present in the image, |
2110 | otherwise the results are undefined. |
2111 | |
2112 | \sa colorCount(), colorTable(), setColor(), {QImage#Image |
2113 | Transformations}{Image Transformations} |
2114 | */ |
2115 | |
2116 | void QImage::setColorCount(int colorCount) |
2117 | { |
2118 | if (!d) { |
2119 | qWarning(msg: "QImage::setColorCount: null image" ); |
2120 | return; |
2121 | } |
2122 | |
2123 | detachMetadata(invalidateCache: true); |
2124 | |
2125 | // In case detach() ran out of memory |
2126 | if (!d) |
2127 | return; |
2128 | |
2129 | if (colorCount == d->colortable.size()) |
2130 | return; |
2131 | if (colorCount <= 0) { // use no color table |
2132 | d->colortable.clear(); |
2133 | return; |
2134 | } |
2135 | int nc = d->colortable.size(); |
2136 | d->colortable.resize(size: colorCount); |
2137 | for (int i = nc; i < colorCount; ++i) |
2138 | d->colortable[i] = 0; |
2139 | } |
2140 | |
2141 | /*! |
2142 | Returns the format of the image. |
2143 | |
2144 | \sa {QImage#Image Formats}{Image Formats} |
2145 | */ |
2146 | QImage::Format QImage::format() const |
2147 | { |
2148 | return d ? d->format : Format_Invalid; |
2149 | } |
2150 | |
2151 | /*! |
2152 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) const & |
2153 | \fn QImage QImage::convertToFormat(Format format, Qt::ImageConversionFlags flags) && |
2154 | |
2155 | Returns a copy of the image in the given \a format. |
2156 | |
2157 | The specified image conversion \a flags control how the image data |
2158 | is handled during the conversion process. |
2159 | |
2160 | \sa convertTo(), {Image Formats} |
2161 | */ |
2162 | |
2163 | /*! |
2164 | \fn QImage QImage::convertedTo(Format format, Qt::ImageConversionFlags flags) const & |
2165 | \fn QImage QImage::convertedTo(Format format, Qt::ImageConversionFlags flags) && |
2166 | \since 6.0 |
2167 | |
2168 | Returns a copy of the image in the given \a format. |
2169 | |
2170 | The specified image conversion \a flags control how the image data |
2171 | is handled during the conversion process. |
2172 | |
2173 | \sa convertTo(), {Image Formats} |
2174 | */ |
2175 | |
2176 | /*! |
2177 | \internal |
2178 | */ |
2179 | QImage QImage::convertToFormat_helper(Format format, Qt::ImageConversionFlags flags) const |
2180 | { |
2181 | if (!d || d->format == format) |
2182 | return *this; |
2183 | |
2184 | if (d->format == Format_Invalid || format <= Format_Invalid || format >= NImageFormats) |
2185 | return QImage(); |
2186 | |
2187 | const QPixelLayout *destLayout = &qPixelLayouts[format]; |
2188 | Image_Converter converter = qimage_converter_map[d->format][format]; |
2189 | if (!converter && format > QImage::Format_Indexed8 && d->format > QImage::Format_Indexed8) { |
2190 | if (qt_highColorPrecision(format: d->format, opaque: !destLayout->hasAlphaChannel) |
2191 | && qt_highColorPrecision(format, opaque: !hasAlphaChannel())) { |
2192 | #if QT_CONFIG(raster_fp) |
2193 | if (qt_fpColorPrecision(format: d->format) && qt_fpColorPrecision(format)) |
2194 | converter = convert_generic_over_rgba32f; |
2195 | else |
2196 | #endif |
2197 | converter = convert_generic_over_rgb64; |
2198 | } else |
2199 | converter = convert_generic; |
2200 | } |
2201 | if (converter) { |
2202 | QImage image(d->width, d->height, format); |
2203 | |
2204 | QIMAGE_SANITYCHECK_MEMORY(image); |
2205 | |
2206 | image.d->offset = offset(); |
2207 | copyMetadata(dst: image.d, src: d); |
2208 | |
2209 | converter(image.d, d, flags); |
2210 | return image; |
2211 | } |
2212 | |
2213 | // Convert indexed formats over ARGB32 or RGB32 to the final format. |
2214 | Q_ASSERT(format != QImage::Format_ARGB32 && format != QImage::Format_RGB32); |
2215 | Q_ASSERT(d->format != QImage::Format_ARGB32 && d->format != QImage::Format_RGB32); |
2216 | |
2217 | if (!hasAlphaChannel()) |
2218 | return convertToFormat(f: Format_RGB32, flags).convertToFormat(f: format, flags); |
2219 | |
2220 | return convertToFormat(f: Format_ARGB32, flags).convertToFormat(f: format, flags); |
2221 | } |
2222 | |
2223 | /*! |
2224 | \internal |
2225 | */ |
2226 | bool QImage::convertToFormat_inplace(Format format, Qt::ImageConversionFlags flags) |
2227 | { |
2228 | return d && d->convertInPlace(newFormat: format, flags); |
2229 | } |
2230 | |
2231 | static inline int pixel_distance(QRgb p1, QRgb p2) { |
2232 | int r1 = qRed(rgb: p1); |
2233 | int g1 = qGreen(rgb: p1); |
2234 | int b1 = qBlue(rgb: p1); |
2235 | int a1 = qAlpha(rgb: p1); |
2236 | |
2237 | int r2 = qRed(rgb: p2); |
2238 | int g2 = qGreen(rgb: p2); |
2239 | int b2 = qBlue(rgb: p2); |
2240 | int a2 = qAlpha(rgb: p2); |
2241 | |
2242 | return abs(x: r1 - r2) + abs(x: g1 - g2) + abs(x: b1 - b2) + abs(x: a1 - a2); |
2243 | } |
2244 | |
2245 | static inline int closestMatch(QRgb pixel, const QList<QRgb> &clut) { |
2246 | int idx = 0; |
2247 | int current_distance = INT_MAX; |
2248 | for (int i=0; i<clut.size(); ++i) { |
2249 | int dist = pixel_distance(p1: pixel, p2: clut.at(i)); |
2250 | if (dist < current_distance) { |
2251 | current_distance = dist; |
2252 | idx = i; |
2253 | } |
2254 | } |
2255 | return idx; |
2256 | } |
2257 | |
2258 | static QImage convertWithPalette(const QImage &src, QImage::Format format, |
2259 | const QList<QRgb> &clut) { |
2260 | QImage dest(src.size(), format); |
2261 | dest.setColorTable(clut); |
2262 | |
2263 | copyMetadata(dst: QImageData::get(img&: dest), src: QImageData::get(img: src)); |
2264 | |
2265 | int h = src.height(); |
2266 | int w = src.width(); |
2267 | |
2268 | QHash<QRgb, int> cache; |
2269 | |
2270 | if (format == QImage::Format_Indexed8) { |
2271 | for (int y=0; y<h; ++y) { |
2272 | const QRgb *src_pixels = (const QRgb *) src.scanLine(i: y); |
2273 | uchar *dest_pixels = (uchar *) dest.scanLine(i: y); |
2274 | for (int x=0; x<w; ++x) { |
2275 | int src_pixel = src_pixels[x]; |
2276 | int value = cache.value(key: src_pixel, defaultValue: -1); |
2277 | if (value == -1) { |
2278 | value = closestMatch(pixel: src_pixel, clut); |
2279 | cache.insert(key: src_pixel, value); |
2280 | } |
2281 | dest_pixels[x] = (uchar) value; |
2282 | } |
2283 | } |
2284 | } else { |
2285 | QList<QRgb> table = clut; |
2286 | table.resize(size: 2); |
2287 | for (int y=0; y<h; ++y) { |
2288 | const QRgb *src_pixels = (const QRgb *) src.scanLine(i: y); |
2289 | for (int x=0; x<w; ++x) { |
2290 | int src_pixel = src_pixels[x]; |
2291 | int value = cache.value(key: src_pixel, defaultValue: -1); |
2292 | if (value == -1) { |
2293 | value = closestMatch(pixel: src_pixel, clut: table); |
2294 | cache.insert(key: src_pixel, value); |
2295 | } |
2296 | dest.setPixel(x, y, index_or_rgb: value); |
2297 | } |
2298 | } |
2299 | } |
2300 | |
2301 | return dest; |
2302 | } |
2303 | |
2304 | /*! |
2305 | \overload |
2306 | |
2307 | Returns a copy of the image converted to the given \a format, |
2308 | using the specified \a colorTable. |
2309 | |
2310 | Conversion from RGB formats to indexed formats is a slow operation |
2311 | and will use a straightforward nearest color approach, with no |
2312 | dithering. |
2313 | */ |
2314 | QImage QImage::convertToFormat(Format format, const QList<QRgb> &colorTable, Qt::ImageConversionFlags flags) const |
2315 | { |
2316 | if (!d || d->format == format) |
2317 | return *this; |
2318 | |
2319 | if (format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
2320 | return QImage(); |
2321 | if (format <= QImage::Format_Indexed8) |
2322 | return convertWithPalette(src: convertToFormat(f: QImage::Format_ARGB32, flags), format, clut: colorTable); |
2323 | |
2324 | return convertToFormat(f: format, flags); |
2325 | } |
2326 | |
2327 | /*! |
2328 | \since 5.9 |
2329 | |
2330 | Changes the format of the image to \a format without changing the |
2331 | data. Only works between formats of the same depth. |
2332 | |
2333 | Returns \c true if successful. |
2334 | |
2335 | This function can be used to change images with alpha-channels to |
2336 | their corresponding opaque formats if the data is known to be opaque-only, |
2337 | or to change the format of a given image buffer before overwriting |
2338 | it with new data. |
2339 | |
2340 | \warning The function does not check if the image data is valid in the |
2341 | new format and will still return \c true if the depths are compatible. |
2342 | Operations on an image with invalid data are undefined. |
2343 | |
2344 | \warning If the image is not detached, this will cause the data to be |
2345 | copied. |
2346 | |
2347 | \sa hasAlphaChannel(), convertToFormat() |
2348 | */ |
2349 | |
2350 | bool QImage::reinterpretAsFormat(Format format) |
2351 | { |
2352 | if (!d) |
2353 | return false; |
2354 | if (d->format == format) |
2355 | return true; |
2356 | if (qt_depthForFormat(format) != qt_depthForFormat(format: d->format)) |
2357 | return false; |
2358 | if (!isDetached()) { // Detach only if shared, not for read-only data. |
2359 | QImageData *oldD = d; |
2360 | detach(); |
2361 | // In case detach() ran out of memory |
2362 | if (!d) { |
2363 | d = oldD; |
2364 | d->ref.ref(); |
2365 | return false; |
2366 | } |
2367 | } |
2368 | |
2369 | d->format = format; |
2370 | return true; |
2371 | } |
2372 | |
2373 | /*! |
2374 | \since 5.13 |
2375 | |
2376 | Converts the image to the given \a format in place, detaching if necessary. |
2377 | |
2378 | The specified image conversion \a flags control how the image data |
2379 | is handled during the conversion process. |
2380 | |
2381 | \sa convertedTo() |
2382 | */ |
2383 | |
2384 | void QImage::convertTo(Format format, Qt::ImageConversionFlags flags) |
2385 | { |
2386 | if (!d || format <= QImage::Format_Invalid || format >= QImage::NImageFormats) |
2387 | return; |
2388 | |
2389 | if (d->format == format) |
2390 | return; |
2391 | |
2392 | detach(); |
2393 | if (convertToFormat_inplace(format, flags)) |
2394 | return; |
2395 | |
2396 | *this = convertToFormat_helper(format, flags); |
2397 | } |
2398 | |
2399 | /*! |
2400 | \fn bool QImage::valid(const QPoint &pos) const |
2401 | |
2402 | Returns \c true if \a pos is a valid coordinate pair within the |
2403 | image; otherwise returns \c false. |
2404 | |
2405 | \sa rect(), QRect::contains() |
2406 | */ |
2407 | |
2408 | /*! |
2409 | \overload |
2410 | |
2411 | Returns \c true if QPoint(\a x, \a y) is a valid coordinate pair |
2412 | within the image; otherwise returns \c false. |
2413 | */ |
2414 | bool QImage::valid(int x, int y) const |
2415 | { |
2416 | return d |
2417 | && x >= 0 && x < d->width |
2418 | && y >= 0 && y < d->height; |
2419 | } |
2420 | |
2421 | /*! |
2422 | \fn int QImage::pixelIndex(const QPoint &position) const |
2423 | |
2424 | Returns the pixel index at the given \a position. |
2425 | |
2426 | If \a position is not valid, or if the image is not a paletted |
2427 | image (depth() > 8), the results are undefined. |
2428 | |
2429 | \sa valid(), depth(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2430 | */ |
2431 | |
2432 | /*! |
2433 | \overload |
2434 | |
2435 | Returns the pixel index at (\a x, \a y). |
2436 | */ |
2437 | int QImage::pixelIndex(int x, int y) const |
2438 | { |
2439 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
2440 | qWarning(msg: "QImage::pixelIndex: coordinate (%d,%d) out of range" , x, y); |
2441 | return -12345; |
2442 | } |
2443 | const uchar * s = scanLine(i: y); |
2444 | switch(d->format) { |
2445 | case Format_Mono: |
2446 | return (*(s + (x >> 3)) >> (7- (x & 7))) & 1; |
2447 | case Format_MonoLSB: |
2448 | return (*(s + (x >> 3)) >> (x & 7)) & 1; |
2449 | case Format_Indexed8: |
2450 | return (int)s[x]; |
2451 | default: |
2452 | qWarning(msg: "QImage::pixelIndex: Not applicable for %d-bpp images (no palette)" , d->depth); |
2453 | } |
2454 | return 0; |
2455 | } |
2456 | |
2457 | |
2458 | /*! |
2459 | \fn QRgb QImage::pixel(const QPoint &position) const |
2460 | |
2461 | Returns the color of the pixel at the given \a position. |
2462 | |
2463 | If the \a position is not valid, the results are undefined. |
2464 | |
2465 | \warning This function is expensive when used for massive pixel |
2466 | manipulations. Use constBits() or constScanLine() when many |
2467 | pixels needs to be read. |
2468 | |
2469 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
2470 | Manipulation} |
2471 | */ |
2472 | |
2473 | /*! |
2474 | \overload |
2475 | |
2476 | Returns the color of the pixel at coordinates (\a x, \a y). |
2477 | */ |
2478 | QRgb QImage::pixel(int x, int y) const |
2479 | { |
2480 | if (!d || x < 0 || x >= d->width || y < 0 || y >= d->height) { |
2481 | qWarning(msg: "QImage::pixel: coordinate (%d,%d) out of range" , x, y); |
2482 | return 12345; |
2483 | } |
2484 | |
2485 | const uchar *s = d->data + y * d->bytes_per_line; |
2486 | |
2487 | int index = -1; |
2488 | switch (d->format) { |
2489 | case Format_Mono: |
2490 | index = (*(s + (x >> 3)) >> (~x & 7)) & 1; |
2491 | break; |
2492 | case Format_MonoLSB: |
2493 | index = (*(s + (x >> 3)) >> (x & 7)) & 1; |
2494 | break; |
2495 | case Format_Indexed8: |
2496 | index = s[x]; |
2497 | break; |
2498 | default: |
2499 | break; |
2500 | } |
2501 | if (index >= 0) { // Indexed format |
2502 | if (index >= d->colortable.size()) { |
2503 | qWarning(msg: "QImage::pixel: color table index %d out of range." , index); |
2504 | return 0; |
2505 | } |
2506 | return d->colortable.at(i: index); |
2507 | } |
2508 | |
2509 | switch (d->format) { |
2510 | case Format_RGB32: |
2511 | return 0xff000000 | reinterpret_cast<const QRgb *>(s)[x]; |
2512 | case Format_ARGB32: // Keep old behaviour. |
2513 | case Format_ARGB32_Premultiplied: |
2514 | return reinterpret_cast<const QRgb *>(s)[x]; |
2515 | case Format_RGBX8888: |
2516 | case Format_RGBA8888: // Match ARGB32 behavior. |
2517 | case Format_RGBA8888_Premultiplied: |
2518 | return RGBA2ARGB(x: reinterpret_cast<const quint32 *>(s)[x]); |
2519 | case Format_BGR30: |
2520 | case Format_A2BGR30_Premultiplied: |
2521 | return qConvertA2rgb30ToArgb32<PixelOrderBGR>(c: reinterpret_cast<const quint32 *>(s)[x]); |
2522 | case Format_RGB30: |
2523 | case Format_A2RGB30_Premultiplied: |
2524 | return qConvertA2rgb30ToArgb32<PixelOrderRGB>(c: reinterpret_cast<const quint32 *>(s)[x]); |
2525 | case Format_RGB16: |
2526 | return qConvertRgb16To32(c: reinterpret_cast<const quint16 *>(s)[x]); |
2527 | case Format_RGBX64: |
2528 | case Format_RGBA64: // Match ARGB32 behavior. |
2529 | case Format_RGBA64_Premultiplied: |
2530 | return reinterpret_cast<const QRgba64 *>(s)[x].toArgb32(); |
2531 | case Format_RGBX16FPx4: |
2532 | case Format_RGBA16FPx4: // Match ARGB32 behavior. |
2533 | case Format_RGBA16FPx4_Premultiplied: |
2534 | return reinterpret_cast<const QRgbaFloat16 *>(s)[x].toArgb32(); |
2535 | case Format_RGBX32FPx4: |
2536 | case Format_RGBA32FPx4: // Match ARGB32 behavior. |
2537 | case Format_RGBA32FPx4_Premultiplied: |
2538 | return reinterpret_cast<const QRgbaFloat32 *>(s)[x].toArgb32(); |
2539 | default: |
2540 | break; |
2541 | } |
2542 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2543 | uint result; |
2544 | return *layout->fetchToARGB32PM(&result, s, x, 1, nullptr, nullptr); |
2545 | } |
2546 | |
2547 | /*! |
2548 | \fn void QImage::setPixel(const QPoint &position, uint index_or_rgb) |
2549 | |
2550 | Sets the pixel index or color at the given \a position to \a |
2551 | index_or_rgb. |
2552 | |
2553 | If the image's format is either monochrome or paletted, the given \a |
2554 | index_or_rgb value must be an index in the image's color table, |
2555 | otherwise the parameter must be a QRgb value. |
2556 | |
2557 | If \a position is not a valid coordinate pair in the image, or if |
2558 | \a index_or_rgb >= colorCount() in the case of monochrome and |
2559 | paletted images, the result is undefined. |
2560 | |
2561 | \warning This function is expensive due to the call of the internal |
2562 | \c{detach()} function called within; if performance is a concern, we |
2563 | recommend the use of scanLine() or bits() to access pixel data directly. |
2564 | |
2565 | \sa pixel(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2566 | */ |
2567 | |
2568 | /*! |
2569 | \overload |
2570 | |
2571 | Sets the pixel index or color at (\a x, \a y) to \a index_or_rgb. |
2572 | */ |
2573 | void QImage::setPixel(int x, int y, uint index_or_rgb) |
2574 | { |
2575 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
2576 | qWarning(msg: "QImage::setPixel: coordinate (%d,%d) out of range" , x, y); |
2577 | return; |
2578 | } |
2579 | // detach is called from within scanLine |
2580 | uchar * s = scanLine(i: y); |
2581 | switch(d->format) { |
2582 | case Format_Mono: |
2583 | case Format_MonoLSB: |
2584 | if (index_or_rgb > 1) { |
2585 | qWarning(msg: "QImage::setPixel: Index %d out of range" , index_or_rgb); |
2586 | } else if (format() == Format_MonoLSB) { |
2587 | if (index_or_rgb==0) |
2588 | *(s + (x >> 3)) &= ~(1 << (x & 7)); |
2589 | else |
2590 | *(s + (x >> 3)) |= (1 << (x & 7)); |
2591 | } else { |
2592 | if (index_or_rgb==0) |
2593 | *(s + (x >> 3)) &= ~(1 << (7-(x & 7))); |
2594 | else |
2595 | *(s + (x >> 3)) |= (1 << (7-(x & 7))); |
2596 | } |
2597 | return; |
2598 | case Format_Indexed8: |
2599 | if (index_or_rgb >= (uint)d->colortable.size()) { |
2600 | qWarning(msg: "QImage::setPixel: Index %d out of range" , index_or_rgb); |
2601 | return; |
2602 | } |
2603 | s[x] = index_or_rgb; |
2604 | return; |
2605 | case Format_RGB32: |
2606 | //make sure alpha is 255, we depend on it in qdrawhelper for cases |
2607 | // when image is set as a texture pattern on a qbrush |
2608 | ((uint *)s)[x] = 0xff000000 | index_or_rgb; |
2609 | return; |
2610 | case Format_ARGB32: |
2611 | case Format_ARGB32_Premultiplied: |
2612 | ((uint *)s)[x] = index_or_rgb; |
2613 | return; |
2614 | case Format_RGB16: |
2615 | ((quint16 *)s)[x] = qConvertRgb32To16(c: index_or_rgb); |
2616 | return; |
2617 | case Format_RGBX8888: |
2618 | ((uint *)s)[x] = ARGB2RGBA(x: 0xff000000 | index_or_rgb); |
2619 | return; |
2620 | case Format_RGBA8888: |
2621 | case Format_RGBA8888_Premultiplied: |
2622 | ((uint *)s)[x] = ARGB2RGBA(x: index_or_rgb); |
2623 | return; |
2624 | case Format_BGR30: |
2625 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderBGR>(c: index_or_rgb); |
2626 | return; |
2627 | case Format_A2BGR30_Premultiplied: |
2628 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderBGR>(c: index_or_rgb); |
2629 | return; |
2630 | case Format_RGB30: |
2631 | ((uint *)s)[x] = qConvertRgb32ToRgb30<PixelOrderRGB>(c: index_or_rgb); |
2632 | return; |
2633 | case Format_A2RGB30_Premultiplied: |
2634 | ((uint *)s)[x] = qConvertArgb32ToA2rgb30<PixelOrderRGB>(c: index_or_rgb); |
2635 | return; |
2636 | case Format_RGBA64: |
2637 | case Format_RGBA64_Premultiplied: |
2638 | ((QRgba64 *)s)[x] = QRgba64::fromArgb32(rgb: index_or_rgb); |
2639 | return; |
2640 | case Format_RGBX16FPx4: |
2641 | ((QRgbaFloat16 *)s)[x] = QRgbaFloat16::fromArgb32(rgb: index_or_rgb | 0xff000000); |
2642 | return; |
2643 | case Format_RGBA16FPx4: |
2644 | case Format_RGBA16FPx4_Premultiplied: |
2645 | ((QRgbaFloat16 *)s)[x] = QRgbaFloat16::fromArgb32(rgb: index_or_rgb); |
2646 | return; |
2647 | case Format_RGBX32FPx4: |
2648 | ((QRgbaFloat32 *)s)[x] = QRgbaFloat32::fromArgb32(rgb: index_or_rgb | 0xff000000); |
2649 | return; |
2650 | case Format_RGBA32FPx4: |
2651 | case Format_RGBA32FPx4_Premultiplied: |
2652 | ((QRgbaFloat32 *)s)[x] = QRgbaFloat32::fromArgb32(rgb: index_or_rgb); |
2653 | return; |
2654 | case Format_Invalid: |
2655 | case NImageFormats: |
2656 | Q_ASSERT(false); |
2657 | return; |
2658 | default: |
2659 | break; |
2660 | } |
2661 | |
2662 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2663 | if (!hasAlphaChannel()) |
2664 | layout->storeFromRGB32(s, &index_or_rgb, x, 1, nullptr, nullptr); |
2665 | else |
2666 | layout->storeFromARGB32PM(s, &index_or_rgb, x, 1, nullptr, nullptr); |
2667 | } |
2668 | |
2669 | /*! |
2670 | \fn QColor QImage::pixelColor(const QPoint &position) const |
2671 | \since 5.6 |
2672 | |
2673 | Returns the color of the pixel at the given \a position as a QColor. |
2674 | |
2675 | If the \a position is not valid, an invalid QColor is returned. |
2676 | |
2677 | \warning This function is expensive when used for massive pixel |
2678 | manipulations. Use constBits() or constScanLine() when many |
2679 | pixels needs to be read. |
2680 | |
2681 | \sa setPixel(), valid(), constBits(), constScanLine(), {QImage#Pixel Manipulation}{Pixel |
2682 | Manipulation} |
2683 | */ |
2684 | |
2685 | /*! |
2686 | \overload |
2687 | \since 5.6 |
2688 | |
2689 | Returns the color of the pixel at coordinates (\a x, \a y) as a QColor. |
2690 | */ |
2691 | QColor QImage::pixelColor(int x, int y) const |
2692 | { |
2693 | if (!d || x < 0 || x >= d->width || y < 0 || y >= height()) { |
2694 | qWarning(msg: "QImage::pixelColor: coordinate (%d,%d) out of range" , x, y); |
2695 | return QColor(); |
2696 | } |
2697 | |
2698 | QRgba64 c; |
2699 | const uchar * s = constScanLine(i: y); |
2700 | switch (d->format) { |
2701 | case Format_BGR30: |
2702 | case Format_A2BGR30_Premultiplied: |
2703 | c = qConvertA2rgb30ToRgb64<PixelOrderBGR>(rgb: reinterpret_cast<const quint32 *>(s)[x]); |
2704 | break; |
2705 | case Format_RGB30: |
2706 | case Format_A2RGB30_Premultiplied: |
2707 | c = qConvertA2rgb30ToRgb64<PixelOrderRGB>(rgb: reinterpret_cast<const quint32 *>(s)[x]); |
2708 | break; |
2709 | case Format_RGBX64: |
2710 | case Format_RGBA64: |
2711 | case Format_RGBA64_Premultiplied: |
2712 | c = reinterpret_cast<const QRgba64 *>(s)[x]; |
2713 | break; |
2714 | case Format_Grayscale16: { |
2715 | quint16 v = reinterpret_cast<const quint16 *>(s)[x]; |
2716 | return QColor(qRgba64(r: v, g: v, b: v, a: 0xffff)); |
2717 | } |
2718 | case Format_RGBX16FPx4: |
2719 | case Format_RGBA16FPx4: |
2720 | case Format_RGBA16FPx4_Premultiplied: { |
2721 | QRgbaFloat16 p = reinterpret_cast<const QRgbaFloat16 *>(s)[x]; |
2722 | if (d->format == Format_RGBA16FPx4_Premultiplied) |
2723 | p = p.unpremultiplied(); |
2724 | QColor color; |
2725 | color.setRgbF(r: p.red(), g: p.green(), b: p.blue(), a: p.alpha()); |
2726 | return color; |
2727 | } |
2728 | case Format_RGBX32FPx4: |
2729 | case Format_RGBA32FPx4: |
2730 | case Format_RGBA32FPx4_Premultiplied: { |
2731 | QRgbaFloat32 p = reinterpret_cast<const QRgbaFloat32 *>(s)[x]; |
2732 | if (d->format == Format_RGBA32FPx4_Premultiplied) |
2733 | p = p.unpremultiplied(); |
2734 | QColor color; |
2735 | color.setRgbF(r: p.red(), g: p.green(), b: p.blue(), a: p.alpha()); |
2736 | return color; |
2737 | } |
2738 | default: |
2739 | c = QRgba64::fromArgb32(rgb: pixel(x, y)); |
2740 | break; |
2741 | } |
2742 | // QColor is always unpremultiplied |
2743 | if (hasAlphaChannel() && qPixelLayouts[d->format].premultiplied) |
2744 | c = c.unpremultiplied(); |
2745 | return QColor(c); |
2746 | } |
2747 | |
2748 | /*! |
2749 | \fn void QImage::setPixelColor(const QPoint &position, const QColor &color) |
2750 | \since 5.6 |
2751 | |
2752 | Sets the color at the given \a position to \a color. |
2753 | |
2754 | If \a position is not a valid coordinate pair in the image, or |
2755 | the image's format is either monochrome or paletted, the result is undefined. |
2756 | |
2757 | \warning This function is expensive due to the call of the internal |
2758 | \c{detach()} function called within; if performance is a concern, we |
2759 | recommend the use of scanLine() or bits() to access pixel data directly. |
2760 | |
2761 | \sa pixel(), bits(), scanLine(), {QImage#Pixel Manipulation}{Pixel Manipulation} |
2762 | */ |
2763 | |
2764 | /*! |
2765 | \overload |
2766 | \since 5.6 |
2767 | |
2768 | Sets the pixel color at (\a x, \a y) to \a color. |
2769 | */ |
2770 | void QImage::setPixelColor(int x, int y, const QColor &color) |
2771 | { |
2772 | if (!d || x < 0 || x >= width() || y < 0 || y >= height()) { |
2773 | qWarning(msg: "QImage::setPixelColor: coordinate (%d,%d) out of range" , x, y); |
2774 | return; |
2775 | } |
2776 | |
2777 | if (!color.isValid()) { |
2778 | qWarning(msg: "QImage::setPixelColor: color is invalid" ); |
2779 | return; |
2780 | } |
2781 | |
2782 | // QColor is always unpremultiplied |
2783 | QRgba64 c = color.rgba64(); |
2784 | if (!hasAlphaChannel()) |
2785 | c.setAlpha(65535); |
2786 | else if (qPixelLayouts[d->format].premultiplied) |
2787 | c = c.premultiplied(); |
2788 | // detach is called from within scanLine |
2789 | uchar * s = scanLine(i: y); |
2790 | switch (d->format) { |
2791 | case Format_Mono: |
2792 | case Format_MonoLSB: |
2793 | case Format_Indexed8: |
2794 | qWarning(msg: "QImage::setPixelColor: called on monochrome or indexed format" ); |
2795 | return; |
2796 | case Format_BGR30: |
2797 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c) | 0xc0000000; |
2798 | return; |
2799 | case Format_A2BGR30_Premultiplied: |
2800 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderBGR>(c); |
2801 | return; |
2802 | case Format_RGB30: |
2803 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c) | 0xc0000000; |
2804 | return; |
2805 | case Format_A2RGB30_Premultiplied: |
2806 | ((uint *)s)[x] = qConvertRgb64ToRgb30<PixelOrderRGB>(c); |
2807 | return; |
2808 | case Format_RGBX64: |
2809 | case Format_RGBA64: |
2810 | case Format_RGBA64_Premultiplied: |
2811 | ((QRgba64 *)s)[x] = c; |
2812 | return; |
2813 | case Format_RGBX16FPx4: |
2814 | case Format_RGBA16FPx4: |
2815 | case Format_RGBA16FPx4_Premultiplied: { |
2816 | float r, g, b, a; |
2817 | color.getRgbF(r: &r, g: &g, b: &b, a: &a); |
2818 | if (d->format == Format_RGBX16FPx4) |
2819 | a = 1.0f; |
2820 | QRgbaFloat16 c16f{.r: qfloat16(r), .g: qfloat16(g), .b: qfloat16(b), .a: qfloat16(a)}; |
2821 | if (d->format == Format_RGBA16FPx4_Premultiplied) |
2822 | c16f = c16f.premultiplied(); |
2823 | ((QRgbaFloat16 *)s)[x] = c16f; |
2824 | return; |
2825 | } |
2826 | case Format_RGBX32FPx4: |
2827 | case Format_RGBA32FPx4: |
2828 | case Format_RGBA32FPx4_Premultiplied: { |
2829 | float r, g, b, a; |
2830 | color.getRgbF(r: &r, g: &g, b: &b, a: &a); |
2831 | if (d->format == Format_RGBX32FPx4) |
2832 | a = 1.0f; |
2833 | QRgbaFloat32 c32f{.r: r, .g: g, .b: b, .a: a}; |
2834 | if (d->format == Format_RGBA32FPx4_Premultiplied) |
2835 | c32f = c32f.premultiplied(); |
2836 | ((QRgbaFloat32 *)s)[x] = c32f; |
2837 | return; |
2838 | } |
2839 | default: |
2840 | setPixel(x, y, index_or_rgb: c.toArgb32()); |
2841 | return; |
2842 | } |
2843 | } |
2844 | |
2845 | /*! |
2846 | Returns \c true if all the colors in the image are shades of gray |
2847 | (i.e. their red, green and blue components are equal); otherwise |
2848 | false. |
2849 | |
2850 | Note that this function is slow for images without color table. |
2851 | |
2852 | \sa isGrayscale() |
2853 | */ |
2854 | bool QImage::allGray() const |
2855 | { |
2856 | if (!d) |
2857 | return true; |
2858 | |
2859 | switch (d->format) { |
2860 | case Format_Mono: |
2861 | case Format_MonoLSB: |
2862 | case Format_Indexed8: |
2863 | for (int i = 0; i < d->colortable.size(); ++i) { |
2864 | if (!qIsGray(rgb: d->colortable.at(i))) |
2865 | return false; |
2866 | } |
2867 | return true; |
2868 | case Format_Alpha8: |
2869 | return false; |
2870 | case Format_Grayscale8: |
2871 | case Format_Grayscale16: |
2872 | return true; |
2873 | case Format_RGB32: |
2874 | case Format_ARGB32: |
2875 | case Format_ARGB32_Premultiplied: |
2876 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
2877 | case Format_RGBX8888: |
2878 | case Format_RGBA8888: |
2879 | case Format_RGBA8888_Premultiplied: |
2880 | #endif |
2881 | for (int j = 0; j < d->height; ++j) { |
2882 | const QRgb *b = (const QRgb *)constScanLine(i: j); |
2883 | for (int i = 0; i < d->width; ++i) { |
2884 | if (!qIsGray(rgb: b[i])) |
2885 | return false; |
2886 | } |
2887 | } |
2888 | return true; |
2889 | case Format_RGB16: |
2890 | for (int j = 0; j < d->height; ++j) { |
2891 | const quint16 *b = (const quint16 *)constScanLine(i: j); |
2892 | for (int i = 0; i < d->width; ++i) { |
2893 | if (!qIsGray(rgb: qConvertRgb16To32(c: b[i]))) |
2894 | return false; |
2895 | } |
2896 | } |
2897 | return true; |
2898 | default: |
2899 | break; |
2900 | } |
2901 | |
2902 | uint buffer[BufferSize]; |
2903 | const QPixelLayout *layout = &qPixelLayouts[d->format]; |
2904 | const auto fetch = layout->fetchToARGB32PM; |
2905 | for (int j = 0; j < d->height; ++j) { |
2906 | const uchar *b = constScanLine(i: j); |
2907 | int x = 0; |
2908 | while (x < d->width) { |
2909 | int l = qMin(a: d->width - x, b: BufferSize); |
2910 | const uint *ptr = fetch(buffer, b, x, l, nullptr, nullptr); |
2911 | for (int i = 0; i < l; ++i) { |
2912 | if (!qIsGray(rgb: ptr[i])) |
2913 | return false; |
2914 | } |
2915 | x += l; |
2916 | } |
2917 | } |
2918 | return true; |
2919 | } |
2920 | |
2921 | /*! |
2922 | For 32-bit images, this function is equivalent to allGray(). |
2923 | |
2924 | For color indexed images, this function returns \c true if |
2925 | color(i) is QRgb(i, i, i) for all indexes of the color table; |
2926 | otherwise returns \c false. |
2927 | |
2928 | \sa allGray(), {QImage#Image Formats}{Image Formats} |
2929 | */ |
2930 | bool QImage::isGrayscale() const |
2931 | { |
2932 | if (!d) |
2933 | return false; |
2934 | |
2935 | if (d->format == QImage::Format_Alpha8) |
2936 | return false; |
2937 | |
2938 | if (d->format == QImage::Format_Grayscale8 || d->format == QImage::Format_Grayscale16) |
2939 | return true; |
2940 | |
2941 | switch (depth()) { |
2942 | case 32: |
2943 | case 24: |
2944 | case 16: |
2945 | return allGray(); |
2946 | case 8: { |
2947 | Q_ASSERT(d->format == QImage::Format_Indexed8); |
2948 | for (int i = 0; i < colorCount(); i++) |
2949 | if (d->colortable.at(i) != qRgb(r: i,g: i,b: i)) |
2950 | return false; |
2951 | return true; |
2952 | } |
2953 | } |
2954 | return false; |
2955 | } |
2956 | |
2957 | /*! |
2958 | \fn QImage QImage::scaled(int width, int height, Qt::AspectRatioMode aspectRatioMode, |
2959 | Qt::TransformationMode transformMode) const |
2960 | \overload |
2961 | |
2962 | Returns a copy of the image scaled to a rectangle with the given |
2963 | \a width and \a height according to the given \a aspectRatioMode |
2964 | and \a transformMode. |
2965 | |
2966 | If either the \a width or the \a height is zero or negative, this |
2967 | function returns a null image. |
2968 | */ |
2969 | |
2970 | /*! |
2971 | \fn QImage QImage::scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, |
2972 | Qt::TransformationMode transformMode) const |
2973 | |
2974 | Returns a copy of the image scaled to a rectangle defined by the |
2975 | given \a size according to the given \a aspectRatioMode and \a |
2976 | transformMode. |
2977 | |
2978 | \image qimage-scaling.png |
2979 | |
2980 | \list |
2981 | \li If \a aspectRatioMode is Qt::IgnoreAspectRatio, the image |
2982 | is scaled to \a size. |
2983 | \li If \a aspectRatioMode is Qt::KeepAspectRatio, the image is |
2984 | scaled to a rectangle as large as possible inside \a size, preserving the aspect ratio. |
2985 | \li If \a aspectRatioMode is Qt::KeepAspectRatioByExpanding, |
2986 | the image is scaled to a rectangle as small as possible |
2987 | outside \a size, preserving the aspect ratio. |
2988 | \endlist |
2989 | |
2990 | If the given \a size is empty, this function returns a null image. |
2991 | |
2992 | \sa isNull(), {QImage#Image Transformations}{Image |
2993 | Transformations} |
2994 | */ |
2995 | QImage Q_TRACE_INSTRUMENT(qtgui) QImage::scaled(const QSize& s, Qt::AspectRatioMode aspectMode, Qt::TransformationMode mode) const |
2996 | { |
2997 | if (!d) { |
2998 | qWarning(msg: "QImage::scaled: Image is a null image" ); |
2999 | return QImage(); |
3000 | } |
3001 | if (s.isEmpty()) |
3002 | return QImage(); |
3003 | |
3004 | QSize newSize = size(); |
3005 | newSize.scale(s, mode: aspectMode); |
3006 | newSize.rwidth() = qMax(a: newSize.width(), b: 1); |
3007 | newSize.rheight() = qMax(a: newSize.height(), b: 1); |
3008 | if (newSize == size()) |
3009 | return *this; |
3010 | |
3011 | Q_TRACE_SCOPE(QImage_scaled, s, aspectMode, mode); |
3012 | |
3013 | QTransform wm = QTransform::fromScale(dx: (qreal)newSize.width() / width(), dy: (qreal)newSize.height() / height()); |
3014 | QImage img = transformed(matrix: wm, mode); |
3015 | return img; |
3016 | } |
3017 | |
3018 | /*! |
3019 | \fn QImage QImage::scaledToWidth(int width, Qt::TransformationMode mode) const |
3020 | |
3021 | Returns a scaled copy of the image. The returned image is scaled |
3022 | to the given \a width using the specified transformation \a |
3023 | mode. |
3024 | |
3025 | This function automatically calculates the height of the image so |
3026 | that its aspect ratio is preserved. |
3027 | |
3028 | If the given \a width is 0 or negative, a null image is returned. |
3029 | |
3030 | \sa {QImage#Image Transformations}{Image Transformations} |
3031 | */ |
3032 | QImage Q_TRACE_INSTRUMENT(qtgui) QImage::scaledToWidth(int w, Qt::TransformationMode mode) const |
3033 | { |
3034 | if (!d) { |
3035 | qWarning(msg: "QImage::scaleWidth: Image is a null image" ); |
3036 | return QImage(); |
3037 | } |
3038 | if (w <= 0) |
3039 | return QImage(); |
3040 | |
3041 | Q_TRACE_SCOPE(QImage_scaledToWidth, w, mode); |
3042 | |
3043 | qreal factor = (qreal) w / width(); |
3044 | QTransform wm = QTransform::fromScale(dx: factor, dy: factor); |
3045 | return transformed(matrix: wm, mode); |
3046 | } |
3047 | |
3048 | /*! |
3049 | \fn QImage QImage::scaledToHeight(int height, Qt::TransformationMode mode) const |
3050 | |
3051 | Returns a scaled copy of the image. The returned image is scaled |
3052 | to the given \a height using the specified transformation \a |
3053 | mode. |
3054 | |
3055 | This function automatically calculates the width of the image so that |
3056 | the ratio of the image is preserved. |
3057 | |
3058 | If the given \a height is 0 or negative, a null image is returned. |
3059 | |
3060 | \sa {QImage#Image Transformations}{Image Transformations} |
3061 | */ |
3062 | QImage Q_TRACE_INSTRUMENT(qtgui) QImage::scaledToHeight(int h, Qt::TransformationMode mode) const |
3063 | { |
3064 | if (!d) { |
3065 | qWarning(msg: "QImage::scaleHeight: Image is a null image" ); |
3066 | return QImage(); |
3067 | } |
3068 | if (h <= 0) |
3069 | return QImage(); |
3070 | |
3071 | Q_TRACE_SCOPE(QImage_scaledToHeight, h, mode); |
3072 | |
3073 | qreal factor = (qreal) h / height(); |
3074 | QTransform wm = QTransform::fromScale(dx: factor, dy: factor); |
3075 | return transformed(matrix: wm, mode); |
3076 | } |
3077 | |
3078 | /*! |
3079 | Builds and returns a 1-bpp mask from the alpha buffer in this |
3080 | image. Returns a null image if the image's format is |
3081 | QImage::Format_RGB32. |
3082 | |
3083 | The \a flags argument is a bitwise-OR of the |
3084 | Qt::ImageConversionFlags, and controls the conversion |
3085 | process. Passing 0 for flags sets all the default options. |
3086 | |
3087 | The returned image has little-endian bit order (i.e. the image's |
3088 | format is QImage::Format_MonoLSB), which you can convert to |
3089 | big-endian (QImage::Format_Mono) using the convertToFormat() |
3090 | function. |
3091 | |
3092 | \sa createHeuristicMask(), {QImage#Image Transformations}{Image |
3093 | Transformations} |
3094 | */ |
3095 | QImage Q_TRACE_INSTRUMENT(qtgui) QImage::createAlphaMask(Qt::ImageConversionFlags flags) const |
3096 | { |
3097 | if (!d || d->format == QImage::Format_RGB32) |
3098 | return QImage(); |
3099 | |
3100 | if (d->depth == 1) { |
3101 | // A monochrome pixmap, with alpha channels on those two colors. |
3102 | // Pretty unlikely, so use less efficient solution. |
3103 | return convertToFormat(f: Format_Indexed8, flags).createAlphaMask(flags); |
3104 | } |
3105 | |
3106 | QImage mask(d->width, d->height, Format_MonoLSB); |
3107 | if (!mask.isNull()) { |
3108 | dither_to_Mono(dst: mask.d, src: d, flags, fromalpha: true); |
3109 | copyPhysicalMetadata(dst: mask.d, src: d); |
3110 | } |
3111 | return mask; |
3112 | } |
3113 | |
3114 | #ifndef QT_NO_IMAGE_HEURISTIC_MASK |
3115 | /*! |
3116 | Creates and returns a 1-bpp heuristic mask for this image. |
3117 | |
3118 | The function works by selecting a color from one of the corners, |
3119 | then chipping away pixels of that color starting at all the edges. |
3120 | The four corners vote for which color is to be masked away. In |
3121 | case of a draw (this generally means that this function is not |
3122 | applicable to the image), the result is arbitrary. |
3123 | |
3124 | The returned image has little-endian bit order (i.e. the image's |
3125 | format is QImage::Format_MonoLSB), which you can convert to |
3126 | big-endian (QImage::Format_Mono) using the convertToFormat() |
3127 | function. |
3128 | |
3129 | If \a clipTight is true (the default) the mask is just large |
3130 | enough to cover the pixels; otherwise, the mask is larger than the |
3131 | data pixels. |
3132 | |
3133 | Note that this function disregards the alpha buffer. |
3134 | |
3135 | \sa createAlphaMask(), {QImage#Image Transformations}{Image |
3136 | Transformations} |
3137 | */ |
3138 | |
3139 | QImage QImage::createHeuristicMask(bool clipTight) const |
3140 | { |
3141 | if (!d) |
3142 | return QImage(); |
3143 | |
3144 | if (d->depth != 32) { |
3145 | QImage img32 = convertToFormat(f: Format_RGB32); |
3146 | return img32.createHeuristicMask(clipTight); |
3147 | } |
3148 | |
3149 | #define PIX(x,y) (*((const QRgb*)scanLine(y)+x) & 0x00ffffff) |
3150 | |
3151 | int w = width(); |
3152 | int h = height(); |
3153 | QImage m(w, h, Format_MonoLSB); |
3154 | QIMAGE_SANITYCHECK_MEMORY(m); |
3155 | m.setColorCount(2); |
3156 | m.setColor(i: 0, c: QColor(Qt::color0).rgba()); |
3157 | m.setColor(i: 1, c: QColor(Qt::color1).rgba()); |
3158 | m.fill(pixel: 0xff); |
3159 | |
3160 | QRgb background = PIX(0,0); |
3161 | if (background != PIX(w-1,0) && |
3162 | background != PIX(0,h-1) && |
3163 | background != PIX(w-1,h-1)) { |
3164 | background = PIX(w-1,0); |
3165 | if (background != PIX(w-1,h-1) && |
3166 | background != PIX(0,h-1) && |
3167 | PIX(0,h-1) == PIX(w-1,h-1)) { |
3168 | background = PIX(w-1,h-1); |
3169 | } |
3170 | } |
3171 | |
3172 | int x,y; |
3173 | bool done = false; |
3174 | uchar *ypp, *ypc, *ypn; |
3175 | while(!done) { |
3176 | done = true; |
3177 | ypn = m.scanLine(i: 0); |
3178 | ypc = nullptr; |
3179 | for (y = 0; y < h; y++) { |
3180 | ypp = ypc; |
3181 | ypc = ypn; |
3182 | ypn = (y == h-1) ? nullptr : m.scanLine(i: y+1); |
3183 | const QRgb *p = (const QRgb *)scanLine(i: y); |
3184 | for (x = 0; x < w; x++) { |
3185 | // slowness here - it's possible to do six of these tests |
3186 | // together in one go. oh well. |
3187 | if ((x == 0 || y == 0 || x == w-1 || y == h-1 || |
3188 | !(*(ypc + ((x-1) >> 3)) & (1 << ((x-1) & 7))) || |
3189 | !(*(ypc + ((x+1) >> 3)) & (1 << ((x+1) & 7))) || |
3190 | !(*(ypp + (x >> 3)) & (1 << (x & 7))) || |
3191 | !(*(ypn + (x >> 3)) & (1 << (x & 7)))) && |
3192 | ( (*(ypc + (x >> 3)) & (1 << (x & 7)))) && |
3193 | ((*p & 0x00ffffff) == background)) { |
3194 | done = false; |
3195 | *(ypc + (x >> 3)) &= ~(1 << (x & 7)); |
3196 | } |
3197 | p++; |
3198 | } |
3199 | } |
3200 | } |
3201 | |
3202 | if (!clipTight) { |
3203 | ypn = m.scanLine(i: 0); |
3204 | ypc = nullptr; |
3205 | for (y = 0; y < h; y++) { |
3206 | ypp = ypc; |
3207 | ypc = ypn; |
3208 | ypn = (y == h-1) ? nullptr : m.scanLine(i: y+1); |
3209 | const QRgb *p = (const QRgb *)scanLine(i: y); |
3210 | for (x = 0; x < w; x++) { |
3211 | if ((*p & 0x00ffffff) != background) { |
3212 | if (x > 0) |
3213 | *(ypc + ((x-1) >> 3)) |= (1 << ((x-1) & 7)); |
3214 | if (x < w-1) |
3215 | *(ypc + ((x+1) >> 3)) |= (1 << ((x+1) & 7)); |
3216 | if (y > 0) |
3217 | *(ypp + (x >> 3)) |= (1 << (x & 7)); |
3218 | if (y < h-1) |
3219 | *(ypn + (x >> 3)) |= (1 << (x & 7)); |
3220 | } |
3221 | p++; |
3222 | } |
3223 | } |
3224 | } |
3225 | |
3226 | #undef PIX |
3227 | |
3228 | copyPhysicalMetadata(dst: m.d, src: d); |
3229 | return m; |
3230 | } |
3231 | #endif //QT_NO_IMAGE_HEURISTIC_MASK |
3232 | |
3233 | /*! |
3234 | Creates and returns a mask for this image based on the given \a |
3235 | color value. If the \a mode is MaskInColor (the default value), |
3236 | all pixels matching \a color will be opaque pixels in the mask. If |
3237 | \a mode is MaskOutColor, all pixels matching the given color will |
3238 | be transparent. |
3239 | |
3240 | \sa createAlphaMask(), createHeuristicMask() |
3241 | */ |
3242 | |
3243 | QImage QImage::createMaskFromColor(QRgb color, Qt::MaskMode mode) const |
3244 | { |
3245 | if (!d) |
3246 | return QImage(); |
3247 | QImage maskImage(size(), QImage::Format_MonoLSB); |
3248 | QIMAGE_SANITYCHECK_MEMORY(maskImage); |
3249 | maskImage.fill(pixel: 0); |
3250 | uchar *s = maskImage.bits(); |
3251 | if (!s) |
3252 | return QImage(); |
3253 | |
3254 | if (depth() == 32) { |
3255 | for (int h = 0; h < d->height; h++) { |
3256 | const uint *sl = (const uint *) scanLine(i: h); |
3257 | for (int w = 0; w < d->width; w++) { |
3258 | if (sl[w] == color) |
3259 | *(s + (w >> 3)) |= (1 << (w & 7)); |
3260 | } |
3261 | s += maskImage.bytesPerLine(); |
3262 | } |
3263 | } else { |
3264 | for (int h = 0; h < d->height; h++) { |
3265 | for (int w = 0; w < d->width; w++) { |
3266 | if ((uint) pixel(x: w, y: h) == color) |
3267 | *(s + (w >> 3)) |= (1 << (w & 7)); |
3268 | } |
3269 | s += maskImage.bytesPerLine(); |
3270 | } |
3271 | } |
3272 | if (mode == Qt::MaskOutColor) |
3273 | maskImage.invertPixels(); |
3274 | |
3275 | copyPhysicalMetadata(dst: maskImage.d, src: d); |
3276 | return maskImage; |
3277 | } |
3278 | |
3279 | /*! |
3280 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) const & |
3281 | \fn QImage QImage::mirrored(bool horizontal = false, bool vertical = true) && |
3282 | |
3283 | Returns a mirror of the image, mirrored in the horizontal and/or |
3284 | the vertical direction depending on whether \a horizontal and \a |
3285 | vertical are set to true or false. |
3286 | |
3287 | Note that the original image is not changed. |
3288 | |
3289 | \sa mirror(), {QImage#Image Transformations}{Image Transformations} |
3290 | */ |
3291 | |
3292 | /*! |
3293 | \fn void QImage::mirror(bool horizontal = false, bool vertical = true) |
3294 | \since 6.0 |
3295 | |
3296 | Mirrors of the image in the horizontal and/or the vertical direction depending |
3297 | on whether \a horizontal and \a vertical are set to true or false. |
3298 | |
3299 | \sa mirrored(), {QImage#Image Transformations}{Image Transformations} |
3300 | */ |
3301 | |
3302 | template<class T> inline void do_mirror_data(QImageData *dst, QImageData *src, |
3303 | int dstX0, int dstY0, |
3304 | int dstXIncr, int dstYIncr, |
3305 | int w, int h) |
3306 | { |
3307 | if (dst == src) { |
3308 | // When mirroring in-place, stop in the middle for one of the directions, since we |
3309 | // are swapping the bytes instead of merely copying. |
3310 | const int srcXEnd = (dstX0 && !dstY0) ? w / 2 : w; |
3311 | const int srcYEnd = dstY0 ? h / 2 : h; |
3312 | for (int srcY = 0, dstY = dstY0; srcY < srcYEnd; ++srcY, dstY += dstYIncr) { |
3313 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3314 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
3315 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd; ++srcX, dstX += dstXIncr) |
3316 | std::swap(srcPtr[srcX], dstPtr[dstX]); |
3317 | } |
3318 | // If mirroring both ways, the middle line needs to be mirrored horizontally only. |
3319 | if (dstX0 && dstY0 && (h & 1)) { |
3320 | int srcY = h / 2; |
3321 | int srcXEnd2 = w / 2; |
3322 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3323 | for (int srcX = 0, dstX = dstX0; srcX < srcXEnd2; ++srcX, dstX += dstXIncr) |
3324 | std::swap(srcPtr[srcX], srcPtr[dstX]); |
3325 | } |
3326 | } else { |
3327 | for (int srcY = 0, dstY = dstY0; srcY < h; ++srcY, dstY += dstYIncr) { |
3328 | T *srcPtr = (T *) (src->data + srcY * src->bytes_per_line); |
3329 | T *dstPtr = (T *) (dst->data + dstY * dst->bytes_per_line); |
3330 | for (int srcX = 0, dstX = dstX0; srcX < w; ++srcX, dstX += dstXIncr) |
3331 | dstPtr[dstX] = srcPtr[srcX]; |
3332 | } |
3333 | } |
3334 | } |
3335 | |
3336 | inline void do_flip(QImageData *dst, QImageData *src, int w, int h, int depth) |
3337 | { |
3338 | const int data_bytes_per_line = w * (depth / 8); |
3339 | if (dst == src) { |
3340 | uint *srcPtr = reinterpret_cast<uint *>(src->data); |
3341 | uint *dstPtr = reinterpret_cast<uint *>(dst->data + (h - 1) * dst->bytes_per_line); |
3342 | h = h / 2; |
3343 | const int uint_per_line = (data_bytes_per_line + 3) >> 2; // bytes per line must be a multiple of 4 |
3344 | for (int y = 0; y < h; ++y) { |
3345 | // This is auto-vectorized, no need for SSE2 or NEON versions: |
3346 | for (int x = 0; x < uint_per_line; x++) { |
3347 | const uint d = dstPtr[x]; |
3348 | const uint s = srcPtr[x]; |
3349 | dstPtr[x] = s; |
3350 | srcPtr[x] = d; |
3351 | } |
3352 | srcPtr += src->bytes_per_line >> 2; |
3353 | dstPtr -= dst->bytes_per_line >> 2; |
3354 | } |
3355 | |
3356 | } else { |
3357 | const uchar *srcPtr = src->data; |
3358 | uchar *dstPtr = dst->data + (h - 1) * dst->bytes_per_line; |
3359 | for (int y = 0; y < h; ++y) { |
3360 | memcpy(dest: dstPtr, src: srcPtr, n: data_bytes_per_line); |
3361 | srcPtr += src->bytes_per_line; |
3362 | dstPtr -= dst->bytes_per_line; |
3363 | } |
3364 | } |
3365 | } |
3366 | |
3367 | inline void do_mirror(QImageData *dst, QImageData *src, bool horizontal, bool vertical) |
3368 | { |
3369 | Q_ASSERT(src->width == dst->width && src->height == dst->height && src->depth == dst->depth); |
3370 | int w = src->width; |
3371 | int h = src->height; |
3372 | int depth = src->depth; |
3373 | |
3374 | if (src->depth == 1) { |
3375 | w = (w + 7) / 8; // byte aligned width |
3376 | depth = 8; |
3377 | } |
3378 | |
3379 | if (vertical && !horizontal) { |
3380 | // This one is simple and common, so do it a little more optimized |
3381 | do_flip(dst, src, w, h, depth); |
3382 | return; |
3383 | } |
3384 | |
3385 | int dstX0 = 0, dstXIncr = 1; |
3386 | int dstY0 = 0, dstYIncr = 1; |
3387 | if (horizontal) { |
3388 | // 0 -> w-1, 1 -> w-2, 2 -> w-3, ... |
3389 | dstX0 = w - 1; |
3390 | dstXIncr = -1; |
3391 | } |
3392 | if (vertical) { |
3393 | // 0 -> h-1, 1 -> h-2, 2 -> h-3, ... |
3394 | dstY0 = h - 1; |
3395 | dstYIncr = -1; |
3396 | } |
3397 | |
3398 | switch (depth) { |
3399 | case 128: |
3400 | do_mirror_data<QRgbaFloat32>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3401 | break; |
3402 | case 64: |
3403 | do_mirror_data<quint64>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3404 | break; |
3405 | case 32: |
3406 | do_mirror_data<quint32>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3407 | break; |
3408 | case 24: |
3409 | do_mirror_data<quint24>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3410 | break; |
3411 | case 16: |
3412 | do_mirror_data<quint16>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3413 | break; |
3414 | case 8: |
3415 | do_mirror_data<quint8>(dst, src, dstX0, dstY0, dstXIncr, dstYIncr, w, h); |
3416 | break; |
3417 | default: |
3418 | Q_ASSERT(false); |
3419 | break; |
3420 | } |
3421 | |
3422 | // The bytes are now all in the correct place. In addition, the bits in the individual |
3423 | // bytes have to be flipped too when horizontally mirroring a 1 bit-per-pixel image. |
3424 | if (horizontal && dst->depth == 1) { |
3425 | Q_ASSERT(dst->format == QImage::Format_Mono || dst->format == QImage::Format_MonoLSB); |
3426 | const int shift = 8 - (dst->width % 8); |
3427 | const uchar *bitflip = qt_get_bitflip_array(); |
3428 | for (int y = 0; y < h; ++y) { |
3429 | uchar *begin = dst->data + y * dst->bytes_per_line; |
3430 | uchar *end = begin + dst->bytes_per_line; |
3431 | for (uchar *p = begin; p < end; ++p) { |
3432 | *p = bitflip[*p]; |
3433 | // When the data is non-byte aligned, an extra bit shift (of the number of |
3434 | // unused bits at the end) is needed for the entire scanline. |
3435 | if (shift != 8 && p != begin) { |
3436 | if (dst->format == QImage::Format_Mono) { |
3437 | for (int i = 0; i < shift; ++i) { |
3438 | p[-1] <<= 1; |
3439 | p[-1] |= (*p & (128 >> i)) >> (7 - i); |
3440 | } |
3441 | } else { |
3442 | for (int i = 0; i < shift; ++i) { |
3443 | p[-1] >>= 1; |
3444 | p[-1] |= (*p & (1 << i)) << (7 - i); |
3445 | } |
3446 | } |
3447 | } |
3448 | } |
3449 | if (shift != 8) { |
3450 | if (dst->format == QImage::Format_Mono) |
3451 | end[-1] <<= shift; |
3452 | else |
3453 | end[-1] >>= shift; |
3454 | } |
3455 | } |
3456 | } |
3457 | } |
3458 | |
3459 | /*! |
3460 | \internal |
3461 | */ |
3462 | QImage QImage::mirrored_helper(bool horizontal, bool vertical) const |
3463 | { |
3464 | if (!d) |
3465 | return QImage(); |
3466 | |
3467 | if ((d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
3468 | return *this; |
3469 | |
3470 | // Create result image, copy colormap |
3471 | QImage result(d->width, d->height, d->format); |
3472 | QIMAGE_SANITYCHECK_MEMORY(result); |
3473 | |
3474 | // check if we ran out of of memory.. |
3475 | if (!result.d) |
3476 | return QImage(); |
3477 | |
3478 | result.d->colortable = d->colortable; |
3479 | result.d->has_alpha_clut = d->has_alpha_clut; |
3480 | copyMetadata(dst: result.d, src: d); |
3481 | |
3482 | do_mirror(dst: result.d, src: d, horizontal, vertical); |
3483 | |
3484 | return result; |
3485 | } |
3486 | |
3487 | /*! |
3488 | \internal |
3489 | */ |
3490 | void QImage::mirrored_inplace(bool horizontal, bool vertical) |
3491 | { |
3492 | if (!d || (d->width <= 1 && d->height <= 1) || (!horizontal && !vertical)) |
3493 | return; |
3494 | |
3495 | detach(); |
3496 | if (!d) |
3497 | return; |
3498 | if (!d->own_data) |
3499 | *this = copy(); |
3500 | |
3501 | do_mirror(dst: d, src: d, horizontal, vertical); |
3502 | } |
3503 | |
3504 | /*! |
3505 | \fn QImage QImage::rgbSwapped() const & |
3506 | \fn QImage QImage::rgbSwapped() && |
3507 | |
3508 | Returns a QImage in which the values of the red and blue |
3509 | components of all pixels have been swapped, effectively converting |
3510 | an RGB image to an BGR image. |
3511 | |
3512 | The original QImage is not changed. |
3513 | |
3514 | \sa rgbSwap(), {QImage#Image Transformations}{Image Transformations} |
3515 | */ |
3516 | |
3517 | /*! |
3518 | \fn void QImage::rgbSwap() |
3519 | \since 6.0 |
3520 | |
3521 | Swaps the values of the red and blue components of all pixels, effectively converting |
3522 | an RGB image to an BGR image. |
3523 | |
3524 | \sa rgbSwapped(), {QImage#Image Transformations}{Image Transformations} |
3525 | */ |
3526 | |
3527 | static inline void rgbSwapped_generic(int width, int height, const QImage *src, QImage *dst, const QPixelLayout* layout) |
3528 | { |
3529 | const RbSwapFunc func = layout->rbSwap; |
3530 | if (!func) { |
3531 | qWarning(msg: "Trying to rb-swap an image format where it doesn't make sense" ); |
3532 | if (src != dst) |
3533 | *dst = *src; |
3534 | return; |
3535 | } |
3536 | |
3537 | for (int i = 0; i < height; ++i) { |
3538 | uchar *q = dst->scanLine(i); |
3539 | const uchar *p = src->constScanLine(i); |
3540 | func(q, p, width); |
3541 | } |
3542 | } |
3543 | |
3544 | /*! |
3545 | \internal |
3546 | */ |
3547 | QImage Q_TRACE_INSTRUMENT(qtgui) QImage::rgbSwapped_helper() const |
3548 | { |
3549 | if (isNull()) |
3550 | return *this; |
3551 | |
3552 | Q_TRACE_SCOPE(QImage_rgbSwapped_helper); |
3553 | |
3554 | QImage res; |
3555 | |
3556 | switch (d->format) { |
3557 | case Format_Invalid: |
3558 | case NImageFormats: |
3559 | Q_ASSERT(false); |
3560 | break; |
3561 | case Format_Alpha8: |
3562 | case Format_Grayscale8: |
3563 | case Format_Grayscale16: |
3564 | return *this; |
3565 | case Format_Mono: |
3566 | case Format_MonoLSB: |
3567 | case Format_Indexed8: |
3568 | res = copy(); |
3569 | for (int i = 0; i < res.d->colortable.size(); i++) { |
3570 | QRgb c = res.d->colortable.at(i); |
3571 | res.d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
3572 | } |
3573 | break; |
3574 | case Format_RGBX8888: |
3575 | case Format_RGBA8888: |
3576 | case Format_RGBA8888_Premultiplied: |
3577 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
3578 | res = QImage(d->width, d->height, d->format); |
3579 | QIMAGE_SANITYCHECK_MEMORY(res); |
3580 | for (int i = 0; i < d->height; i++) { |
3581 | uint *q = (uint*)res.scanLine(i); |
3582 | const uint *p = (const uint*)constScanLine(i); |
3583 | const uint *end = p + d->width; |
3584 | while (p < end) { |
3585 | uint c = *p; |
3586 | *q = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
3587 | p++; |
3588 | q++; |
3589 | } |
3590 | } |
3591 | break; |
3592 | #else |
3593 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
3594 | Q_FALLTHROUGH(); |
3595 | #endif |
3596 | case Format_RGB32: |
3597 | case Format_ARGB32: |
3598 | case Format_ARGB32_Premultiplied: |
3599 | res = QImage(d->width, d->height, d->format); |
3600 | QIMAGE_SANITYCHECK_MEMORY(res); |
3601 | for (int i = 0; i < d->height; i++) { |
3602 | uint *q = (uint*)res.scanLine(i); |
3603 | const uint *p = (const uint*)constScanLine(i); |
3604 | const uint *end = p + d->width; |
3605 | while (p < end) { |
3606 | uint c = *p; |
3607 | *q = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
3608 | p++; |
3609 | q++; |
3610 | } |
3611 | } |
3612 | break; |
3613 | case Format_RGB16: |
3614 | res = QImage(d->width, d->height, d->format); |
3615 | QIMAGE_SANITYCHECK_MEMORY(res); |
3616 | for (int i = 0; i < d->height; i++) { |
3617 | ushort *q = (ushort*)res.scanLine(i); |
3618 | const ushort *p = (const ushort*)constScanLine(i); |
3619 | const ushort *end = p + d->width; |
3620 | while (p < end) { |
3621 | ushort c = *p; |
3622 | *q = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
3623 | p++; |
3624 | q++; |
3625 | } |
3626 | } |
3627 | break; |
3628 | default: |
3629 | res = QImage(d->width, d->height, d->format); |
3630 | QIMAGE_SANITYCHECK_MEMORY(res); |
3631 | rgbSwapped_generic(width: d->width, height: d->height, src: this, dst: &res, layout: &qPixelLayouts[d->format]); |
3632 | break; |
3633 | } |
3634 | copyMetadata(dst: res.d, src: d); |
3635 | return res; |
3636 | } |
3637 | |
3638 | /*! |
3639 | \internal |
3640 | */ |
3641 | void QImage::rgbSwapped_inplace() |
3642 | { |
3643 | if (isNull()) |
3644 | return; |
3645 | |
3646 | detach(); |
3647 | if (!d) |
3648 | return; |
3649 | if (!d->own_data) |
3650 | *this = copy(); |
3651 | |
3652 | switch (d->format) { |
3653 | case Format_Invalid: |
3654 | case NImageFormats: |
3655 | Q_ASSERT(false); |
3656 | break; |
3657 | case Format_Alpha8: |
3658 | case Format_Grayscale8: |
3659 | case Format_Grayscale16: |
3660 | return; |
3661 | case Format_Mono: |
3662 | case Format_MonoLSB: |
3663 | case Format_Indexed8: |
3664 | for (int i = 0; i < d->colortable.size(); i++) { |
3665 | QRgb c = d->colortable.at(i); |
3666 | d->colortable[i] = QRgb(((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00)); |
3667 | } |
3668 | break; |
3669 | case Format_RGBX8888: |
3670 | case Format_RGBA8888: |
3671 | case Format_RGBA8888_Premultiplied: |
3672 | #if Q_BYTE_ORDER == Q_BIG_ENDIAN |
3673 | for (int i = 0; i < d->height; i++) { |
3674 | uint *p = (uint*)scanLine(i); |
3675 | uint *end = p + d->width; |
3676 | while (p < end) { |
3677 | uint c = *p; |
3678 | *p = ((c << 16) & 0xff000000) | ((c >> 16) & 0xff00) | (c & 0x00ff00ff); |
3679 | p++; |
3680 | } |
3681 | } |
3682 | break; |
3683 | #else |
3684 | // On little-endian rgba8888 is abgr32 and can use same rgb-swap as argb32 |
3685 | Q_FALLTHROUGH(); |
3686 | #endif |
3687 | case Format_RGB32: |
3688 | case Format_ARGB32: |
3689 | case Format_ARGB32_Premultiplied: |
3690 | for (int i = 0; i < d->height; i++) { |
3691 | uint *p = (uint*)scanLine(i); |
3692 | uint *end = p + d->width; |
3693 | while (p < end) { |
3694 | uint c = *p; |
3695 | *p = ((c << 16) & 0xff0000) | ((c >> 16) & 0xff) | (c & 0xff00ff00); |
3696 | p++; |
3697 | } |
3698 | } |
3699 | break; |
3700 | case Format_RGB16: |
3701 | for (int i = 0; i < d->height; i++) { |
3702 | ushort *p = (ushort*)scanLine(i); |
3703 | ushort *end = p + d->width; |
3704 | while (p < end) { |
3705 | ushort c = *p; |
3706 | *p = ((c << 11) & 0xf800) | ((c >> 11) & 0x1f) | (c & 0x07e0); |
3707 | p++; |
3708 | } |
3709 | } |
3710 | break; |
3711 | case Format_BGR30: |
3712 | case Format_A2BGR30_Premultiplied: |
3713 | case Format_RGB30: |
3714 | case Format_A2RGB30_Premultiplied: |
3715 | for (int i = 0; i < d->height; i++) { |
3716 | uint *p = (uint*)scanLine(i); |
3717 | uint *end = p + d->width; |
3718 | while (p < end) { |
3719 | *p = qRgbSwapRgb30(c: *p); |
3720 | p++; |
3721 | } |
3722 | } |
3723 | break; |
3724 | default: |
3725 | rgbSwapped_generic(width: d->width, height: d->height, src: this, dst: this, layout: &qPixelLayouts[d->format]); |
3726 | break; |
3727 | } |
3728 | } |
3729 | |
3730 | /*! |
3731 | Loads an image from the file with the given \a fileName. Returns \c true if |
3732 | the image was successfully loaded; otherwise invalidates the image |
3733 | and returns \c false. |
3734 | |
3735 | The loader attempts to read the image using the specified \a format, e.g., |
3736 | PNG or JPG. If \a format is not specified (which is the default), it is |
3737 | auto-detected based on the file's suffix and header. For details, see |
3738 | QImageReader::setAutoDetectImageFormat(). |
3739 | |
3740 | The file name can either refer to an actual file on disk or to one |
3741 | of the application's embedded resources. See the |
3742 | \l{resources.html}{Resource System} overview for details on how to |
3743 | embed images and other resource files in the application's |
3744 | executable. |
3745 | |
3746 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3747 | */ |
3748 | |
3749 | bool QImage::load(const QString &fileName, const char* format) |
3750 | { |
3751 | *this = QImageReader(fileName, format).read(); |
3752 | return !isNull(); |
3753 | } |
3754 | |
3755 | /*! |
3756 | \overload |
3757 | |
3758 | This function reads a QImage from the given \a device. This can, |
3759 | for example, be used to load an image directly into a QByteArray. |
3760 | */ |
3761 | |
3762 | bool QImage::load(QIODevice* device, const char* format) |
3763 | { |
3764 | *this = QImageReader(device, format).read(); |
3765 | return !isNull(); |
3766 | } |
3767 | |
3768 | /*! |
3769 | \since 6.2 |
3770 | |
3771 | Loads an image from the given QByteArrayView \a data. Returns \c true if the image was |
3772 | successfully loaded; otherwise invalidates the image and returns \c false. |
3773 | |
3774 | The loader attempts to read the image using the specified \a format, e.g., |
3775 | PNG or JPG. If \a format is not specified (which is the default), the |
3776 | loader probes the file for a header to guess the file format. |
3777 | |
3778 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3779 | */ |
3780 | |
3781 | bool QImage::loadFromData(QByteArrayView data, const char *format) |
3782 | { |
3783 | *this = fromData(data, format); |
3784 | return !isNull(); |
3785 | } |
3786 | |
3787 | /*! |
3788 | \fn bool QImage::loadFromData(const uchar *data, int len, const char *format) |
3789 | |
3790 | \overload |
3791 | |
3792 | Loads an image from the first \a len bytes of the given binary \a data. |
3793 | */ |
3794 | |
3795 | bool QImage::loadFromData(const uchar *buf, int len, const char *format) |
3796 | { |
3797 | return loadFromData(data: QByteArrayView(buf, len), format); |
3798 | } |
3799 | |
3800 | /*! |
3801 | \fn bool QImage::loadFromData(const QByteArray &data, const char *format) |
3802 | |
3803 | \overload |
3804 | |
3805 | Loads an image from the given QByteArray \a data. |
3806 | */ |
3807 | |
3808 | /*! |
3809 | \since 6.2 |
3810 | |
3811 | Constructs an image from the given QByteArrayView \a data. The loader attempts to read the image |
3812 | using the specified \a format. If \a format is not specified (which is the default), the loader |
3813 | probes the data for a header to guess the file format. |
3814 | |
3815 | If \a format is specified, it must be one of the values returned by |
3816 | QImageReader::supportedImageFormats(). |
3817 | |
3818 | If the loading of the image fails, the image returned will be a null image. |
3819 | |
3820 | \sa load(), save(), {QImage#Reading and Writing Image Files}{Reading and Writing Image Files} |
3821 | */ |
3822 | |
3823 | QImage QImage::fromData(QByteArrayView data, const char *format) |
3824 | { |
3825 | QByteArray a = QByteArray::fromRawData(data: data.constData(), size: data.size()); |
3826 | QBuffer b; |
3827 | b.setData(a); |
3828 | b.open(openMode: QIODevice::ReadOnly); |
3829 | return QImageReader(&b, format).read(); |
3830 | } |
3831 | |
3832 | /*! |
3833 | \fn QImage QImage::fromData(const uchar *data, int size, const char *format) |
3834 | |
3835 | \overload |
3836 | |
3837 | Constructs a QImage from the first \a size bytes of the given binary \a data. |
3838 | */ |
3839 | |
3840 | QImage QImage::fromData(const uchar *data, int size, const char *format) |
3841 | { |
3842 | return fromData(data: QByteArrayView(data, size), format); |
3843 | } |
3844 | |
3845 | /*! |
3846 | \fn QImage QImage::fromData(const QByteArray &data, const char *format) |
3847 | |
3848 | \overload |
3849 | |
3850 | Constructs a QImage from the given QByteArray \a data. |
3851 | |
3852 | */ |
3853 | |
3854 | /*! |
3855 | Saves the image to the file with the given \a fileName, using the |
3856 | given image file \a format and \a quality factor. If \a format is |
3857 | \nullptr, QImage will attempt to guess the format by looking at |
3858 | \a fileName's suffix. |
3859 | |
3860 | The \a quality factor must be in the range 0 to 100 or -1. Specify |
3861 | 0 to obtain small compressed files, 100 for large uncompressed |
3862 | files, and -1 (the default) to use the default settings. |
3863 | |
3864 | Returns \c true if the image was successfully saved; otherwise |
3865 | returns \c false. |
3866 | |
3867 | \sa {QImage#Reading and Writing Image Files}{Reading and Writing |
3868 | Image Files} |
3869 | */ |
3870 | bool QImage::save(const QString &fileName, const char *format, int quality) const |
3871 | { |
3872 | if (isNull()) |
3873 | return false; |
3874 | QImageWriter writer(fileName, format); |
3875 | return d->doImageIO(image: this, io: &writer, quality); |
3876 | } |
3877 | |
3878 | /*! |
3879 | \overload |
3880 | |
3881 | This function writes a QImage to the given \a device. |
3882 | |
3883 | This can, for example, be used to save an image directly into a |
3884 | QByteArray: |
3885 | |
3886 | \snippet image/image.cpp 0 |
3887 | */ |
3888 | |
3889 | bool QImage::save(QIODevice* device, const char* format, int quality) const |
3890 | { |
3891 | if (isNull()) |
3892 | return false; // nothing to save |
3893 | QImageWriter writer(device, format); |
3894 | return d->doImageIO(image: this, io: &writer, quality); |
3895 | } |
3896 | |
3897 | /* \internal |
3898 | */ |
3899 | |
3900 | bool QImageData::doImageIO(const QImage *image, QImageWriter *writer, int quality) const |
3901 | { |
3902 | if (quality > 100 || quality < -1) |
3903 | qWarning(msg: "QImage::save: Quality out of range [-1, 100]" ); |
3904 | if (quality >= 0) |
3905 | writer->setQuality(qMin(a: quality,b: 100)); |
3906 | const bool result = writer->write(image: *image); |
3907 | #ifdef QT_DEBUG |
3908 | if (!result) |
3909 | qWarning(msg: "QImage::save: failed to write image - %s" , qPrintable(writer->errorString())); |
3910 | #endif |
3911 | return result; |
3912 | } |
3913 | |
3914 | /***************************************************************************** |
3915 | QImage stream functions |
3916 | *****************************************************************************/ |
3917 | #if !defined(QT_NO_DATASTREAM) |
3918 | /*! |
3919 | \fn QDataStream &operator<<(QDataStream &stream, const QImage &image) |
3920 | \relates QImage |
3921 | |
3922 | Writes the given \a image to the given \a stream as a PNG image, |
3923 | or as a BMP image if the stream's version is 1. Note that writing |
3924 | the stream to a file will not produce a valid image file. |
3925 | |
3926 | \sa QImage::save(), {Serializing Qt Data Types} |
3927 | */ |
3928 | |
3929 | QDataStream &operator<<(QDataStream &s, const QImage &image) |
3930 | { |
3931 | if (s.version() >= 5) { |
3932 | if (image.isNull()) { |
3933 | s << (qint32) 0; // null image marker |
3934 | return s; |
3935 | } else { |
3936 | s << (qint32) 1; |
3937 | // continue ... |
3938 | } |
3939 | } |
3940 | QImageWriter writer(s.device(), s.version() == 1 ? "bmp" : "png" ); |
3941 | writer.write(image); |
3942 | return s; |
3943 | } |
3944 | |
3945 | /*! |
3946 | \fn QDataStream &operator>>(QDataStream &stream, QImage &image) |
3947 | \relates QImage |
3948 | |
3949 | Reads an image from the given \a stream and stores it in the given |
3950 | \a image. |
3951 | |
3952 | \sa QImage::load(), {Serializing Qt Data Types} |
3953 | */ |
3954 | |
3955 | QDataStream &operator>>(QDataStream &s, QImage &image) |
3956 | { |
3957 | if (s.version() >= 5) { |
3958 | qint32 nullMarker; |
3959 | s >> nullMarker; |
3960 | if (!nullMarker) { |
3961 | image = QImage(); // null image |
3962 | return s; |
3963 | } |
3964 | } |
3965 | image = QImageReader(s.device(), s.version() == 1 ? "bmp" : "png" ).read(); |
3966 | if (image.isNull() && s.version() >= 5) |
3967 | s.setStatus(QDataStream::ReadPastEnd); |
3968 | return s; |
3969 | } |
3970 | #endif // QT_NO_DATASTREAM |
3971 | |
3972 | |
3973 | |
3974 | /*! |
3975 | \fn bool QImage::operator==(const QImage & image) const |
3976 | |
3977 | Returns \c true if this image and the given \a image have the same |
3978 | contents; otherwise returns \c false. |
3979 | |
3980 | The comparison can be slow, unless there is some obvious |
3981 | difference (e.g. different size or format), in which case the |
3982 | function will return quickly. |
3983 | |
3984 | \sa operator=() |
3985 | */ |
3986 | |
3987 | bool QImage::operator==(const QImage & i) const |
3988 | { |
3989 | // same object, or shared? |
3990 | if (i.d == d) |
3991 | return true; |
3992 | if (!i.d || !d) |
3993 | return false; |
3994 | |
3995 | // obviously different stuff? |
3996 | if (i.d->height != d->height || i.d->width != d->width || i.d->format != d->format || i.d->colorSpace != d->colorSpace) |
3997 | return false; |
3998 | |
3999 | if (d->format != Format_RGB32) { |
4000 | if (d->format >= Format_ARGB32) { // all bits defined |
4001 | const int n = d->width * d->depth / 8; |
4002 | if (n == d->bytes_per_line && n == i.d->bytes_per_line) { |
4003 | if (memcmp(s1: bits(), s2: i.bits(), n: d->nbytes)) |
4004 | return false; |
4005 | } else { |
4006 | for (int y = 0; y < d->height; ++y) { |
4007 | if (memcmp(s1: scanLine(i: y), s2: i.scanLine(i: y), n: n)) |
4008 | return false; |
4009 | } |
4010 | } |
4011 | } else { |
4012 | const int w = width(); |
4013 | const int h = height(); |
4014 | const QList<QRgb> &colortable = d->colortable; |
4015 | const QList<QRgb> &icolortable = i.d->colortable; |
4016 | for (int y=0; y<h; ++y) { |
4017 | for (int x=0; x<w; ++x) { |
4018 | if (colortable[pixelIndex(x, y)] != icolortable[i.pixelIndex(x, y)]) |
4019 | return false; |
4020 | } |
4021 | } |
4022 | } |
4023 | } else { |
4024 | //alpha channel undefined, so we must mask it out |
4025 | for(int l = 0; l < d->height; l++) { |
4026 | int w = d->width; |
4027 | const uint *p1 = reinterpret_cast<const uint*>(scanLine(i: l)); |
4028 | const uint *p2 = reinterpret_cast<const uint*>(i.scanLine(i: l)); |
4029 | while (w--) { |
4030 | if ((*p1++ & 0x00ffffff) != (*p2++ & 0x00ffffff)) |
4031 | return false; |
4032 | } |
4033 | } |
4034 | } |
4035 | return true; |
4036 | } |
4037 | |
4038 | |
4039 | /*! |
4040 | \fn bool QImage::operator!=(const QImage & image) const |
4041 | |
4042 | Returns \c true if this image and the given \a image have different |
4043 | contents; otherwise returns \c false. |
4044 | |
4045 | The comparison can be slow, unless there is some obvious |
4046 | difference, such as different widths, in which case the function |
4047 | will return quickly. |
4048 | |
4049 | \sa operator=() |
4050 | */ |
4051 | |
4052 | bool QImage::operator!=(const QImage & i) const |
4053 | { |
4054 | return !(*this == i); |
4055 | } |
4056 | |
4057 | |
4058 | |
4059 | |
4060 | /*! |
4061 | Returns the number of pixels that fit horizontally in a physical |
4062 | meter. Together with dotsPerMeterY(), this number defines the |
4063 | intended scale and aspect ratio of the image. |
4064 | |
4065 | \sa setDotsPerMeterX(), {QImage#Image Information}{Image |
4066 | Information} |
4067 | */ |
4068 | int QImage::dotsPerMeterX() const |
4069 | { |
4070 | return d ? qRound(d: d->dpmx) : 0; |
4071 | } |
4072 | |
4073 | /*! |
4074 | Returns the number of pixels that fit vertically in a physical |
4075 | meter. Together with dotsPerMeterX(), this number defines the |
4076 | intended scale and aspect ratio of the image. |
4077 | |
4078 | \sa setDotsPerMeterY(), {QImage#Image Information}{Image |
4079 | Information} |
4080 | */ |
4081 | int QImage::dotsPerMeterY() const |
4082 | { |
4083 | return d ? qRound(d: d->dpmy) : 0; |
4084 | } |
4085 | |
4086 | /*! |
4087 | Sets the number of pixels that fit horizontally in a physical |
4088 | meter, to \a x. |
4089 | |
4090 | Together with dotsPerMeterY(), this number defines the intended |
4091 | scale and aspect ratio of the image, and determines the scale |
4092 | at which QPainter will draw graphics on the image. It does not |
4093 | change the scale or aspect ratio of the image when it is rendered |
4094 | on other paint devices. |
4095 | |
4096 | \sa dotsPerMeterX(), {QImage#Image Information}{Image Information} |
4097 | */ |
4098 | void QImage::setDotsPerMeterX(int x) |
4099 | { |
4100 | if (!d || !x || d->dpmx == x) |
4101 | return; |
4102 | detachMetadata(); |
4103 | |
4104 | if (d) |
4105 | d->dpmx = x; |
4106 | } |
4107 | |
4108 | /*! |
4109 | Sets the number of pixels that fit vertically in a physical meter, |
4110 | to \a y. |
4111 | |
4112 | Together with dotsPerMeterX(), this number defines the intended |
4113 | scale and aspect ratio of the image, and determines the scale |
4114 | at which QPainter will draw graphics on the image. It does not |
4115 | change the scale or aspect ratio of the image when it is rendered |
4116 | on other paint devices. |
4117 | |
4118 | \sa dotsPerMeterY(), {QImage#Image Information}{Image Information} |
4119 | */ |
4120 | void QImage::setDotsPerMeterY(int y) |
4121 | { |
4122 | if (!d || !y || d->dpmy == y) |
4123 | return; |
4124 | detachMetadata(); |
4125 | |
4126 | if (d) |
4127 | d->dpmy = y; |
4128 | } |
4129 | |
4130 | /*! |
4131 | \fn QPoint QImage::offset() const |
4132 | |
4133 | Returns the number of pixels by which the image is intended to be |
4134 | offset by when positioning relative to other images. |
4135 | |
4136 | \sa setOffset(), {QImage#Image Information}{Image Information} |
4137 | */ |
4138 | QPoint QImage::offset() const |
4139 | { |
4140 | return d ? d->offset : QPoint(); |
4141 | } |
4142 | |
4143 | |
4144 | /*! |
4145 | \fn void QImage::setOffset(const QPoint& offset) |
4146 | |
4147 | Sets the number of pixels by which the image is intended to be |
4148 | offset by when positioning relative to other images, to \a offset. |
4149 | |
4150 | \sa offset(), {QImage#Image Information}{Image Information} |
4151 | */ |
4152 | void QImage::setOffset(const QPoint& p) |
4153 | { |
4154 | if (!d || d->offset == p) |
4155 | return; |
4156 | detachMetadata(); |
4157 | |
4158 | if (d) |
4159 | d->offset = p; |
4160 | } |
4161 | |
4162 | /*! |
4163 | Returns the text keys for this image. |
4164 | |
4165 | You can use these keys with text() to list the image text for a |
4166 | certain key. |
4167 | |
4168 | \sa text() |
4169 | */ |
4170 | QStringList QImage::textKeys() const |
4171 | { |
4172 | return d ? QStringList(d->text.keys()) : QStringList(); |
4173 | } |
4174 | |
4175 | /*! |
4176 | Returns the image text associated with the given \a key. If the |
4177 | specified \a key is an empty string, the whole image text is |
4178 | returned, with each key-text pair separated by a newline. |
4179 | |
4180 | \sa setText(), textKeys() |
4181 | */ |
4182 | QString QImage::text(const QString &key) const |
4183 | { |
4184 | if (!d) |
4185 | return QString(); |
4186 | |
4187 | if (!key.isEmpty()) |
4188 | return d->text.value(key); |
4189 | |
4190 | QString tmp; |
4191 | for (auto it = d->text.begin(), end = d->text.end(); it != end; ++it) |
4192 | tmp += it.key() + ": "_L1 + it.value().simplified() + "\n\n"_L1 ; |
4193 | if (!tmp.isEmpty()) |
4194 | tmp.chop(n: 2); // remove final \n\n |
4195 | return tmp; |
4196 | } |
4197 | |
4198 | /*! |
4199 | \fn void QImage::setText(const QString &key, const QString &text) |
4200 | |
4201 | Sets the image text to the given \a text and associate it with the |
4202 | given \a key. |
4203 | |
4204 | If you just want to store a single text block (i.e., a "comment" |
4205 | or just a description), you can either pass an empty key, or use a |
4206 | generic key like "Description". |
4207 | |
4208 | The image text is embedded into the image data when you |
4209 | call save() or QImageWriter::write(). |
4210 | |
4211 | Not all image formats support embedded text. You can find out |
4212 | if a specific image or format supports embedding text |
4213 | by using QImageWriter::supportsOption(). We give an example: |
4214 | |
4215 | \snippet image/supportedformat.cpp 0 |
4216 | |
4217 | You can use QImageWriter::supportedImageFormats() to find out |
4218 | which image formats are available to you. |
4219 | |
4220 | \sa text(), textKeys() |
4221 | */ |
4222 | void QImage::setText(const QString &key, const QString &value) |
4223 | { |
4224 | if (!d) |
4225 | return; |
4226 | detachMetadata(); |
4227 | |
4228 | if (d) |
4229 | d->text.insert(key, value); |
4230 | } |
4231 | |
4232 | /*! |
4233 | \internal |
4234 | |
4235 | Used by QPainter to retrieve a paint engine for the image. |
4236 | */ |
4237 | QPaintEngine *QImage::paintEngine() const |
4238 | { |
4239 | if (!d) |
4240 | return nullptr; |
4241 | |
4242 | if (!d->paintEngine) { |
4243 | QPaintDevice *paintDevice = const_cast<QImage *>(this); |
4244 | QPlatformIntegration *platformIntegration = QGuiApplicationPrivate::platformIntegration(); |
4245 | if (platformIntegration) |
4246 | d->paintEngine = platformIntegration->createImagePaintEngine(paintDevice); |
4247 | if (!d->paintEngine) |
4248 | d->paintEngine = new QRasterPaintEngine(paintDevice); |
4249 | } |
4250 | |
4251 | return d->paintEngine; |
4252 | } |
4253 | |
4254 | |
4255 | /*! |
4256 | \internal |
4257 | |
4258 | Returns the size for the specified \a metric on the device. |
4259 | */ |
4260 | int QImage::metric(PaintDeviceMetric metric) const |
4261 | { |
4262 | if (!d) |
4263 | return 0; |
4264 | |
4265 | switch (metric) { |
4266 | case PdmWidth: |
4267 | return d->width; |
4268 | |
4269 | case PdmHeight: |
4270 | return d->height; |
4271 | |
4272 | case PdmWidthMM: |
4273 | return qRound(d: d->width * 1000 / d->dpmx); |
4274 | |
4275 | case PdmHeightMM: |
4276 | return qRound(d: d->height * 1000 / d->dpmy); |
4277 | |
4278 | case PdmNumColors: |
4279 | return d->colortable.size(); |
4280 | |
4281 | case PdmDepth: |
4282 | return d->depth; |
4283 | |
4284 | case PdmDpiX: |
4285 | return qRound(d: d->dpmx * 0.0254); |
4286 | break; |
4287 | |
4288 | case PdmDpiY: |
4289 | return qRound(d: d->dpmy * 0.0254); |
4290 | break; |
4291 | |
4292 | case PdmPhysicalDpiX: |
4293 | return qRound(d: d->dpmx * 0.0254); |
4294 | break; |
4295 | |
4296 | case PdmPhysicalDpiY: |
4297 | return qRound(d: d->dpmy * 0.0254); |
4298 | break; |
4299 | |
4300 | case PdmDevicePixelRatio: |
4301 | return d->devicePixelRatio; |
4302 | break; |
4303 | |
4304 | case PdmDevicePixelRatioScaled: |
4305 | return d->devicePixelRatio * QPaintDevice::devicePixelRatioFScale(); |
4306 | break; |
4307 | |
4308 | default: |
4309 | qWarning(msg: "QImage::metric(): Unhandled metric type %d" , metric); |
4310 | break; |
4311 | } |
4312 | return 0; |
4313 | } |
4314 | |
4315 | |
4316 | |
4317 | /***************************************************************************** |
4318 | QPixmap (and QImage) helper functions |
4319 | *****************************************************************************/ |
4320 | /* |
4321 | This internal function contains the common (i.e. platform independent) code |
4322 | to do a transformation of pixel data. It is used by QPixmap::transform() and by |
4323 | QImage::transform(). |
4324 | |
4325 | \a trueMat is the true transformation matrix (see QPixmap::trueMatrix()) and |
4326 | \a xoffset is an offset to the matrix. |
4327 | |
4328 | \a msbfirst specifies for 1bpp images, if the MSB or LSB comes first and \a |
4329 | depth specifies the colordepth of the data. |
4330 | |
4331 | \a dptr is a pointer to the destination data, \a dbpl specifies the bits per |
4332 | line for the destination data, \a p_inc is the offset that we advance for |
4333 | every scanline and \a dHeight is the height of the destination image. |
4334 | |
4335 | \a sprt is the pointer to the source data, \a sbpl specifies the bits per |
4336 | line of the source data, \a sWidth and \a sHeight are the width and height of |
4337 | the source data. |
4338 | */ |
4339 | |
4340 | #undef IWX_MSB |
4341 | #define IWX_MSB(b) if (trigx < maxws && trigy < maxhs) { \ |
4342 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4343 | (1 << (7-((trigx>>12)&7)))) \ |
4344 | *dptr |= b; \ |
4345 | } \ |
4346 | trigx += m11; \ |
4347 | trigy += m12; |
4348 | // END OF MACRO |
4349 | #undef IWX_LSB |
4350 | #define IWX_LSB(b) if (trigx < maxws && trigy < maxhs) { \ |
4351 | if (*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4352 | (1 << ((trigx>>12)&7))) \ |
4353 | *dptr |= b; \ |
4354 | } \ |
4355 | trigx += m11; \ |
4356 | trigy += m12; |
4357 | // END OF MACRO |
4358 | #undef IWX_PIX |
4359 | #define IWX_PIX(b) if (trigx < maxws && trigy < maxhs) { \ |
4360 | if ((*(sptr+sbpl*(trigy>>12)+(trigx>>15)) & \ |
4361 | (1 << (7-((trigx>>12)&7)))) == 0) \ |
4362 | *dptr &= ~b; \ |
4363 | } \ |
4364 | trigx += m11; \ |
4365 | trigy += m12; |
4366 | // END OF MACRO |
4367 | bool qt_xForm_helper(const QTransform &trueMat, int xoffset, int type, int depth, |
4368 | uchar *dptr, qsizetype dbpl, int p_inc, int dHeight, |
4369 | const uchar *sptr, qsizetype sbpl, int sWidth, int sHeight) |
4370 | { |
4371 | int m11 = int(trueMat.m11()*4096.0); |
4372 | int m12 = int(trueMat.m12()*4096.0); |
4373 | int m21 = int(trueMat.m21()*4096.0); |
4374 | int m22 = int(trueMat.m22()*4096.0); |
4375 | int dx = qRound(d: trueMat.dx()*4096.0); |
4376 | int dy = qRound(d: trueMat.dy()*4096.0); |
4377 | |
4378 | int m21ydx = dx + (xoffset<<16) + (m11 + m21) / 2; |
4379 | int m22ydy = dy + (m12 + m22) / 2; |
4380 | uint trigx; |
4381 | uint trigy; |
4382 | uint maxws = sWidth<<12; |
4383 | uint maxhs = sHeight<<12; |
4384 | |
4385 | for (int y=0; y<dHeight; y++) { // for each target scanline |
4386 | trigx = m21ydx; |
4387 | trigy = m22ydy; |
4388 | uchar *maxp = dptr + dbpl; |
4389 | if (depth != 1) { |
4390 | switch (depth) { |
4391 | case 8: // 8 bpp transform |
4392 | while (dptr < maxp) { |
4393 | if (trigx < maxws && trigy < maxhs) |
4394 | *dptr = *(sptr+sbpl*(trigy>>12)+(trigx>>12)); |
4395 | trigx += m11; |
4396 | trigy += m12; |
4397 | dptr++; |
4398 | } |
4399 | break; |
4400 | |
4401 | case 16: // 16 bpp transform |
4402 | while (dptr < maxp) { |
4403 | if (trigx < maxws && trigy < maxhs) |
4404 | *((ushort*)dptr) = *((const ushort *)(sptr+sbpl*(trigy>>12) + |
4405 | ((trigx>>12)<<1))); |
4406 | trigx += m11; |
4407 | trigy += m12; |
4408 | dptr++; |
4409 | dptr++; |
4410 | } |
4411 | break; |
4412 | |
4413 | case 24: // 24 bpp transform |
4414 | while (dptr < maxp) { |
4415 | if (trigx < maxws && trigy < maxhs) { |
4416 | const uchar *p2 = sptr+sbpl*(trigy>>12) + ((trigx>>12)*3); |
4417 | dptr[0] = p2[0]; |
4418 | dptr[1] = p2[1]; |
4419 | dptr[2] = p2[2]; |
4420 | } |
4421 | trigx += m11; |
4422 | trigy += m12; |
4423 | dptr += 3; |
4424 | } |
4425 | break; |
4426 | |
4427 | case 32: // 32 bpp transform |
4428 | while (dptr < maxp) { |
4429 | if (trigx < maxws && trigy < maxhs) |
4430 | *((uint*)dptr) = *((const uint *)(sptr+sbpl*(trigy>>12) + |
4431 | ((trigx>>12)<<2))); |
4432 | trigx += m11; |
4433 | trigy += m12; |
4434 | dptr += 4; |
4435 | } |
4436 | break; |
4437 | |
4438 | default: { |
4439 | return false; |
4440 | } |
4441 | } |
4442 | } else { |
4443 | switch (type) { |
4444 | case QT_XFORM_TYPE_MSBFIRST: |
4445 | while (dptr < maxp) { |
4446 | IWX_MSB(128); |
4447 | IWX_MSB(64); |
4448 | IWX_MSB(32); |
4449 | IWX_MSB(16); |
4450 | IWX_MSB(8); |
4451 | IWX_MSB(4); |
4452 | IWX_MSB(2); |
4453 | IWX_MSB(1); |
4454 | dptr++; |
4455 | } |
4456 | break; |
4457 | case QT_XFORM_TYPE_LSBFIRST: |
4458 | while (dptr < maxp) { |
4459 | IWX_LSB(1); |
4460 | IWX_LSB(2); |
4461 | IWX_LSB(4); |
4462 | IWX_LSB(8); |
4463 | IWX_LSB(16); |
4464 | IWX_LSB(32); |
4465 | IWX_LSB(64); |
4466 | IWX_LSB(128); |
4467 | dptr++; |
4468 | } |
4469 | break; |
4470 | } |
4471 | } |
4472 | m21ydx += m21; |
4473 | m22ydy += m22; |
4474 | dptr += p_inc; |
4475 | } |
4476 | return true; |
4477 | } |
4478 | #undef IWX_MSB |
4479 | #undef IWX_LSB |
4480 | #undef IWX_PIX |
4481 | |
4482 | /*! |
4483 | Returns a number that identifies the contents of this QImage |
4484 | object. Distinct QImage objects can only have the same key if they |
4485 | refer to the same contents. |
4486 | |
4487 | The key will change when the image is altered. |
4488 | */ |
4489 | qint64 QImage::cacheKey() const |
4490 | { |
4491 | if (!d) |
4492 | return 0; |
4493 | else |
4494 | return (((qint64) d->ser_no) << 32) | ((qint64) d->detach_no); |
4495 | } |
4496 | |
4497 | /*! |
4498 | \internal |
4499 | |
4500 | Returns \c true if the image is detached; otherwise returns \c false. |
4501 | |
4502 | \sa detach(), {Implicit Data Sharing} |
4503 | */ |
4504 | |
4505 | bool QImage::isDetached() const |
4506 | { |
4507 | return d && d->ref.loadRelaxed() == 1; |
4508 | } |
4509 | |
4510 | |
4511 | /*! |
4512 | Sets the alpha channel of this image to the given \a alphaChannel. |
4513 | |
4514 | If \a alphaChannel is an 8 bit alpha image, the alpha values are |
4515 | used directly. Otherwise, \a alphaChannel is converted to 8 bit |
4516 | grayscale and the intensity of the pixel values is used. |
4517 | |
4518 | If the image already has an alpha channel, the existing alpha channel |
4519 | is multiplied with the new one. If the image doesn't have an alpha |
4520 | channel it will be converted to a format that does. |
4521 | |
4522 | The operation is similar to painting \a alphaChannel as an alpha image |
4523 | over this image using \c QPainter::CompositionMode_DestinationIn. |
4524 | |
4525 | \sa hasAlphaChannel(), |
4526 | {QImage#Image Transformations}{Image Transformations}, |
4527 | {QImage#Image Formats}{Image Formats} |
4528 | */ |
4529 | |
4530 | void QImage::setAlphaChannel(const QImage &alphaChannel) |
4531 | { |
4532 | if (!d || alphaChannel.isNull()) |
4533 | return; |
4534 | |
4535 | if (d->paintEngine && d->paintEngine->isActive()) { |
4536 | qWarning(msg: "QImage::setAlphaChannel: " |
4537 | "Unable to set alpha channel while image is being painted on" ); |
4538 | return; |
4539 | } |
4540 | |
4541 | const Format alphaFormat = qt_alphaVersionForPainting(format: d->format); |
4542 | if (d->format == alphaFormat) |
4543 | detach(); |
4544 | else |
4545 | convertTo(format: alphaFormat); |
4546 | |
4547 | if (isNull()) |
4548 | return; |
4549 | |
4550 | QImage sourceImage; |
4551 | if (alphaChannel.format() == QImage::Format_Alpha8 || (alphaChannel.d->depth == 8 && alphaChannel.isGrayscale())) |
4552 | sourceImage = alphaChannel; |
4553 | else |
4554 | sourceImage = alphaChannel.convertToFormat(f: QImage::Format_Grayscale8); |
4555 | if (!sourceImage.reinterpretAsFormat(format: QImage::Format_Alpha8)) |
4556 | return; |
4557 | |
4558 | QPainter painter(this); |
4559 | if (sourceImage.size() != size()) |
4560 | painter.setRenderHint(hint: QPainter::SmoothPixmapTransform); |
4561 | painter.setCompositionMode(QPainter::CompositionMode_DestinationIn); |
4562 | painter.drawImage(r: rect(), image: sourceImage); |
4563 | } |
4564 | |
4565 | /*! |
4566 | Returns \c true if the image has a format that respects the alpha |
4567 | channel, otherwise returns \c false. |
4568 | |
4569 | \sa {QImage#Image Information}{Image Information} |
4570 | */ |
4571 | bool QImage::hasAlphaChannel() const |
4572 | { |
4573 | if (!d) |
4574 | return false; |
4575 | const QPixelFormat format = pixelFormat(); |
4576 | if (format.alphaUsage() == QPixelFormat::UsesAlpha) |
4577 | return true; |
4578 | if (format.colorModel() == QPixelFormat::Indexed) |
4579 | return d->has_alpha_clut; |
4580 | return false; |
4581 | } |
4582 | |
4583 | /*! |
4584 | \since 4.7 |
4585 | Returns the number of bit planes in the image. |
4586 | |
4587 | The number of bit planes is the number of bits of color and |
4588 | transparency information for each pixel. This is different from |
4589 | (i.e. smaller than) the depth when the image format contains |
4590 | unused bits. |
4591 | |
4592 | \sa depth(), format(), {QImage#Image Formats}{Image Formats} |
4593 | */ |
4594 | int QImage::bitPlaneCount() const |
4595 | { |
4596 | if (!d) |
4597 | return 0; |
4598 | int bpc = 0; |
4599 | switch (d->format) { |
4600 | case QImage::Format_Invalid: |
4601 | break; |
4602 | case QImage::Format_BGR30: |
4603 | case QImage::Format_RGB30: |
4604 | bpc = 30; |
4605 | break; |
4606 | case QImage::Format_RGB32: |
4607 | case QImage::Format_RGBX8888: |
4608 | bpc = 24; |
4609 | break; |
4610 | case QImage::Format_RGB666: |
4611 | bpc = 18; |
4612 | break; |
4613 | case QImage::Format_RGB555: |
4614 | bpc = 15; |
4615 | break; |
4616 | case QImage::Format_ARGB8555_Premultiplied: |
4617 | bpc = 23; |
4618 | break; |
4619 | case QImage::Format_RGB444: |
4620 | bpc = 12; |
4621 | break; |
4622 | case QImage::Format_RGBX64: |
4623 | case QImage::Format_RGBX16FPx4: |
4624 | bpc = 48; |
4625 | break; |
4626 | case QImage::Format_RGBX32FPx4: |
4627 | bpc = 96; |
4628 | break; |
4629 | default: |
4630 | bpc = qt_depthForFormat(format: d->format); |
4631 | break; |
4632 | } |
4633 | return bpc; |
4634 | } |
4635 | |
4636 | /*! |
4637 | \internal |
4638 | Returns a smoothly scaled copy of the image. The returned image has a size |
4639 | of width \a w by height \a h pixels. |
4640 | |
4641 | The function operates internally on \c Format_RGB32, \c Format_ARGB32_Premultiplied, |
4642 | \c Format_RGBX8888, \c Format_RGBA8888_Premultiplied, \c Format_RGBX64, |
4643 | or \c Format_RGBA64_Premultiplied and will convert to those formats |
4644 | if necessary. To avoid unnecessary conversion the result is returned in the format |
4645 | internally used, and not in the original format. |
4646 | */ |
4647 | QImage QImage::smoothScaled(int w, int h) const |
4648 | { |
4649 | QImage src = *this; |
4650 | switch (src.format()) { |
4651 | case QImage::Format_RGB32: |
4652 | case QImage::Format_ARGB32_Premultiplied: |
4653 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
4654 | case QImage::Format_RGBX8888: |
4655 | #endif |
4656 | case QImage::Format_RGBA8888_Premultiplied: |
4657 | #if QT_CONFIG(raster_64bit) |
4658 | case QImage::Format_RGBX64: |
4659 | case QImage::Format_RGBA64_Premultiplied: |
4660 | break; |
4661 | case QImage::Format_RGBA64: |
4662 | case QImage::Format_Grayscale16: |
4663 | src.convertTo(format: QImage::Format_RGBA64_Premultiplied); |
4664 | break; |
4665 | #endif |
4666 | #if QT_CONFIG(raster_fp) |
4667 | case QImage::Format_RGBX32FPx4: |
4668 | case QImage::Format_RGBA32FPx4_Premultiplied: |
4669 | break; |
4670 | case QImage::Format_RGBX16FPx4: |
4671 | src.convertTo(format: QImage::Format_RGBX32FPx4); |
4672 | break; |
4673 | case QImage::Format_RGBA16FPx4: |
4674 | case QImage::Format_RGBA16FPx4_Premultiplied: |
4675 | case QImage::Format_RGBA32FPx4: |
4676 | src.convertTo(format: QImage::Format_RGBA32FPx4_Premultiplied); |
4677 | break; |
4678 | #endif |
4679 | default: |
4680 | if (src.hasAlphaChannel()) |
4681 | src.convertTo(format: QImage::Format_ARGB32_Premultiplied); |
4682 | else |
4683 | src.convertTo(format: QImage::Format_RGB32); |
4684 | } |
4685 | src = qSmoothScaleImage(img: src, w, h); |
4686 | if (!src.isNull()) |
4687 | copyMetadata(dst: src.d, src: d); |
4688 | return src; |
4689 | } |
4690 | |
4691 | static QImage rotated90(const QImage &image) |
4692 | { |
4693 | QImage out(image.height(), image.width(), image.format()); |
4694 | if (out.isNull()) |
4695 | return out; |
4696 | copyMetadata(dst: &out, src: image); |
4697 | if (image.colorCount() > 0) |
4698 | out.setColorTable(image.colorTable()); |
4699 | int w = image.width(); |
4700 | int h = image.height(); |
4701 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][2]; |
4702 | if (memrotate) { |
4703 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
4704 | } else { |
4705 | for (int y=0; y<h; ++y) { |
4706 | if (image.colorCount()) |
4707 | for (int x=0; x<w; ++x) |
4708 | out.setPixel(x: h-y-1, y: x, index_or_rgb: image.pixelIndex(x, y)); |
4709 | else |
4710 | for (int x=0; x<w; ++x) |
4711 | out.setPixel(x: h-y-1, y: x, index_or_rgb: image.pixel(x, y)); |
4712 | } |
4713 | } |
4714 | return out; |
4715 | } |
4716 | |
4717 | static QImage rotated180(const QImage &image) |
4718 | { |
4719 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][1]; |
4720 | if (!memrotate) |
4721 | return image.mirrored(horizontally: true, vertically: true); |
4722 | |
4723 | QImage out(image.width(), image.height(), image.format()); |
4724 | if (out.isNull()) |
4725 | return out; |
4726 | copyMetadata(dst: &out, src: image); |
4727 | if (image.colorCount() > 0) |
4728 | out.setColorTable(image.colorTable()); |
4729 | int w = image.width(); |
4730 | int h = image.height(); |
4731 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
4732 | return out; |
4733 | } |
4734 | |
4735 | static QImage rotated270(const QImage &image) |
4736 | { |
4737 | QImage out(image.height(), image.width(), image.format()); |
4738 | if (out.isNull()) |
4739 | return out; |
4740 | copyMetadata(dst: &out, src: image); |
4741 | if (image.colorCount() > 0) |
4742 | out.setColorTable(image.colorTable()); |
4743 | int w = image.width(); |
4744 | int h = image.height(); |
4745 | const MemRotateFunc memrotate = qMemRotateFunctions[qPixelLayouts[image.format()].bpp][0]; |
4746 | if (memrotate) { |
4747 | memrotate(image.constBits(), w, h, image.bytesPerLine(), out.bits(), out.bytesPerLine()); |
4748 | } else { |
4749 | for (int y=0; y<h; ++y) { |
4750 | if (image.colorCount()) |
4751 | for (int x=0; x<w; ++x) |
4752 | out.setPixel(x: y, y: w-x-1, index_or_rgb: image.pixelIndex(x, y)); |
4753 | else |
4754 | for (int x=0; x<w; ++x) |
4755 | out.setPixel(x: y, y: w-x-1, index_or_rgb: image.pixel(x, y)); |
4756 | } |
4757 | } |
4758 | return out; |
4759 | } |
4760 | |
4761 | /*! |
4762 | Returns a copy of the image that is transformed using the given |
4763 | transformation \a matrix and transformation \a mode. |
4764 | |
4765 | The returned image will normally have the same {Image Formats}{format} as |
4766 | the original image. However, a complex transformation may result in an |
4767 | image where not all pixels are covered by the transformed pixels of the |
4768 | original image. In such cases, those background pixels will be assigned a |
4769 | transparent color value, and the transformed image will be given a format |
4770 | with an alpha channel, even if the original image did not have that. |
4771 | |
4772 | The transformation \a matrix is internally adjusted to compensate |
4773 | for unwanted translation; i.e. the image produced is the smallest |
4774 | image that contains all the transformed points of the original |
4775 | image. Use the trueMatrix() function to retrieve the actual matrix |
4776 | used for transforming an image. |
4777 | |
4778 | Unlike the other overload, this function can be used to perform perspective |
4779 | transformations on images. |
4780 | |
4781 | \sa trueMatrix(), {QImage#Image Transformations}{Image |
4782 | Transformations} |
4783 | */ |
4784 | |
4785 | QImage Q_TRACE_INSTRUMENT(qtgui) QImage::transformed(const QTransform &matrix, Qt::TransformationMode mode ) const |
4786 | { |
4787 | if (!d) |
4788 | return QImage(); |
4789 | |
4790 | Q_TRACE_PARAM_REPLACE(const QTransform &, double[9]); |
4791 | Q_TRACE_SCOPE(QImage_transformed, QList<double>({matrix.m11(), matrix.m12(), matrix.m13(), |
4792 | matrix.m21(), matrix.m22(), matrix.m23(), |
4793 | matrix.m31(), matrix.m32(), matrix.m33()}).data(), mode); |
4794 | |
4795 | // source image data |
4796 | const int ws = width(); |
4797 | const int hs = height(); |
4798 | |
4799 | // target image data |
4800 | int wd; |
4801 | int hd; |
4802 | |
4803 | // compute size of target image |
4804 | QTransform mat = trueMatrix(matrix, w: ws, h: hs); |
4805 | bool complex_xform = false; |
4806 | bool scale_xform = false; |
4807 | bool nonpaintable_scale_xform = false; |
4808 | if (mat.type() <= QTransform::TxScale) { |
4809 | if (mat.type() == QTransform::TxNone) // identity matrix |
4810 | return *this; |
4811 | else if (mat.m11() == -1. && mat.m22() == -1.) |
4812 | return rotated180(image: *this); |
4813 | |
4814 | hd = qRound(d: qAbs(t: mat.m22()) * hs); |
4815 | wd = qRound(d: qAbs(t: mat.m11()) * ws); |
4816 | scale_xform = true; |
4817 | // The paint-based scaling is only bilinear, and has problems |
4818 | // with scaling smoothly more than 2x down. |
4819 | if (hd * 2 < hs || wd * 2 < ws) |
4820 | nonpaintable_scale_xform = true; |
4821 | } else { |
4822 | if (mat.type() <= QTransform::TxRotate && mat.m11() == 0 && mat.m22() == 0) { |
4823 | if (mat.m12() == 1. && mat.m21() == -1.) |
4824 | return rotated90(image: *this); |
4825 | else if (mat.m12() == -1. && mat.m21() == 1.) |
4826 | return rotated270(image: *this); |
4827 | } |
4828 | |
4829 | QPolygonF a(QRectF(0, 0, ws, hs)); |
4830 | a = mat.map(a); |
4831 | QRect r = a.boundingRect().toAlignedRect(); |
4832 | wd = r.width(); |
4833 | hd = r.height(); |
4834 | complex_xform = true; |
4835 | } |
4836 | |
4837 | if (wd == 0 || hd == 0) |
4838 | return QImage(); |
4839 | |
4840 | if (scale_xform && mode == Qt::SmoothTransformation) { |
4841 | switch (format()) { |
4842 | case QImage::Format_RGB32: |
4843 | case QImage::Format_ARGB32_Premultiplied: |
4844 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
4845 | case QImage::Format_RGBX8888: |
4846 | #endif |
4847 | case QImage::Format_RGBA8888_Premultiplied: |
4848 | #if QT_CONFIG(raster_64bit) |
4849 | case QImage::Format_RGBX64: |
4850 | case QImage::Format_RGBA64_Premultiplied: |
4851 | #endif |
4852 | // Use smoothScaled for scaling when we can do so without conversion. |
4853 | if (mat.m11() > 0.0F && mat.m22() > 0.0F) |
4854 | return smoothScaled(w: wd, h: hd); |
4855 | break; |
4856 | default: |
4857 | break; |
4858 | } |
4859 | // Otherwise only use it when the scaling factor demands it, or the image is large enough to scale multi-threaded |
4860 | if (nonpaintable_scale_xform |
4861 | #if QT_CONFIG(thread) && !defined(Q_OS_WASM) |
4862 | || (ws * hs) >= (1<<20) |
4863 | #endif |
4864 | ) { |
4865 | if (mat.m11() < 0.0F && mat.m22() < 0.0F) { // horizontal/vertical flip |
4866 | return smoothScaled(w: wd, h: hd).mirrored(horizontally: true, vertically: true).convertToFormat(f: format()); |
4867 | } else if (mat.m11() < 0.0F) { // horizontal flip |
4868 | return smoothScaled(w: wd, h: hd).mirrored(horizontally: true, vertically: false).convertToFormat(f: format()); |
4869 | } else if (mat.m22() < 0.0F) { // vertical flip |
4870 | return smoothScaled(w: wd, h: hd).mirrored(horizontally: false, vertically: true).convertToFormat(f: format()); |
4871 | } else { // no flipping |
4872 | return smoothScaled(w: wd, h: hd).convertToFormat(f: format()); |
4873 | } |
4874 | } |
4875 | } |
4876 | |
4877 | int bpp = depth(); |
4878 | |
4879 | qsizetype sbpl = bytesPerLine(); |
4880 | const uchar *sptr = bits(); |
4881 | |
4882 | QImage::Format target_format = d->format; |
4883 | |
4884 | if (complex_xform || mode == Qt::SmoothTransformation) { |
4885 | if (d->format < QImage::Format_RGB32 || (!hasAlphaChannel() && complex_xform)) { |
4886 | target_format = qt_alphaVersion(format: d->format); |
4887 | } |
4888 | } |
4889 | |
4890 | QImage dImage(wd, hd, target_format); |
4891 | QIMAGE_SANITYCHECK_MEMORY(dImage); |
4892 | |
4893 | if (target_format == QImage::Format_MonoLSB |
4894 | || target_format == QImage::Format_Mono |
4895 | || target_format == QImage::Format_Indexed8) { |
4896 | dImage.d->colortable = d->colortable; |
4897 | dImage.d->has_alpha_clut = d->has_alpha_clut | complex_xform; |
4898 | } |
4899 | |
4900 | // initizialize the data |
4901 | if (target_format == QImage::Format_Indexed8) { |
4902 | if (dImage.d->colortable.size() < 256) { |
4903 | // colors are left in the color table, so pick that one as transparent |
4904 | dImage.d->colortable.append(t: 0x0); |
4905 | memset(s: dImage.bits(), c: dImage.d->colortable.size() - 1, n: dImage.d->nbytes); |
4906 | } else { |
4907 | memset(s: dImage.bits(), c: 0, n: dImage.d->nbytes); |
4908 | } |
4909 | } else |
4910 | memset(s: dImage.bits(), c: 0x00, n: dImage.d->nbytes); |
4911 | |
4912 | if (target_format >= QImage::Format_RGB32) { |
4913 | // Prevent QPainter from applying devicePixelRatio corrections |
4914 | const QImage sImage = (devicePixelRatio() != 1) ? QImage(constBits(), width(), height(), format()) : *this; |
4915 | |
4916 | Q_ASSERT(sImage.devicePixelRatio() == 1); |
4917 | Q_ASSERT(sImage.devicePixelRatio() == dImage.devicePixelRatio()); |
4918 | |
4919 | QPainter p(&dImage); |
4920 | if (mode == Qt::SmoothTransformation) { |
4921 | p.setRenderHint(hint: QPainter::Antialiasing); |
4922 | p.setRenderHint(hint: QPainter::SmoothPixmapTransform); |
4923 | } |
4924 | p.setTransform(transform: mat); |
4925 | p.drawImage(p: QPoint(0, 0), image: sImage); |
4926 | } else { |
4927 | bool invertible; |
4928 | mat = mat.inverted(invertible: &invertible); // invert matrix |
4929 | if (!invertible) // error, return null image |
4930 | return QImage(); |
4931 | |
4932 | // create target image (some of the code is from QImage::copy()) |
4933 | int type = format() == Format_Mono ? QT_XFORM_TYPE_MSBFIRST : QT_XFORM_TYPE_LSBFIRST; |
4934 | qsizetype dbpl = dImage.bytesPerLine(); |
4935 | qt_xForm_helper(trueMat: mat, xoffset: 0, type, depth: bpp, dptr: dImage.bits(), dbpl, p_inc: 0, dHeight: hd, sptr, sbpl, sWidth: ws, sHeight: hs); |
4936 | } |
4937 | copyMetadata(dst: dImage.d, src: d); |
4938 | |
4939 | return dImage; |
4940 | } |
4941 | |
4942 | /*! |
4943 | \fn QTransform QImage::trueMatrix(const QTransform &matrix, int width, int height) |
4944 | |
4945 | Returns the actual matrix used for transforming an image with the |
4946 | given \a width, \a height and \a matrix. |
4947 | |
4948 | When transforming an image using the transformed() function, the |
4949 | transformation matrix is internally adjusted to compensate for |
4950 | unwanted translation, i.e. transformed() returns the smallest |
4951 | image containing all transformed points of the original image. |
4952 | This function returns the modified matrix, which maps points |
4953 | correctly from the original image into the new image. |
4954 | |
4955 | Unlike the other overload, this function creates transformation |
4956 | matrices that can be used to perform perspective |
4957 | transformations on images. |
4958 | |
4959 | \sa transformed(), {QImage#Image Transformations}{Image |
4960 | Transformations} |
4961 | */ |
4962 | |
4963 | QTransform QImage::trueMatrix(const QTransform &matrix, int w, int h) |
4964 | { |
4965 | const QRectF rect(0, 0, w, h); |
4966 | const QRect mapped = matrix.mapRect(rect).toAlignedRect(); |
4967 | const QPoint delta = mapped.topLeft(); |
4968 | return matrix * QTransform().translate(dx: -delta.x(), dy: -delta.y()); |
4969 | } |
4970 | |
4971 | /*! |
4972 | \since 5.14 |
4973 | |
4974 | Sets the image color space to \a colorSpace without performing any conversions on image data. |
4975 | |
4976 | \sa colorSpace() |
4977 | */ |
4978 | void QImage::setColorSpace(const QColorSpace &colorSpace) |
4979 | { |
4980 | if (!d) |
4981 | return; |
4982 | if (d->colorSpace == colorSpace) |
4983 | return; |
4984 | detachMetadata(invalidateCache: false); |
4985 | if (d) |
4986 | d->colorSpace = colorSpace; |
4987 | } |
4988 | |
4989 | /*! |
4990 | \since 5.14 |
4991 | |
4992 | Converts the image to \a colorSpace. |
4993 | |
4994 | If the image has no valid color space, the method does nothing. |
4995 | |
4996 | \sa convertedToColorSpace(), setColorSpace() |
4997 | */ |
4998 | void QImage::convertToColorSpace(const QColorSpace &colorSpace) |
4999 | { |
5000 | if (!d) |
5001 | return; |
5002 | if (!d->colorSpace.isValid()) |
5003 | return; |
5004 | if (!colorSpace.isValid()) { |
5005 | qWarning() << "QImage::convertToColorSpace: Output colorspace is not valid" ; |
5006 | return; |
5007 | } |
5008 | if (d->colorSpace == colorSpace) |
5009 | return; |
5010 | applyColorTransform(transform: d->colorSpace.transformationToColorSpace(colorspace: colorSpace)); |
5011 | d->colorSpace = colorSpace; |
5012 | } |
5013 | |
5014 | /*! |
5015 | \since 5.14 |
5016 | |
5017 | Returns the image converted to \a colorSpace. |
5018 | |
5019 | If the image has no valid color space, a null QImage is returned. |
5020 | |
5021 | \sa convertToColorSpace() |
5022 | */ |
5023 | QImage QImage::convertedToColorSpace(const QColorSpace &colorSpace) const |
5024 | { |
5025 | if (!d || !d->colorSpace.isValid() || !colorSpace.isValid()) |
5026 | return QImage(); |
5027 | if (d->colorSpace == colorSpace) |
5028 | return *this; |
5029 | QImage image = copy(); |
5030 | image.convertToColorSpace(colorSpace); |
5031 | return image; |
5032 | } |
5033 | |
5034 | /*! |
5035 | \since 5.14 |
5036 | |
5037 | Returns the color space of the image if a color space is defined. |
5038 | */ |
5039 | QColorSpace QImage::colorSpace() const |
5040 | { |
5041 | if (!d) |
5042 | return QColorSpace(); |
5043 | return d->colorSpace; |
5044 | } |
5045 | |
5046 | /*! |
5047 | \since 5.14 |
5048 | |
5049 | Applies the color transformation \a transform to all pixels in the image. |
5050 | */ |
5051 | void QImage::applyColorTransform(const QColorTransform &transform) |
5052 | { |
5053 | if (transform.isIdentity()) |
5054 | return; |
5055 | detach(); |
5056 | if (!d) |
5057 | return; |
5058 | if (pixelFormat().colorModel() == QPixelFormat::Indexed) { |
5059 | for (int i = 0; i < d->colortable.size(); ++i) |
5060 | d->colortable[i] = transform.map(argb: d->colortable[i]); |
5061 | return; |
5062 | } |
5063 | QImage::Format oldFormat = format(); |
5064 | if (qt_fpColorPrecision(format: oldFormat)) { |
5065 | if (oldFormat != QImage::Format_RGBX32FPx4 && oldFormat != QImage::Format_RGBA32FPx4 |
5066 | && oldFormat != QImage::Format_RGBA32FPx4_Premultiplied) |
5067 | convertTo(format: QImage::Format_RGBA32FPx4); |
5068 | } else if (depth() > 32) { |
5069 | if (oldFormat != QImage::Format_RGBX64 && oldFormat != QImage::Format_RGBA64 |
5070 | && oldFormat != QImage::Format_RGBA64_Premultiplied) |
5071 | convertTo(format: QImage::Format_RGBA64); |
5072 | } else if (oldFormat != QImage::Format_ARGB32 && oldFormat != QImage::Format_RGB32 |
5073 | && oldFormat != QImage::Format_ARGB32_Premultiplied) { |
5074 | if (hasAlphaChannel()) |
5075 | convertTo(format: QImage::Format_ARGB32); |
5076 | else |
5077 | convertTo(format: QImage::Format_RGB32); |
5078 | } |
5079 | |
5080 | QColorTransformPrivate::TransformFlags flags = QColorTransformPrivate::Unpremultiplied; |
5081 | switch (format()) { |
5082 | case Format_ARGB32_Premultiplied: |
5083 | case Format_RGBA64_Premultiplied: |
5084 | case Format_RGBA32FPx4_Premultiplied: |
5085 | flags = QColorTransformPrivate::Premultiplied; |
5086 | break; |
5087 | case Format_RGB32: |
5088 | case Format_RGBX64: |
5089 | case Format_RGBX32FPx4: |
5090 | flags = QColorTransformPrivate::InputOpaque; |
5091 | break; |
5092 | case Format_ARGB32: |
5093 | case Format_RGBA64: |
5094 | case Format_RGBA32FPx4: |
5095 | break; |
5096 | default: |
5097 | Q_UNREACHABLE(); |
5098 | } |
5099 | |
5100 | std::function<void(int,int)> transformSegment; |
5101 | |
5102 | if (qt_fpColorPrecision(format: format())) { |
5103 | transformSegment = [&](int yStart, int yEnd) { |
5104 | for (int y = yStart; y < yEnd; ++y) { |
5105 | QRgbaFloat32 *scanline = reinterpret_cast<QRgbaFloat32 *>(d->data + y * d->bytes_per_line); |
5106 | QColorTransformPrivate::get(q: transform)->apply(dst: scanline, src: scanline, count: width(), flags); |
5107 | } |
5108 | }; |
5109 | } else if (depth() > 32) { |
5110 | transformSegment = [&](int yStart, int yEnd) { |
5111 | for (int y = yStart; y < yEnd; ++y) { |
5112 | QRgba64 *scanline = reinterpret_cast<QRgba64 *>(d->data + y * d->bytes_per_line); |
5113 | QColorTransformPrivate::get(q: transform)->apply(dst: scanline, src: scanline, count: width(), flags); |
5114 | } |
5115 | }; |
5116 | } else { |
5117 | transformSegment = [&](int yStart, int yEnd) { |
5118 | for (int y = yStart; y < yEnd; ++y) { |
5119 | QRgb *scanline = reinterpret_cast<QRgb *>(d->data + y * d->bytes_per_line); |
5120 | QColorTransformPrivate::get(q: transform)->apply(dst: scanline, src: scanline, count: width(), flags); |
5121 | } |
5122 | }; |
5123 | } |
5124 | |
5125 | #if QT_CONFIG(thread) && !defined(Q_OS_WASM) |
5126 | int segments = (qsizetype(width()) * height()) >> 16; |
5127 | segments = std::min(a: segments, b: height()); |
5128 | QThreadPool *threadPool = QThreadPoolPrivate::qtGuiInstance(); |
5129 | if (segments > 1 && threadPool && !threadPool->contains(thread: QThread::currentThread())) { |
5130 | QSemaphore semaphore; |
5131 | int y = 0; |
5132 | for (int i = 0; i < segments; ++i) { |
5133 | int yn = (height() - y) / (segments - i); |
5134 | threadPool->start(functionToRun: [&, y, yn]() { |
5135 | transformSegment(y, y + yn); |
5136 | semaphore.release(n: 1); |
5137 | }); |
5138 | y += yn; |
5139 | } |
5140 | semaphore.acquire(n: segments); |
5141 | } else |
5142 | #endif |
5143 | transformSegment(0, height()); |
5144 | |
5145 | if (oldFormat != format()) |
5146 | *this = std::move(*this).convertToFormat(f: oldFormat); |
5147 | } |
5148 | |
5149 | /*! |
5150 | \since 6.4 |
5151 | |
5152 | Returns the image color transformed using \a transform on all pixels in the image. |
5153 | |
5154 | \sa applyColorTransform() |
5155 | */ |
5156 | QImage QImage::colorTransformed(const QColorTransform &transform) const & |
5157 | { |
5158 | if (!d || !d->colorSpace.isValid()) |
5159 | return QImage(); |
5160 | if (transform.isIdentity()) |
5161 | return *this; |
5162 | QImage image = copy(); |
5163 | image.applyColorTransform(transform); |
5164 | return image; |
5165 | } |
5166 | |
5167 | /*! |
5168 | \since 6.4 |
5169 | \overload |
5170 | |
5171 | Returns the image color transformed using \a transform on all pixels in the image. |
5172 | |
5173 | \sa applyColorTransform() |
5174 | */ |
5175 | QImage QImage::colorTransformed(const QColorTransform &transform) && |
5176 | { |
5177 | if (!d || !d->colorSpace.isValid()) |
5178 | return QImage(); |
5179 | applyColorTransform(transform); |
5180 | return std::move(*this); |
5181 | } |
5182 | |
5183 | bool QImageData::convertInPlace(QImage::Format newFormat, Qt::ImageConversionFlags flags) |
5184 | { |
5185 | if (format == newFormat) |
5186 | return true; |
5187 | |
5188 | // No in-place conversion if we have to detach |
5189 | if (ref.loadRelaxed() > 1 || !own_data) |
5190 | return false; |
5191 | |
5192 | InPlace_Image_Converter converter = qimage_inplace_converter_map[format][newFormat]; |
5193 | if (converter) |
5194 | return converter(this, flags); |
5195 | if (format > QImage::Format_Indexed8 && newFormat > QImage::Format_Indexed8 && !qimage_converter_map[format][newFormat]) { |
5196 | // Convert inplace generic, but only if there are no direct converters, |
5197 | // any direct ones are probably better even if not inplace. |
5198 | if (qt_highColorPrecision(format: newFormat, opaque: !qPixelLayouts[newFormat].hasAlphaChannel) |
5199 | && qt_highColorPrecision(format, opaque: !qPixelLayouts[format].hasAlphaChannel)) { |
5200 | #if QT_CONFIG(raster_fp) |
5201 | if (qt_fpColorPrecision(format) && qt_fpColorPrecision(format: newFormat)) |
5202 | return convert_generic_inplace_over_rgba32f(data: this, dst_format: newFormat, flags); |
5203 | #endif |
5204 | return convert_generic_inplace_over_rgb64(data: this, dst_format: newFormat, flags); |
5205 | } |
5206 | return convert_generic_inplace(data: this, dst_format: newFormat, flags); |
5207 | } |
5208 | return false; |
5209 | } |
5210 | |
5211 | /*! |
5212 | \typedef QImage::DataPtr |
5213 | \internal |
5214 | */ |
5215 | |
5216 | /*! |
5217 | \fn DataPtr & QImage::data_ptr() |
5218 | \internal |
5219 | */ |
5220 | |
5221 | #ifndef QT_NO_DEBUG_STREAM |
5222 | QDebug operator<<(QDebug dbg, const QImage &i) |
5223 | { |
5224 | QDebugStateSaver saver(dbg); |
5225 | dbg.nospace(); |
5226 | dbg.noquote(); |
5227 | dbg << "QImage(" ; |
5228 | if (i.isNull()) { |
5229 | dbg << "null" ; |
5230 | } else { |
5231 | dbg << i.size() << ",format=" << i.format() << ",depth=" << i.depth(); |
5232 | if (i.colorCount()) |
5233 | dbg << ",colorCount=" << i.colorCount(); |
5234 | const int bytesPerLine = i.bytesPerLine(); |
5235 | dbg << ",devicePixelRatio=" << i.devicePixelRatio() |
5236 | << ",bytesPerLine=" << bytesPerLine << ",sizeInBytes=" << i.sizeInBytes(); |
5237 | if (dbg.verbosity() > 2 && i.height() > 0) { |
5238 | const int outputLength = qMin(a: bytesPerLine, b: 24); |
5239 | dbg << ",line0=" |
5240 | << QByteArray(reinterpret_cast<const char *>(i.scanLine(i: 0)), outputLength).toHex() |
5241 | << "..." ; |
5242 | } |
5243 | } |
5244 | dbg << ')'; |
5245 | return dbg; |
5246 | } |
5247 | #endif |
5248 | |
5249 | static constexpr QPixelFormat pixelformats[] = { |
5250 | //QImage::Format_Invalid: |
5251 | QPixelFormat(), |
5252 | //QImage::Format_Mono: |
5253 | QPixelFormat(QPixelFormat::Indexed, |
5254 | /*RED*/ 1, |
5255 | /*GREEN*/ 0, |
5256 | /*BLUE*/ 0, |
5257 | /*FOURTH*/ 0, |
5258 | /*FIFTH*/ 0, |
5259 | /*ALPHA*/ 0, |
5260 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5261 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5262 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5263 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5264 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5265 | //QImage::Format_MonoLSB: |
5266 | QPixelFormat(QPixelFormat::Indexed, |
5267 | /*RED*/ 1, |
5268 | /*GREEN*/ 0, |
5269 | /*BLUE*/ 0, |
5270 | /*FOURTH*/ 0, |
5271 | /*FIFTH*/ 0, |
5272 | /*ALPHA*/ 0, |
5273 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5274 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5275 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5276 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5277 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5278 | //QImage::Format_Indexed8: |
5279 | QPixelFormat(QPixelFormat::Indexed, |
5280 | /*RED*/ 8, |
5281 | /*GREEN*/ 0, |
5282 | /*BLUE*/ 0, |
5283 | /*FOURTH*/ 0, |
5284 | /*FIFTH*/ 0, |
5285 | /*ALPHA*/ 0, |
5286 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5287 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5288 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5289 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5290 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5291 | //QImage::Format_RGB32: |
5292 | QPixelFormat(QPixelFormat::RGB, |
5293 | /*RED*/ 8, |
5294 | /*GREEN*/ 8, |
5295 | /*BLUE*/ 8, |
5296 | /*FOURTH*/ 0, |
5297 | /*FIFTH*/ 0, |
5298 | /*ALPHA*/ 8, |
5299 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5300 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5301 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5302 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5303 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5304 | //QImage::Format_ARGB32: |
5305 | QPixelFormat(QPixelFormat::RGB, |
5306 | /*RED*/ 8, |
5307 | /*GREEN*/ 8, |
5308 | /*BLUE*/ 8, |
5309 | /*FOURTH*/ 0, |
5310 | /*FIFTH*/ 0, |
5311 | /*ALPHA*/ 8, |
5312 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5313 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5314 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5315 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5316 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5317 | //QImage::Format_ARGB32_Premultiplied: |
5318 | QPixelFormat(QPixelFormat::RGB, |
5319 | /*RED*/ 8, |
5320 | /*GREEN*/ 8, |
5321 | /*BLUE*/ 8, |
5322 | /*FOURTH*/ 0, |
5323 | /*FIFTH*/ 0, |
5324 | /*ALPHA*/ 8, |
5325 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5326 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5327 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5328 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5329 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5330 | //QImage::Format_RGB16: |
5331 | QPixelFormat(QPixelFormat::RGB, |
5332 | /*RED*/ 5, |
5333 | /*GREEN*/ 6, |
5334 | /*BLUE*/ 5, |
5335 | /*FOURTH*/ 0, |
5336 | /*FIFTH*/ 0, |
5337 | /*ALPHA*/ 0, |
5338 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5339 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5340 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5341 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5342 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5343 | //QImage::Format_ARGB8565_Premultiplied: |
5344 | QPixelFormat(QPixelFormat::RGB, |
5345 | /*RED*/ 5, |
5346 | /*GREEN*/ 6, |
5347 | /*BLUE*/ 5, |
5348 | /*FOURTH*/ 0, |
5349 | /*FIFTH*/ 0, |
5350 | /*ALPHA*/ 8, |
5351 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5352 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5353 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5354 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5355 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5356 | //QImage::Format_RGB666: |
5357 | QPixelFormat(QPixelFormat::RGB, |
5358 | /*RED*/ 6, |
5359 | /*GREEN*/ 6, |
5360 | /*BLUE*/ 6, |
5361 | /*FOURTH*/ 0, |
5362 | /*FIFTH*/ 0, |
5363 | /*ALPHA*/ 0, |
5364 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5365 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5366 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5367 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5368 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5369 | //QImage::Format_ARGB6666_Premultiplied: |
5370 | QPixelFormat(QPixelFormat::RGB, |
5371 | /*RED*/ 6, |
5372 | /*GREEN*/ 6, |
5373 | /*BLUE*/ 6, |
5374 | /*FOURTH*/ 0, |
5375 | /*FIFTH*/ 0, |
5376 | /*ALPHA*/ 6, |
5377 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5378 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5379 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5380 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5381 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5382 | //QImage::Format_RGB555: |
5383 | QPixelFormat(QPixelFormat::RGB, |
5384 | /*RED*/ 5, |
5385 | /*GREEN*/ 5, |
5386 | /*BLUE*/ 5, |
5387 | /*FOURTH*/ 0, |
5388 | /*FIFTH*/ 0, |
5389 | /*ALPHA*/ 0, |
5390 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5391 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5392 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5393 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5394 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5395 | //QImage::Format_ARGB8555_Premultiplied: |
5396 | QPixelFormat(QPixelFormat::RGB, |
5397 | /*RED*/ 5, |
5398 | /*GREEN*/ 5, |
5399 | /*BLUE*/ 5, |
5400 | /*FOURTH*/ 0, |
5401 | /*FIFTH*/ 0, |
5402 | /*ALPHA*/ 8, |
5403 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5404 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5405 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5406 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5407 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5408 | //QImage::Format_RGB888: |
5409 | QPixelFormat(QPixelFormat::RGB, |
5410 | /*RED*/ 8, |
5411 | /*GREEN*/ 8, |
5412 | /*BLUE*/ 8, |
5413 | /*FOURTH*/ 0, |
5414 | /*FIFTH*/ 0, |
5415 | /*ALPHA*/ 0, |
5416 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5417 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5418 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5419 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5420 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5421 | //QImage::Format_RGB444: |
5422 | QPixelFormat(QPixelFormat::RGB, |
5423 | /*RED*/ 4, |
5424 | /*GREEN*/ 4, |
5425 | /*BLUE*/ 4, |
5426 | /*FOURTH*/ 0, |
5427 | /*FIFTH*/ 0, |
5428 | /*ALPHA*/ 0, |
5429 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5430 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5431 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5432 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5433 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5434 | //QImage::Format_ARGB4444_Premultiplied: |
5435 | QPixelFormat(QPixelFormat::RGB, |
5436 | /*RED*/ 4, |
5437 | /*GREEN*/ 4, |
5438 | /*BLUE*/ 4, |
5439 | /*FOURTH*/ 0, |
5440 | /*FIFTH*/ 0, |
5441 | /*ALPHA*/ 4, |
5442 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5443 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5444 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5445 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5446 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5447 | //QImage::Format_RGBX8888: |
5448 | QPixelFormat(QPixelFormat::RGB, |
5449 | /*RED*/ 8, |
5450 | /*GREEN*/ 8, |
5451 | /*BLUE*/ 8, |
5452 | /*FOURTH*/ 0, |
5453 | /*FIFTH*/ 0, |
5454 | /*ALPHA*/ 8, |
5455 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5456 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5457 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5458 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5459 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5460 | //QImage::Format_RGBA8888: |
5461 | QPixelFormat(QPixelFormat::RGB, |
5462 | /*RED*/ 8, |
5463 | /*GREEN*/ 8, |
5464 | /*BLUE*/ 8, |
5465 | /*FOURTH*/ 0, |
5466 | /*FIFTH*/ 0, |
5467 | /*ALPHA*/ 8, |
5468 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5469 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5470 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5471 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5472 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5473 | //QImage::Format_RGBA8888_Premultiplied: |
5474 | QPixelFormat(QPixelFormat::RGB, |
5475 | /*RED*/ 8, |
5476 | /*GREEN*/ 8, |
5477 | /*BLUE*/ 8, |
5478 | /*FOURTH*/ 0, |
5479 | /*FIFTH*/ 0, |
5480 | /*ALPHA*/ 8, |
5481 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5482 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5483 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5484 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5485 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5486 | //QImage::Format_BGR30: |
5487 | QPixelFormat(QPixelFormat::BGR, |
5488 | /*RED*/ 10, |
5489 | /*GREEN*/ 10, |
5490 | /*BLUE*/ 10, |
5491 | /*FOURTH*/ 0, |
5492 | /*FIFTH*/ 0, |
5493 | /*ALPHA*/ 2, |
5494 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5495 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5496 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5497 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5498 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5499 | //QImage::Format_A2BGR30_Premultiplied: |
5500 | QPixelFormat(QPixelFormat::BGR, |
5501 | /*RED*/ 10, |
5502 | /*GREEN*/ 10, |
5503 | /*BLUE*/ 10, |
5504 | /*FOURTH*/ 0, |
5505 | /*FIFTH*/ 0, |
5506 | /*ALPHA*/ 2, |
5507 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5508 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5509 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5510 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5511 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5512 | //QImage::Format_RGB30: |
5513 | QPixelFormat(QPixelFormat::RGB, |
5514 | /*RED*/ 10, |
5515 | /*GREEN*/ 10, |
5516 | /*BLUE*/ 10, |
5517 | /*FOURTH*/ 0, |
5518 | /*FIFTH*/ 0, |
5519 | /*ALPHA*/ 2, |
5520 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5521 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5522 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5523 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5524 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5525 | //QImage::Format_A2RGB30_Premultiplied: |
5526 | QPixelFormat(QPixelFormat::RGB, |
5527 | /*RED*/ 10, |
5528 | /*GREEN*/ 10, |
5529 | /*BLUE*/ 10, |
5530 | /*FOURTH*/ 0, |
5531 | /*FIFTH*/ 0, |
5532 | /*ALPHA*/ 2, |
5533 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5534 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5535 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5536 | /*INTERPRETATION*/ QPixelFormat::UnsignedInteger, |
5537 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5538 | //QImage::Format_Alpha8: |
5539 | QPixelFormat(QPixelFormat::Alpha, |
5540 | /*First*/ 0, |
5541 | /*SECOND*/ 0, |
5542 | /*THIRD*/ 0, |
5543 | /*FOURTH*/ 0, |
5544 | /*FIFTH*/ 0, |
5545 | /*ALPHA*/ 8, |
5546 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5547 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5548 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5549 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5550 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5551 | //QImage::Format_Grayscale8: |
5552 | QPixelFormat(QPixelFormat::Grayscale, |
5553 | /*GRAY*/ 8, |
5554 | /*SECOND*/ 0, |
5555 | /*THIRD*/ 0, |
5556 | /*FOURTH*/ 0, |
5557 | /*FIFTH*/ 0, |
5558 | /*ALPHA*/ 0, |
5559 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5560 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5561 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5562 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5563 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5564 | //QImage::Format_RGBX64: |
5565 | QPixelFormat(QPixelFormat::RGB, |
5566 | /*RED*/ 16, |
5567 | /*GREEN*/ 16, |
5568 | /*BLUE*/ 16, |
5569 | /*FOURTH*/ 0, |
5570 | /*FIFTH*/ 0, |
5571 | /*ALPHA*/ 16, |
5572 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5573 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5574 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5575 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5576 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5577 | //QImage::Format_RGBA64: |
5578 | QPixelFormat(QPixelFormat::RGB, |
5579 | /*RED*/ 16, |
5580 | /*GREEN*/ 16, |
5581 | /*BLUE*/ 16, |
5582 | /*FOURTH*/ 0, |
5583 | /*FIFTH*/ 0, |
5584 | /*ALPHA*/ 16, |
5585 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5586 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5587 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5588 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5589 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5590 | //QImage::Format_RGBA64_Premultiplied: |
5591 | QPixelFormat(QPixelFormat::RGB, |
5592 | /*RED*/ 16, |
5593 | /*GREEN*/ 16, |
5594 | /*BLUE*/ 16, |
5595 | /*FOURTH*/ 0, |
5596 | /*FIFTH*/ 0, |
5597 | /*ALPHA*/ 16, |
5598 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5599 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5600 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5601 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5602 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5603 | //QImage::Format_Grayscale16: |
5604 | QPixelFormat(QPixelFormat::Grayscale, |
5605 | /*GRAY*/ 16, |
5606 | /*SECOND*/ 0, |
5607 | /*THIRD*/ 0, |
5608 | /*FOURTH*/ 0, |
5609 | /*FIFTH*/ 0, |
5610 | /*ALPHA*/ 0, |
5611 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5612 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5613 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5614 | /*INTERPRETATION*/ QPixelFormat::UnsignedShort, |
5615 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5616 | //QImage::Format_BGR888: |
5617 | QPixelFormat(QPixelFormat::BGR, |
5618 | /*RED*/ 8, |
5619 | /*GREEN*/ 8, |
5620 | /*BLUE*/ 8, |
5621 | /*FOURTH*/ 0, |
5622 | /*FIFTH*/ 0, |
5623 | /*ALPHA*/ 0, |
5624 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5625 | /*ALPHA POSITION*/ QPixelFormat::AtBeginning, |
5626 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5627 | /*INTERPRETATION*/ QPixelFormat::UnsignedByte, |
5628 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5629 | //QImage::Format_RGBX16FPx4: |
5630 | QPixelFormat(QPixelFormat::RGB, |
5631 | /*RED*/ 16, |
5632 | /*GREEN*/ 16, |
5633 | /*BLUE*/ 16, |
5634 | /*FOURTH*/ 0, |
5635 | /*FIFTH*/ 0, |
5636 | /*ALPHA*/ 16, |
5637 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5638 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5639 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5640 | /*INTERPRETATION*/ QPixelFormat::FloatingPoint, |
5641 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5642 | //QImage::Format_RGBA16FPx4: |
5643 | QPixelFormat(QPixelFormat::RGB, |
5644 | /*RED*/ 16, |
5645 | /*GREEN*/ 16, |
5646 | /*BLUE*/ 16, |
5647 | /*FOURTH*/ 0, |
5648 | /*FIFTH*/ 0, |
5649 | /*ALPHA*/ 16, |
5650 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5651 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5652 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5653 | /*INTERPRETATION*/ QPixelFormat::FloatingPoint, |
5654 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5655 | //QImage::Format_RGBA16FPx4_Premultiplied: |
5656 | QPixelFormat(QPixelFormat::RGB, |
5657 | /*RED*/ 16, |
5658 | /*GREEN*/ 16, |
5659 | /*BLUE*/ 16, |
5660 | /*FOURTH*/ 0, |
5661 | /*FIFTH*/ 0, |
5662 | /*ALPHA*/ 16, |
5663 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5664 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5665 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5666 | /*INTERPRETATION*/ QPixelFormat::FloatingPoint, |
5667 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5668 | //QImage::Format_RGBX32FPx4: |
5669 | QPixelFormat(QPixelFormat::RGB, |
5670 | /*RED*/ 32, |
5671 | /*GREEN*/ 32, |
5672 | /*BLUE*/ 32, |
5673 | /*FOURTH*/ 0, |
5674 | /*FIFTH*/ 0, |
5675 | /*ALPHA*/ 32, |
5676 | /*ALPHA USAGE*/ QPixelFormat::IgnoresAlpha, |
5677 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5678 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5679 | /*INTERPRETATION*/ QPixelFormat::FloatingPoint, |
5680 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5681 | //QImage::Format_RGBA32FPx4: |
5682 | QPixelFormat(QPixelFormat::RGB, |
5683 | /*RED*/ 32, |
5684 | /*GREEN*/ 32, |
5685 | /*BLUE*/ 32, |
5686 | /*FOURTH*/ 0, |
5687 | /*FIFTH*/ 0, |
5688 | /*ALPHA*/ 32, |
5689 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5690 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5691 | /*PREMULTIPLIED*/ QPixelFormat::NotPremultiplied, |
5692 | /*INTERPRETATION*/ QPixelFormat::FloatingPoint, |
5693 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5694 | //QImage::Format_RGBA32FPx4_Premultiplied: |
5695 | QPixelFormat(QPixelFormat::RGB, |
5696 | /*RED*/ 32, |
5697 | /*GREEN*/ 32, |
5698 | /*BLUE*/ 32, |
5699 | /*FOURTH*/ 0, |
5700 | /*FIFTH*/ 0, |
5701 | /*ALPHA*/ 32, |
5702 | /*ALPHA USAGE*/ QPixelFormat::UsesAlpha, |
5703 | /*ALPHA POSITION*/ QPixelFormat::AtEnd, |
5704 | /*PREMULTIPLIED*/ QPixelFormat::Premultiplied, |
5705 | /*INTERPRETATION*/ QPixelFormat::FloatingPoint, |
5706 | /*BYTE ORDER*/ QPixelFormat::CurrentSystemEndian), |
5707 | }; |
5708 | static_assert(sizeof(pixelformats) / sizeof(*pixelformats) == QImage::NImageFormats); |
5709 | |
5710 | /*! |
5711 | Returns the QImage::Format as a QPixelFormat |
5712 | */ |
5713 | QPixelFormat QImage::pixelFormat() const noexcept |
5714 | { |
5715 | return toPixelFormat(format: format()); |
5716 | } |
5717 | |
5718 | /*! |
5719 | Converts \a format into a QPixelFormat |
5720 | */ |
5721 | QPixelFormat QImage::toPixelFormat(QImage::Format format) noexcept |
5722 | { |
5723 | Q_ASSERT(static_cast<int>(format) < NImageFormats && static_cast<int>(format) >= 0); |
5724 | return pixelformats[format]; |
5725 | } |
5726 | |
5727 | /*! |
5728 | Converts \a format into a QImage::Format |
5729 | */ |
5730 | QImage::Format QImage::toImageFormat(QPixelFormat format) noexcept |
5731 | { |
5732 | for (int i = 0; i < NImageFormats; i++) { |
5733 | if (format == pixelformats[i]) |
5734 | return Format(i); |
5735 | } |
5736 | return Format_Invalid; |
5737 | } |
5738 | |
5739 | Q_GUI_EXPORT void qt_imageTransform(QImage &src, QImageIOHandler::Transformations orient) |
5740 | { |
5741 | if (orient == QImageIOHandler::TransformationNone) |
5742 | return; |
5743 | if (orient == QImageIOHandler::TransformationRotate270) { |
5744 | src = rotated270(image: src); |
5745 | } else { |
5746 | src = std::move(src).mirrored(horizontally: orient & QImageIOHandler::TransformationMirror, |
5747 | vertically: orient & QImageIOHandler::TransformationFlip); |
5748 | if (orient & QImageIOHandler::TransformationRotate90) |
5749 | src = rotated90(image: src); |
5750 | } |
5751 | } |
5752 | |
5753 | QMap<QString, QString> qt_getImageText(const QImage &image, const QString &description) |
5754 | { |
5755 | QMap<QString, QString> text = qt_getImageTextFromDescription(description); |
5756 | const auto textKeys = image.textKeys(); |
5757 | for (const QString &key : textKeys) { |
5758 | if (!key.isEmpty() && !text.contains(key)) |
5759 | text.insert(key, value: image.text(key)); |
5760 | } |
5761 | return text; |
5762 | } |
5763 | |
5764 | QMap<QString, QString> qt_getImageTextFromDescription(const QString &description) |
5765 | { |
5766 | QMap<QString, QString> text; |
5767 | const auto pairs = QStringView{description}.split(sep: u"\n\n" ); |
5768 | for (const auto &pair : pairs) { |
5769 | int index = pair.indexOf(c: u':'); |
5770 | if (index >= 0 && pair.indexOf(c: u' ') < index) { |
5771 | if (!pair.trimmed().isEmpty()) |
5772 | text.insert(key: "Description"_L1 , value: pair.toString().simplified()); |
5773 | } else { |
5774 | const auto key = pair.left(n: index); |
5775 | if (!key.trimmed().isEmpty()) |
5776 | text.insert(key: key.toString(), value: pair.mid(pos: index + 2).toString().simplified()); |
5777 | } |
5778 | } |
5779 | return text; |
5780 | } |
5781 | |
5782 | QT_END_NAMESPACE |
5783 | |
5784 | #include "moc_qimage.cpp" |
5785 | |