1 | // Copyright (C) 2020 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qquaternion.h" |
5 | #include <QtCore/qdatastream.h> |
6 | #include <QtCore/qmath.h> |
7 | #include <QtCore/qvariant.h> |
8 | #include <QtCore/qdebug.h> |
9 | |
10 | #include <cmath> |
11 | |
12 | QT_BEGIN_NAMESPACE |
13 | |
14 | #ifndef QT_NO_QUATERNION |
15 | |
16 | /*! |
17 | \class QQuaternion |
18 | \brief The QQuaternion class represents a quaternion consisting of a vector and scalar. |
19 | \since 4.6 |
20 | \ingroup painting-3D |
21 | \inmodule QtGui |
22 | |
23 | Quaternions are used to represent rotations in 3D space, and |
24 | consist of a 3D rotation axis specified by the x, y, and z |
25 | coordinates, and a scalar representing the rotation angle. |
26 | */ |
27 | |
28 | /*! |
29 | \fn QQuaternion::QQuaternion() |
30 | |
31 | Constructs an identity quaternion (1, 0, 0, 0), i.e. with the vector (0, 0, 0) |
32 | and scalar 1. |
33 | */ |
34 | |
35 | /*! |
36 | \fn QQuaternion::QQuaternion(Qt::Initialization) |
37 | \since 5.5 |
38 | \internal |
39 | |
40 | Constructs a quaternion without initializing the contents. |
41 | */ |
42 | |
43 | /*! |
44 | \fn QQuaternion::QQuaternion(float scalar, float xpos, float ypos, float zpos) |
45 | |
46 | Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) |
47 | and \a scalar. |
48 | */ |
49 | |
50 | #ifndef QT_NO_VECTOR3D |
51 | |
52 | /*! |
53 | \fn QQuaternion::QQuaternion(float scalar, const QVector3D& vector) |
54 | |
55 | Constructs a quaternion vector from the specified \a vector and |
56 | \a scalar. |
57 | |
58 | \sa vector(), scalar() |
59 | */ |
60 | |
61 | /*! |
62 | \fn QVector3D QQuaternion::vector() const |
63 | |
64 | Returns the vector component of this quaternion. |
65 | |
66 | \sa setVector(), scalar() |
67 | */ |
68 | |
69 | /*! |
70 | \fn void QQuaternion::setVector(const QVector3D& vector) |
71 | |
72 | Sets the vector component of this quaternion to \a vector. |
73 | |
74 | \sa vector(), setScalar() |
75 | */ |
76 | |
77 | #endif |
78 | |
79 | /*! |
80 | \fn void QQuaternion::setVector(float x, float y, float z) |
81 | |
82 | Sets the vector component of this quaternion to (\a x, \a y, \a z). |
83 | |
84 | \sa vector(), setScalar() |
85 | */ |
86 | |
87 | #ifndef QT_NO_VECTOR4D |
88 | |
89 | /*! |
90 | \fn QQuaternion::QQuaternion(const QVector4D& vector) |
91 | |
92 | Constructs a quaternion from the components of \a vector. |
93 | */ |
94 | |
95 | /*! |
96 | \fn QVector4D QQuaternion::toVector4D() const |
97 | |
98 | Returns this quaternion as a 4D vector. |
99 | */ |
100 | |
101 | #endif |
102 | |
103 | /*! |
104 | \fn bool QQuaternion::isNull() const |
105 | |
106 | Returns \c true if the x, y, z, and scalar components of this |
107 | quaternion are set to 0.0; otherwise returns \c false. |
108 | */ |
109 | |
110 | /*! |
111 | \fn bool QQuaternion::isIdentity() const |
112 | |
113 | Returns \c true if the x, y, and z components of this |
114 | quaternion are set to 0.0, and the scalar component is set |
115 | to 1.0; otherwise returns \c false. |
116 | */ |
117 | |
118 | /*! |
119 | \fn float QQuaternion::x() const |
120 | |
121 | Returns the x coordinate of this quaternion's vector. |
122 | |
123 | \sa setX(), y(), z(), scalar() |
124 | */ |
125 | |
126 | /*! |
127 | \fn float QQuaternion::y() const |
128 | |
129 | Returns the y coordinate of this quaternion's vector. |
130 | |
131 | \sa setY(), x(), z(), scalar() |
132 | */ |
133 | |
134 | /*! |
135 | \fn float QQuaternion::z() const |
136 | |
137 | Returns the z coordinate of this quaternion's vector. |
138 | |
139 | \sa setZ(), x(), y(), scalar() |
140 | */ |
141 | |
142 | /*! |
143 | \fn float QQuaternion::scalar() const |
144 | |
145 | Returns the scalar component of this quaternion. |
146 | |
147 | \sa setScalar(), x(), y(), z() |
148 | */ |
149 | |
150 | /*! |
151 | \fn void QQuaternion::setX(float x) |
152 | |
153 | Sets the x coordinate of this quaternion's vector to the given |
154 | \a x coordinate. |
155 | |
156 | \sa x(), setY(), setZ(), setScalar() |
157 | */ |
158 | |
159 | /*! |
160 | \fn void QQuaternion::setY(float y) |
161 | |
162 | Sets the y coordinate of this quaternion's vector to the given |
163 | \a y coordinate. |
164 | |
165 | \sa y(), setX(), setZ(), setScalar() |
166 | */ |
167 | |
168 | /*! |
169 | \fn void QQuaternion::setZ(float z) |
170 | |
171 | Sets the z coordinate of this quaternion's vector to the given |
172 | \a z coordinate. |
173 | |
174 | \sa z(), setX(), setY(), setScalar() |
175 | */ |
176 | |
177 | /*! |
178 | \fn void QQuaternion::setScalar(float scalar) |
179 | |
180 | Sets the scalar component of this quaternion to \a scalar. |
181 | |
182 | \sa scalar(), setX(), setY(), setZ() |
183 | */ |
184 | |
185 | /*! |
186 | \fn float QQuaternion::dotProduct(const QQuaternion &q1, const QQuaternion &q2) |
187 | \since 5.5 |
188 | |
189 | Returns the dot product of \a q1 and \a q2. |
190 | |
191 | \sa length() |
192 | */ |
193 | |
194 | /*! |
195 | Returns the length of the quaternion. This is also called the "norm". |
196 | |
197 | \sa lengthSquared(), normalized(), dotProduct() |
198 | */ |
199 | float QQuaternion::length() const |
200 | { |
201 | return qHypot(first: xp, rest: yp, rest: zp, rest: wp); |
202 | } |
203 | |
204 | /*! |
205 | Returns the squared length of the quaternion. |
206 | |
207 | \note Though cheap to compute, this is susceptible to overflow and underflow |
208 | that length() avoids in many cases. |
209 | |
210 | \sa length(), dotProduct() |
211 | */ |
212 | float QQuaternion::lengthSquared() const |
213 | { |
214 | return xp * xp + yp * yp + zp * zp + wp * wp; |
215 | } |
216 | |
217 | /*! |
218 | Returns the normalized unit form of this quaternion. |
219 | |
220 | If this quaternion is null, then a null quaternion is returned. |
221 | If the length of the quaternion is very close to 1, then the quaternion |
222 | will be returned as-is. Otherwise the normalized form of the |
223 | quaternion of length 1 will be returned. |
224 | |
225 | \sa normalize(), length(), dotProduct() |
226 | */ |
227 | QQuaternion QQuaternion::normalized() const |
228 | { |
229 | const float scale = length(); |
230 | if (qFuzzyIsNull(f: scale)) |
231 | return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f); |
232 | return *this / scale; |
233 | } |
234 | |
235 | /*! |
236 | Normalizes the current quaternion in place. Nothing happens if this |
237 | is a null quaternion or the length of the quaternion is very close to 1. |
238 | |
239 | \sa length(), normalized() |
240 | */ |
241 | void QQuaternion::normalize() |
242 | { |
243 | const float len = length(); |
244 | if (qFuzzyIsNull(f: len)) |
245 | return; |
246 | |
247 | xp /= len; |
248 | yp /= len; |
249 | zp /= len; |
250 | wp /= len; |
251 | } |
252 | |
253 | /*! |
254 | \fn QQuaternion QQuaternion::inverted() const |
255 | \since 5.5 |
256 | |
257 | Returns the inverse of this quaternion. |
258 | If this quaternion is null, then a null quaternion is returned. |
259 | |
260 | \sa isNull(), length() |
261 | */ |
262 | |
263 | /*! |
264 | \fn QQuaternion QQuaternion::conjugated() const |
265 | \since 5.5 |
266 | |
267 | Returns the conjugate of this quaternion, which is |
268 | (-x, -y, -z, scalar). |
269 | */ |
270 | |
271 | /*! |
272 | Rotates \a vector with this quaternion to produce a new vector |
273 | in 3D space. The following code: |
274 | |
275 | \snippet code/src_gui_math3d_qquaternion.cpp 0 |
276 | |
277 | is equivalent to the following: |
278 | |
279 | \snippet code/src_gui_math3d_qquaternion.cpp 1 |
280 | */ |
281 | QVector3D QQuaternion::rotatedVector(const QVector3D& vector) const |
282 | { |
283 | return (*this * QQuaternion(0, vector) * conjugated()).vector(); |
284 | } |
285 | |
286 | /*! |
287 | \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion) |
288 | |
289 | Adds the given \a quaternion to this quaternion and returns a reference to |
290 | this quaternion. |
291 | |
292 | \sa operator-=() |
293 | */ |
294 | |
295 | /*! |
296 | \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion) |
297 | |
298 | Subtracts the given \a quaternion from this quaternion and returns a |
299 | reference to this quaternion. |
300 | |
301 | \sa operator+=() |
302 | */ |
303 | |
304 | /*! |
305 | \fn QQuaternion &QQuaternion::operator*=(float factor) |
306 | |
307 | Multiplies this quaternion's components by the given \a factor, and |
308 | returns a reference to this quaternion. |
309 | |
310 | \sa operator/=() |
311 | */ |
312 | |
313 | /*! |
314 | \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion) |
315 | |
316 | Multiplies this quaternion by \a quaternion and returns a reference |
317 | to this quaternion. |
318 | */ |
319 | |
320 | /*! |
321 | \fn QQuaternion &QQuaternion::operator/=(float divisor) |
322 | |
323 | Divides this quaternion's components by the given \a divisor, and |
324 | returns a reference to this quaternion. |
325 | |
326 | \sa operator*=() |
327 | */ |
328 | |
329 | #ifndef QT_NO_VECTOR3D |
330 | |
331 | /*! |
332 | \fn void QQuaternion::getAxisAndAngle(QVector3D *axis, float *angle) const |
333 | \since 5.5 |
334 | \overload |
335 | |
336 | Extracts a 3D axis \a axis and a rotating angle \a angle (in degrees) |
337 | that corresponds to this quaternion. |
338 | |
339 | \sa fromAxisAndAngle() |
340 | */ |
341 | |
342 | /*! |
343 | Creates a normalized quaternion that corresponds to rotating through |
344 | \a angle degrees about the specified 3D \a axis. |
345 | |
346 | \sa getAxisAndAngle() |
347 | */ |
348 | QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D& axis, float angle) |
349 | { |
350 | // Algorithm from: |
351 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 |
352 | // We normalize the result just in case the values are close |
353 | // to zero, as suggested in the above FAQ. |
354 | float a = qDegreesToRadians(degrees: angle / 2.0f); |
355 | float s = std::sin(x: a); |
356 | float c = std::cos(x: a); |
357 | QVector3D ax = axis.normalized(); |
358 | return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized(); |
359 | } |
360 | |
361 | #endif |
362 | |
363 | /*! |
364 | \since 5.5 |
365 | |
366 | Extracts a 3D axis (\a x, \a y, \a z) and a rotating angle \a angle (in degrees) |
367 | that corresponds to this quaternion. |
368 | |
369 | \sa fromAxisAndAngle() |
370 | */ |
371 | void QQuaternion::getAxisAndAngle(float *x, float *y, float *z, float *angle) const |
372 | { |
373 | Q_ASSERT(x && y && z && angle); |
374 | |
375 | // The quaternion representing the rotation is |
376 | // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) |
377 | |
378 | const float length = qHypot(x: xp, y: yp, z: zp); |
379 | if (!qFuzzyIsNull(f: length)) { |
380 | if (qFuzzyCompare(p1: length, p2: 1.0f)) { |
381 | *x = xp; |
382 | *y = yp; |
383 | *z = zp; |
384 | } else { |
385 | *x = xp / length; |
386 | *y = yp / length; |
387 | *z = zp / length; |
388 | } |
389 | *angle = qRadiansToDegrees(radians: 2.0f * std::acos(x: wp)); |
390 | } else { |
391 | // angle is 0 (mod 2*pi), so any axis will fit |
392 | *x = *y = *z = *angle = 0.0f; |
393 | } |
394 | } |
395 | |
396 | /*! |
397 | Creates a normalized quaternion that corresponds to rotating through |
398 | \a angle degrees about the 3D axis (\a x, \a y, \a z). |
399 | |
400 | \sa getAxisAndAngle() |
401 | */ |
402 | QQuaternion QQuaternion::fromAxisAndAngle |
403 | (float x, float y, float z, float angle) |
404 | { |
405 | float length = qHypot(x, y, z); |
406 | if (!qFuzzyCompare(p1: length, p2: 1.0f) && !qFuzzyIsNull(f: length)) { |
407 | x /= length; |
408 | y /= length; |
409 | z /= length; |
410 | } |
411 | float a = qDegreesToRadians(degrees: angle / 2.0f); |
412 | float s = std::sin(x: a); |
413 | float c = std::cos(x: a); |
414 | return QQuaternion(c, x * s, y * s, z * s).normalized(); |
415 | } |
416 | |
417 | #ifndef QT_NO_VECTOR3D |
418 | |
419 | /*! |
420 | \fn QVector3D QQuaternion::toEulerAngles() const |
421 | \since 5.5 |
422 | \overload |
423 | |
424 | Calculates roll, pitch, and yaw Euler angles (in degrees) |
425 | that corresponds to this quaternion. |
426 | |
427 | \sa fromEulerAngles() |
428 | */ |
429 | |
430 | /*! |
431 | \fn QQuaternion QQuaternion::fromEulerAngles(const QVector3D &eulerAngles) |
432 | \since 5.5 |
433 | \overload |
434 | |
435 | Creates a quaternion that corresponds to a rotation of \a eulerAngles: |
436 | eulerAngles.z() degrees around the z axis, eulerAngles.x() degrees around the x axis, |
437 | and eulerAngles.y() degrees around the y axis (in that order). |
438 | |
439 | \sa toEulerAngles() |
440 | */ |
441 | |
442 | #endif // QT_NO_VECTOR3D |
443 | |
444 | /*! |
445 | \since 5.5 |
446 | |
447 | Calculates \a roll, \a pitch, and \a yaw Euler angles (in degrees) |
448 | that corresponds to this quaternion. |
449 | |
450 | \sa fromEulerAngles() |
451 | */ |
452 | void QQuaternion::getEulerAngles(float *pitch, float *yaw, float *roll) const |
453 | { |
454 | Q_ASSERT(pitch && yaw && roll); |
455 | |
456 | // Algorithm adapted from: |
457 | // https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf |
458 | // "A tutorial on SE(3) transformation parameterizations and on-manifold optimization". |
459 | |
460 | // We can only detect Gimbal lock when we normalize, which we can't do when |
461 | // length is nearly zero. Do so before multiplying coordinates, to avoid |
462 | // underflow. |
463 | const float len = length(); |
464 | const bool rescale = !qFuzzyIsNull(f: len); |
465 | const float xps = rescale ? xp / len : xp; |
466 | const float yps = rescale ? yp / len : yp; |
467 | const float zps = rescale ? zp / len : zp; |
468 | const float wps = rescale ? wp / len : wp; |
469 | |
470 | const float xx = xps * xps; |
471 | const float xy = xps * yps; |
472 | const float xz = xps * zps; |
473 | const float xw = xps * wps; |
474 | const float yy = yps * yps; |
475 | const float yz = yps * zps; |
476 | const float yw = yps * wps; |
477 | const float zz = zps * zps; |
478 | const float zw = zps * wps; |
479 | |
480 | // For the common case, we have a hidden division by cos(pitch) to calculate |
481 | // yaw and roll: atan2(a / cos(pitch), b / cos(pitch)) = atan2(a, b). This equation |
482 | // wouldn't work if cos(pitch) is close to zero (i.e. abs(sin(pitch)) =~ 1.0). |
483 | // This threshold is copied from qFuzzyIsNull() to avoid the hidden division by zero. |
484 | constexpr float epsilon = 0.00001f; |
485 | |
486 | const float sinp = -2.0f * (yz - xw); |
487 | if (std::abs(x: sinp) < 1.0f - epsilon) { |
488 | *pitch = std::asin(x: sinp); |
489 | *yaw = std::atan2(y: 2.0f * (xz + yw), x: 1.0f - 2.0f * (xx + yy)); |
490 | *roll = std::atan2(y: 2.0f * (xy + zw), x: 1.0f - 2.0f * (xx + zz)); |
491 | } else { |
492 | // Gimbal lock case, which doesn't have a unique solution. We just use |
493 | // XY rotation. |
494 | *pitch = std::copysign(x: static_cast<float>(M_PI_2), y: sinp); |
495 | *yaw = 2.0f * std::atan2(y: yps, x: wps); |
496 | *roll = 0.0f; |
497 | } |
498 | |
499 | *pitch = qRadiansToDegrees(radians: *pitch); |
500 | *yaw = qRadiansToDegrees(radians: *yaw); |
501 | *roll = qRadiansToDegrees(radians: *roll); |
502 | } |
503 | |
504 | /*! |
505 | \since 5.5 |
506 | |
507 | Creates a quaternion that corresponds to a rotation of |
508 | \a roll degrees around the z axis, \a pitch degrees around the x axis, |
509 | and \a yaw degrees around the y axis (in that order). |
510 | |
511 | \sa getEulerAngles() |
512 | */ |
513 | QQuaternion QQuaternion::fromEulerAngles(float pitch, float yaw, float roll) |
514 | { |
515 | // Algorithm from: |
516 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q60 |
517 | |
518 | pitch = qDegreesToRadians(degrees: pitch); |
519 | yaw = qDegreesToRadians(degrees: yaw); |
520 | roll = qDegreesToRadians(degrees: roll); |
521 | |
522 | pitch *= 0.5f; |
523 | yaw *= 0.5f; |
524 | roll *= 0.5f; |
525 | |
526 | const float c1 = std::cos(x: yaw); |
527 | const float s1 = std::sin(x: yaw); |
528 | const float c2 = std::cos(x: roll); |
529 | const float s2 = std::sin(x: roll); |
530 | const float c3 = std::cos(x: pitch); |
531 | const float s3 = std::sin(x: pitch); |
532 | const float c1c2 = c1 * c2; |
533 | const float s1s2 = s1 * s2; |
534 | |
535 | const float w = c1c2 * c3 + s1s2 * s3; |
536 | const float x = c1c2 * s3 + s1s2 * c3; |
537 | const float y = s1 * c2 * c3 - c1 * s2 * s3; |
538 | const float z = c1 * s2 * c3 - s1 * c2 * s3; |
539 | |
540 | return QQuaternion(w, x, y, z); |
541 | } |
542 | |
543 | /*! |
544 | \since 5.5 |
545 | |
546 | Creates a rotation matrix that corresponds to this quaternion. |
547 | |
548 | \note If this quaternion is not normalized, |
549 | the resulting rotation matrix will contain scaling information. |
550 | |
551 | \sa fromRotationMatrix(), getAxes() |
552 | */ |
553 | QMatrix3x3 QQuaternion::toRotationMatrix() const |
554 | { |
555 | // Algorithm from: |
556 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54 |
557 | |
558 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
559 | |
560 | const float f2x = xp + xp; |
561 | const float f2y = yp + yp; |
562 | const float f2z = zp + zp; |
563 | const float f2xw = f2x * wp; |
564 | const float f2yw = f2y * wp; |
565 | const float f2zw = f2z * wp; |
566 | const float f2xx = f2x * xp; |
567 | const float f2xy = f2x * yp; |
568 | const float f2xz = f2x * zp; |
569 | const float f2yy = f2y * yp; |
570 | const float f2yz = f2y * zp; |
571 | const float f2zz = f2z * zp; |
572 | |
573 | rot3x3(0, 0) = 1.0f - (f2yy + f2zz); |
574 | rot3x3(0, 1) = f2xy - f2zw; |
575 | rot3x3(0, 2) = f2xz + f2yw; |
576 | rot3x3(1, 0) = f2xy + f2zw; |
577 | rot3x3(1, 1) = 1.0f - (f2xx + f2zz); |
578 | rot3x3(1, 2) = f2yz - f2xw; |
579 | rot3x3(2, 0) = f2xz - f2yw; |
580 | rot3x3(2, 1) = f2yz + f2xw; |
581 | rot3x3(2, 2) = 1.0f - (f2xx + f2yy); |
582 | |
583 | return rot3x3; |
584 | } |
585 | |
586 | /*! |
587 | \since 5.5 |
588 | |
589 | Creates a quaternion that corresponds to a rotation matrix \a rot3x3. |
590 | |
591 | \note If a given rotation matrix is not normalized, |
592 | the resulting quaternion will contain scaling information. |
593 | |
594 | \sa toRotationMatrix(), fromAxes() |
595 | */ |
596 | QQuaternion QQuaternion::fromRotationMatrix(const QMatrix3x3 &rot3x3) |
597 | { |
598 | // Algorithm from: |
599 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q55 |
600 | |
601 | float scalar; |
602 | float axis[3]; |
603 | |
604 | const float trace = rot3x3(0, 0) + rot3x3(1, 1) + rot3x3(2, 2); |
605 | if (trace > 0.00000001f) { |
606 | const float s = 2.0f * std::sqrt(x: trace + 1.0f); |
607 | scalar = 0.25f * s; |
608 | axis[0] = (rot3x3(2, 1) - rot3x3(1, 2)) / s; |
609 | axis[1] = (rot3x3(0, 2) - rot3x3(2, 0)) / s; |
610 | axis[2] = (rot3x3(1, 0) - rot3x3(0, 1)) / s; |
611 | } else { |
612 | static int s_next[3] = { 1, 2, 0 }; |
613 | int i = 0; |
614 | if (rot3x3(1, 1) > rot3x3(0, 0)) |
615 | i = 1; |
616 | if (rot3x3(2, 2) > rot3x3(i, i)) |
617 | i = 2; |
618 | int j = s_next[i]; |
619 | int k = s_next[j]; |
620 | |
621 | const float s = 2.0f * std::sqrt(x: rot3x3(i, i) - rot3x3(j, j) - rot3x3(k, k) + 1.0f); |
622 | axis[i] = 0.25f * s; |
623 | scalar = (rot3x3(k, j) - rot3x3(j, k)) / s; |
624 | axis[j] = (rot3x3(j, i) + rot3x3(i, j)) / s; |
625 | axis[k] = (rot3x3(k, i) + rot3x3(i, k)) / s; |
626 | } |
627 | |
628 | return QQuaternion(scalar, axis[0], axis[1], axis[2]); |
629 | } |
630 | |
631 | #ifndef QT_NO_VECTOR3D |
632 | |
633 | /*! |
634 | \since 5.5 |
635 | |
636 | Returns the 3 orthonormal axes (\a xAxis, \a yAxis, \a zAxis) defining the quaternion. |
637 | |
638 | \sa fromAxes(), toRotationMatrix() |
639 | */ |
640 | void QQuaternion::getAxes(QVector3D *xAxis, QVector3D *yAxis, QVector3D *zAxis) const |
641 | { |
642 | Q_ASSERT(xAxis && yAxis && zAxis); |
643 | |
644 | const QMatrix3x3 rot3x3(toRotationMatrix()); |
645 | |
646 | *xAxis = QVector3D(rot3x3(0, 0), rot3x3(1, 0), rot3x3(2, 0)); |
647 | *yAxis = QVector3D(rot3x3(0, 1), rot3x3(1, 1), rot3x3(2, 1)); |
648 | *zAxis = QVector3D(rot3x3(0, 2), rot3x3(1, 2), rot3x3(2, 2)); |
649 | } |
650 | |
651 | /*! |
652 | \since 5.5 |
653 | |
654 | Constructs the quaternion using 3 axes (\a xAxis, \a yAxis, \a zAxis). |
655 | |
656 | \note The axes are assumed to be orthonormal. |
657 | |
658 | \sa getAxes(), fromRotationMatrix() |
659 | */ |
660 | QQuaternion QQuaternion::fromAxes(const QVector3D &xAxis, const QVector3D &yAxis, const QVector3D &zAxis) |
661 | { |
662 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
663 | rot3x3(0, 0) = xAxis.x(); |
664 | rot3x3(1, 0) = xAxis.y(); |
665 | rot3x3(2, 0) = xAxis.z(); |
666 | rot3x3(0, 1) = yAxis.x(); |
667 | rot3x3(1, 1) = yAxis.y(); |
668 | rot3x3(2, 1) = yAxis.z(); |
669 | rot3x3(0, 2) = zAxis.x(); |
670 | rot3x3(1, 2) = zAxis.y(); |
671 | rot3x3(2, 2) = zAxis.z(); |
672 | |
673 | return QQuaternion::fromRotationMatrix(rot3x3); |
674 | } |
675 | |
676 | /*! |
677 | \since 5.5 |
678 | |
679 | Constructs the quaternion using specified forward direction \a direction |
680 | and upward direction \a up. |
681 | If the upward direction was not specified or the forward and upward |
682 | vectors are collinear, a new orthonormal upward direction will be generated. |
683 | |
684 | \sa fromAxes(), rotationTo() |
685 | */ |
686 | QQuaternion QQuaternion::fromDirection(const QVector3D &direction, const QVector3D &up) |
687 | { |
688 | if (qFuzzyIsNull(f: direction.x()) && qFuzzyIsNull(f: direction.y()) && qFuzzyIsNull(f: direction.z())) |
689 | return QQuaternion(); |
690 | |
691 | const QVector3D zAxis(direction.normalized()); |
692 | QVector3D xAxis(QVector3D::crossProduct(v1: up, v2: zAxis)); |
693 | if (qFuzzyIsNull(f: xAxis.lengthSquared())) { |
694 | // collinear or invalid up vector; derive shortest arc to new direction |
695 | return QQuaternion::rotationTo(from: QVector3D(0.0f, 0.0f, 1.0f), to: zAxis); |
696 | } |
697 | |
698 | xAxis.normalize(); |
699 | const QVector3D yAxis(QVector3D::crossProduct(v1: zAxis, v2: xAxis)); |
700 | |
701 | return QQuaternion::fromAxes(xAxis, yAxis, zAxis); |
702 | } |
703 | |
704 | /*! |
705 | \since 5.5 |
706 | |
707 | Returns the shortest arc quaternion to rotate from the direction described by the vector \a from |
708 | to the direction described by the vector \a to. |
709 | |
710 | \sa fromDirection() |
711 | */ |
712 | QQuaternion QQuaternion::rotationTo(const QVector3D &from, const QVector3D &to) |
713 | { |
714 | // Based on Stan Melax's article in Game Programming Gems |
715 | |
716 | const QVector3D v0(from.normalized()); |
717 | const QVector3D v1(to.normalized()); |
718 | |
719 | float d = QVector3D::dotProduct(v1: v0, v2: v1) + 1.0f; |
720 | |
721 | // if dest vector is close to the inverse of source vector, ANY axis of rotation is valid |
722 | if (qFuzzyIsNull(f: d)) { |
723 | QVector3D axis = QVector3D::crossProduct(v1: QVector3D(1.0f, 0.0f, 0.0f), v2: v0); |
724 | if (qFuzzyIsNull(f: axis.lengthSquared())) |
725 | axis = QVector3D::crossProduct(v1: QVector3D(0.0f, 1.0f, 0.0f), v2: v0); |
726 | axis.normalize(); |
727 | |
728 | // same as QQuaternion::fromAxisAndAngle(axis, 180.0f) |
729 | return QQuaternion(0.0f, axis.x(), axis.y(), axis.z()); |
730 | } |
731 | |
732 | d = std::sqrt(x: 2.0f * d); |
733 | const QVector3D axis(QVector3D::crossProduct(v1: v0, v2: v1) / d); |
734 | |
735 | return QQuaternion(d * 0.5f, axis).normalized(); |
736 | } |
737 | |
738 | #endif // QT_NO_VECTOR3D |
739 | |
740 | /*! |
741 | \fn bool QQuaternion::operator==(const QQuaternion &q1, const QQuaternion &q2) |
742 | |
743 | Returns \c true if \a q1 is equal to \a q2; otherwise returns \c false. |
744 | This operator uses an exact floating-point comparison. |
745 | */ |
746 | |
747 | /*! |
748 | \fn bool QQuaternion::operator!=(const QQuaternion &q1, const QQuaternion &q2) |
749 | |
750 | Returns \c true if \a q1 is not equal to \a q2; otherwise returns \c false. |
751 | This operator uses an exact floating-point comparison. |
752 | */ |
753 | |
754 | /*! |
755 | \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2) |
756 | \relates QQuaternion |
757 | |
758 | Returns a QQuaternion object that is the sum of the given quaternions, |
759 | \a q1 and \a q2; each component is added separately. |
760 | |
761 | \sa QQuaternion::operator+=() |
762 | */ |
763 | |
764 | /*! |
765 | \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2) |
766 | \relates QQuaternion |
767 | |
768 | Returns a QQuaternion object that is formed by subtracting |
769 | \a q2 from \a q1; each component is subtracted separately. |
770 | |
771 | \sa QQuaternion::operator-=() |
772 | */ |
773 | |
774 | /*! |
775 | \fn const QQuaternion operator*(float factor, const QQuaternion &quaternion) |
776 | \relates QQuaternion |
777 | |
778 | Returns a copy of the given \a quaternion, multiplied by the |
779 | given \a factor. |
780 | |
781 | \sa QQuaternion::operator*=() |
782 | */ |
783 | |
784 | /*! |
785 | \fn const QQuaternion operator*(const QQuaternion &quaternion, float factor) |
786 | \relates QQuaternion |
787 | |
788 | Returns a copy of the given \a quaternion, multiplied by the |
789 | given \a factor. |
790 | |
791 | \sa QQuaternion::operator*=() |
792 | */ |
793 | |
794 | /*! |
795 | \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion& q2) |
796 | \relates QQuaternion |
797 | |
798 | Multiplies \a q1 and \a q2 using quaternion multiplication. |
799 | The result corresponds to applying both of the rotations specified |
800 | by \a q1 and \a q2. |
801 | |
802 | \sa QQuaternion::operator*=() |
803 | */ |
804 | |
805 | /*! |
806 | \fn const QQuaternion operator-(const QQuaternion &quaternion) |
807 | \relates QQuaternion |
808 | \overload |
809 | |
810 | Returns a QQuaternion object that is formed by changing the sign of |
811 | all three components of the given \a quaternion. |
812 | |
813 | Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}. |
814 | */ |
815 | |
816 | /*! |
817 | \fn const QQuaternion operator/(const QQuaternion &quaternion, float divisor) |
818 | \relates QQuaternion |
819 | |
820 | Returns the QQuaternion object formed by dividing all components of |
821 | the given \a quaternion by the given \a divisor. |
822 | |
823 | \sa QQuaternion::operator/=() |
824 | */ |
825 | |
826 | #ifndef QT_NO_VECTOR3D |
827 | |
828 | /*! |
829 | \fn QVector3D operator*(const QQuaternion &quaternion, const QVector3D &vec) |
830 | \since 5.5 |
831 | \relates QQuaternion |
832 | |
833 | Rotates a vector \a vec with a quaternion \a quaternion to produce a new vector in 3D space. |
834 | */ |
835 | |
836 | #endif |
837 | |
838 | /*! |
839 | \fn bool qFuzzyCompare(const QQuaternion& q1, const QQuaternion& q2) |
840 | \relates QQuaternion |
841 | |
842 | Returns \c true if \a q1 and \a q2 are equal, allowing for a small |
843 | fuzziness factor for floating-point comparisons; false otherwise. |
844 | */ |
845 | |
846 | /*! |
847 | Interpolates along the shortest spherical path between the |
848 | rotational positions \a q1 and \a q2. The value \a t should |
849 | be between 0 and 1, indicating the spherical distance to travel |
850 | between \a q1 and \a q2. |
851 | |
852 | If \a t is less than or equal to 0, then \a q1 will be returned. |
853 | If \a t is greater than or equal to 1, then \a q2 will be returned. |
854 | |
855 | \sa nlerp() |
856 | */ |
857 | QQuaternion QQuaternion::slerp |
858 | (const QQuaternion& q1, const QQuaternion& q2, float t) |
859 | { |
860 | // Handle the easy cases first. |
861 | if (t <= 0.0f) |
862 | return q1; |
863 | else if (t >= 1.0f) |
864 | return q2; |
865 | |
866 | // Determine the angle between the two quaternions. |
867 | QQuaternion q2b(q2); |
868 | float dot = QQuaternion::dotProduct(q1, q2); |
869 | if (dot < 0.0f) { |
870 | q2b = -q2b; |
871 | dot = -dot; |
872 | } |
873 | |
874 | // Get the scale factors. If they are too small, |
875 | // then revert to simple linear interpolation. |
876 | float factor1 = 1.0f - t; |
877 | float factor2 = t; |
878 | if ((1.0f - dot) > 0.0000001) { |
879 | float angle = std::acos(x: dot); |
880 | float sinOfAngle = std::sin(x: angle); |
881 | if (sinOfAngle > 0.0000001) { |
882 | factor1 = std::sin(x: (1.0f - t) * angle) / sinOfAngle; |
883 | factor2 = std::sin(x: t * angle) / sinOfAngle; |
884 | } |
885 | } |
886 | |
887 | // Construct the result quaternion. |
888 | return q1 * factor1 + q2b * factor2; |
889 | } |
890 | |
891 | /*! |
892 | Interpolates along the shortest linear path between the rotational |
893 | positions \a q1 and \a q2. The value \a t should be between 0 and 1, |
894 | indicating the distance to travel between \a q1 and \a q2. |
895 | The result will be normalized(). |
896 | |
897 | If \a t is less than or equal to 0, then \a q1 will be returned. |
898 | If \a t is greater than or equal to 1, then \a q2 will be returned. |
899 | |
900 | The nlerp() function is typically faster than slerp() and will |
901 | give approximate results to spherical interpolation that are |
902 | good enough for some applications. |
903 | |
904 | \sa slerp() |
905 | */ |
906 | QQuaternion QQuaternion::nlerp |
907 | (const QQuaternion& q1, const QQuaternion& q2, float t) |
908 | { |
909 | // Handle the easy cases first. |
910 | if (t <= 0.0f) |
911 | return q1; |
912 | else if (t >= 1.0f) |
913 | return q2; |
914 | |
915 | // Determine the angle between the two quaternions. |
916 | QQuaternion q2b(q2); |
917 | float dot = QQuaternion::dotProduct(q1, q2); |
918 | if (dot < 0.0f) |
919 | q2b = -q2b; |
920 | |
921 | // Perform the linear interpolation. |
922 | return (q1 * (1.0f - t) + q2b * t).normalized(); |
923 | } |
924 | |
925 | /*! |
926 | Returns the quaternion as a QVariant. |
927 | */ |
928 | QQuaternion::operator QVariant() const |
929 | { |
930 | return QVariant::fromValue(value: *this); |
931 | } |
932 | |
933 | #ifndef QT_NO_DEBUG_STREAM |
934 | |
935 | QDebug operator<<(QDebug dbg, const QQuaternion &q) |
936 | { |
937 | QDebugStateSaver saver(dbg); |
938 | dbg.nospace() << "QQuaternion(scalar:" << q.scalar() |
939 | << ", vector:(" << q.x() << ", " |
940 | << q.y() << ", " << q.z() << "))" ; |
941 | return dbg; |
942 | } |
943 | |
944 | #endif |
945 | |
946 | #ifndef QT_NO_DATASTREAM |
947 | |
948 | /*! |
949 | \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) |
950 | \relates QQuaternion |
951 | |
952 | Writes the given \a quaternion to the given \a stream and returns a |
953 | reference to the stream. |
954 | |
955 | \sa {Serializing Qt Data Types} |
956 | */ |
957 | |
958 | QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) |
959 | { |
960 | stream << quaternion.scalar() << quaternion.x() |
961 | << quaternion.y() << quaternion.z(); |
962 | return stream; |
963 | } |
964 | |
965 | /*! |
966 | \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) |
967 | \relates QQuaternion |
968 | |
969 | Reads a quaternion from the given \a stream into the given \a quaternion |
970 | and returns a reference to the stream. |
971 | |
972 | \sa {Serializing Qt Data Types} |
973 | */ |
974 | |
975 | QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) |
976 | { |
977 | float scalar, x, y, z; |
978 | stream >> scalar; |
979 | stream >> x; |
980 | stream >> y; |
981 | stream >> z; |
982 | quaternion.setScalar(scalar); |
983 | quaternion.setX(x); |
984 | quaternion.setY(y); |
985 | quaternion.setZ(z); |
986 | return stream; |
987 | } |
988 | |
989 | #endif // QT_NO_DATASTREAM |
990 | |
991 | #endif |
992 | |
993 | QT_END_NAMESPACE |
994 | |