| 1 | // Copyright (C) 2016 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "qbezier_p.h" |
| 5 | #include <qdebug.h> |
| 6 | #include <qline.h> |
| 7 | #include <qmath.h> |
| 8 | #include <qpolygon.h> |
| 9 | |
| 10 | #include <private/qnumeric_p.h> |
| 11 | |
| 12 | #include <tuple> // for std::tie() |
| 13 | |
| 14 | QT_BEGIN_NAMESPACE |
| 15 | |
| 16 | //#define QDEBUG_BEZIER |
| 17 | |
| 18 | /*! |
| 19 | \internal |
| 20 | */ |
| 21 | QPolygonF QBezier::toPolygon(qreal bezier_flattening_threshold) const |
| 22 | { |
| 23 | // flattening is done by splitting the bezier until we can replace the segment by a straight |
| 24 | // line. We split further until the control points are close enough to the line connecting the |
| 25 | // boundary points. |
| 26 | // |
| 27 | // the Distance of a point p from a line given by the points (a,b) is given by: |
| 28 | // |
| 29 | // d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length |
| 30 | // |
| 31 | // We can stop splitting if both control points are close enough to the line. |
| 32 | // To make the algorithm faster we use the manhattan length of the line. |
| 33 | |
| 34 | QPolygonF polygon; |
| 35 | polygon.append(t: QPointF(x1, y1)); |
| 36 | addToPolygon(p: &polygon, bezier_flattening_threshold); |
| 37 | return polygon; |
| 38 | } |
| 39 | |
| 40 | QBezier QBezier::mapBy(const QTransform &transform) const |
| 41 | { |
| 42 | return QBezier::fromPoints(p1: transform.map(p: pt1()), p2: transform.map(p: pt2()), p3: transform.map(p: pt3()), p4: transform.map(p: pt4())); |
| 43 | } |
| 44 | |
| 45 | QBezier QBezier::getSubRange(qreal t0, qreal t1) const |
| 46 | { |
| 47 | QBezier result; |
| 48 | QBezier temp; |
| 49 | |
| 50 | // cut at t1 |
| 51 | if (qFuzzyIsNull(d: t1 - qreal(1.))) { |
| 52 | result = *this; |
| 53 | } else { |
| 54 | temp = *this; |
| 55 | temp.parameterSplitLeft(t: t1, left: &result); |
| 56 | } |
| 57 | |
| 58 | // cut at t0 |
| 59 | if (!qFuzzyIsNull(d: t0)) |
| 60 | result.parameterSplitLeft(t: t0 / t1, left: &temp); |
| 61 | |
| 62 | return result; |
| 63 | } |
| 64 | |
| 65 | void QBezier::addToPolygon(QPolygonF *polygon, qreal bezier_flattening_threshold) const |
| 66 | { |
| 67 | QBezier beziers[10]; |
| 68 | int levels[10]; |
| 69 | beziers[0] = *this; |
| 70 | levels[0] = 9; |
| 71 | int top = 0; |
| 72 | |
| 73 | while (top >= 0) { |
| 74 | QBezier *b = &beziers[top]; |
| 75 | // check if we can pop the top bezier curve from the stack |
| 76 | qreal y4y1 = b->y4 - b->y1; |
| 77 | qreal x4x1 = b->x4 - b->x1; |
| 78 | qreal l = qAbs(t: x4x1) + qAbs(t: y4y1); |
| 79 | qreal d; |
| 80 | if (l > 1.) { |
| 81 | d = qAbs( t: (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) |
| 82 | + qAbs( t: (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); |
| 83 | } else { |
| 84 | d = qAbs(t: b->x1 - b->x2) + qAbs(t: b->y1 - b->y2) + |
| 85 | qAbs(t: b->x1 - b->x3) + qAbs(t: b->y1 - b->y3); |
| 86 | l = 1.; |
| 87 | } |
| 88 | if (d < bezier_flattening_threshold * l || levels[top] == 0) { |
| 89 | // good enough, we pop it off and add the endpoint |
| 90 | polygon->append(t: QPointF(b->x4, b->y4)); |
| 91 | --top; |
| 92 | } else { |
| 93 | // split, second half of the polygon goes lower into the stack |
| 94 | std::tie(args&: b[1], args&: b[0]) = b->split(); |
| 95 | levels[top + 1] = --levels[top]; |
| 96 | ++top; |
| 97 | } |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | void QBezier::addToPolygon(QDataBuffer<QPointF> &polygon, qreal bezier_flattening_threshold) const |
| 102 | { |
| 103 | QBezier beziers[10]; |
| 104 | int levels[10]; |
| 105 | beziers[0] = *this; |
| 106 | levels[0] = 9; |
| 107 | int top = 0; |
| 108 | |
| 109 | while (top >= 0) { |
| 110 | QBezier *b = &beziers[top]; |
| 111 | // check if we can pop the top bezier curve from the stack |
| 112 | qreal y4y1 = b->y4 - b->y1; |
| 113 | qreal x4x1 = b->x4 - b->x1; |
| 114 | qreal l = qAbs(t: x4x1) + qAbs(t: y4y1); |
| 115 | qreal d; |
| 116 | if (l > 1.) { |
| 117 | d = qAbs( t: (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) ) |
| 118 | + qAbs( t: (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) ); |
| 119 | } else { |
| 120 | d = qAbs(t: b->x1 - b->x2) + qAbs(t: b->y1 - b->y2) + |
| 121 | qAbs(t: b->x1 - b->x3) + qAbs(t: b->y1 - b->y3); |
| 122 | l = 1.; |
| 123 | } |
| 124 | if (d < bezier_flattening_threshold * l || levels[top] == 0) { |
| 125 | // good enough, we pop it off and add the endpoint |
| 126 | polygon.add(t: QPointF(b->x4, b->y4)); |
| 127 | --top; |
| 128 | } else { |
| 129 | // split, second half of the polygon goes lower into the stack |
| 130 | std::tie(args&: b[1], args&: b[0]) = b->split(); |
| 131 | levels[top + 1] = --levels[top]; |
| 132 | ++top; |
| 133 | } |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | QRectF QBezier::bounds() const |
| 138 | { |
| 139 | qreal xmin = x1; |
| 140 | qreal xmax = x1; |
| 141 | if (x2 < xmin) |
| 142 | xmin = x2; |
| 143 | else if (x2 > xmax) |
| 144 | xmax = x2; |
| 145 | if (x3 < xmin) |
| 146 | xmin = x3; |
| 147 | else if (x3 > xmax) |
| 148 | xmax = x3; |
| 149 | if (x4 < xmin) |
| 150 | xmin = x4; |
| 151 | else if (x4 > xmax) |
| 152 | xmax = x4; |
| 153 | |
| 154 | qreal ymin = y1; |
| 155 | qreal ymax = y1; |
| 156 | if (y2 < ymin) |
| 157 | ymin = y2; |
| 158 | else if (y2 > ymax) |
| 159 | ymax = y2; |
| 160 | if (y3 < ymin) |
| 161 | ymin = y3; |
| 162 | else if (y3 > ymax) |
| 163 | ymax = y3; |
| 164 | if (y4 < ymin) |
| 165 | ymin = y4; |
| 166 | else if (y4 > ymax) |
| 167 | ymax = y4; |
| 168 | return QRectF(xmin, ymin, xmax-xmin, ymax-ymin); |
| 169 | } |
| 170 | |
| 171 | |
| 172 | enum ShiftResult { |
| 173 | Ok, |
| 174 | Discard, |
| 175 | Split, |
| 176 | Circle |
| 177 | }; |
| 178 | |
| 179 | static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold) |
| 180 | { |
| 181 | const qreal o2 = offset*offset; |
| 182 | const qreal max_dist_line = threshold*offset*offset; |
| 183 | const qreal max_dist_normal = threshold*offset; |
| 184 | const int divisions = 4; |
| 185 | const qreal spacing = qreal(1.0) / divisions; |
| 186 | qreal t = spacing; |
| 187 | for (int i = 1; i < divisions; ++i, t += spacing) { |
| 188 | QPointF p1 = b1->pointAt(t); |
| 189 | QPointF p2 = b2->pointAt(t); |
| 190 | qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y()); |
| 191 | if (qAbs(t: d - o2) > max_dist_line) |
| 192 | return Split; |
| 193 | |
| 194 | QPointF normalPoint = b1->normalVector(t); |
| 195 | qreal l = qAbs(t: normalPoint.x()) + qAbs(t: normalPoint.y()); |
| 196 | if (l != qreal(0.0)) { |
| 197 | d = qAbs( t: normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l; |
| 198 | if (d > max_dist_normal) |
| 199 | return Split; |
| 200 | } |
| 201 | } |
| 202 | return Ok; |
| 203 | } |
| 204 | |
| 205 | QT_WARNING_DISABLE_FLOAT_COMPARE |
| 206 | |
| 207 | static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold) |
| 208 | { |
| 209 | int map[4]; |
| 210 | bool p1_p2_equal = qFuzzyCompare(p1: orig->x1, p2: orig->x2) && qFuzzyCompare(p1: orig->y1, p2: orig->y2); |
| 211 | bool p2_p3_equal = qFuzzyCompare(p1: orig->x2, p2: orig->x3) && qFuzzyCompare(p1: orig->y2, p2: orig->y3); |
| 212 | bool p3_p4_equal = qFuzzyCompare(p1: orig->x3, p2: orig->x4) && qFuzzyCompare(p1: orig->y3, p2: orig->y4); |
| 213 | |
| 214 | QPointF points[4]; |
| 215 | int np = 0; |
| 216 | points[np] = QPointF(orig->x1, orig->y1); |
| 217 | map[0] = 0; |
| 218 | ++np; |
| 219 | if (!p1_p2_equal) { |
| 220 | points[np] = QPointF(orig->x2, orig->y2); |
| 221 | ++np; |
| 222 | } |
| 223 | map[1] = np - 1; |
| 224 | if (!p2_p3_equal) { |
| 225 | points[np] = QPointF(orig->x3, orig->y3); |
| 226 | ++np; |
| 227 | } |
| 228 | map[2] = np - 1; |
| 229 | if (!p3_p4_equal) { |
| 230 | points[np] = QPointF(orig->x4, orig->y4); |
| 231 | ++np; |
| 232 | } |
| 233 | map[3] = np - 1; |
| 234 | if (np == 1) |
| 235 | return Discard; |
| 236 | |
| 237 | QRectF b = orig->bounds(); |
| 238 | if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) { |
| 239 | qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) + |
| 240 | (orig->y1 - orig->y2)*(orig->y1 - orig->y2) * |
| 241 | (orig->x3 - orig->x4)*(orig->x3 - orig->x4) + |
| 242 | (orig->y3 - orig->y4)*(orig->y3 - orig->y4); |
| 243 | qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) + |
| 244 | (orig->y1 - orig->y2)*(orig->y3 - orig->y4); |
| 245 | if (dot < 0 && dot*dot < 0.8*l) |
| 246 | // the points are close and reverse dirction. Approximate the whole |
| 247 | // thing by a semi circle |
| 248 | return Circle; |
| 249 | } |
| 250 | |
| 251 | QPointF points_shifted[4]; |
| 252 | |
| 253 | QLineF prev = QLineF(QPointF(), points[1] - points[0]); |
| 254 | if (!prev.length()) |
| 255 | return Discard; |
| 256 | QPointF prev_normal = prev.normalVector().unitVector().p2(); |
| 257 | |
| 258 | points_shifted[0] = points[0] + offset * prev_normal; |
| 259 | |
| 260 | for (int i = 1; i < np - 1; ++i) { |
| 261 | QLineF next = QLineF(QPointF(), points[i + 1] - points[i]); |
| 262 | QPointF next_normal = next.normalVector().unitVector().p2(); |
| 263 | |
| 264 | QPointF normal_sum = prev_normal + next_normal; |
| 265 | |
| 266 | qreal r = qreal(1.0) + prev_normal.x() * next_normal.x() |
| 267 | + prev_normal.y() * next_normal.y(); |
| 268 | |
| 269 | if (qFuzzyIsNull(d: r)) { |
| 270 | points_shifted[i] = points[i] + offset * prev_normal; |
| 271 | } else { |
| 272 | qreal k = offset / r; |
| 273 | points_shifted[i] = points[i] + k * normal_sum; |
| 274 | } |
| 275 | |
| 276 | prev_normal = next_normal; |
| 277 | } |
| 278 | |
| 279 | points_shifted[np - 1] = points[np - 1] + offset * prev_normal; |
| 280 | |
| 281 | *shifted = QBezier::fromPoints(p1: points_shifted[map[0]], p2: points_shifted[map[1]], |
| 282 | p3: points_shifted[map[2]], p4: points_shifted[map[3]]); |
| 283 | |
| 284 | if (np > 2) |
| 285 | return good_offset(b1: orig, b2: shifted, offset, threshold); |
| 286 | return Ok; |
| 287 | } |
| 288 | |
| 289 | // This value is used to determine the length of control point vectors |
| 290 | // when approximating arc segments as curves. The factor is multiplied |
| 291 | // with the radius of the circle. |
| 292 | #define KAPPA qreal(0.5522847498) |
| 293 | |
| 294 | |
| 295 | static bool addCircle(const QBezier *b, qreal offset, QBezier *o) |
| 296 | { |
| 297 | QPointF normals[3]; |
| 298 | |
| 299 | normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2); |
| 300 | qreal dist = qSqrt(v: normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y()); |
| 301 | if (qFuzzyIsNull(d: dist)) |
| 302 | return false; |
| 303 | normals[0] /= dist; |
| 304 | normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4); |
| 305 | dist = qSqrt(v: normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y()); |
| 306 | if (qFuzzyIsNull(d: dist)) |
| 307 | return false; |
| 308 | normals[2] /= dist; |
| 309 | |
| 310 | normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4); |
| 311 | normals[1] /= -1*qSqrt(v: normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y()); |
| 312 | |
| 313 | qreal angles[2]; |
| 314 | qreal sign = 1.; |
| 315 | for (int i = 0; i < 2; ++i) { |
| 316 | qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y(); |
| 317 | if (cos_a > 1.) |
| 318 | cos_a = 1.; |
| 319 | if (cos_a < -1.) |
| 320 | cos_a = -1; |
| 321 | angles[i] = qAcos(v: cos_a) * qreal(M_1_PI); |
| 322 | } |
| 323 | |
| 324 | if (angles[0] + angles[1] > 1.) { |
| 325 | // more than 180 degrees |
| 326 | normals[1] = -normals[1]; |
| 327 | angles[0] = 1. - angles[0]; |
| 328 | angles[1] = 1. - angles[1]; |
| 329 | sign = -1.; |
| 330 | |
| 331 | } |
| 332 | |
| 333 | QPointF circle[3]; |
| 334 | circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset; |
| 335 | circle[1] = QPointF(qreal(0.5)*(b->x1 + b->x4), qreal(0.5)*(b->y1 + b->y4)) + normals[1]*offset; |
| 336 | circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset; |
| 337 | |
| 338 | for (int i = 0; i < 2; ++i) { |
| 339 | qreal kappa = qreal(2.0) * KAPPA * sign * offset * angles[i]; |
| 340 | |
| 341 | o->x1 = circle[i].x(); |
| 342 | o->y1 = circle[i].y(); |
| 343 | o->x2 = circle[i].x() - normals[i].y()*kappa; |
| 344 | o->y2 = circle[i].y() + normals[i].x()*kappa; |
| 345 | o->x3 = circle[i+1].x() + normals[i+1].y()*kappa; |
| 346 | o->y3 = circle[i+1].y() - normals[i+1].x()*kappa; |
| 347 | o->x4 = circle[i+1].x(); |
| 348 | o->y4 = circle[i+1].y(); |
| 349 | |
| 350 | ++o; |
| 351 | } |
| 352 | return true; |
| 353 | } |
| 354 | |
| 355 | int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const |
| 356 | { |
| 357 | Q_ASSERT(curveSegments); |
| 358 | Q_ASSERT(maxSegments > 0); |
| 359 | |
| 360 | if (qFuzzyCompare(p1: x1, p2: x2) && qFuzzyCompare(p1: x1, p2: x3) && qFuzzyCompare(p1: x1, p2: x4) && |
| 361 | qFuzzyCompare(p1: y1, p2: y2) && qFuzzyCompare(p1: y1, p2: y3) && qFuzzyCompare(p1: y1, p2: y4)) |
| 362 | return 0; |
| 363 | |
| 364 | --maxSegments; |
| 365 | QBezier beziers[10]; |
| 366 | redo: |
| 367 | beziers[0] = *this; |
| 368 | QBezier *b = beziers; |
| 369 | QBezier *o = curveSegments; |
| 370 | |
| 371 | while (b >= beziers) { |
| 372 | int stack_segments = b - beziers + 1; |
| 373 | if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) { |
| 374 | threshold *= qreal(1.5); |
| 375 | if (threshold > qreal(2.0)) |
| 376 | goto give_up; |
| 377 | goto redo; |
| 378 | } |
| 379 | ShiftResult res = shift(orig: b, shifted: o, offset, threshold); |
| 380 | if (res == Discard) { |
| 381 | --b; |
| 382 | } else if (res == Ok) { |
| 383 | ++o; |
| 384 | --b; |
| 385 | } else if (res == Circle && maxSegments - (o - curveSegments) >= 2) { |
| 386 | // add semi circle |
| 387 | if (addCircle(b, offset, o)) |
| 388 | o += 2; |
| 389 | --b; |
| 390 | } else { |
| 391 | std::tie(args&: b[1], args&: b[0]) = b->split(); |
| 392 | ++b; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | give_up: |
| 397 | while (b >= beziers) { |
| 398 | ShiftResult res = shift(orig: b, shifted: o, offset, threshold); |
| 399 | |
| 400 | // if res isn't Ok or Split then *o is undefined |
| 401 | if (res == Ok || res == Split) |
| 402 | ++o; |
| 403 | |
| 404 | --b; |
| 405 | } |
| 406 | |
| 407 | Q_ASSERT(o - curveSegments <= maxSegments); |
| 408 | return o - curveSegments; |
| 409 | } |
| 410 | |
| 411 | #ifdef QDEBUG_BEZIER |
| 412 | static QDebug operator<<(QDebug dbg, const QBezier &bz) |
| 413 | { |
| 414 | dbg << '[' << bz.x1<< ", " << bz.y1 << "], " |
| 415 | << '[' << bz.x2 <<", " << bz.y2 << "], " |
| 416 | << '[' << bz.x3 <<", " << bz.y3 << "], " |
| 417 | << '[' << bz.x4 <<", " << bz.y4 << ']'; |
| 418 | return dbg; |
| 419 | } |
| 420 | #endif |
| 421 | |
| 422 | qreal QBezier::length(qreal error) const |
| 423 | { |
| 424 | qreal length = qreal(0.0); |
| 425 | |
| 426 | addIfClose(length: &length, error); |
| 427 | |
| 428 | return length; |
| 429 | } |
| 430 | |
| 431 | void QBezier::addIfClose(qreal *length, qreal error) const |
| 432 | { |
| 433 | qreal len = qreal(0.0); /* arc length */ |
| 434 | qreal chord; /* chord length */ |
| 435 | |
| 436 | len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length(); |
| 437 | len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length(); |
| 438 | len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length(); |
| 439 | |
| 440 | chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length(); |
| 441 | |
| 442 | if ((len-chord) > error) { |
| 443 | const auto halves = split(); /* split in two */ |
| 444 | halves.first.addIfClose(length, error); /* try left side */ |
| 445 | halves.second.addIfClose(length, error); /* try right side */ |
| 446 | return; |
| 447 | } |
| 448 | |
| 449 | *length = *length + len; |
| 450 | |
| 451 | return; |
| 452 | } |
| 453 | |
| 454 | qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const |
| 455 | { |
| 456 | qreal py0 = pointAt(t: t0).y(); |
| 457 | qreal py1 = pointAt(t: t1).y(); |
| 458 | |
| 459 | if (py0 > py1) { |
| 460 | qSwap(value1&: py0, value2&: py1); |
| 461 | qSwap(value1&: t0, value2&: t1); |
| 462 | } |
| 463 | |
| 464 | Q_ASSERT(py0 <= py1); |
| 465 | |
| 466 | if (py0 >= y) |
| 467 | return t0; |
| 468 | else if (py1 <= y) |
| 469 | return t1; |
| 470 | |
| 471 | Q_ASSERT(py0 < y && y < py1); |
| 472 | |
| 473 | qreal lt = t0; |
| 474 | qreal dt; |
| 475 | do { |
| 476 | qreal t = qreal(0.5) * (t0 + t1); |
| 477 | |
| 478 | qreal a, b, c, d; |
| 479 | QBezier::coefficients(t, a, b, c, d); |
| 480 | qreal yt = a * y1 + b * y2 + c * y3 + d * y4; |
| 481 | |
| 482 | if (yt < y) { |
| 483 | t0 = t; |
| 484 | py0 = yt; |
| 485 | } else { |
| 486 | t1 = t; |
| 487 | py1 = yt; |
| 488 | } |
| 489 | dt = lt - t; |
| 490 | lt = t; |
| 491 | } while (qAbs(t: dt) > qreal(1e-7)); |
| 492 | |
| 493 | return t0; |
| 494 | } |
| 495 | |
| 496 | int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const |
| 497 | { |
| 498 | // y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4 |
| 499 | // y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4) |
| 500 | // y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2)) |
| 501 | |
| 502 | const qreal a = -y1 + 3 * y2 - 3 * y3 + y4; |
| 503 | const qreal b = 2 * y1 - 4 * y2 + 2 * y3; |
| 504 | const qreal c = -y1 + y2; |
| 505 | |
| 506 | if (qFuzzyIsNull(d: a)) { |
| 507 | if (qFuzzyIsNull(d: b)) |
| 508 | return 0; |
| 509 | |
| 510 | t0 = -c / b; |
| 511 | return t0 > 0 && t0 < 1; |
| 512 | } |
| 513 | |
| 514 | qreal reciprocal = b * b - 4 * a * c; |
| 515 | |
| 516 | if (qFuzzyIsNull(d: reciprocal)) { |
| 517 | t0 = -b / (2 * a); |
| 518 | return t0 > 0 && t0 < 1; |
| 519 | } else if (reciprocal > 0) { |
| 520 | qreal temp = qSqrt(v: reciprocal); |
| 521 | |
| 522 | t0 = (-b - temp)/(2*a); |
| 523 | t1 = (-b + temp)/(2*a); |
| 524 | |
| 525 | if (t1 < t0) |
| 526 | qSwap(value1&: t0, value2&: t1); |
| 527 | |
| 528 | int count = 0; |
| 529 | qreal t[2] = { 0, 1 }; |
| 530 | |
| 531 | if (t0 > 0 && t0 < 1) |
| 532 | t[count++] = t0; |
| 533 | if (t1 > 0 && t1 < 1) |
| 534 | t[count++] = t1; |
| 535 | |
| 536 | t0 = t[0]; |
| 537 | t1 = t[1]; |
| 538 | |
| 539 | return count; |
| 540 | } |
| 541 | |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | qreal QBezier::tAtLength(qreal l) const |
| 546 | { |
| 547 | qreal len = length(); |
| 548 | qreal t = qreal(1.0); |
| 549 | const qreal error = qreal(0.01); |
| 550 | if (l > len || qFuzzyCompare(p1: l, p2: len)) |
| 551 | return t; |
| 552 | |
| 553 | t *= qreal(0.5); |
| 554 | //int iters = 0; |
| 555 | //qDebug()<<"LEN is "<<l<<len; |
| 556 | qreal lastBigger = qreal(1.0); |
| 557 | while (1) { |
| 558 | //qDebug()<<"\tt is "<<t; |
| 559 | QBezier right = *this; |
| 560 | QBezier left; |
| 561 | right.parameterSplitLeft(t, left: &left); |
| 562 | qreal lLen = left.length(); |
| 563 | if (qAbs(t: lLen - l) < error) |
| 564 | break; |
| 565 | |
| 566 | if (lLen < l) { |
| 567 | t += (lastBigger - t) * qreal(0.5); |
| 568 | } else { |
| 569 | lastBigger = t; |
| 570 | t -= t * qreal(0.5); |
| 571 | } |
| 572 | //++iters; |
| 573 | } |
| 574 | //qDebug()<<"number of iters is "<<iters; |
| 575 | return t; |
| 576 | } |
| 577 | |
| 578 | QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const |
| 579 | { |
| 580 | if (t0 == 0 && t1 == 1) |
| 581 | return *this; |
| 582 | |
| 583 | QBezier bezier = *this; |
| 584 | |
| 585 | QBezier result; |
| 586 | bezier.parameterSplitLeft(t: t0, left: &result); |
| 587 | qreal trueT = (t1-t0)/(1-t0); |
| 588 | bezier.parameterSplitLeft(t: trueT, left: &result); |
| 589 | |
| 590 | return result; |
| 591 | } |
| 592 | |
| 593 | QT_END_NAMESPACE |
| 594 | |