| 1 | // Copyright (C) 2020 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "qquaternion.h" |
| 5 | #include <QtCore/qdatastream.h> |
| 6 | #include <QtCore/qmath.h> |
| 7 | #include <QtCore/qvariant.h> |
| 8 | #include <QtCore/qdebug.h> |
| 9 | |
| 10 | #include <cmath> |
| 11 | |
| 12 | QT_BEGIN_NAMESPACE |
| 13 | |
| 14 | #ifndef QT_NO_QUATERNION |
| 15 | |
| 16 | /*! |
| 17 | \class QQuaternion |
| 18 | \brief The QQuaternion class represents a quaternion consisting of a vector and scalar. |
| 19 | \since 4.6 |
| 20 | \ingroup painting-3D |
| 21 | \inmodule QtGui |
| 22 | |
| 23 | Quaternions are used to represent rotations in 3D space, and |
| 24 | consist of a 3D rotation axis specified by the x, y, and z |
| 25 | coordinates, and a scalar representing the rotation angle. |
| 26 | */ |
| 27 | |
| 28 | /*! |
| 29 | \fn QQuaternion::QQuaternion() noexcept |
| 30 | |
| 31 | Constructs an identity quaternion (1, 0, 0, 0), i.e. with the vector (0, 0, 0) |
| 32 | and scalar 1. |
| 33 | */ |
| 34 | |
| 35 | /*! |
| 36 | \fn QQuaternion::QQuaternion(Qt::Initialization) noexcept |
| 37 | \since 5.5 |
| 38 | \internal |
| 39 | |
| 40 | Constructs a quaternion without initializing the contents. |
| 41 | */ |
| 42 | |
| 43 | /*! |
| 44 | \fn QQuaternion::QQuaternion(float scalar, float xpos, float ypos, float zpos) noexcept |
| 45 | |
| 46 | Constructs a quaternion with the vector (\a xpos, \a ypos, \a zpos) |
| 47 | and \a scalar. |
| 48 | */ |
| 49 | |
| 50 | #ifndef QT_NO_VECTOR3D |
| 51 | |
| 52 | /*! |
| 53 | \fn QQuaternion::QQuaternion(float scalar, const QVector3D &vector) noexcept |
| 54 | |
| 55 | Constructs a quaternion vector from the specified \a vector and |
| 56 | \a scalar. |
| 57 | |
| 58 | \sa vector(), scalar() |
| 59 | */ |
| 60 | |
| 61 | /*! |
| 62 | \fn QVector3D QQuaternion::vector() const noexcept |
| 63 | |
| 64 | Returns the vector component of this quaternion. |
| 65 | |
| 66 | \sa setVector(), scalar() |
| 67 | */ |
| 68 | |
| 69 | /*! |
| 70 | \fn void QQuaternion::setVector(const QVector3D &vector) noexcept |
| 71 | |
| 72 | Sets the vector component of this quaternion to \a vector. |
| 73 | |
| 74 | \sa vector(), setScalar() |
| 75 | */ |
| 76 | |
| 77 | #endif |
| 78 | |
| 79 | /*! |
| 80 | \fn void QQuaternion::setVector(float x, float y, float z) noexcept |
| 81 | |
| 82 | Sets the vector component of this quaternion to (\a x, \a y, \a z). |
| 83 | |
| 84 | \sa vector(), setScalar() |
| 85 | */ |
| 86 | |
| 87 | #ifndef QT_NO_VECTOR4D |
| 88 | |
| 89 | /*! |
| 90 | \fn QQuaternion::QQuaternion(const QVector4D &vector) noexcept |
| 91 | |
| 92 | Constructs a quaternion from the components of \a vector. |
| 93 | */ |
| 94 | |
| 95 | /*! |
| 96 | \fn QVector4D QQuaternion::toVector4D() const noexcept |
| 97 | |
| 98 | Returns this quaternion as a 4D vector. |
| 99 | */ |
| 100 | |
| 101 | #endif |
| 102 | |
| 103 | /*! |
| 104 | \fn bool QQuaternion::isNull() const noexcept |
| 105 | |
| 106 | Returns \c true if the x, y, z, and scalar components of this |
| 107 | quaternion are set to 0.0; otherwise returns \c false. |
| 108 | */ |
| 109 | |
| 110 | /*! |
| 111 | \fn bool QQuaternion::isIdentity() const noexcept |
| 112 | |
| 113 | Returns \c true if the x, y, and z components of this |
| 114 | quaternion are set to 0.0, and the scalar component is set |
| 115 | to 1.0; otherwise returns \c false. |
| 116 | */ |
| 117 | |
| 118 | /*! |
| 119 | \fn float QQuaternion::x() const noexcept |
| 120 | |
| 121 | Returns the x coordinate of this quaternion's vector. |
| 122 | |
| 123 | \sa setX(), y(), z(), scalar() |
| 124 | */ |
| 125 | |
| 126 | /*! |
| 127 | \fn float QQuaternion::y() const noexcept |
| 128 | |
| 129 | Returns the y coordinate of this quaternion's vector. |
| 130 | |
| 131 | \sa setY(), x(), z(), scalar() |
| 132 | */ |
| 133 | |
| 134 | /*! |
| 135 | \fn float QQuaternion::z() const noexcept |
| 136 | |
| 137 | Returns the z coordinate of this quaternion's vector. |
| 138 | |
| 139 | \sa setZ(), x(), y(), scalar() |
| 140 | */ |
| 141 | |
| 142 | /*! |
| 143 | \fn float QQuaternion::scalar() const noexcept |
| 144 | |
| 145 | Returns the scalar component of this quaternion. |
| 146 | |
| 147 | \sa setScalar(), x(), y(), z() |
| 148 | */ |
| 149 | |
| 150 | /*! |
| 151 | \fn void QQuaternion::setX(float x) noexcept |
| 152 | |
| 153 | Sets the x coordinate of this quaternion's vector to the given |
| 154 | \a x coordinate. |
| 155 | |
| 156 | \sa x(), setY(), setZ(), setScalar() |
| 157 | */ |
| 158 | |
| 159 | /*! |
| 160 | \fn void QQuaternion::setY(float y) noexcept |
| 161 | |
| 162 | Sets the y coordinate of this quaternion's vector to the given |
| 163 | \a y coordinate. |
| 164 | |
| 165 | \sa y(), setX(), setZ(), setScalar() |
| 166 | */ |
| 167 | |
| 168 | /*! |
| 169 | \fn void QQuaternion::setZ(float z) noexcept |
| 170 | |
| 171 | Sets the z coordinate of this quaternion's vector to the given |
| 172 | \a z coordinate. |
| 173 | |
| 174 | \sa z(), setX(), setY(), setScalar() |
| 175 | */ |
| 176 | |
| 177 | /*! |
| 178 | \fn void QQuaternion::setScalar(float scalar) noexcept |
| 179 | |
| 180 | Sets the scalar component of this quaternion to \a scalar. |
| 181 | |
| 182 | \sa scalar(), setX(), setY(), setZ() |
| 183 | */ |
| 184 | |
| 185 | /*! |
| 186 | \fn float QQuaternion::dotProduct(const QQuaternion &q1, const QQuaternion &q2) noexcept |
| 187 | \since 5.5 |
| 188 | |
| 189 | Returns the dot product of \a q1 and \a q2. |
| 190 | |
| 191 | \sa length() |
| 192 | */ |
| 193 | |
| 194 | /*! |
| 195 | Returns the length of the quaternion. This is also called the "norm". |
| 196 | |
| 197 | \sa lengthSquared(), normalized(), dotProduct() |
| 198 | */ |
| 199 | float QQuaternion::length() const |
| 200 | { |
| 201 | return qHypot(first: xp, rest: yp, rest: zp, rest: wp); |
| 202 | } |
| 203 | |
| 204 | /*! |
| 205 | Returns the squared length of the quaternion. |
| 206 | |
| 207 | \note Though cheap to compute, this is susceptible to overflow and underflow |
| 208 | that length() avoids in many cases. |
| 209 | |
| 210 | \sa length(), dotProduct() |
| 211 | */ |
| 212 | float QQuaternion::lengthSquared() const |
| 213 | { |
| 214 | return xp * xp + yp * yp + zp * zp + wp * wp; |
| 215 | } |
| 216 | |
| 217 | /*! |
| 218 | Returns the normalized unit form of this quaternion. |
| 219 | |
| 220 | If this quaternion is null, then a null quaternion is returned. |
| 221 | If the length of the quaternion is very close to 1, then the quaternion |
| 222 | will be returned as-is. Otherwise the normalized form of the |
| 223 | quaternion of length 1 will be returned. |
| 224 | |
| 225 | \sa normalize(), length(), dotProduct() |
| 226 | */ |
| 227 | QQuaternion QQuaternion::normalized() const |
| 228 | { |
| 229 | const float scale = length(); |
| 230 | if (qFuzzyIsNull(f: scale)) |
| 231 | return QQuaternion(0.0f, 0.0f, 0.0f, 0.0f); |
| 232 | return *this / scale; |
| 233 | } |
| 234 | |
| 235 | /*! |
| 236 | Normalizes the current quaternion in place. Nothing happens if this |
| 237 | is a null quaternion or the length of the quaternion is very close to 1. |
| 238 | |
| 239 | \sa length(), normalized() |
| 240 | */ |
| 241 | void QQuaternion::normalize() |
| 242 | { |
| 243 | const float len = length(); |
| 244 | if (qFuzzyIsNull(f: len)) |
| 245 | return; |
| 246 | |
| 247 | xp /= len; |
| 248 | yp /= len; |
| 249 | zp /= len; |
| 250 | wp /= len; |
| 251 | } |
| 252 | |
| 253 | /*! |
| 254 | \fn QQuaternion QQuaternion::inverted() const noexcept |
| 255 | \since 5.5 |
| 256 | |
| 257 | Returns the inverse of this quaternion. |
| 258 | If this quaternion is null, then a null quaternion is returned. |
| 259 | |
| 260 | \sa isNull(), length() |
| 261 | */ |
| 262 | |
| 263 | /*! |
| 264 | \fn QQuaternion QQuaternion::conjugated() const noexcept |
| 265 | \since 5.5 |
| 266 | |
| 267 | Returns the conjugate of this quaternion, which is |
| 268 | (-x, -y, -z, scalar). |
| 269 | */ |
| 270 | |
| 271 | /*! |
| 272 | Rotates \a vector with this quaternion to produce a new vector |
| 273 | in 3D space. The following code: |
| 274 | |
| 275 | \snippet code/src_gui_math3d_qquaternion.cpp 0 |
| 276 | |
| 277 | is equivalent to the following: |
| 278 | |
| 279 | \snippet code/src_gui_math3d_qquaternion.cpp 1 |
| 280 | */ |
| 281 | QVector3D QQuaternion::rotatedVector(const QVector3D &vector) const |
| 282 | { |
| 283 | return (*this * QQuaternion(0, vector) * conjugated()).vector(); |
| 284 | } |
| 285 | |
| 286 | /*! |
| 287 | \fn QQuaternion &QQuaternion::operator+=(const QQuaternion &quaternion) noexcept |
| 288 | |
| 289 | Adds the given \a quaternion to this quaternion and returns a reference to |
| 290 | this quaternion. |
| 291 | |
| 292 | \sa operator-=() |
| 293 | */ |
| 294 | |
| 295 | /*! |
| 296 | \fn QQuaternion &QQuaternion::operator-=(const QQuaternion &quaternion) noexcept |
| 297 | |
| 298 | Subtracts the given \a quaternion from this quaternion and returns a |
| 299 | reference to this quaternion. |
| 300 | |
| 301 | \sa operator+=() |
| 302 | */ |
| 303 | |
| 304 | /*! |
| 305 | \fn QQuaternion &QQuaternion::operator*=(float factor) noexcept |
| 306 | |
| 307 | Multiplies this quaternion's components by the given \a factor, and |
| 308 | returns a reference to this quaternion. |
| 309 | |
| 310 | \sa operator/=() |
| 311 | */ |
| 312 | |
| 313 | /*! |
| 314 | \fn QQuaternion &QQuaternion::operator*=(const QQuaternion &quaternion) noexcept |
| 315 | |
| 316 | Multiplies this quaternion by \a quaternion and returns a reference |
| 317 | to this quaternion. |
| 318 | */ |
| 319 | |
| 320 | /*! |
| 321 | \fn QQuaternion &QQuaternion::operator/=(float divisor) |
| 322 | |
| 323 | Divides this quaternion's components by the given \a divisor, and |
| 324 | returns a reference to this quaternion. |
| 325 | |
| 326 | \sa operator*=() |
| 327 | */ |
| 328 | |
| 329 | #ifndef QT_NO_VECTOR3D |
| 330 | |
| 331 | /*! |
| 332 | \fn void QQuaternion::getAxisAndAngle(QVector3D *axis, float *angle) const noexcept |
| 333 | \since 5.5 |
| 334 | \overload |
| 335 | |
| 336 | Extracts a 3D axis \a axis and a rotating angle \a angle (in degrees) |
| 337 | that corresponds to this quaternion. |
| 338 | |
| 339 | \sa fromAxisAndAngle() |
| 340 | */ |
| 341 | |
| 342 | /*! |
| 343 | Creates a normalized quaternion that corresponds to rotating through |
| 344 | \a angle degrees about the specified 3D \a axis. |
| 345 | |
| 346 | \sa getAxisAndAngle() |
| 347 | */ |
| 348 | QQuaternion QQuaternion::fromAxisAndAngle(const QVector3D &axis, float angle) |
| 349 | { |
| 350 | // Algorithm from: |
| 351 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56 |
| 352 | // We normalize the result just in case the values are close |
| 353 | // to zero, as suggested in the above FAQ. |
| 354 | float a = qDegreesToRadians(degrees: angle / 2.0f); |
| 355 | float s = std::sin(x: a); |
| 356 | float c = std::cos(x: a); |
| 357 | QVector3D ax = axis.normalized(); |
| 358 | return QQuaternion(c, ax.x() * s, ax.y() * s, ax.z() * s).normalized(); |
| 359 | } |
| 360 | |
| 361 | #endif |
| 362 | |
| 363 | /*! |
| 364 | \since 5.5 |
| 365 | |
| 366 | Extracts a 3D axis (\a x, \a y, \a z) and a rotating angle \a angle (in degrees) |
| 367 | that corresponds to this quaternion. |
| 368 | |
| 369 | \sa fromAxisAndAngle() |
| 370 | */ |
| 371 | void QQuaternion::getAxisAndAngle(float *x, float *y, float *z, float *angle) const |
| 372 | { |
| 373 | Q_ASSERT(x && y && z && angle); |
| 374 | |
| 375 | // The quaternion representing the rotation is |
| 376 | // q = cos(A/2)+sin(A/2)*(x*i+y*j+z*k) |
| 377 | |
| 378 | const float length = qHypot(x: xp, y: yp, z: zp); |
| 379 | if (!qFuzzyIsNull(f: length)) { |
| 380 | if (qFuzzyCompare(p1: length, p2: 1.0f)) { |
| 381 | *x = xp; |
| 382 | *y = yp; |
| 383 | *z = zp; |
| 384 | } else { |
| 385 | *x = xp / length; |
| 386 | *y = yp / length; |
| 387 | *z = zp / length; |
| 388 | } |
| 389 | *angle = qRadiansToDegrees(radians: 2.0f * std::atan2(y: length, x: wp)); |
| 390 | } else { |
| 391 | // angle is 0 (mod 2*pi), so any axis will fit |
| 392 | *x = *y = *z = *angle = 0.0f; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | /*! |
| 397 | Creates a normalized quaternion that corresponds to rotating through |
| 398 | \a angle degrees about the 3D axis (\a x, \a y, \a z). |
| 399 | |
| 400 | \sa getAxisAndAngle() |
| 401 | */ |
| 402 | QQuaternion QQuaternion::fromAxisAndAngle |
| 403 | (float x, float y, float z, float angle) |
| 404 | { |
| 405 | float length = qHypot(x, y, z); |
| 406 | if (!qFuzzyCompare(p1: length, p2: 1.0f) && !qFuzzyIsNull(f: length)) { |
| 407 | x /= length; |
| 408 | y /= length; |
| 409 | z /= length; |
| 410 | } |
| 411 | float a = qDegreesToRadians(degrees: angle / 2.0f); |
| 412 | float s = std::sin(x: a); |
| 413 | float c = std::cos(x: a); |
| 414 | return QQuaternion(c, x * s, y * s, z * s).normalized(); |
| 415 | } |
| 416 | |
| 417 | #ifndef QT_NO_VECTOR3D |
| 418 | |
| 419 | /*! |
| 420 | \fn QVector3D QQuaternion::toEulerAngles() const |
| 421 | \since 5.5 |
| 422 | \overload |
| 423 | |
| 424 | Calculates roll, pitch, and yaw Euler angles (in degrees) |
| 425 | that corresponds to this quaternion. |
| 426 | |
| 427 | \sa fromEulerAngles() |
| 428 | */ |
| 429 | |
| 430 | /*! |
| 431 | \fn QQuaternion QQuaternion::fromEulerAngles(const QVector3D &eulerAngles) |
| 432 | \since 5.5 |
| 433 | \overload |
| 434 | |
| 435 | Creates a quaternion that corresponds to a rotation of \a eulerAngles: |
| 436 | eulerAngles.z() degrees around the z axis, eulerAngles.x() degrees around the x axis, |
| 437 | and eulerAngles.y() degrees around the y axis (in that order). |
| 438 | |
| 439 | \sa toEulerAngles() |
| 440 | */ |
| 441 | |
| 442 | #endif // QT_NO_VECTOR3D |
| 443 | |
| 444 | /*! |
| 445 | \since 5.5 |
| 446 | |
| 447 | Calculates \a roll, \a pitch, and \a yaw Euler angles (in degrees) |
| 448 | that corresponds to this quaternion. |
| 449 | |
| 450 | \sa fromEulerAngles() |
| 451 | */ |
| 452 | void QQuaternion::getEulerAngles(float *pitch, float *yaw, float *roll) const |
| 453 | { |
| 454 | Q_ASSERT(pitch && yaw && roll); |
| 455 | |
| 456 | // Algorithm adapted from: |
| 457 | // https://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf |
| 458 | // "A tutorial on SE(3) transformation parameterizations and on-manifold optimization". |
| 459 | |
| 460 | // We can only detect Gimbal lock when we normalize, which we can't do when |
| 461 | // length is nearly zero. Do so before multiplying coordinates, to avoid |
| 462 | // underflow. |
| 463 | const float len = length(); |
| 464 | const bool rescale = !qFuzzyIsNull(f: len); |
| 465 | const float xps = rescale ? xp / len : xp; |
| 466 | const float yps = rescale ? yp / len : yp; |
| 467 | const float zps = rescale ? zp / len : zp; |
| 468 | const float wps = rescale ? wp / len : wp; |
| 469 | |
| 470 | const float xx = xps * xps; |
| 471 | const float xy = xps * yps; |
| 472 | const float xz = xps * zps; |
| 473 | const float xw = xps * wps; |
| 474 | const float yy = yps * yps; |
| 475 | const float yz = yps * zps; |
| 476 | const float yw = yps * wps; |
| 477 | const float zz = zps * zps; |
| 478 | const float zw = zps * wps; |
| 479 | |
| 480 | // For the common case, we have a hidden division by cos(pitch) to calculate |
| 481 | // yaw and roll: atan2(a / cos(pitch), b / cos(pitch)) = atan2(a, b). This equation |
| 482 | // wouldn't work if cos(pitch) is close to zero (i.e. abs(sin(pitch)) =~ 1.0). |
| 483 | // This threshold is copied from qFuzzyIsNull() to avoid the hidden division by zero. |
| 484 | constexpr float epsilon = 0.00001f; |
| 485 | |
| 486 | const float sinp = -2.0f * (yz - xw); |
| 487 | if (std::abs(x: sinp) < 1.0f - epsilon) { |
| 488 | *pitch = std::asin(x: sinp); |
| 489 | *yaw = std::atan2(y: 2.0f * (xz + yw), x: 1.0f - 2.0f * (xx + yy)); |
| 490 | *roll = std::atan2(y: 2.0f * (xy + zw), x: 1.0f - 2.0f * (xx + zz)); |
| 491 | } else { |
| 492 | // Gimbal lock case, which doesn't have a unique solution. We just use |
| 493 | // XY rotation. |
| 494 | *pitch = std::copysign(x: static_cast<float>(M_PI_2), y: sinp); |
| 495 | *yaw = 2.0f * std::atan2(y: yps, x: wps); |
| 496 | *roll = 0.0f; |
| 497 | } |
| 498 | |
| 499 | *pitch = qRadiansToDegrees(radians: *pitch); |
| 500 | *yaw = qRadiansToDegrees(radians: *yaw); |
| 501 | *roll = qRadiansToDegrees(radians: *roll); |
| 502 | } |
| 503 | |
| 504 | /*! |
| 505 | \since 5.5 |
| 506 | |
| 507 | Creates a quaternion that corresponds to a rotation of |
| 508 | \a roll degrees around the z axis, \a pitch degrees around the x axis, |
| 509 | and \a yaw degrees around the y axis (in that order). |
| 510 | |
| 511 | \sa getEulerAngles() |
| 512 | */ |
| 513 | QQuaternion QQuaternion::fromEulerAngles(float pitch, float yaw, float roll) |
| 514 | { |
| 515 | // Algorithm from: |
| 516 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q60 |
| 517 | |
| 518 | pitch = qDegreesToRadians(degrees: pitch); |
| 519 | yaw = qDegreesToRadians(degrees: yaw); |
| 520 | roll = qDegreesToRadians(degrees: roll); |
| 521 | |
| 522 | pitch *= 0.5f; |
| 523 | yaw *= 0.5f; |
| 524 | roll *= 0.5f; |
| 525 | |
| 526 | const float c1 = std::cos(x: yaw); |
| 527 | const float s1 = std::sin(x: yaw); |
| 528 | const float c2 = std::cos(x: roll); |
| 529 | const float s2 = std::sin(x: roll); |
| 530 | const float c3 = std::cos(x: pitch); |
| 531 | const float s3 = std::sin(x: pitch); |
| 532 | const float c1c2 = c1 * c2; |
| 533 | const float s1s2 = s1 * s2; |
| 534 | |
| 535 | const float w = c1c2 * c3 + s1s2 * s3; |
| 536 | const float x = c1c2 * s3 + s1s2 * c3; |
| 537 | const float y = s1 * c2 * c3 - c1 * s2 * s3; |
| 538 | const float z = c1 * s2 * c3 - s1 * c2 * s3; |
| 539 | |
| 540 | return QQuaternion(w, x, y, z); |
| 541 | } |
| 542 | |
| 543 | /*! |
| 544 | \since 5.5 |
| 545 | |
| 546 | Creates a rotation matrix that corresponds to this quaternion. |
| 547 | |
| 548 | \note If this quaternion is not normalized, |
| 549 | the resulting rotation matrix will contain scaling information. |
| 550 | |
| 551 | \sa fromRotationMatrix(), getAxes() |
| 552 | */ |
| 553 | QMatrix3x3 QQuaternion::toRotationMatrix() const |
| 554 | { |
| 555 | // Algorithm from: |
| 556 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q54 |
| 557 | |
| 558 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
| 559 | |
| 560 | const float f2x = xp + xp; |
| 561 | const float f2y = yp + yp; |
| 562 | const float f2z = zp + zp; |
| 563 | const float f2xw = f2x * wp; |
| 564 | const float f2yw = f2y * wp; |
| 565 | const float f2zw = f2z * wp; |
| 566 | const float f2xx = f2x * xp; |
| 567 | const float f2xy = f2x * yp; |
| 568 | const float f2xz = f2x * zp; |
| 569 | const float f2yy = f2y * yp; |
| 570 | const float f2yz = f2y * zp; |
| 571 | const float f2zz = f2z * zp; |
| 572 | |
| 573 | rot3x3(0, 0) = 1.0f - (f2yy + f2zz); |
| 574 | rot3x3(0, 1) = f2xy - f2zw; |
| 575 | rot3x3(0, 2) = f2xz + f2yw; |
| 576 | rot3x3(1, 0) = f2xy + f2zw; |
| 577 | rot3x3(1, 1) = 1.0f - (f2xx + f2zz); |
| 578 | rot3x3(1, 2) = f2yz - f2xw; |
| 579 | rot3x3(2, 0) = f2xz - f2yw; |
| 580 | rot3x3(2, 1) = f2yz + f2xw; |
| 581 | rot3x3(2, 2) = 1.0f - (f2xx + f2yy); |
| 582 | |
| 583 | return rot3x3; |
| 584 | } |
| 585 | |
| 586 | /*! |
| 587 | \since 5.5 |
| 588 | |
| 589 | Creates a quaternion that corresponds to a rotation matrix \a rot3x3. |
| 590 | |
| 591 | \note If a given rotation matrix is not normalized, |
| 592 | the resulting quaternion will contain scaling information. |
| 593 | |
| 594 | \sa toRotationMatrix(), fromAxes() |
| 595 | */ |
| 596 | QQuaternion QQuaternion::fromRotationMatrix(const QMatrix3x3 &rot3x3) |
| 597 | { |
| 598 | // Algorithm from: |
| 599 | // http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q55 |
| 600 | |
| 601 | float scalar; |
| 602 | float axis[3]; |
| 603 | |
| 604 | const float trace = rot3x3(0, 0) + rot3x3(1, 1) + rot3x3(2, 2); |
| 605 | if (trace > 0.00000001f) { |
| 606 | const float s = 2.0f * std::sqrt(x: trace + 1.0f); |
| 607 | scalar = 0.25f * s; |
| 608 | axis[0] = (rot3x3(2, 1) - rot3x3(1, 2)) / s; |
| 609 | axis[1] = (rot3x3(0, 2) - rot3x3(2, 0)) / s; |
| 610 | axis[2] = (rot3x3(1, 0) - rot3x3(0, 1)) / s; |
| 611 | } else { |
| 612 | static int s_next[3] = { 1, 2, 0 }; |
| 613 | int i = 0; |
| 614 | if (rot3x3(1, 1) > rot3x3(0, 0)) |
| 615 | i = 1; |
| 616 | if (rot3x3(2, 2) > rot3x3(i, i)) |
| 617 | i = 2; |
| 618 | int j = s_next[i]; |
| 619 | int k = s_next[j]; |
| 620 | |
| 621 | const float s = 2.0f * std::sqrt(x: rot3x3(i, i) - rot3x3(j, j) - rot3x3(k, k) + 1.0f); |
| 622 | axis[i] = 0.25f * s; |
| 623 | scalar = (rot3x3(k, j) - rot3x3(j, k)) / s; |
| 624 | axis[j] = (rot3x3(j, i) + rot3x3(i, j)) / s; |
| 625 | axis[k] = (rot3x3(k, i) + rot3x3(i, k)) / s; |
| 626 | } |
| 627 | |
| 628 | return QQuaternion(scalar, axis[0], axis[1], axis[2]); |
| 629 | } |
| 630 | |
| 631 | #ifndef QT_NO_VECTOR3D |
| 632 | |
| 633 | /*! |
| 634 | \since 5.5 |
| 635 | |
| 636 | Returns the 3 orthonormal axes (\a xAxis, \a yAxis, \a zAxis) defining the quaternion. |
| 637 | |
| 638 | \sa fromAxes(), toRotationMatrix() |
| 639 | */ |
| 640 | void QQuaternion::getAxes(QVector3D *xAxis, QVector3D *yAxis, QVector3D *zAxis) const |
| 641 | { |
| 642 | Q_ASSERT(xAxis && yAxis && zAxis); |
| 643 | |
| 644 | const QMatrix3x3 rot3x3(toRotationMatrix()); |
| 645 | |
| 646 | *xAxis = QVector3D(rot3x3(0, 0), rot3x3(1, 0), rot3x3(2, 0)); |
| 647 | *yAxis = QVector3D(rot3x3(0, 1), rot3x3(1, 1), rot3x3(2, 1)); |
| 648 | *zAxis = QVector3D(rot3x3(0, 2), rot3x3(1, 2), rot3x3(2, 2)); |
| 649 | } |
| 650 | |
| 651 | /*! |
| 652 | \since 5.5 |
| 653 | |
| 654 | Constructs the quaternion using 3 axes (\a xAxis, \a yAxis, \a zAxis). |
| 655 | |
| 656 | \note The axes are assumed to be orthonormal. |
| 657 | |
| 658 | \sa getAxes(), fromRotationMatrix() |
| 659 | */ |
| 660 | QQuaternion QQuaternion::fromAxes(const QVector3D &xAxis, const QVector3D &yAxis, const QVector3D &zAxis) |
| 661 | { |
| 662 | QMatrix3x3 rot3x3(Qt::Uninitialized); |
| 663 | rot3x3(0, 0) = xAxis.x(); |
| 664 | rot3x3(1, 0) = xAxis.y(); |
| 665 | rot3x3(2, 0) = xAxis.z(); |
| 666 | rot3x3(0, 1) = yAxis.x(); |
| 667 | rot3x3(1, 1) = yAxis.y(); |
| 668 | rot3x3(2, 1) = yAxis.z(); |
| 669 | rot3x3(0, 2) = zAxis.x(); |
| 670 | rot3x3(1, 2) = zAxis.y(); |
| 671 | rot3x3(2, 2) = zAxis.z(); |
| 672 | |
| 673 | return QQuaternion::fromRotationMatrix(rot3x3); |
| 674 | } |
| 675 | |
| 676 | /*! |
| 677 | \since 5.5 |
| 678 | |
| 679 | Constructs the quaternion using specified forward direction \a direction |
| 680 | and upward direction \a up. |
| 681 | If the upward direction was not specified or the forward and upward |
| 682 | vectors are collinear, a new orthonormal upward direction will be generated. |
| 683 | |
| 684 | \sa fromAxes(), rotationTo() |
| 685 | */ |
| 686 | QQuaternion QQuaternion::fromDirection(const QVector3D &direction, const QVector3D &up) |
| 687 | { |
| 688 | if (qFuzzyIsNull(f: direction.x()) && qFuzzyIsNull(f: direction.y()) && qFuzzyIsNull(f: direction.z())) |
| 689 | return QQuaternion(); |
| 690 | |
| 691 | const QVector3D zAxis(direction.normalized()); |
| 692 | QVector3D xAxis(QVector3D::crossProduct(v1: up, v2: zAxis)); |
| 693 | if (qFuzzyIsNull(f: xAxis.lengthSquared())) { |
| 694 | // collinear or invalid up vector; derive shortest arc to new direction |
| 695 | return QQuaternion::rotationTo(from: QVector3D(0.0f, 0.0f, 1.0f), to: zAxis); |
| 696 | } |
| 697 | |
| 698 | xAxis.normalize(); |
| 699 | const QVector3D yAxis(QVector3D::crossProduct(v1: zAxis, v2: xAxis)); |
| 700 | |
| 701 | return QQuaternion::fromAxes(xAxis, yAxis, zAxis); |
| 702 | } |
| 703 | |
| 704 | /*! |
| 705 | \since 5.5 |
| 706 | |
| 707 | Returns the shortest arc quaternion to rotate from the direction described by the vector \a from |
| 708 | to the direction described by the vector \a to. |
| 709 | |
| 710 | \sa fromDirection() |
| 711 | */ |
| 712 | QQuaternion QQuaternion::rotationTo(const QVector3D &from, const QVector3D &to) |
| 713 | { |
| 714 | // Based on Stan Melax's article in Game Programming Gems |
| 715 | |
| 716 | const QVector3D v0(from.normalized()); |
| 717 | const QVector3D v1(to.normalized()); |
| 718 | |
| 719 | float d = QVector3D::dotProduct(v1: v0, v2: v1) + 1.0f; |
| 720 | |
| 721 | // if dest vector is close to the inverse of source vector, ANY axis of rotation is valid |
| 722 | if (qFuzzyIsNull(f: d)) { |
| 723 | QVector3D axis = QVector3D::crossProduct(v1: QVector3D(1.0f, 0.0f, 0.0f), v2: v0); |
| 724 | if (qFuzzyIsNull(f: axis.lengthSquared())) |
| 725 | axis = QVector3D::crossProduct(v1: QVector3D(0.0f, 1.0f, 0.0f), v2: v0); |
| 726 | axis.normalize(); |
| 727 | |
| 728 | // same as QQuaternion::fromAxisAndAngle(axis, 180.0f) |
| 729 | return QQuaternion(0.0f, axis.x(), axis.y(), axis.z()); |
| 730 | } |
| 731 | |
| 732 | d = std::sqrt(x: 2.0f * d); |
| 733 | const QVector3D axis(QVector3D::crossProduct(v1: v0, v2: v1) / d); |
| 734 | |
| 735 | return QQuaternion(d * 0.5f, axis).normalized(); |
| 736 | } |
| 737 | |
| 738 | #endif // QT_NO_VECTOR3D |
| 739 | |
| 740 | /*! |
| 741 | \fn bool QQuaternion::operator==(const QQuaternion &q1, const QQuaternion &q2) noexcept |
| 742 | |
| 743 | Returns \c true if \a q1 is equal to \a q2; otherwise returns \c false. |
| 744 | This operator uses an exact floating-point comparison. |
| 745 | */ |
| 746 | |
| 747 | /*! |
| 748 | \fn bool QQuaternion::operator!=(const QQuaternion &q1, const QQuaternion &q2) noexcept |
| 749 | |
| 750 | Returns \c true if \a q1 is not equal to \a q2; otherwise returns \c false. |
| 751 | This operator uses an exact floating-point comparison. |
| 752 | */ |
| 753 | |
| 754 | /*! |
| 755 | \fn const QQuaternion operator+(const QQuaternion &q1, const QQuaternion &q2) noexcept |
| 756 | \relates QQuaternion |
| 757 | |
| 758 | Returns a QQuaternion object that is the sum of the given quaternions, |
| 759 | \a q1 and \a q2; each component is added separately. |
| 760 | |
| 761 | \sa QQuaternion::operator+=() |
| 762 | */ |
| 763 | |
| 764 | /*! |
| 765 | \fn const QQuaternion operator-(const QQuaternion &q1, const QQuaternion &q2) noexcept |
| 766 | \relates QQuaternion |
| 767 | |
| 768 | Returns a QQuaternion object that is formed by subtracting |
| 769 | \a q2 from \a q1; each component is subtracted separately. |
| 770 | |
| 771 | \sa QQuaternion::operator-=() |
| 772 | */ |
| 773 | |
| 774 | /*! |
| 775 | \fn const QQuaternion operator*(float factor, const QQuaternion &quaternion) noexcept |
| 776 | \relates QQuaternion |
| 777 | |
| 778 | Returns a copy of the given \a quaternion, multiplied by the |
| 779 | given \a factor. |
| 780 | |
| 781 | \sa QQuaternion::operator*=() |
| 782 | */ |
| 783 | |
| 784 | /*! |
| 785 | \fn const QQuaternion operator*(const QQuaternion &quaternion, float factor) noexcept |
| 786 | \relates QQuaternion |
| 787 | |
| 788 | Returns a copy of the given \a quaternion, multiplied by the |
| 789 | given \a factor. |
| 790 | |
| 791 | \sa QQuaternion::operator*=() |
| 792 | */ |
| 793 | |
| 794 | /*! |
| 795 | \fn const QQuaternion operator*(const QQuaternion &q1, const QQuaternion &q2) noexcept |
| 796 | \relates QQuaternion |
| 797 | |
| 798 | Multiplies \a q1 and \a q2 using quaternion multiplication. |
| 799 | The result corresponds to applying both of the rotations specified |
| 800 | by \a q1 and \a q2. |
| 801 | |
| 802 | \sa QQuaternion::operator*=() |
| 803 | */ |
| 804 | |
| 805 | /*! |
| 806 | \fn const QQuaternion operator-(const QQuaternion &quaternion) noexcept |
| 807 | \relates QQuaternion |
| 808 | \overload |
| 809 | |
| 810 | Returns a QQuaternion object that is formed by changing the sign of |
| 811 | all three components of the given \a quaternion. |
| 812 | |
| 813 | Equivalent to \c {QQuaternion(0,0,0,0) - quaternion}. |
| 814 | */ |
| 815 | |
| 816 | /*! |
| 817 | \fn const QQuaternion operator/(const QQuaternion &quaternion, float divisor) |
| 818 | \relates QQuaternion |
| 819 | |
| 820 | Returns the QQuaternion object formed by dividing all components of |
| 821 | the given \a quaternion by the given \a divisor. |
| 822 | |
| 823 | \sa QQuaternion::operator/=() |
| 824 | */ |
| 825 | |
| 826 | #ifndef QT_NO_VECTOR3D |
| 827 | |
| 828 | /*! |
| 829 | \fn QVector3D operator*(const QQuaternion &quaternion, const QVector3D &vec) noexcept |
| 830 | \since 5.5 |
| 831 | \relates QQuaternion |
| 832 | |
| 833 | Rotates a vector \a vec with a quaternion \a quaternion to produce a new vector in 3D space. |
| 834 | */ |
| 835 | |
| 836 | #endif |
| 837 | |
| 838 | /*! |
| 839 | \fn bool qFuzzyCompare(const QQuaternion &q1, const QQuaternion &q2) noexcept |
| 840 | \relates QQuaternion |
| 841 | |
| 842 | Returns \c true if \a q1 and \a q2 are equal, allowing for a small |
| 843 | fuzziness factor for floating-point comparisons; false otherwise. |
| 844 | */ |
| 845 | |
| 846 | /*! |
| 847 | Interpolates along the shortest spherical path between the |
| 848 | rotational positions \a q1 and \a q2. The value \a t should |
| 849 | be between 0 and 1, indicating the spherical distance to travel |
| 850 | between \a q1 and \a q2. |
| 851 | |
| 852 | If \a t is less than or equal to 0, then \a q1 will be returned. |
| 853 | If \a t is greater than or equal to 1, then \a q2 will be returned. |
| 854 | |
| 855 | \sa nlerp() |
| 856 | */ |
| 857 | QQuaternion QQuaternion::slerp |
| 858 | (const QQuaternion &q1, const QQuaternion &q2, float t) |
| 859 | { |
| 860 | // Handle the easy cases first. |
| 861 | if (t <= 0.0f) |
| 862 | return q1; |
| 863 | else if (t >= 1.0f) |
| 864 | return q2; |
| 865 | |
| 866 | // Determine the angle between the two quaternions. |
| 867 | QQuaternion q2b(q2); |
| 868 | float dot = QQuaternion::dotProduct(q1, q2); |
| 869 | if (dot < 0.0f) { |
| 870 | q2b = -q2b; |
| 871 | dot = -dot; |
| 872 | } |
| 873 | |
| 874 | // Get the scale factors. If they are too small, |
| 875 | // then revert to simple linear interpolation. |
| 876 | float factor1 = 1.0f - t; |
| 877 | float factor2 = t; |
| 878 | if ((1.0f - dot) > 0.0000001) { |
| 879 | float angle = std::acos(x: dot); |
| 880 | float sinOfAngle = std::sin(x: angle); |
| 881 | if (sinOfAngle > 0.0000001) { |
| 882 | factor1 = std::sin(x: (1.0f - t) * angle) / sinOfAngle; |
| 883 | factor2 = std::sin(x: t * angle) / sinOfAngle; |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | // Construct the result quaternion. |
| 888 | return q1 * factor1 + q2b * factor2; |
| 889 | } |
| 890 | |
| 891 | /*! |
| 892 | Interpolates along the shortest linear path between the rotational |
| 893 | positions \a q1 and \a q2. The value \a t should be between 0 and 1, |
| 894 | indicating the distance to travel between \a q1 and \a q2. |
| 895 | The result will be normalized(). |
| 896 | |
| 897 | If \a t is less than or equal to 0, then \a q1 will be returned. |
| 898 | If \a t is greater than or equal to 1, then \a q2 will be returned. |
| 899 | |
| 900 | The nlerp() function is typically faster than slerp() and will |
| 901 | give approximate results to spherical interpolation that are |
| 902 | good enough for some applications. |
| 903 | |
| 904 | \sa slerp() |
| 905 | */ |
| 906 | QQuaternion QQuaternion::nlerp |
| 907 | (const QQuaternion &q1, const QQuaternion &q2, float t) |
| 908 | { |
| 909 | // Handle the easy cases first. |
| 910 | if (t <= 0.0f) |
| 911 | return q1; |
| 912 | else if (t >= 1.0f) |
| 913 | return q2; |
| 914 | |
| 915 | // Determine the angle between the two quaternions. |
| 916 | QQuaternion q2b(q2); |
| 917 | float dot = QQuaternion::dotProduct(q1, q2); |
| 918 | if (dot < 0.0f) |
| 919 | q2b = -q2b; |
| 920 | |
| 921 | // Perform the linear interpolation. |
| 922 | return (q1 * (1.0f - t) + q2b * t).normalized(); |
| 923 | } |
| 924 | |
| 925 | /*! |
| 926 | Returns the quaternion as a QVariant. |
| 927 | */ |
| 928 | QQuaternion::operator QVariant() const |
| 929 | { |
| 930 | return QVariant::fromValue(value: *this); |
| 931 | } |
| 932 | |
| 933 | #ifndef QT_NO_DEBUG_STREAM |
| 934 | |
| 935 | QDebug operator<<(QDebug dbg, const QQuaternion &q) |
| 936 | { |
| 937 | QDebugStateSaver saver(dbg); |
| 938 | dbg.nospace() << "QQuaternion(scalar:" << q.scalar() |
| 939 | << ", vector:(" << q.x() << ", " |
| 940 | << q.y() << ", " << q.z() << "))" ; |
| 941 | return dbg; |
| 942 | } |
| 943 | |
| 944 | #endif |
| 945 | |
| 946 | #ifndef QT_NO_DATASTREAM |
| 947 | |
| 948 | /*! |
| 949 | \fn QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) |
| 950 | \relates QQuaternion |
| 951 | |
| 952 | Writes the given \a quaternion to the given \a stream and returns a |
| 953 | reference to the stream. |
| 954 | |
| 955 | \sa {Serializing Qt Data Types} |
| 956 | */ |
| 957 | |
| 958 | QDataStream &operator<<(QDataStream &stream, const QQuaternion &quaternion) |
| 959 | { |
| 960 | stream << quaternion.scalar() << quaternion.x() |
| 961 | << quaternion.y() << quaternion.z(); |
| 962 | return stream; |
| 963 | } |
| 964 | |
| 965 | /*! |
| 966 | \fn QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) |
| 967 | \relates QQuaternion |
| 968 | |
| 969 | Reads a quaternion from the given \a stream into the given \a quaternion |
| 970 | and returns a reference to the stream. |
| 971 | |
| 972 | \sa {Serializing Qt Data Types} |
| 973 | */ |
| 974 | |
| 975 | QDataStream &operator>>(QDataStream &stream, QQuaternion &quaternion) |
| 976 | { |
| 977 | float scalar, x, y, z; |
| 978 | stream >> scalar; |
| 979 | stream >> x; |
| 980 | stream >> y; |
| 981 | stream >> z; |
| 982 | quaternion.setScalar(scalar); |
| 983 | quaternion.setX(x); |
| 984 | quaternion.setY(y); |
| 985 | quaternion.setZ(z); |
| 986 | return stream; |
| 987 | } |
| 988 | |
| 989 | #endif // QT_NO_DATASTREAM |
| 990 | |
| 991 | #endif |
| 992 | |
| 993 | QT_END_NAMESPACE |
| 994 | |