| 1 | // Copyright (C) 2018 The Qt Company Ltd. |
| 2 | // Copyright (C) 2018 Intel Corporation. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 4 | |
| 5 | #include "qdrawhelper_p.h" |
| 6 | #include "qdrawhelper_x86_p.h" |
| 7 | #include "qdrawingprimitive_sse2_p.h" |
| 8 | #include "qpixellayout_p.h" |
| 9 | #include "qrgba64_p.h" |
| 10 | |
| 11 | #if defined(QT_COMPILER_SUPPORTS_AVX2) |
| 12 | |
| 13 | QT_BEGIN_NAMESPACE |
| 14 | |
| 15 | enum { |
| 16 | FixedScale = 1 << 16, |
| 17 | HalfPoint = 1 << 15 |
| 18 | }; |
| 19 | |
| 20 | // Vectorized blend functions: |
| 21 | |
| 22 | // See BYTE_MUL_SSE2 for details. |
| 23 | inline static void Q_DECL_VECTORCALL |
| 24 | BYTE_MUL_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
| 25 | { |
| 26 | __m256i pixelVectorAG = _mm256_srli_epi16(a: pixelVector, count: 8); |
| 27 | __m256i pixelVectorRB = _mm256_and_si256(a: pixelVector, b: colorMask); |
| 28 | |
| 29 | pixelVectorAG = _mm256_mullo_epi16(a: pixelVectorAG, b: alphaChannel); |
| 30 | pixelVectorRB = _mm256_mullo_epi16(a: pixelVectorRB, b: alphaChannel); |
| 31 | |
| 32 | pixelVectorRB = _mm256_add_epi16(a: pixelVectorRB, b: _mm256_srli_epi16(a: pixelVectorRB, count: 8)); |
| 33 | pixelVectorAG = _mm256_add_epi16(a: pixelVectorAG, b: _mm256_srli_epi16(a: pixelVectorAG, count: 8)); |
| 34 | pixelVectorRB = _mm256_add_epi16(a: pixelVectorRB, b: half); |
| 35 | pixelVectorAG = _mm256_add_epi16(a: pixelVectorAG, b: half); |
| 36 | |
| 37 | pixelVectorRB = _mm256_srli_epi16(a: pixelVectorRB, count: 8); |
| 38 | pixelVectorAG = _mm256_andnot_si256(a: colorMask, b: pixelVectorAG); |
| 39 | |
| 40 | pixelVector = _mm256_or_si256(a: pixelVectorAG, b: pixelVectorRB); |
| 41 | } |
| 42 | |
| 43 | inline static void Q_DECL_VECTORCALL |
| 44 | BYTE_MUL_RGB64_AVX2(__m256i &pixelVector, __m256i alphaChannel, __m256i colorMask, __m256i half) |
| 45 | { |
| 46 | __m256i pixelVectorAG = _mm256_srli_epi32(a: pixelVector, count: 16); |
| 47 | __m256i pixelVectorRB = _mm256_and_si256(a: pixelVector, b: colorMask); |
| 48 | |
| 49 | pixelVectorAG = _mm256_mullo_epi32(a: pixelVectorAG, b: alphaChannel); |
| 50 | pixelVectorRB = _mm256_mullo_epi32(a: pixelVectorRB, b: alphaChannel); |
| 51 | |
| 52 | pixelVectorRB = _mm256_add_epi32(a: pixelVectorRB, b: _mm256_srli_epi32(a: pixelVectorRB, count: 16)); |
| 53 | pixelVectorAG = _mm256_add_epi32(a: pixelVectorAG, b: _mm256_srli_epi32(a: pixelVectorAG, count: 16)); |
| 54 | pixelVectorRB = _mm256_add_epi32(a: pixelVectorRB, b: half); |
| 55 | pixelVectorAG = _mm256_add_epi32(a: pixelVectorAG, b: half); |
| 56 | |
| 57 | pixelVectorRB = _mm256_srli_epi32(a: pixelVectorRB, count: 16); |
| 58 | pixelVectorAG = _mm256_andnot_si256(a: colorMask, b: pixelVectorAG); |
| 59 | |
| 60 | pixelVector = _mm256_or_si256(a: pixelVectorAG, b: pixelVectorRB); |
| 61 | } |
| 62 | |
| 63 | // See INTERPOLATE_PIXEL_255_SSE2 for details. |
| 64 | inline static void Q_DECL_VECTORCALL |
| 65 | INTERPOLATE_PIXEL_255_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
| 66 | { |
| 67 | const __m256i srcVectorAG = _mm256_srli_epi16(a: srcVector, count: 8); |
| 68 | const __m256i dstVectorAG = _mm256_srli_epi16(a: dstVector, count: 8); |
| 69 | const __m256i srcVectorRB = _mm256_and_si256(a: srcVector, b: colorMask); |
| 70 | const __m256i dstVectorRB = _mm256_and_si256(a: dstVector, b: colorMask); |
| 71 | const __m256i srcVectorAGalpha = _mm256_mullo_epi16(a: srcVectorAG, b: alphaChannel); |
| 72 | const __m256i srcVectorRBalpha = _mm256_mullo_epi16(a: srcVectorRB, b: alphaChannel); |
| 73 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi16(a: dstVectorAG, b: oneMinusAlphaChannel); |
| 74 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi16(a: dstVectorRB, b: oneMinusAlphaChannel); |
| 75 | __m256i finalAG = _mm256_add_epi16(a: srcVectorAGalpha, b: dstVectorAGoneMinusAlpha); |
| 76 | __m256i finalRB = _mm256_add_epi16(a: srcVectorRBalpha, b: dstVectorRBoneMinusAlpha); |
| 77 | finalAG = _mm256_add_epi16(a: finalAG, b: _mm256_srli_epi16(a: finalAG, count: 8)); |
| 78 | finalRB = _mm256_add_epi16(a: finalRB, b: _mm256_srli_epi16(a: finalRB, count: 8)); |
| 79 | finalAG = _mm256_add_epi16(a: finalAG, b: half); |
| 80 | finalRB = _mm256_add_epi16(a: finalRB, b: half); |
| 81 | finalAG = _mm256_andnot_si256(a: colorMask, b: finalAG); |
| 82 | finalRB = _mm256_srli_epi16(a: finalRB, count: 8); |
| 83 | |
| 84 | dstVector = _mm256_or_si256(a: finalAG, b: finalRB); |
| 85 | } |
| 86 | |
| 87 | inline static void Q_DECL_VECTORCALL |
| 88 | INTERPOLATE_PIXEL_RGB64_AVX2(__m256i srcVector, __m256i &dstVector, __m256i alphaChannel, __m256i oneMinusAlphaChannel, __m256i colorMask, __m256i half) |
| 89 | { |
| 90 | const __m256i srcVectorAG = _mm256_srli_epi32(a: srcVector, count: 16); |
| 91 | const __m256i dstVectorAG = _mm256_srli_epi32(a: dstVector, count: 16); |
| 92 | const __m256i srcVectorRB = _mm256_and_si256(a: srcVector, b: colorMask); |
| 93 | const __m256i dstVectorRB = _mm256_and_si256(a: dstVector, b: colorMask); |
| 94 | const __m256i srcVectorAGalpha = _mm256_mullo_epi32(a: srcVectorAG, b: alphaChannel); |
| 95 | const __m256i srcVectorRBalpha = _mm256_mullo_epi32(a: srcVectorRB, b: alphaChannel); |
| 96 | const __m256i dstVectorAGoneMinusAlpha = _mm256_mullo_epi32(a: dstVectorAG, b: oneMinusAlphaChannel); |
| 97 | const __m256i dstVectorRBoneMinusAlpha = _mm256_mullo_epi32(a: dstVectorRB, b: oneMinusAlphaChannel); |
| 98 | __m256i finalAG = _mm256_add_epi32(a: srcVectorAGalpha, b: dstVectorAGoneMinusAlpha); |
| 99 | __m256i finalRB = _mm256_add_epi32(a: srcVectorRBalpha, b: dstVectorRBoneMinusAlpha); |
| 100 | finalAG = _mm256_add_epi32(a: finalAG, b: _mm256_srli_epi32(a: finalAG, count: 16)); |
| 101 | finalRB = _mm256_add_epi32(a: finalRB, b: _mm256_srli_epi32(a: finalRB, count: 16)); |
| 102 | finalAG = _mm256_add_epi32(a: finalAG, b: half); |
| 103 | finalRB = _mm256_add_epi32(a: finalRB, b: half); |
| 104 | finalAG = _mm256_andnot_si256(a: colorMask, b: finalAG); |
| 105 | finalRB = _mm256_srli_epi32(a: finalRB, count: 16); |
| 106 | |
| 107 | dstVector = _mm256_or_si256(a: finalAG, b: finalRB); |
| 108 | } |
| 109 | |
| 110 | // See BLEND_SOURCE_OVER_ARGB32_SSE2 for details. |
| 111 | inline static void Q_DECL_VECTORCALL BLEND_SOURCE_OVER_ARGB32_AVX2(quint32 *dst, const quint32 *src, const int length) |
| 112 | { |
| 113 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 114 | const __m256i one = _mm256_set1_epi16(w: 0xff); |
| 115 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 116 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 117 | const __m256i offsetMask = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 118 | const __m256i alphaShuffleMask = _mm256_set_epi8(b31: char(0xff),b30: 15,b29: char(0xff),b28: 15,b27: char(0xff),b26: 11,b25: char(0xff),b24: 11,b23: char(0xff),b22: 7,b21: char(0xff),b20: 7,b19: char(0xff),b18: 3,b17: char(0xff),b16: 3, |
| 119 | b15: char(0xff),b14: 15,b13: char(0xff),b12: 15,b11: char(0xff),b10: 11,b09: char(0xff),b08: 11,b07: char(0xff),b06: 7,b05: char(0xff),b04: 7,b03: char(0xff),b02: 3,b01: char(0xff),b00: 3); |
| 120 | |
| 121 | const int minusOffsetToAlignDstOn32Bytes = (reinterpret_cast<quintptr>(dst) >> 2) & 0x7; |
| 122 | |
| 123 | int x = 0; |
| 124 | // Prologue to handle all pixels until dst is 32-byte aligned in one step. |
| 125 | if (minusOffsetToAlignDstOn32Bytes != 0 && x < (length - 7)) { |
| 126 | const __m256i prologueMask = _mm256_sub_epi32(a: _mm256_set1_epi32(i: minusOffsetToAlignDstOn32Bytes - 1), b: offsetMask); |
| 127 | const __m256i srcVector = _mm256_maskload_epi32(X: (const int *)&src[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask); |
| 128 | const __m256i prologueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: prologueMask); |
| 129 | if (!_mm256_testz_si256(a: srcVector, b: prologueAlphaMask)) { |
| 130 | if (_mm256_testc_si256(a: srcVector, b: prologueAlphaMask)) { |
| 131 | _mm256_maskstore_epi32(X: (int *)&dst[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask, Y: srcVector); |
| 132 | } else { |
| 133 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 134 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 135 | __m256i dstVector = _mm256_maskload_epi32(X: (int *)&dst[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask); |
| 136 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 137 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 138 | _mm256_maskstore_epi32(X: (int *)&dst[x - minusOffsetToAlignDstOn32Bytes], M: prologueMask, Y: dstVector); |
| 139 | } |
| 140 | } |
| 141 | x += (8 - minusOffsetToAlignDstOn32Bytes); |
| 142 | } |
| 143 | |
| 144 | for (; x < (length - 7); x += 8) { |
| 145 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 146 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 147 | if (_mm256_testc_si256(a: srcVector, b: alphaMask)) { |
| 148 | _mm256_store_si256(p: (__m256i *)&dst[x], a: srcVector); |
| 149 | } else { |
| 150 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 151 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 152 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 153 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 154 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 155 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 156 | } |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | // Epilogue to handle all remaining pixels in one step. |
| 161 | if (x < length) { |
| 162 | const __m256i epilogueMask = _mm256_add_epi32(a: offsetMask, b: _mm256_set1_epi32(i: x - length)); |
| 163 | const __m256i srcVector = _mm256_maskload_epi32(X: (const int *)&src[x], M: epilogueMask); |
| 164 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: epilogueMask); |
| 165 | if (!_mm256_testz_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 166 | if (_mm256_testc_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 167 | _mm256_maskstore_epi32(X: (int *)&dst[x], M: epilogueMask, Y: srcVector); |
| 168 | } else { |
| 169 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 170 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 171 | __m256i dstVector = _mm256_maskload_epi32(X: (int *)&dst[x], M: epilogueMask); |
| 172 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 173 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 174 | _mm256_maskstore_epi32(X: (int *)&dst[x], M: epilogueMask, Y: dstVector); |
| 175 | } |
| 176 | } |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | |
| 181 | // See BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2 for details. |
| 182 | inline static void Q_DECL_VECTORCALL |
| 183 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(quint32 *dst, const quint32 *src, const int length, const int const_alpha) |
| 184 | { |
| 185 | int x = 0; |
| 186 | |
| 187 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 188 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 189 | |
| 190 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 191 | const __m256i one = _mm256_set1_epi16(w: 0xff); |
| 192 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 193 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 194 | const __m256i alphaShuffleMask = _mm256_set_epi8(b31: char(0xff),b30: 15,b29: char(0xff),b28: 15,b27: char(0xff),b26: 11,b25: char(0xff),b24: 11,b23: char(0xff),b22: 7,b21: char(0xff),b20: 7,b19: char(0xff),b18: 3,b17: char(0xff),b16: 3, |
| 195 | b15: char(0xff),b14: 15,b13: char(0xff),b12: 15,b11: char(0xff),b10: 11,b09: char(0xff),b08: 11,b07: char(0xff),b06: 7,b05: char(0xff),b04: 7,b03: char(0xff),b02: 3,b01: char(0xff),b00: 3); |
| 196 | const __m256i constAlphaVector = _mm256_set1_epi16(w: const_alpha); |
| 197 | for (; x < (length - 7); x += 8) { |
| 198 | __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 199 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 200 | BYTE_MUL_AVX2(pixelVector&: srcVector, alphaChannel: constAlphaVector, colorMask, half); |
| 201 | |
| 202 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 203 | alphaChannel = _mm256_sub_epi16(a: one, b: alphaChannel); |
| 204 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 205 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 206 | dstVector = _mm256_add_epi8(a: dstVector, b: srcVector); |
| 207 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 208 | } |
| 209 | } |
| 210 | SIMD_EPILOGUE(x, length, 7) |
| 211 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 212 | } |
| 213 | |
| 214 | void qt_blend_argb32_on_argb32_avx2(uchar *destPixels, int dbpl, |
| 215 | const uchar *srcPixels, int sbpl, |
| 216 | int w, int h, |
| 217 | int const_alpha) |
| 218 | { |
| 219 | if (const_alpha == 256) { |
| 220 | for (int y = 0; y < h; ++y) { |
| 221 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 222 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 223 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length: w); |
| 224 | destPixels += dbpl; |
| 225 | srcPixels += sbpl; |
| 226 | } |
| 227 | } else if (const_alpha != 0) { |
| 228 | const_alpha = (const_alpha * 255) >> 8; |
| 229 | for (int y = 0; y < h; ++y) { |
| 230 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 231 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 232 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length: w, const_alpha); |
| 233 | destPixels += dbpl; |
| 234 | srcPixels += sbpl; |
| 235 | } |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | void qt_blend_rgb32_on_rgb32_avx2(uchar *destPixels, int dbpl, |
| 240 | const uchar *srcPixels, int sbpl, |
| 241 | int w, int h, |
| 242 | int const_alpha) |
| 243 | { |
| 244 | if (const_alpha == 256) { |
| 245 | for (int y = 0; y < h; ++y) { |
| 246 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 247 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 248 | ::memcpy(dest: dst, src: src, n: w * sizeof(uint)); |
| 249 | srcPixels += sbpl; |
| 250 | destPixels += dbpl; |
| 251 | } |
| 252 | return; |
| 253 | } |
| 254 | if (const_alpha == 0) |
| 255 | return; |
| 256 | |
| 257 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 258 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 259 | |
| 260 | const_alpha = (const_alpha * 255) >> 8; |
| 261 | int one_minus_const_alpha = 255 - const_alpha; |
| 262 | const __m256i constAlphaVector = _mm256_set1_epi16(w: const_alpha); |
| 263 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(w: one_minus_const_alpha); |
| 264 | for (int y = 0; y < h; ++y) { |
| 265 | const quint32 *src = reinterpret_cast<const quint32 *>(srcPixels); |
| 266 | quint32 *dst = reinterpret_cast<quint32 *>(destPixels); |
| 267 | int x = 0; |
| 268 | |
| 269 | // First, align dest to 32 bytes: |
| 270 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, w) |
| 271 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: one_minus_const_alpha); |
| 272 | |
| 273 | // 2) interpolate pixels with AVX2 |
| 274 | for (; x < (w - 7); x += 8) { |
| 275 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 276 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 277 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, alphaChannel: constAlphaVector, oneMinusAlphaChannel: oneMinusConstAlpha, colorMask, half); |
| 278 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 279 | } |
| 280 | |
| 281 | // 3) Epilogue |
| 282 | SIMD_EPILOGUE(x, w, 7) |
| 283 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: one_minus_const_alpha); |
| 284 | |
| 285 | srcPixels += sbpl; |
| 286 | destPixels += dbpl; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | static Q_NEVER_INLINE |
| 291 | void Q_DECL_VECTORCALL qt_memfillXX_avx2(uchar *dest, __m256i value256, qsizetype bytes) |
| 292 | { |
| 293 | __m128i value128 = _mm256_castsi256_si128(a: value256); |
| 294 | |
| 295 | // main body |
| 296 | __m256i *dst256 = reinterpret_cast<__m256i *>(dest); |
| 297 | uchar *end = dest + bytes; |
| 298 | while (reinterpret_cast<uchar *>(dst256 + 4) <= end) { |
| 299 | _mm256_storeu_si256(p: dst256 + 0, a: value256); |
| 300 | _mm256_storeu_si256(p: dst256 + 1, a: value256); |
| 301 | _mm256_storeu_si256(p: dst256 + 2, a: value256); |
| 302 | _mm256_storeu_si256(p: dst256 + 3, a: value256); |
| 303 | dst256 += 4; |
| 304 | } |
| 305 | |
| 306 | // first epilogue: fewer than 128 bytes / 32 entries |
| 307 | bytes = end - reinterpret_cast<uchar *>(dst256); |
| 308 | switch (bytes / sizeof(value256)) { |
| 309 | case 3: _mm256_storeu_si256(p: dst256++, a: value256); Q_FALLTHROUGH(); |
| 310 | case 2: _mm256_storeu_si256(p: dst256++, a: value256); Q_FALLTHROUGH(); |
| 311 | case 1: _mm256_storeu_si256(p: dst256++, a: value256); |
| 312 | } |
| 313 | |
| 314 | // second epilogue: fewer than 32 bytes |
| 315 | __m128i *dst128 = reinterpret_cast<__m128i *>(dst256); |
| 316 | if (bytes & sizeof(value128)) |
| 317 | _mm_storeu_si128(p: dst128++, b: value128); |
| 318 | |
| 319 | // third epilogue: fewer than 16 bytes |
| 320 | if (bytes & 8) |
| 321 | _mm_storel_epi64(p: reinterpret_cast<__m128i *>(end - 8), a: value128); |
| 322 | } |
| 323 | |
| 324 | void qt_memfill64_avx2(quint64 *dest, quint64 value, qsizetype count) |
| 325 | { |
| 326 | #if defined(Q_CC_GNU) && !defined(Q_CC_CLANG) |
| 327 | // work around https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80820 |
| 328 | __m128i value64 = _mm_set_epi64x(0, value); // _mm_cvtsi64_si128(value); |
| 329 | # ifdef Q_PROCESSOR_X86_64 |
| 330 | asm ("" : "+x" (value64)); |
| 331 | # endif |
| 332 | __m256i value256 = _mm256_broadcastq_epi64(value64); |
| 333 | #else |
| 334 | __m256i value256 = _mm256_set1_epi64x(q: value); |
| 335 | #endif |
| 336 | |
| 337 | qt_memfillXX_avx2(dest: reinterpret_cast<uchar *>(dest), value256, bytes: count * sizeof(quint64)); |
| 338 | } |
| 339 | |
| 340 | void qt_memfill32_avx2(quint32 *dest, quint32 value, qsizetype count) |
| 341 | { |
| 342 | if (count % 2) { |
| 343 | // odd number of pixels, round to even |
| 344 | *dest++ = value; |
| 345 | --count; |
| 346 | } |
| 347 | qt_memfillXX_avx2(dest: reinterpret_cast<uchar *>(dest), value256: _mm256_set1_epi32(i: value), bytes: count * sizeof(quint32)); |
| 348 | } |
| 349 | |
| 350 | void QT_FASTCALL comp_func_SourceOver_avx2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha) |
| 351 | { |
| 352 | Q_ASSERT(const_alpha < 256); |
| 353 | |
| 354 | const quint32 *src = (const quint32 *) srcPixels; |
| 355 | quint32 *dst = (quint32 *) destPixels; |
| 356 | |
| 357 | if (const_alpha == 255) |
| 358 | BLEND_SOURCE_OVER_ARGB32_AVX2(dst, src, length); |
| 359 | else |
| 360 | BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_AVX2(dst, src, length, const_alpha); |
| 361 | } |
| 362 | |
| 363 | #if QT_CONFIG(raster_64bit) |
| 364 | void QT_FASTCALL comp_func_SourceOver_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
| 365 | { |
| 366 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 367 | const __m256i half = _mm256_set1_epi32(i: 0x8000); |
| 368 | const __m256i one = _mm256_set1_epi32(i: 0xffff); |
| 369 | const __m256i colorMask = _mm256_set1_epi32(i: 0x0000ffff); |
| 370 | __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 371 | alphaMask = _mm256_unpacklo_epi8(a: alphaMask, b: alphaMask); |
| 372 | const __m256i alphaShuffleMask = _mm256_set_epi8(b31: char(0xff),b30: char(0xff),b29: 15,b28: 14,b27: char(0xff),b26: char(0xff),b25: 15,b24: 14,b23: char(0xff),b22: char(0xff),b21: 7,b20: 6,b19: char(0xff),b18: char(0xff),b17: 7,b16: 6, |
| 373 | b15: char(0xff),b14: char(0xff),b13: 15,b12: 14,b11: char(0xff),b10: char(0xff),b09: 15,b08: 14,b07: char(0xff),b06: char(0xff),b05: 7,b04: 6,b03: char(0xff),b02: char(0xff),b01: 7,b00: 6); |
| 374 | |
| 375 | if (const_alpha == 255) { |
| 376 | int x = 0; |
| 377 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 378 | blend_pixel(dst&: dst[x], src: src[x]); |
| 379 | for (; x < length - 3; x += 4) { |
| 380 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 381 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 382 | // Not all transparent |
| 383 | if (_mm256_testc_si256(a: srcVector, b: alphaMask)) { |
| 384 | // All opaque |
| 385 | _mm256_store_si256(p: (__m256i *)&dst[x], a: srcVector); |
| 386 | } else { |
| 387 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 388 | alphaChannel = _mm256_sub_epi32(a: one, b: alphaChannel); |
| 389 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 390 | BYTE_MUL_RGB64_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 391 | dstVector = _mm256_add_epi16(a: dstVector, b: srcVector); |
| 392 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | SIMD_EPILOGUE(x, length, 3) |
| 397 | blend_pixel(dst&: dst[x], src: src[x]); |
| 398 | } else { |
| 399 | const __m256i constAlphaVector = _mm256_set1_epi32(i: const_alpha | (const_alpha << 8)); |
| 400 | int x = 0; |
| 401 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 402 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 403 | for (; x < length - 3; x += 4) { |
| 404 | __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 405 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 406 | // Not all transparent |
| 407 | BYTE_MUL_RGB64_AVX2(pixelVector&: srcVector, alphaChannel: constAlphaVector, colorMask, half); |
| 408 | |
| 409 | __m256i alphaChannel = _mm256_shuffle_epi8(a: srcVector, b: alphaShuffleMask); |
| 410 | alphaChannel = _mm256_sub_epi32(a: one, b: alphaChannel); |
| 411 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 412 | BYTE_MUL_RGB64_AVX2(pixelVector&: dstVector, alphaChannel, colorMask, half); |
| 413 | dstVector = _mm256_add_epi16(a: dstVector, b: srcVector); |
| 414 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 415 | } |
| 416 | } |
| 417 | SIMD_EPILOGUE(x, length, 3) |
| 418 | blend_pixel(dst&: dst[x], src: src[x], const_alpha); |
| 419 | } |
| 420 | } |
| 421 | #endif |
| 422 | |
| 423 | #if QT_CONFIG(raster_fp) |
| 424 | void QT_FASTCALL comp_func_SourceOver_rgbafp_avx2(QRgbaFloat32 *dst, const QRgbaFloat32 *src, int length, uint const_alpha) |
| 425 | { |
| 426 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 427 | |
| 428 | const float a = const_alpha / 255.0f; |
| 429 | const __m128 one = _mm_set1_ps(w: 1.0f); |
| 430 | const __m128 constAlphaVector = _mm_set1_ps(w: a); |
| 431 | const __m256 one256 = _mm256_set1_ps(w: 1.0f); |
| 432 | const __m256 constAlphaVector256 = _mm256_set1_ps(w: a); |
| 433 | int x = 0; |
| 434 | for (; x < length - 1; x += 2) { |
| 435 | __m256 srcVector = _mm256_loadu_ps(p: (const float *)&src[x]); |
| 436 | __m256 dstVector = _mm256_loadu_ps(p: (const float *)&dst[x]); |
| 437 | srcVector = _mm256_mul_ps(a: srcVector, b: constAlphaVector256); |
| 438 | __m256 alphaChannel = _mm256_permute_ps(srcVector, _MM_SHUFFLE(3, 3, 3, 3)); |
| 439 | alphaChannel = _mm256_sub_ps(a: one256, b: alphaChannel); |
| 440 | dstVector = _mm256_mul_ps(a: dstVector, b: alphaChannel); |
| 441 | dstVector = _mm256_add_ps(a: dstVector, b: srcVector); |
| 442 | _mm256_storeu_ps(p: (float *)(dst + x), a: dstVector); |
| 443 | } |
| 444 | if (x < length) { |
| 445 | __m128 srcVector = _mm_loadu_ps(p: (const float *)&src[x]); |
| 446 | __m128 dstVector = _mm_loadu_ps(p: (const float *)&dst[x]); |
| 447 | srcVector = _mm_mul_ps(a: srcVector, b: constAlphaVector); |
| 448 | __m128 alphaChannel = _mm_permute_ps(srcVector, _MM_SHUFFLE(3, 3, 3, 3)); |
| 449 | alphaChannel = _mm_sub_ps(a: one, b: alphaChannel); |
| 450 | dstVector = _mm_mul_ps(a: dstVector, b: alphaChannel); |
| 451 | dstVector = _mm_add_ps(a: dstVector, b: srcVector); |
| 452 | _mm_storeu_ps(p: (float *)(dst + x), a: dstVector); |
| 453 | } |
| 454 | } |
| 455 | #endif |
| 456 | |
| 457 | void QT_FASTCALL comp_func_Source_avx2(uint *dst, const uint *src, int length, uint const_alpha) |
| 458 | { |
| 459 | if (const_alpha == 255) { |
| 460 | ::memcpy(dest: dst, src: src, n: length * sizeof(uint)); |
| 461 | } else { |
| 462 | const int ialpha = 255 - const_alpha; |
| 463 | |
| 464 | int x = 0; |
| 465 | |
| 466 | // 1) prologue, align on 32 bytes |
| 467 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 468 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: ialpha); |
| 469 | |
| 470 | // 2) interpolate pixels with AVX2 |
| 471 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 472 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 473 | const __m256i constAlphaVector = _mm256_set1_epi16(w: const_alpha); |
| 474 | const __m256i oneMinusConstAlpha = _mm256_set1_epi16(w: ialpha); |
| 475 | for (; x < length - 7; x += 8) { |
| 476 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 477 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 478 | INTERPOLATE_PIXEL_255_AVX2(srcVector, dstVector, alphaChannel: constAlphaVector, oneMinusAlphaChannel: oneMinusConstAlpha, colorMask, half); |
| 479 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 480 | } |
| 481 | |
| 482 | // 3) Epilogue |
| 483 | SIMD_EPILOGUE(x, length, 7) |
| 484 | dst[x] = INTERPOLATE_PIXEL_255(x: src[x], a: const_alpha, y: dst[x], b: ialpha); |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | #if QT_CONFIG(raster_64bit) |
| 489 | void QT_FASTCALL comp_func_Source_rgb64_avx2(QRgba64 *dst, const QRgba64 *src, int length, uint const_alpha) |
| 490 | { |
| 491 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 492 | if (const_alpha == 255) { |
| 493 | ::memcpy(dest: dst, src: src, n: length * sizeof(QRgba64)); |
| 494 | } else { |
| 495 | const uint ca = const_alpha | (const_alpha << 8); // adjust to [0-65535] |
| 496 | const uint cia = 65535 - ca; |
| 497 | |
| 498 | int x = 0; |
| 499 | |
| 500 | // 1) prologue, align on 32 bytes |
| 501 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 502 | dst[x] = interpolate65535(x: src[x], alpha1: ca, y: dst[x], alpha2: cia); |
| 503 | |
| 504 | // 2) interpolate pixels with AVX2 |
| 505 | const __m256i half = _mm256_set1_epi32(i: 0x8000); |
| 506 | const __m256i colorMask = _mm256_set1_epi32(i: 0x0000ffff); |
| 507 | const __m256i constAlphaVector = _mm256_set1_epi32(i: ca); |
| 508 | const __m256i oneMinusConstAlpha = _mm256_set1_epi32(i: cia); |
| 509 | for (; x < length - 3; x += 4) { |
| 510 | const __m256i srcVector = _mm256_lddqu_si256(p: (const __m256i *)&src[x]); |
| 511 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 512 | INTERPOLATE_PIXEL_RGB64_AVX2(srcVector, dstVector, alphaChannel: constAlphaVector, oneMinusAlphaChannel: oneMinusConstAlpha, colorMask, half); |
| 513 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 514 | } |
| 515 | |
| 516 | // 3) Epilogue |
| 517 | SIMD_EPILOGUE(x, length, 3) |
| 518 | dst[x] = interpolate65535(x: src[x], alpha1: ca, y: dst[x], alpha2: cia); |
| 519 | } |
| 520 | } |
| 521 | #endif |
| 522 | |
| 523 | #if QT_CONFIG(raster_fp) |
| 524 | void QT_FASTCALL comp_func_Source_rgbafp_avx2(QRgbaFloat32 *dst, const QRgbaFloat32 *src, int length, uint const_alpha) |
| 525 | { |
| 526 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 527 | if (const_alpha == 255) { |
| 528 | ::memcpy(dest: dst, src: src, n: length * sizeof(QRgbaFloat32)); |
| 529 | } else { |
| 530 | const float ca = const_alpha / 255.f; |
| 531 | const float cia = 1.0f - ca; |
| 532 | |
| 533 | const __m128 constAlphaVector = _mm_set1_ps(w: ca); |
| 534 | const __m128 oneMinusConstAlpha = _mm_set1_ps(w: cia); |
| 535 | const __m256 constAlphaVector256 = _mm256_set1_ps(w: ca); |
| 536 | const __m256 oneMinusConstAlpha256 = _mm256_set1_ps(w: cia); |
| 537 | int x = 0; |
| 538 | for (; x < length - 1; x += 2) { |
| 539 | __m256 srcVector = _mm256_loadu_ps(p: (const float *)&src[x]); |
| 540 | __m256 dstVector = _mm256_loadu_ps(p: (const float *)&dst[x]); |
| 541 | srcVector = _mm256_mul_ps(a: srcVector, b: constAlphaVector256); |
| 542 | dstVector = _mm256_mul_ps(a: dstVector, b: oneMinusConstAlpha256); |
| 543 | dstVector = _mm256_add_ps(a: dstVector, b: srcVector); |
| 544 | _mm256_storeu_ps(p: (float *)&dst[x], a: dstVector); |
| 545 | } |
| 546 | if (x < length) { |
| 547 | __m128 srcVector = _mm_loadu_ps(p: (const float *)&src[x]); |
| 548 | __m128 dstVector = _mm_loadu_ps(p: (const float *)&dst[x]); |
| 549 | srcVector = _mm_mul_ps(a: srcVector, b: constAlphaVector); |
| 550 | dstVector = _mm_mul_ps(a: dstVector, b: oneMinusConstAlpha); |
| 551 | dstVector = _mm_add_ps(a: dstVector, b: srcVector); |
| 552 | _mm_storeu_ps(p: (float *)&dst[x], a: dstVector); |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | #endif |
| 557 | |
| 558 | void QT_FASTCALL comp_func_solid_SourceOver_avx2(uint *destPixels, int length, uint color, uint const_alpha) |
| 559 | { |
| 560 | if ((const_alpha & qAlpha(rgb: color)) == 255) { |
| 561 | qt_memfill32(destPixels, color, length); |
| 562 | } else { |
| 563 | if (const_alpha != 255) |
| 564 | color = BYTE_MUL(x: color, a: const_alpha); |
| 565 | |
| 566 | const quint32 minusAlphaOfColor = qAlpha(rgb: ~color); |
| 567 | int x = 0; |
| 568 | |
| 569 | quint32 *dst = (quint32 *) destPixels; |
| 570 | const __m256i colorVector = _mm256_set1_epi32(i: color); |
| 571 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 572 | const __m256i half = _mm256_set1_epi16(w: 0x80); |
| 573 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi16(w: minusAlphaOfColor); |
| 574 | |
| 575 | ALIGNMENT_PROLOGUE_32BYTES(dst, x, length) |
| 576 | destPixels[x] = color + BYTE_MUL(x: destPixels[x], a: minusAlphaOfColor); |
| 577 | |
| 578 | for (; x < length - 7; x += 8) { |
| 579 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 580 | BYTE_MUL_AVX2(pixelVector&: dstVector, alphaChannel: minusAlphaOfColorVector, colorMask, half); |
| 581 | dstVector = _mm256_add_epi8(a: colorVector, b: dstVector); |
| 582 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 583 | } |
| 584 | SIMD_EPILOGUE(x, length, 7) |
| 585 | destPixels[x] = color + BYTE_MUL(x: destPixels[x], a: minusAlphaOfColor); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | #if QT_CONFIG(raster_64bit) |
| 590 | void QT_FASTCALL comp_func_solid_SourceOver_rgb64_avx2(QRgba64 *destPixels, int length, QRgba64 color, uint const_alpha) |
| 591 | { |
| 592 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 593 | if (const_alpha == 255 && color.isOpaque()) { |
| 594 | qt_memfill64((quint64*)destPixels, color, length); |
| 595 | } else { |
| 596 | if (const_alpha != 255) |
| 597 | color = multiplyAlpha255(rgba64: color, alpha255: const_alpha); |
| 598 | |
| 599 | const uint minusAlphaOfColor = 65535 - color.alpha(); |
| 600 | int x = 0; |
| 601 | quint64 *dst = (quint64 *) destPixels; |
| 602 | const __m256i colorVector = _mm256_set1_epi64x(q: color); |
| 603 | const __m256i colorMask = _mm256_set1_epi32(i: 0x0000ffff); |
| 604 | const __m256i half = _mm256_set1_epi32(i: 0x8000); |
| 605 | const __m256i minusAlphaOfColorVector = _mm256_set1_epi32(i: minusAlphaOfColor); |
| 606 | |
| 607 | for (; x < length && (quintptr(dst + x) & 31); ++x) |
| 608 | destPixels[x] = color + multiplyAlpha65535(rgba64: destPixels[x], alpha65535: minusAlphaOfColor); |
| 609 | |
| 610 | for (; x < length - 3; x += 4) { |
| 611 | __m256i dstVector = _mm256_load_si256(p: (__m256i *)&dst[x]); |
| 612 | BYTE_MUL_RGB64_AVX2(pixelVector&: dstVector, alphaChannel: minusAlphaOfColorVector, colorMask, half); |
| 613 | dstVector = _mm256_add_epi16(a: colorVector, b: dstVector); |
| 614 | _mm256_store_si256(p: (__m256i *)&dst[x], a: dstVector); |
| 615 | } |
| 616 | SIMD_EPILOGUE(x, length, 3) |
| 617 | destPixels[x] = color + multiplyAlpha65535(rgba64: destPixels[x], alpha65535: minusAlphaOfColor); |
| 618 | } |
| 619 | } |
| 620 | #endif |
| 621 | |
| 622 | #if QT_CONFIG(raster_fp) |
| 623 | void QT_FASTCALL comp_func_solid_Source_rgbafp_avx2(QRgbaFloat32 *dst, int length, QRgbaFloat32 color, uint const_alpha) |
| 624 | { |
| 625 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 626 | if (const_alpha == 255) { |
| 627 | for (int i = 0; i < length; ++i) |
| 628 | dst[i] = color; |
| 629 | } else { |
| 630 | const float a = const_alpha / 255.0f; |
| 631 | const __m128 alphaVector = _mm_set1_ps(w: a); |
| 632 | const __m128 minusAlphaVector = _mm_set1_ps(w: 1.0f - a); |
| 633 | __m128 colorVector = _mm_loadu_ps(p: (const float *)&color); |
| 634 | colorVector = _mm_mul_ps(a: colorVector, b: alphaVector); |
| 635 | const __m256 colorVector256 = _mm256_insertf128_ps(_mm256_castps128_ps256(colorVector), colorVector, 1); |
| 636 | const __m256 minusAlphaVector256 = _mm256_set1_ps(w: 1.0f - a); |
| 637 | int x = 0; |
| 638 | for (; x < length - 1; x += 2) { |
| 639 | __m256 dstVector = _mm256_loadu_ps(p: (const float *)&dst[x]); |
| 640 | dstVector = _mm256_mul_ps(a: dstVector, b: minusAlphaVector256); |
| 641 | dstVector = _mm256_add_ps(a: dstVector, b: colorVector256); |
| 642 | _mm256_storeu_ps(p: (float *)&dst[x], a: dstVector); |
| 643 | } |
| 644 | if (x < length) { |
| 645 | __m128 dstVector = _mm_loadu_ps(p: (const float *)&dst[x]); |
| 646 | dstVector = _mm_mul_ps(a: dstVector, b: minusAlphaVector); |
| 647 | dstVector = _mm_add_ps(a: dstVector, b: colorVector); |
| 648 | _mm_storeu_ps(p: (float *)&dst[x], a: dstVector); |
| 649 | } |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | void QT_FASTCALL comp_func_solid_SourceOver_rgbafp_avx2(QRgbaFloat32 *dst, int length, QRgbaFloat32 color, uint const_alpha) |
| 654 | { |
| 655 | Q_ASSERT(const_alpha < 256); // const_alpha is in [0-255] |
| 656 | if (const_alpha == 255 && color.a >= 1.0f) { |
| 657 | for (int i = 0; i < length; ++i) |
| 658 | dst[i] = color; |
| 659 | } else { |
| 660 | __m128 colorVector = _mm_loadu_ps(p: (const float *)&color); |
| 661 | if (const_alpha != 255) |
| 662 | colorVector = _mm_mul_ps(a: colorVector, b: _mm_set1_ps(w: const_alpha / 255.f)); |
| 663 | __m128 minusAlphaOfColorVector = |
| 664 | _mm_sub_ps(a: _mm_set1_ps(w: 1.0f), _mm_permute_ps(colorVector, _MM_SHUFFLE(3, 3, 3, 3))); |
| 665 | const __m256 colorVector256 = _mm256_insertf128_ps(_mm256_castps128_ps256(colorVector), colorVector, 1); |
| 666 | const __m256 minusAlphaVector256 = _mm256_insertf128_ps(_mm256_castps128_ps256(minusAlphaOfColorVector), |
| 667 | minusAlphaOfColorVector, 1); |
| 668 | int x = 0; |
| 669 | for (; x < length - 1; x += 2) { |
| 670 | __m256 dstVector = _mm256_loadu_ps(p: (const float *)&dst[x]); |
| 671 | dstVector = _mm256_mul_ps(a: dstVector, b: minusAlphaVector256); |
| 672 | dstVector = _mm256_add_ps(a: dstVector, b: colorVector256); |
| 673 | _mm256_storeu_ps(p: (float *)&dst[x], a: dstVector); |
| 674 | } |
| 675 | if (x < length) { |
| 676 | __m128 dstVector = _mm_loadu_ps(p: (const float *)&dst[x]); |
| 677 | dstVector = _mm_mul_ps(a: dstVector, b: minusAlphaOfColorVector); |
| 678 | dstVector = _mm_add_ps(a: dstVector, b: colorVector); |
| 679 | _mm_storeu_ps(p: (float *)&dst[x], a: dstVector); |
| 680 | } |
| 681 | } |
| 682 | } |
| 683 | #endif |
| 684 | |
| 685 | #define interpolate_4_pixels_16_avx2(tlr1, tlr2, blr1, blr2, distx, disty, colorMask, v_256, b) \ |
| 686 | { \ |
| 687 | /* Correct for later unpack */ \ |
| 688 | const __m256i vdistx = _mm256_permute4x64_epi64(distx, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 689 | const __m256i vdisty = _mm256_permute4x64_epi64(disty, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 690 | \ |
| 691 | __m256i dxdy = _mm256_mullo_epi16 (vdistx, vdisty); \ |
| 692 | const __m256i distx_ = _mm256_slli_epi16(vdistx, 4); \ |
| 693 | const __m256i disty_ = _mm256_slli_epi16(vdisty, 4); \ |
| 694 | __m256i idxidy = _mm256_add_epi16(dxdy, _mm256_sub_epi16(v_256, _mm256_add_epi16(distx_, disty_))); \ |
| 695 | __m256i dxidy = _mm256_sub_epi16(distx_, dxdy); \ |
| 696 | __m256i idxdy = _mm256_sub_epi16(disty_, dxdy); \ |
| 697 | \ |
| 698 | __m256i tlr1AG = _mm256_srli_epi16(tlr1, 8); \ |
| 699 | __m256i tlr1RB = _mm256_and_si256(tlr1, colorMask); \ |
| 700 | __m256i tlr2AG = _mm256_srli_epi16(tlr2, 8); \ |
| 701 | __m256i tlr2RB = _mm256_and_si256(tlr2, colorMask); \ |
| 702 | __m256i blr1AG = _mm256_srli_epi16(blr1, 8); \ |
| 703 | __m256i blr1RB = _mm256_and_si256(blr1, colorMask); \ |
| 704 | __m256i blr2AG = _mm256_srli_epi16(blr2, 8); \ |
| 705 | __m256i blr2RB = _mm256_and_si256(blr2, colorMask); \ |
| 706 | \ |
| 707 | __m256i odxidy1 = _mm256_unpacklo_epi32(idxidy, dxidy); \ |
| 708 | __m256i odxidy2 = _mm256_unpackhi_epi32(idxidy, dxidy); \ |
| 709 | tlr1AG = _mm256_mullo_epi16(tlr1AG, odxidy1); \ |
| 710 | tlr1RB = _mm256_mullo_epi16(tlr1RB, odxidy1); \ |
| 711 | tlr2AG = _mm256_mullo_epi16(tlr2AG, odxidy2); \ |
| 712 | tlr2RB = _mm256_mullo_epi16(tlr2RB, odxidy2); \ |
| 713 | __m256i odxdy1 = _mm256_unpacklo_epi32(idxdy, dxdy); \ |
| 714 | __m256i odxdy2 = _mm256_unpackhi_epi32(idxdy, dxdy); \ |
| 715 | blr1AG = _mm256_mullo_epi16(blr1AG, odxdy1); \ |
| 716 | blr1RB = _mm256_mullo_epi16(blr1RB, odxdy1); \ |
| 717 | blr2AG = _mm256_mullo_epi16(blr2AG, odxdy2); \ |
| 718 | blr2RB = _mm256_mullo_epi16(blr2RB, odxdy2); \ |
| 719 | \ |
| 720 | /* Add the values, and shift to only keep 8 significant bits per colors */ \ |
| 721 | __m256i topAG = _mm256_hadd_epi32(tlr1AG, tlr2AG); \ |
| 722 | __m256i topRB = _mm256_hadd_epi32(tlr1RB, tlr2RB); \ |
| 723 | __m256i botAG = _mm256_hadd_epi32(blr1AG, blr2AG); \ |
| 724 | __m256i botRB = _mm256_hadd_epi32(blr1RB, blr2RB); \ |
| 725 | __m256i rAG = _mm256_add_epi16(topAG, botAG); \ |
| 726 | __m256i rRB = _mm256_add_epi16(topRB, botRB); \ |
| 727 | rRB = _mm256_srli_epi16(rRB, 8); \ |
| 728 | /* Correct for hadd */ \ |
| 729 | rAG = _mm256_permute4x64_epi64(rAG, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 730 | rRB = _mm256_permute4x64_epi64(rRB, _MM_SHUFFLE(3, 1, 2, 0)); \ |
| 731 | _mm256_storeu_si256((__m256i*)(b), _mm256_blendv_epi8(rAG, rRB, colorMask)); \ |
| 732 | } |
| 733 | |
| 734 | inline void fetchTransformedBilinear_pixelBounds(int, int l1, int l2, int &v1, int &v2) |
| 735 | { |
| 736 | if (v1 < l1) |
| 737 | v2 = v1 = l1; |
| 738 | else if (v1 >= l2) |
| 739 | v2 = v1 = l2; |
| 740 | else |
| 741 | v2 = v1 + 1; |
| 742 | Q_ASSERT(v1 >= l1 && v1 <= l2); |
| 743 | Q_ASSERT(v2 >= l1 && v2 <= l2); |
| 744 | } |
| 745 | |
| 746 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx); |
| 747 | |
| 748 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_simple_scale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 749 | int &fx, int &fy, int fdx, int /*fdy*/) |
| 750 | { |
| 751 | int y1 = (fy >> 16); |
| 752 | int y2; |
| 753 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 754 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 755 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 756 | |
| 757 | const int disty = (fy & 0x0000ffff) >> 8; |
| 758 | const int idisty = 256 - disty; |
| 759 | const int length = end - b; |
| 760 | |
| 761 | // The intermediate buffer is generated in the positive direction |
| 762 | const int adjust = (fdx < 0) ? fdx * length : 0; |
| 763 | const int offset = (fx + adjust) >> 16; |
| 764 | int x = offset; |
| 765 | |
| 766 | Q_DECL_UNINITIALIZED IntermediateBuffer intermediate; |
| 767 | // count is the size used in the intermediate_buffer. |
| 768 | int count = (qint64(length) * qAbs(t: fdx) + FixedScale - 1) / FixedScale + 2; |
| 769 | // length is supposed to be <= BufferSize either because data->m11 < 1 or |
| 770 | // data->m11 < 2, and any larger buffers split |
| 771 | Q_ASSERT(count <= BufferSize + 2); |
| 772 | int f = 0; |
| 773 | int lim = qMin(a: count, b: image.x2 - x); |
| 774 | if (x < image.x1) { |
| 775 | Q_ASSERT(x < image.x2); |
| 776 | uint t = s1[image.x1]; |
| 777 | uint b = s2[image.x1]; |
| 778 | quint32 rb = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 779 | quint32 ag = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 780 | do { |
| 781 | intermediate.buffer_rb[f] = rb; |
| 782 | intermediate.buffer_ag[f] = ag; |
| 783 | f++; |
| 784 | x++; |
| 785 | } while (x < image.x1 && f < lim); |
| 786 | } |
| 787 | |
| 788 | const __m256i disty_ = _mm256_set1_epi16(w: disty); |
| 789 | const __m256i idisty_ = _mm256_set1_epi16(w: idisty); |
| 790 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 791 | |
| 792 | lim -= 7; |
| 793 | for (; f < lim; x += 8, f += 8) { |
| 794 | // Load 8 pixels from s1, and split the alpha-green and red-blue component |
| 795 | __m256i top = _mm256_loadu_si256(p: (const __m256i*)((const uint *)(s1)+x)); |
| 796 | __m256i topAG = _mm256_srli_epi16(a: top, count: 8); |
| 797 | __m256i topRB = _mm256_and_si256(a: top, b: colorMask); |
| 798 | // Multiplies each color component by idisty |
| 799 | topAG = _mm256_mullo_epi16 (a: topAG, b: idisty_); |
| 800 | topRB = _mm256_mullo_epi16 (a: topRB, b: idisty_); |
| 801 | |
| 802 | // Same for the s2 vector |
| 803 | __m256i bottom = _mm256_loadu_si256(p: (const __m256i*)((const uint *)(s2)+x)); |
| 804 | __m256i bottomAG = _mm256_srli_epi16(a: bottom, count: 8); |
| 805 | __m256i bottomRB = _mm256_and_si256(a: bottom, b: colorMask); |
| 806 | bottomAG = _mm256_mullo_epi16 (a: bottomAG, b: disty_); |
| 807 | bottomRB = _mm256_mullo_epi16 (a: bottomRB, b: disty_); |
| 808 | |
| 809 | // Add the values, and shift to only keep 8 significant bits per colors |
| 810 | __m256i rAG =_mm256_add_epi16(a: topAG, b: bottomAG); |
| 811 | rAG = _mm256_srli_epi16(a: rAG, count: 8); |
| 812 | _mm256_storeu_si256(p: (__m256i*)(&intermediate.buffer_ag[f]), a: rAG); |
| 813 | __m256i rRB =_mm256_add_epi16(a: topRB, b: bottomRB); |
| 814 | rRB = _mm256_srli_epi16(a: rRB, count: 8); |
| 815 | _mm256_storeu_si256(p: (__m256i*)(&intermediate.buffer_rb[f]), a: rRB); |
| 816 | } |
| 817 | |
| 818 | for (; f < count; f++) { // Same as above but without simd |
| 819 | x = qMin(a: x, b: image.x2 - 1); |
| 820 | |
| 821 | uint t = s1[x]; |
| 822 | uint b = s2[x]; |
| 823 | |
| 824 | intermediate.buffer_rb[f] = (((t & 0xff00ff) * idisty + (b & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 825 | intermediate.buffer_ag[f] = ((((t>>8) & 0xff00ff) * idisty + ((b>>8) & 0xff00ff) * disty) >> 8) & 0xff00ff; |
| 826 | x++; |
| 827 | } |
| 828 | |
| 829 | // Now interpolate the values from the intermediate_buffer to get the final result. |
| 830 | intermediate_adder_avx2(b, end, intermediate, offset, fx, fdx); |
| 831 | } |
| 832 | |
| 833 | void QT_FASTCALL intermediate_adder_avx2(uint *b, uint *end, const IntermediateBuffer &intermediate, int offset, int &fx, int fdx) |
| 834 | { |
| 835 | fx -= offset * FixedScale; |
| 836 | |
| 837 | const __m128i v_fdx = _mm_set1_epi32(i: fdx * 4); |
| 838 | const __m128i v_blend = _mm_set1_epi32(i: 0x00800080); |
| 839 | const __m128i vdx_shuffle = _mm_set_epi8(b15: char(0x80), b14: 13, b13: char(0x80), b12: 13, b11: char(0x80), b10: 9, b9: char(0x80), b8: 9, |
| 840 | b7: char(0x80), b6: 5, b5: char(0x80), b4: 5, b3: char(0x80), b2: 1, b1: char(0x80), b0: 1); |
| 841 | __m128i v_fx = _mm_setr_epi32(i0: fx, i1: fx + fdx, i2: fx + fdx + fdx, i3: fx + fdx + fdx + fdx); |
| 842 | |
| 843 | while (b < end - 3) { |
| 844 | const __m128i offset = _mm_srli_epi32(a: v_fx, count: 16); |
| 845 | __m256i vrb = _mm256_i32gather_epi64((const long long *)intermediate.buffer_rb, offset, 4); |
| 846 | __m256i vag = _mm256_i32gather_epi64((const long long *)intermediate.buffer_ag, offset, 4); |
| 847 | |
| 848 | __m128i vdx = _mm_shuffle_epi8(a: v_fx, b: vdx_shuffle); |
| 849 | __m128i vidx = _mm_sub_epi16(a: _mm_set1_epi16(w: 256), b: vdx); |
| 850 | __m256i vmulx = _mm256_castsi128_si256(a: _mm_unpacklo_epi32(a: vidx, b: vdx)); |
| 851 | vmulx = _mm256_inserti128_si256(vmulx, _mm_unpackhi_epi32(vidx, vdx), 1); |
| 852 | |
| 853 | vrb = _mm256_mullo_epi16(a: vrb, b: vmulx); |
| 854 | vag = _mm256_mullo_epi16(a: vag, b: vmulx); |
| 855 | |
| 856 | __m256i vrbag = _mm256_hadd_epi32(a: vrb, b: vag); |
| 857 | vrbag = _mm256_permute4x64_epi64(vrbag, _MM_SHUFFLE(3, 1, 2, 0)); |
| 858 | |
| 859 | __m128i rb = _mm256_castsi256_si128(a: vrbag); |
| 860 | __m128i ag = _mm256_extracti128_si256(vrbag, 1); |
| 861 | rb = _mm_srli_epi16(a: rb, count: 8); |
| 862 | |
| 863 | _mm_storeu_si128(p: (__m128i*)b, b: _mm_blendv_epi8(V1: ag, V2: rb, M: v_blend)); |
| 864 | |
| 865 | b += 4; |
| 866 | v_fx = _mm_add_epi32(a: v_fx, b: v_fdx); |
| 867 | } |
| 868 | fx = _mm_cvtsi128_si32(a: v_fx); |
| 869 | while (b < end) { |
| 870 | const int x = (fx >> 16); |
| 871 | |
| 872 | const uint distx = (fx & 0x0000ffff) >> 8; |
| 873 | const uint idistx = 256 - distx; |
| 874 | const uint rb = (intermediate.buffer_rb[x] * idistx + intermediate.buffer_rb[x + 1] * distx) & 0xff00ff00; |
| 875 | const uint ag = (intermediate.buffer_ag[x] * idistx + intermediate.buffer_ag[x + 1] * distx) & 0xff00ff00; |
| 876 | *b = (rb >> 8) | ag; |
| 877 | b++; |
| 878 | fx += fdx; |
| 879 | } |
| 880 | fx += offset * FixedScale; |
| 881 | } |
| 882 | |
| 883 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_downscale_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 884 | int &fx, int &fy, int fdx, int /*fdy*/) |
| 885 | { |
| 886 | int y1 = (fy >> 16); |
| 887 | int y2; |
| 888 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 889 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 890 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 891 | const int disty8 = (fy & 0x0000ffff) >> 8; |
| 892 | const int disty4 = (disty8 + 0x08) >> 4; |
| 893 | |
| 894 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
| 895 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
| 896 | while (b < end) { |
| 897 | int x1 = (fx >> 16); |
| 898 | int x2; |
| 899 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 900 | if (x1 != x2) |
| 901 | break; |
| 902 | uint top = s1[x1]; |
| 903 | uint bot = s2[x1]; |
| 904 | *b = INTERPOLATE_PIXEL_256(x: top, a: 256 - disty8, y: bot, b: disty8); |
| 905 | fx += fdx; |
| 906 | ++b; |
| 907 | } |
| 908 | uint *boundedEnd = end; |
| 909 | if (fdx > 0) |
| 910 | boundedEnd = qMin(a: boundedEnd, b: b + (max_fx - fx) / fdx); |
| 911 | else if (fdx < 0) |
| 912 | boundedEnd = qMin(a: boundedEnd, b: b + (min_fx - fx) / fdx); |
| 913 | |
| 914 | // A fast middle part without boundary checks |
| 915 | const __m256i vdistShuffle = |
| 916 | _mm256_setr_epi8(b31: 0, b30: char(0x80), b29: 0, b28: char(0x80), b27: 4, b26: char(0x80), b25: 4, b24: char(0x80), b23: 8, b22: char(0x80), b21: 8, b20: char(0x80), b19: 12, b18: char(0x80), b17: 12, b16: char(0x80), |
| 917 | b15: 0, b14: char(0x80), b13: 0, b12: char(0x80), b11: 4, b10: char(0x80), b09: 4, b08: char(0x80), b07: 8, b06: char(0x80), b05: 8, b04: char(0x80), b03: 12, b02: char(0x80), b01: 12, b00: char(0x80)); |
| 918 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 919 | const __m256i v_256 = _mm256_set1_epi16(w: 256); |
| 920 | const __m256i v_disty = _mm256_set1_epi16(w: disty4); |
| 921 | const __m256i v_fdx = _mm256_set1_epi32(i: fdx * 8); |
| 922 | const __m256i v_fx_r = _mm256_set1_epi32(i: 0x08); |
| 923 | const __m256i v_index = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 924 | __m256i v_fx = _mm256_set1_epi32(i: fx); |
| 925 | v_fx = _mm256_add_epi32(a: v_fx, b: _mm256_mullo_epi32(a: _mm256_set1_epi32(i: fdx), b: v_index)); |
| 926 | |
| 927 | while (b < boundedEnd - 7) { |
| 928 | const __m256i offset = _mm256_srli_epi32(a: v_fx, count: 16); |
| 929 | const __m128i offsetLo = _mm256_castsi256_si128(a: offset); |
| 930 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
| 931 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)s1, offsetLo, 4); |
| 932 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)s1, offsetHi, 4); |
| 933 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)s2, offsetLo, 4); |
| 934 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)s2, offsetHi, 4); |
| 935 | |
| 936 | __m256i v_distx = _mm256_srli_epi16(a: v_fx, count: 8); |
| 937 | v_distx = _mm256_srli_epi16(a: _mm256_add_epi32(a: v_distx, b: v_fx_r), count: 4); |
| 938 | v_distx = _mm256_shuffle_epi8(a: v_distx, b: vdistShuffle); |
| 939 | |
| 940 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
| 941 | b += 8; |
| 942 | v_fx = _mm256_add_epi32(a: v_fx, b: v_fdx); |
| 943 | } |
| 944 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
| 945 | |
| 946 | while (b < boundedEnd) { |
| 947 | int x = (fx >> 16); |
| 948 | int distx8 = (fx & 0x0000ffff) >> 8; |
| 949 | *b = interpolate_4_pixels(t: s1 + x, b: s2 + x, distx: distx8, disty: disty8); |
| 950 | fx += fdx; |
| 951 | ++b; |
| 952 | } |
| 953 | |
| 954 | while (b < end) { |
| 955 | int x1 = (fx >> 16); |
| 956 | int x2; |
| 957 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 958 | uint tl = s1[x1]; |
| 959 | uint tr = s1[x2]; |
| 960 | uint bl = s2[x1]; |
| 961 | uint br = s2[x2]; |
| 962 | int distx8 = (fx & 0x0000ffff) >> 8; |
| 963 | *b = interpolate_4_pixels(tl, tr, bl, br, distx: distx8, disty: disty8); |
| 964 | fx += fdx; |
| 965 | ++b; |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | void QT_FASTCALL fetchTransformedBilinearARGB32PM_fast_rotate_helper_avx2(uint *b, uint *end, const QTextureData &image, |
| 970 | int &fx, int &fy, int fdx, int fdy) |
| 971 | { |
| 972 | const qint64 min_fx = qint64(image.x1) * FixedScale; |
| 973 | const qint64 max_fx = qint64(image.x2 - 1) * FixedScale; |
| 974 | const qint64 min_fy = qint64(image.y1) * FixedScale; |
| 975 | const qint64 max_fy = qint64(image.y2 - 1) * FixedScale; |
| 976 | // first handle the possibly bounded part in the beginning |
| 977 | while (b < end) { |
| 978 | int x1 = (fx >> 16); |
| 979 | int x2; |
| 980 | int y1 = (fy >> 16); |
| 981 | int y2; |
| 982 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 983 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 984 | if (x1 != x2 && y1 != y2) |
| 985 | break; |
| 986 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 987 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 988 | uint tl = s1[x1]; |
| 989 | uint tr = s1[x2]; |
| 990 | uint bl = s2[x1]; |
| 991 | uint br = s2[x2]; |
| 992 | int distx = (fx & 0x0000ffff) >> 8; |
| 993 | int disty = (fy & 0x0000ffff) >> 8; |
| 994 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
| 995 | fx += fdx; |
| 996 | fy += fdy; |
| 997 | ++b; |
| 998 | } |
| 999 | uint *boundedEnd = end; |
| 1000 | if (fdx > 0) |
| 1001 | boundedEnd = qMin(a: boundedEnd, b: b + (max_fx - fx) / fdx); |
| 1002 | else if (fdx < 0) |
| 1003 | boundedEnd = qMin(a: boundedEnd, b: b + (min_fx - fx) / fdx); |
| 1004 | if (fdy > 0) |
| 1005 | boundedEnd = qMin(a: boundedEnd, b: b + (max_fy - fy) / fdy); |
| 1006 | else if (fdy < 0) |
| 1007 | boundedEnd = qMin(a: boundedEnd, b: b + (min_fy - fy) / fdy); |
| 1008 | |
| 1009 | // until boundedEnd we can now have a fast middle part without boundary checks |
| 1010 | const __m256i vdistShuffle = |
| 1011 | _mm256_setr_epi8(b31: 0, b30: char(0x80), b29: 0, b28: char(0x80), b27: 4, b26: char(0x80), b25: 4, b24: char(0x80), b23: 8, b22: char(0x80), b21: 8, b20: char(0x80), b19: 12, b18: char(0x80), b17: 12, b16: char(0x80), |
| 1012 | b15: 0, b14: char(0x80), b13: 0, b12: char(0x80), b11: 4, b10: char(0x80), b09: 4, b08: char(0x80), b07: 8, b06: char(0x80), b05: 8, b04: char(0x80), b03: 12, b02: char(0x80), b01: 12, b00: char(0x80)); |
| 1013 | const __m256i colorMask = _mm256_set1_epi32(i: 0x00ff00ff); |
| 1014 | const __m256i v_256 = _mm256_set1_epi16(w: 256); |
| 1015 | const __m256i v_fdx = _mm256_set1_epi32(i: fdx * 8); |
| 1016 | const __m256i v_fdy = _mm256_set1_epi32(i: fdy * 8); |
| 1017 | const __m256i v_fxy_r = _mm256_set1_epi32(i: 0x08); |
| 1018 | const __m256i v_index = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 1019 | __m256i v_fx = _mm256_set1_epi32(i: fx); |
| 1020 | __m256i v_fy = _mm256_set1_epi32(i: fy); |
| 1021 | v_fx = _mm256_add_epi32(a: v_fx, b: _mm256_mullo_epi32(a: _mm256_set1_epi32(i: fdx), b: v_index)); |
| 1022 | v_fy = _mm256_add_epi32(a: v_fy, b: _mm256_mullo_epi32(a: _mm256_set1_epi32(i: fdy), b: v_index)); |
| 1023 | |
| 1024 | const uchar *textureData = image.imageData; |
| 1025 | const qsizetype bytesPerLine = image.bytesPerLine; |
| 1026 | const __m256i vbpl = _mm256_set1_epi16(w: bytesPerLine/4); |
| 1027 | |
| 1028 | while (b < boundedEnd - 7) { |
| 1029 | const __m256i vy = _mm256_packs_epi32(a: _mm256_srli_epi32(a: v_fy, count: 16), b: _mm256_setzero_si256()); |
| 1030 | // 8x16bit * 8x16bit -> 8x32bit |
| 1031 | __m256i offset = _mm256_unpacklo_epi16(a: _mm256_mullo_epi16(a: vy, b: vbpl), b: _mm256_mulhi_epi16(a: vy, b: vbpl)); |
| 1032 | offset = _mm256_add_epi32(a: offset, b: _mm256_srli_epi32(a: v_fx, count: 16)); |
| 1033 | const __m128i offsetLo = _mm256_castsi256_si128(a: offset); |
| 1034 | const __m128i offsetHi = _mm256_extracti128_si256(offset, 1); |
| 1035 | const uint *topData = (const uint *)(textureData); |
| 1036 | const uint *botData = (const uint *)(textureData + bytesPerLine); |
| 1037 | const __m256i toplo = _mm256_i32gather_epi64((const long long *)topData, offsetLo, 4); |
| 1038 | const __m256i tophi = _mm256_i32gather_epi64((const long long *)topData, offsetHi, 4); |
| 1039 | const __m256i botlo = _mm256_i32gather_epi64((const long long *)botData, offsetLo, 4); |
| 1040 | const __m256i bothi = _mm256_i32gather_epi64((const long long *)botData, offsetHi, 4); |
| 1041 | |
| 1042 | __m256i v_distx = _mm256_srli_epi16(a: v_fx, count: 8); |
| 1043 | __m256i v_disty = _mm256_srli_epi16(a: v_fy, count: 8); |
| 1044 | v_distx = _mm256_srli_epi16(a: _mm256_add_epi32(a: v_distx, b: v_fxy_r), count: 4); |
| 1045 | v_disty = _mm256_srli_epi16(a: _mm256_add_epi32(a: v_disty, b: v_fxy_r), count: 4); |
| 1046 | v_distx = _mm256_shuffle_epi8(a: v_distx, b: vdistShuffle); |
| 1047 | v_disty = _mm256_shuffle_epi8(a: v_disty, b: vdistShuffle); |
| 1048 | |
| 1049 | interpolate_4_pixels_16_avx2(toplo, tophi, botlo, bothi, v_distx, v_disty, colorMask, v_256, b); |
| 1050 | b += 8; |
| 1051 | v_fx = _mm256_add_epi32(a: v_fx, b: v_fdx); |
| 1052 | v_fy = _mm256_add_epi32(a: v_fy, b: v_fdy); |
| 1053 | } |
| 1054 | fx = _mm_extract_epi32(_mm256_castsi256_si128(v_fx) , 0); |
| 1055 | fy = _mm_extract_epi32(_mm256_castsi256_si128(v_fy) , 0); |
| 1056 | |
| 1057 | while (b < boundedEnd) { |
| 1058 | int x = (fx >> 16); |
| 1059 | int y = (fy >> 16); |
| 1060 | |
| 1061 | const uint *s1 = (const uint *)image.scanLine(y); |
| 1062 | const uint *s2 = (const uint *)image.scanLine(y: y + 1); |
| 1063 | |
| 1064 | int distx = (fx & 0x0000ffff) >> 8; |
| 1065 | int disty = (fy & 0x0000ffff) >> 8; |
| 1066 | *b = interpolate_4_pixels(t: s1 + x, b: s2 + x, distx, disty); |
| 1067 | |
| 1068 | fx += fdx; |
| 1069 | fy += fdy; |
| 1070 | ++b; |
| 1071 | } |
| 1072 | |
| 1073 | while (b < end) { |
| 1074 | int x1 = (fx >> 16); |
| 1075 | int x2; |
| 1076 | int y1 = (fy >> 16); |
| 1077 | int y2; |
| 1078 | |
| 1079 | fetchTransformedBilinear_pixelBounds(image.width, l1: image.x1, l2: image.x2 - 1, v1&: x1, v2&: x2); |
| 1080 | fetchTransformedBilinear_pixelBounds(image.height, l1: image.y1, l2: image.y2 - 1, v1&: y1, v2&: y2); |
| 1081 | |
| 1082 | const uint *s1 = (const uint *)image.scanLine(y: y1); |
| 1083 | const uint *s2 = (const uint *)image.scanLine(y: y2); |
| 1084 | |
| 1085 | uint tl = s1[x1]; |
| 1086 | uint tr = s1[x2]; |
| 1087 | uint bl = s2[x1]; |
| 1088 | uint br = s2[x2]; |
| 1089 | |
| 1090 | int distx = (fx & 0x0000ffff) >> 8; |
| 1091 | int disty = (fy & 0x0000ffff) >> 8; |
| 1092 | *b = interpolate_4_pixels(tl, tr, bl, br, distx, disty); |
| 1093 | |
| 1094 | fx += fdx; |
| 1095 | fy += fdy; |
| 1096 | ++b; |
| 1097 | } |
| 1098 | } |
| 1099 | |
| 1100 | static inline __m256i epilogueMaskFromCount(qsizetype count) |
| 1101 | { |
| 1102 | Q_ASSERT(count > 0); |
| 1103 | static const __m256i offsetMask = _mm256_setr_epi32(i0: 0, i1: 1, i2: 2, i3: 3, i4: 4, i5: 5, i6: 6, i7: 7); |
| 1104 | return _mm256_add_epi32(a: offsetMask, b: _mm256_set1_epi32(i: -count)); |
| 1105 | } |
| 1106 | |
| 1107 | template<bool RGBA> |
| 1108 | static void convertARGBToARGB32PM_avx2(uint *buffer, const uint *src, qsizetype count) |
| 1109 | { |
| 1110 | qsizetype i = 0; |
| 1111 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 1112 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 2, b1: 1, b2: 0, b3: 3, b4: 6, b5: 5, b6: 4, b7: 7, b8: 10, b9: 9, b10: 8, b11: 11, b12: 14, b13: 13, b14: 12, b15: 15)); |
| 1113 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 6, b1: 7, b2: 6, b3: 7, b4: 6, b5: 7, b6: 6, b7: 7, b8: 14, b9: 15, b10: 14, b11: 15, b12: 14, b13: 15, b14: 14, b15: 15)); |
| 1114 | const __m256i half = _mm256_set1_epi16(w: 0x0080); |
| 1115 | const __m256i zero = _mm256_setzero_si256(); |
| 1116 | |
| 1117 | for (; i < count - 7; i += 8) { |
| 1118 | __m256i srcVector = _mm256_loadu_si256(p: reinterpret_cast<const __m256i *>(src + i)); |
| 1119 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 1120 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1121 | bool cf = _mm256_testc_si256(a: srcVector, b: alphaMask); |
| 1122 | if (RGBA) |
| 1123 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1124 | if (!cf) { |
| 1125 | __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: zero); |
| 1126 | __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: zero); |
| 1127 | __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1128 | __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1129 | src1 = _mm256_mullo_epi16(a: src1, b: alpha1); |
| 1130 | src2 = _mm256_mullo_epi16(a: src2, b: alpha2); |
| 1131 | src1 = _mm256_add_epi16(a: src1, b: _mm256_srli_epi16(a: src1, count: 8)); |
| 1132 | src2 = _mm256_add_epi16(a: src2, b: _mm256_srli_epi16(a: src2, count: 8)); |
| 1133 | src1 = _mm256_add_epi16(a: src1, b: half); |
| 1134 | src2 = _mm256_add_epi16(a: src2, b: half); |
| 1135 | src1 = _mm256_srli_epi16(a: src1, count: 8); |
| 1136 | src2 = _mm256_srli_epi16(a: src2, count: 8); |
| 1137 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
| 1138 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
| 1139 | srcVector = _mm256_packus_epi16(a: src1, b: src2); |
| 1140 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: srcVector); |
| 1141 | } else { |
| 1142 | if (buffer != src || RGBA) |
| 1143 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: srcVector); |
| 1144 | } |
| 1145 | } else { |
| 1146 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: zero); |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | if (i < count) { |
| 1151 | const __m256i epilogueMask = epilogueMaskFromCount(count: count - i); |
| 1152 | __m256i srcVector = _mm256_maskload_epi32(X: reinterpret_cast<const int *>(src + i), M: epilogueMask); |
| 1153 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: epilogueMask); |
| 1154 | |
| 1155 | if (!_mm256_testz_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 1156 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1157 | bool cf = _mm256_testc_si256(a: srcVector, b: epilogueAlphaMask); |
| 1158 | if (RGBA) |
| 1159 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1160 | if (!cf) { |
| 1161 | __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: zero); |
| 1162 | __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: zero); |
| 1163 | __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1164 | __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1165 | src1 = _mm256_mullo_epi16(a: src1, b: alpha1); |
| 1166 | src2 = _mm256_mullo_epi16(a: src2, b: alpha2); |
| 1167 | src1 = _mm256_add_epi16(a: src1, b: _mm256_srli_epi16(a: src1, count: 8)); |
| 1168 | src2 = _mm256_add_epi16(a: src2, b: _mm256_srli_epi16(a: src2, count: 8)); |
| 1169 | src1 = _mm256_add_epi16(a: src1, b: half); |
| 1170 | src2 = _mm256_add_epi16(a: src2, b: half); |
| 1171 | src1 = _mm256_srli_epi16(a: src1, count: 8); |
| 1172 | src2 = _mm256_srli_epi16(a: src2, count: 8); |
| 1173 | src1 = _mm256_blend_epi16(src1, alpha1, 0x88); |
| 1174 | src2 = _mm256_blend_epi16(src2, alpha2, 0x88); |
| 1175 | srcVector = _mm256_packus_epi16(a: src1, b: src2); |
| 1176 | _mm256_maskstore_epi32(X: reinterpret_cast<int *>(buffer + i), M: epilogueMask, Y: srcVector); |
| 1177 | } else { |
| 1178 | if (buffer != src || RGBA) |
| 1179 | _mm256_maskstore_epi32(X: reinterpret_cast<int *>(buffer + i), M: epilogueMask, Y: srcVector); |
| 1180 | } |
| 1181 | } else { |
| 1182 | _mm256_maskstore_epi32(X: reinterpret_cast<int *>(buffer + i), M: epilogueMask, Y: zero); |
| 1183 | } |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | void QT_FASTCALL convertARGB32ToARGB32PM_avx2(uint *buffer, int count, const QList<QRgb> *) |
| 1188 | { |
| 1189 | convertARGBToARGB32PM_avx2<false>(buffer, src: buffer, count); |
| 1190 | } |
| 1191 | |
| 1192 | void QT_FASTCALL convertRGBA8888ToARGB32PM_avx2(uint *buffer, int count, const QList<QRgb> *) |
| 1193 | { |
| 1194 | convertARGBToARGB32PM_avx2<true>(buffer, src: buffer, count); |
| 1195 | } |
| 1196 | |
| 1197 | const uint *QT_FASTCALL fetchARGB32ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1198 | const QList<QRgb> *, QDitherInfo *) |
| 1199 | { |
| 1200 | convertARGBToARGB32PM_avx2<false>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1201 | return buffer; |
| 1202 | } |
| 1203 | |
| 1204 | const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1205 | const QList<QRgb> *, QDitherInfo *) |
| 1206 | { |
| 1207 | convertARGBToARGB32PM_avx2<true>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1208 | return buffer; |
| 1209 | } |
| 1210 | |
| 1211 | template<bool RGBA> |
| 1212 | static void convertARGBToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, qsizetype count) |
| 1213 | { |
| 1214 | qsizetype i = 0; |
| 1215 | const __m256i alphaMask = _mm256_set1_epi32(i: 0xff000000); |
| 1216 | const __m256i rgbaMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 2, b1: 1, b2: 0, b3: 3, b4: 6, b5: 5, b6: 4, b7: 7, b8: 10, b9: 9, b10: 8, b11: 11, b12: 14, b13: 13, b14: 12, b15: 15)); |
| 1217 | const __m256i shuffleMask = _mm256_broadcastsi128_si256(X: _mm_setr_epi8(b0: 6, b1: 7, b2: 6, b3: 7, b4: 6, b5: 7, b6: 6, b7: 7, b8: 14, b9: 15, b10: 14, b11: 15, b12: 14, b13: 15, b14: 14, b15: 15)); |
| 1218 | const __m256i zero = _mm256_setzero_si256(); |
| 1219 | |
| 1220 | for (; i < count - 7; i += 8) { |
| 1221 | __m256i dst1, dst2; |
| 1222 | __m256i srcVector = _mm256_loadu_si256(p: reinterpret_cast<const __m256i *>(src + i)); |
| 1223 | if (!_mm256_testz_si256(a: srcVector, b: alphaMask)) { |
| 1224 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1225 | bool cf = _mm256_testc_si256(a: srcVector, b: alphaMask); |
| 1226 | if (!RGBA) |
| 1227 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1228 | |
| 1229 | // The two unpack instructions unpack the low and upper halves of |
| 1230 | // each 128-bit half of the 256-bit register. Here's the tracking |
| 1231 | // of what's where: (p is 32-bit, P is 64-bit) |
| 1232 | // as loaded: [ p1, p2, p3, p4; p5, p6, p7, p8 ] |
| 1233 | // after permute4x64 [ p1, p2, p5, p6; p3, p4, p7, p8 ] |
| 1234 | // after unpacklo/hi [ P1, P2; P3, P4 ] [ P5, P6; P7, P8 ] |
| 1235 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1236 | |
| 1237 | const __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: srcVector); |
| 1238 | const __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: srcVector); |
| 1239 | if (!cf) { |
| 1240 | const __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1241 | const __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1242 | dst1 = _mm256_mulhi_epu16(a: src1, b: alpha1); |
| 1243 | dst2 = _mm256_mulhi_epu16(a: src2, b: alpha2); |
| 1244 | dst1 = _mm256_add_epi16(a: dst1, b: _mm256_srli_epi16(a: dst1, count: 15)); |
| 1245 | dst2 = _mm256_add_epi16(a: dst2, b: _mm256_srli_epi16(a: dst2, count: 15)); |
| 1246 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
| 1247 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
| 1248 | } else { |
| 1249 | dst1 = src1; |
| 1250 | dst2 = src2; |
| 1251 | } |
| 1252 | } else { |
| 1253 | dst1 = dst2 = zero; |
| 1254 | } |
| 1255 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i), a: dst1); |
| 1256 | _mm256_storeu_si256(p: reinterpret_cast<__m256i *>(buffer + i) + 1, a: dst2); |
| 1257 | } |
| 1258 | |
| 1259 | if (i < count) { |
| 1260 | __m256i epilogueMask = epilogueMaskFromCount(count: count - i); |
| 1261 | const __m256i epilogueAlphaMask = _mm256_blendv_epi8(V1: _mm256_setzero_si256(), V2: alphaMask, M: epilogueMask); |
| 1262 | __m256i dst1, dst2; |
| 1263 | __m256i srcVector = _mm256_maskload_epi32(X: reinterpret_cast<const int *>(src + i), M: epilogueMask); |
| 1264 | |
| 1265 | if (!_mm256_testz_si256(a: srcVector, b: epilogueAlphaMask)) { |
| 1266 | // keep the two _mm_test[zc]_siXXX next to each other |
| 1267 | bool cf = _mm256_testc_si256(a: srcVector, b: epilogueAlphaMask); |
| 1268 | if (!RGBA) |
| 1269 | srcVector = _mm256_shuffle_epi8(a: srcVector, b: rgbaMask); |
| 1270 | srcVector = _mm256_permute4x64_epi64(srcVector, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1271 | const __m256i src1 = _mm256_unpacklo_epi8(a: srcVector, b: srcVector); |
| 1272 | const __m256i src2 = _mm256_unpackhi_epi8(a: srcVector, b: srcVector); |
| 1273 | if (!cf) { |
| 1274 | const __m256i alpha1 = _mm256_shuffle_epi8(a: src1, b: shuffleMask); |
| 1275 | const __m256i alpha2 = _mm256_shuffle_epi8(a: src2, b: shuffleMask); |
| 1276 | dst1 = _mm256_mulhi_epu16(a: src1, b: alpha1); |
| 1277 | dst2 = _mm256_mulhi_epu16(a: src2, b: alpha2); |
| 1278 | dst1 = _mm256_add_epi16(a: dst1, b: _mm256_srli_epi16(a: dst1, count: 15)); |
| 1279 | dst2 = _mm256_add_epi16(a: dst2, b: _mm256_srli_epi16(a: dst2, count: 15)); |
| 1280 | dst1 = _mm256_blend_epi16(dst1, src1, 0x88); |
| 1281 | dst2 = _mm256_blend_epi16(dst2, src2, 0x88); |
| 1282 | } else { |
| 1283 | dst1 = src1; |
| 1284 | dst2 = src2; |
| 1285 | } |
| 1286 | } else { |
| 1287 | dst1 = dst2 = zero; |
| 1288 | } |
| 1289 | epilogueMask = _mm256_permute4x64_epi64(epilogueMask, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1290 | _mm256_maskstore_epi64(X: reinterpret_cast<qint64 *>(buffer + i), |
| 1291 | M: _mm256_unpacklo_epi32(a: epilogueMask, b: epilogueMask), |
| 1292 | Y: dst1); |
| 1293 | _mm256_maskstore_epi64(X: reinterpret_cast<qint64 *>(buffer + i + 4), |
| 1294 | M: _mm256_unpackhi_epi32(a: epilogueMask, b: epilogueMask), |
| 1295 | Y: dst2); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
| 1300 | const QList<QRgb> *, QDitherInfo *) |
| 1301 | { |
| 1302 | convertARGBToRGBA64PM_avx2<false>(buffer, src, count); |
| 1303 | return buffer; |
| 1304 | } |
| 1305 | |
| 1306 | const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uint *src, int count, |
| 1307 | const QList<QRgb> *, QDitherInfo *) |
| 1308 | { |
| 1309 | convertARGBToRGBA64PM_avx2<true>(buffer, src, count); |
| 1310 | return buffer; |
| 1311 | } |
| 1312 | |
| 1313 | const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1314 | const QList<QRgb> *, QDitherInfo *) |
| 1315 | { |
| 1316 | convertARGBToRGBA64PM_avx2<false>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1317 | return buffer; |
| 1318 | } |
| 1319 | |
| 1320 | const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1321 | const QList<QRgb> *, QDitherInfo *) |
| 1322 | { |
| 1323 | convertARGBToRGBA64PM_avx2<true>(buffer, src: reinterpret_cast<const uint *>(src) + index, count); |
| 1324 | return buffer; |
| 1325 | } |
| 1326 | |
| 1327 | const QRgba64 *QT_FASTCALL fetchRGBA64ToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1328 | const QList<QRgb> *, QDitherInfo *) |
| 1329 | { |
| 1330 | const QRgba64 *s = reinterpret_cast<const QRgba64 *>(src) + index; |
| 1331 | int i = 0; |
| 1332 | const __m256i vh = _mm256_set1_epi32(i: 0x8000); |
| 1333 | for (; i < count - 3; i += 4) { |
| 1334 | __m256i vs256 = _mm256_loadu_si256(p: (const __m256i *)(s + i)); |
| 1335 | __m256i va256 = _mm256_shufflelo_epi16(vs256, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1336 | va256 = _mm256_shufflehi_epi16(va256, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1337 | const __m256i vmullo = _mm256_mullo_epi16(a: vs256, b: va256); |
| 1338 | const __m256i vmulhi = _mm256_mulhi_epu16(a: vs256, b: va256); |
| 1339 | __m256i vslo = _mm256_unpacklo_epi16(a: vmullo, b: vmulhi); |
| 1340 | __m256i vshi = _mm256_unpackhi_epi16(a: vmullo, b: vmulhi); |
| 1341 | vslo = _mm256_add_epi32(a: vslo, b: _mm256_srli_epi32(a: vslo, count: 16)); |
| 1342 | vshi = _mm256_add_epi32(a: vshi, b: _mm256_srli_epi32(a: vshi, count: 16)); |
| 1343 | vslo = _mm256_add_epi32(a: vslo, b: vh); |
| 1344 | vshi = _mm256_add_epi32(a: vshi, b: vh); |
| 1345 | vslo = _mm256_srli_epi32(a: vslo, count: 16); |
| 1346 | vshi = _mm256_srli_epi32(a: vshi, count: 16); |
| 1347 | vs256 = _mm256_packus_epi32(V1: vslo, V2: vshi); |
| 1348 | vs256 = _mm256_blend_epi16(vs256, va256, 0x88); |
| 1349 | _mm256_storeu_si256(p: (__m256i *)(buffer + i), a: vs256); |
| 1350 | } |
| 1351 | for (; i < count; ++i) { |
| 1352 | const auto a = s[i].alpha(); |
| 1353 | __m128i vs = _mm_loadl_epi64(p: (const __m128i *)(s + i)); |
| 1354 | __m128i va = _mm_shufflelo_epi16(vs, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1355 | vs = multiplyAlpha65535(rgba64: vs, va); |
| 1356 | _mm_storel_epi64(p: (__m128i *)(buffer + i), a: vs); |
| 1357 | buffer[i].setAlpha(a); |
| 1358 | } |
| 1359 | return buffer; |
| 1360 | } |
| 1361 | |
| 1362 | const uint *QT_FASTCALL fetchRGB16FToRGB32_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1363 | const QList<QRgb> *, QDitherInfo *) |
| 1364 | { |
| 1365 | const quint64 *s = reinterpret_cast<const quint64 *>(src) + index; |
| 1366 | const __m256 vf = _mm256_set1_ps(w: 255.0f); |
| 1367 | const __m256 vh = _mm256_set1_ps(w: 0.5f); |
| 1368 | int i = 0; |
| 1369 | for (; i + 1 < count; i += 2) { |
| 1370 | __m256 vsf = _mm256_cvtph_ps(a: _mm_loadu_si128(p: (const __m128i *)(s + i))); |
| 1371 | vsf = _mm256_mul_ps(a: vsf, b: vf); |
| 1372 | vsf = _mm256_add_ps(a: vsf, b: vh); |
| 1373 | __m256i vsi = _mm256_cvttps_epi32(a: vsf); |
| 1374 | vsi = _mm256_packs_epi32(a: vsi, b: vsi); |
| 1375 | vsi = _mm256_shufflelo_epi16(vsi, _MM_SHUFFLE(3, 0, 1, 2)); |
| 1376 | vsi = _mm256_permute4x64_epi64(vsi, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1377 | __m128i vsi128 = _mm256_castsi256_si128(a: vsi); |
| 1378 | vsi128 = _mm_packus_epi16(a: vsi128, b: vsi128); |
| 1379 | _mm_storel_epi64(p: (__m128i *)(buffer + i), a: vsi128); |
| 1380 | } |
| 1381 | if (i < count) { |
| 1382 | __m128 vsf = _mm_cvtph_ps(a: _mm_loadl_epi64(p: (const __m128i *)(s + i))); |
| 1383 | vsf = _mm_mul_ps(a: vsf, b: _mm_set1_ps(w: 255.0f)); |
| 1384 | vsf = _mm_add_ps(a: vsf, b: _mm_set1_ps(w: 0.5f)); |
| 1385 | __m128i vsi = _mm_cvttps_epi32(a: vsf); |
| 1386 | vsi = _mm_packs_epi32(a: vsi, b: vsi); |
| 1387 | vsi = _mm_shufflelo_epi16(vsi, _MM_SHUFFLE(3, 0, 1, 2)); |
| 1388 | vsi = _mm_packus_epi16(a: vsi, b: vsi); |
| 1389 | buffer[i] = _mm_cvtsi128_si32(a: vsi); |
| 1390 | } |
| 1391 | return buffer; |
| 1392 | } |
| 1393 | |
| 1394 | const uint *QT_FASTCALL fetchRGBA16FToARGB32PM_avx2(uint *buffer, const uchar *src, int index, int count, |
| 1395 | const QList<QRgb> *, QDitherInfo *) |
| 1396 | { |
| 1397 | const quint64 *s = reinterpret_cast<const quint64 *>(src) + index; |
| 1398 | const __m256 vf = _mm256_set1_ps(w: 255.0f); |
| 1399 | const __m256 vh = _mm256_set1_ps(w: 0.5f); |
| 1400 | int i = 0; |
| 1401 | for (; i + 1 < count; i += 2) { |
| 1402 | __m256 vsf = _mm256_cvtph_ps(a: _mm_loadu_si128(p: (const __m128i *)(s + i))); |
| 1403 | __m256 vsa = _mm256_permute_ps(vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1404 | vsf = _mm256_mul_ps(a: vsf, b: vsa); |
| 1405 | vsf = _mm256_blend_ps(vsf, vsa, 0x88); |
| 1406 | vsf = _mm256_mul_ps(a: vsf, b: vf); |
| 1407 | vsf = _mm256_add_ps(a: vsf, b: vh); |
| 1408 | __m256i vsi = _mm256_cvttps_epi32(a: vsf); |
| 1409 | vsi = _mm256_packus_epi32(V1: vsi, V2: vsi); |
| 1410 | vsi = _mm256_shufflelo_epi16(vsi, _MM_SHUFFLE(3, 0, 1, 2)); |
| 1411 | vsi = _mm256_permute4x64_epi64(vsi, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1412 | __m128i vsi128 = _mm256_castsi256_si128(a: vsi); |
| 1413 | vsi128 = _mm_packus_epi16(a: vsi128, b: vsi128); |
| 1414 | _mm_storel_epi64(p: (__m128i *)(buffer + i), a: vsi128); |
| 1415 | } |
| 1416 | if (i < count) { |
| 1417 | __m128 vsf = _mm_cvtph_ps(a: _mm_loadl_epi64(p: (const __m128i *)(s + i))); |
| 1418 | __m128 vsa = _mm_permute_ps(vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1419 | vsf = _mm_mul_ps(a: vsf, b: vsa); |
| 1420 | vsf = _mm_insert_ps(vsf, vsa, 0x30); |
| 1421 | vsf = _mm_mul_ps(a: vsf, b: _mm_set1_ps(w: 255.0f)); |
| 1422 | vsf = _mm_add_ps(a: vsf, b: _mm_set1_ps(w: 0.5f)); |
| 1423 | __m128i vsi = _mm_cvttps_epi32(a: vsf); |
| 1424 | vsi = _mm_packus_epi32(V1: vsi, V2: vsi); |
| 1425 | vsi = _mm_shufflelo_epi16(vsi, _MM_SHUFFLE(3, 0, 1, 2)); |
| 1426 | vsi = _mm_packus_epi16(a: vsi, b: vsi); |
| 1427 | buffer[i] = _mm_cvtsi128_si32(a: vsi); |
| 1428 | } |
| 1429 | return buffer; |
| 1430 | } |
| 1431 | |
| 1432 | const QRgba64 *QT_FASTCALL fetchRGBA16FPMToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1433 | const QList<QRgb> *, QDitherInfo *) |
| 1434 | { |
| 1435 | const quint64 *s = reinterpret_cast<const quint64 *>(src) + index; |
| 1436 | const __m256 vf = _mm256_set1_ps(w: 65535.0f); |
| 1437 | const __m256 vh = _mm256_set1_ps(w: 0.5f); |
| 1438 | int i = 0; |
| 1439 | for (; i + 1 < count; i += 2) { |
| 1440 | __m256 vsf = _mm256_cvtph_ps(a: _mm_loadu_si128(p: (const __m128i *)(s + i))); |
| 1441 | vsf = _mm256_mul_ps(a: vsf, b: vf); |
| 1442 | vsf = _mm256_add_ps(a: vsf, b: vh); |
| 1443 | __m256i vsi = _mm256_cvttps_epi32(a: vsf); |
| 1444 | vsi = _mm256_packus_epi32(V1: vsi, V2: vsi); |
| 1445 | vsi = _mm256_permute4x64_epi64(vsi, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1446 | _mm_storeu_si128(p: (__m128i *)(buffer + i), b: _mm256_castsi256_si128(a: vsi)); |
| 1447 | } |
| 1448 | if (i < count) { |
| 1449 | __m128 vsf = _mm_cvtph_ps(a: _mm_loadl_epi64(p: (const __m128i *)(s + i))); |
| 1450 | vsf = _mm_mul_ps(a: vsf, b: _mm_set1_ps(w: 65535.0f)); |
| 1451 | vsf = _mm_add_ps(a: vsf, b: _mm_set1_ps(w: 0.5f)); |
| 1452 | __m128i vsi = _mm_cvttps_epi32(a: vsf); |
| 1453 | vsi = _mm_packus_epi32(V1: vsi, V2: vsi); |
| 1454 | _mm_storel_epi64(p: (__m128i *)(buffer + i), a: vsi); |
| 1455 | } |
| 1456 | return buffer; |
| 1457 | } |
| 1458 | |
| 1459 | const QRgba64 *QT_FASTCALL fetchRGBA16FToRGBA64PM_avx2(QRgba64 *buffer, const uchar *src, int index, int count, |
| 1460 | const QList<QRgb> *, QDitherInfo *) |
| 1461 | { |
| 1462 | const quint64 *s = reinterpret_cast<const quint64 *>(src) + index; |
| 1463 | const __m256 vf = _mm256_set1_ps(w: 65535.0f); |
| 1464 | const __m256 vh = _mm256_set1_ps(w: 0.5f); |
| 1465 | int i = 0; |
| 1466 | for (; i + 1 < count; i += 2) { |
| 1467 | __m256 vsf = _mm256_cvtph_ps(a: _mm_loadu_si128(p: (const __m128i *)(s + i))); |
| 1468 | __m256 vsa = _mm256_shuffle_ps(vsf, vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1469 | vsf = _mm256_mul_ps(a: vsf, b: vsa); |
| 1470 | vsf = _mm256_blend_ps(vsf, vsa, 0x88); |
| 1471 | vsf = _mm256_mul_ps(a: vsf, b: vf); |
| 1472 | vsf = _mm256_add_ps(a: vsf, b: vh); |
| 1473 | __m256i vsi = _mm256_cvttps_epi32(a: vsf); |
| 1474 | vsi = _mm256_packus_epi32(V1: vsi, V2: vsi); |
| 1475 | vsi = _mm256_permute4x64_epi64(vsi, _MM_SHUFFLE(3, 1, 2, 0)); |
| 1476 | _mm_storeu_si128(p: (__m128i *)(buffer + i), b: _mm256_castsi256_si128(a: vsi)); |
| 1477 | } |
| 1478 | if (i < count) { |
| 1479 | __m128 vsf = _mm_cvtph_ps(a: _mm_loadl_epi64(p: (const __m128i *)(s + i))); |
| 1480 | __m128 vsa = _mm_shuffle_ps(vsf, vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1481 | vsf = _mm_mul_ps(a: vsf, b: vsa); |
| 1482 | vsf = _mm_insert_ps(vsf, vsa, 0x30); |
| 1483 | vsf = _mm_mul_ps(a: vsf, b: _mm_set1_ps(w: 65535.0f)); |
| 1484 | vsf = _mm_add_ps(a: vsf, b: _mm_set1_ps(w: 0.5f)); |
| 1485 | __m128i vsi = _mm_cvttps_epi32(a: vsf); |
| 1486 | vsi = _mm_packus_epi32(V1: vsi, V2: vsi); |
| 1487 | _mm_storel_epi64(p: (__m128i *)(buffer + i), a: vsi); |
| 1488 | } |
| 1489 | return buffer; |
| 1490 | } |
| 1491 | |
| 1492 | void QT_FASTCALL storeRGB16FFromRGB32_avx2(uchar *dest, const uint *src, int index, int count, |
| 1493 | const QList<QRgb> *, QDitherInfo *) |
| 1494 | { |
| 1495 | quint64 *d = reinterpret_cast<quint64 *>(dest) + index; |
| 1496 | const __m256 vf = _mm256_set1_ps(w: 1.0f / 255.0f); |
| 1497 | int i = 0; |
| 1498 | for (; i + 1 < count; i += 2) { |
| 1499 | __m256i vsi = _mm256_cvtepu8_epi32(V: _mm_loadl_epi64(p: (const __m128i *)(src + i))); |
| 1500 | vsi = _mm256_shuffle_epi32(vsi, _MM_SHUFFLE(3, 0, 1, 2)); |
| 1501 | __m256 vsf = _mm256_cvtepi32_ps(a: vsi); |
| 1502 | vsf = _mm256_mul_ps(a: vsf, b: vf); |
| 1503 | _mm_storeu_si128(p: (__m128i *)(d + i), _mm256_cvtps_ph(vsf, 0)); |
| 1504 | } |
| 1505 | if (i < count) { |
| 1506 | __m128i vsi = _mm_cvtsi32_si128(a: src[i]); |
| 1507 | vsi = _mm_cvtepu8_epi32(V: vsi); |
| 1508 | vsi = _mm_shuffle_epi32(vsi, _MM_SHUFFLE(3, 0, 1, 2)); |
| 1509 | __m128 vsf = _mm_cvtepi32_ps(a: vsi); |
| 1510 | vsf = _mm_mul_ps(a: vsf, b: _mm_set1_ps(w: 1.0f / 255.0f)); |
| 1511 | _mm_storel_epi64(p: (__m128i *)(d + i), _mm_cvtps_ph(vsf, 0)); |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | void QT_FASTCALL storeRGBA16FFromARGB32PM_avx2(uchar *dest, const uint *src, int index, int count, |
| 1516 | const QList<QRgb> *, QDitherInfo *) |
| 1517 | { |
| 1518 | quint64 *d = reinterpret_cast<quint64 *>(dest) + index; |
| 1519 | const __m128 vf = _mm_set1_ps(w: 1.0f / 255.0f); |
| 1520 | for (int i = 0; i < count; ++i) { |
| 1521 | const uint s = src[i]; |
| 1522 | __m128i vsi = _mm_cvtsi32_si128(a: s); |
| 1523 | vsi = _mm_cvtepu8_epi32(V: vsi); |
| 1524 | vsi = _mm_shuffle_epi32(vsi, _MM_SHUFFLE(3, 0, 1, 2)); |
| 1525 | __m128 vsf = _mm_cvtepi32_ps(a: vsi); |
| 1526 | const uint8_t a = (s >> 24); |
| 1527 | if (a == 255) |
| 1528 | vsf = _mm_mul_ps(a: vsf, b: vf); |
| 1529 | else if (a == 0) |
| 1530 | vsf = _mm_set1_ps(w: 0.0f); |
| 1531 | else { |
| 1532 | const __m128 vsa = _mm_permute_ps(vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1533 | __m128 vsr = _mm_rcp_ps(a: vsa); |
| 1534 | vsr = _mm_sub_ps(a: _mm_add_ps(a: vsr, b: vsr), b: _mm_mul_ps(a: vsr, b: _mm_mul_ps(a: vsr, b: vsa))); |
| 1535 | vsr = _mm_insert_ps(vsr, _mm_set_ss(1.0f), 0x30); |
| 1536 | vsf = _mm_mul_ps(a: vsf, b: vsr); |
| 1537 | } |
| 1538 | _mm_storel_epi64(p: (__m128i *)(d + i), _mm_cvtps_ph(vsf, 0)); |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | #if QT_CONFIG(raster_fp) |
| 1543 | const QRgbaFloat32 *QT_FASTCALL fetchRGBA16FToRGBA32F_avx2(QRgbaFloat32 *buffer, const uchar *src, int index, int count, |
| 1544 | const QList<QRgb> *, QDitherInfo *) |
| 1545 | { |
| 1546 | const quint64 *s = reinterpret_cast<const quint64 *>(src) + index; |
| 1547 | int i = 0; |
| 1548 | for (; i + 1 < count; i += 2) { |
| 1549 | __m256 vsf = _mm256_cvtph_ps(a: _mm_loadu_si128(p: (const __m128i *)(s + i))); |
| 1550 | __m256 vsa = _mm256_permute_ps(vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1551 | vsf = _mm256_mul_ps(a: vsf, b: vsa); |
| 1552 | vsf = _mm256_blend_ps(vsf, vsa, 0x88); |
| 1553 | _mm256_storeu_ps(p: (float *)(buffer + i), a: vsf); |
| 1554 | } |
| 1555 | if (i < count) { |
| 1556 | __m128 vsf = _mm_cvtph_ps(a: _mm_loadl_epi64(p: (const __m128i *)(s + i))); |
| 1557 | __m128 vsa = _mm_permute_ps(vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1558 | vsf = _mm_mul_ps(a: vsf, b: vsa); |
| 1559 | vsf = _mm_insert_ps(vsf, vsa, 0x30); |
| 1560 | _mm_storeu_ps(p: (float *)(buffer + i), a: vsf); |
| 1561 | } |
| 1562 | return buffer; |
| 1563 | } |
| 1564 | |
| 1565 | void QT_FASTCALL storeRGBX16FFromRGBA32F_avx2(uchar *dest, const QRgbaFloat32 *src, int index, int count, |
| 1566 | const QList<QRgb> *, QDitherInfo *) |
| 1567 | { |
| 1568 | quint64 *d = reinterpret_cast<quint64 *>(dest) + index; |
| 1569 | const __m128 *s = reinterpret_cast<const __m128 *>(src); |
| 1570 | const __m128 zero = _mm_set_ps(z: 1.0f, y: 0.0f, x: 0.0f, w: 0.0f); |
| 1571 | for (int i = 0; i < count; ++i) { |
| 1572 | __m128 vsf = _mm_loadu_ps(p: reinterpret_cast<const float *>(s + i)); |
| 1573 | const __m128 vsa = _mm_permute_ps(vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1574 | const float a = _mm_cvtss_f32(a: vsa); |
| 1575 | if (a == 1.0f) |
| 1576 | { } |
| 1577 | else if (a == 0.0f) |
| 1578 | vsf = zero; |
| 1579 | else { |
| 1580 | __m128 vsr = _mm_rcp_ps(a: vsa); |
| 1581 | vsr = _mm_sub_ps(a: _mm_add_ps(a: vsr, b: vsr), b: _mm_mul_ps(a: vsr, b: _mm_mul_ps(a: vsr, b: vsa))); |
| 1582 | vsf = _mm_mul_ps(a: vsf, b: vsr); |
| 1583 | vsf = _mm_insert_ps(vsf, _mm_set_ss(1.0f), 0x30); |
| 1584 | } |
| 1585 | _mm_storel_epi64(p: (__m128i *)(d + i), _mm_cvtps_ph(vsf, 0)); |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | void QT_FASTCALL storeRGBA16FFromRGBA32F_avx2(uchar *dest, const QRgbaFloat32 *src, int index, int count, |
| 1590 | const QList<QRgb> *, QDitherInfo *) |
| 1591 | { |
| 1592 | quint64 *d = reinterpret_cast<quint64 *>(dest) + index; |
| 1593 | const __m128 *s = reinterpret_cast<const __m128 *>(src); |
| 1594 | const __m128 zero = _mm_set1_ps(w: 0.0f); |
| 1595 | for (int i = 0; i < count; ++i) { |
| 1596 | __m128 vsf = _mm_loadu_ps(p: reinterpret_cast<const float *>(s + i)); |
| 1597 | const __m128 vsa = _mm_permute_ps(vsf, _MM_SHUFFLE(3, 3, 3, 3)); |
| 1598 | const float a = _mm_cvtss_f32(a: vsa); |
| 1599 | if (a == 1.0f) |
| 1600 | { } |
| 1601 | else if (a == 0.0f) |
| 1602 | vsf = zero; |
| 1603 | else { |
| 1604 | __m128 vsr = _mm_rcp_ps(a: vsa); |
| 1605 | vsr = _mm_sub_ps(a: _mm_add_ps(a: vsr, b: vsr), b: _mm_mul_ps(a: vsr, b: _mm_mul_ps(a: vsr, b: vsa))); |
| 1606 | vsr = _mm_insert_ps(vsr, _mm_set_ss(1.0f), 0x30); |
| 1607 | vsf = _mm_mul_ps(a: vsf, b: vsr); |
| 1608 | } |
| 1609 | _mm_storel_epi64(p: (__m128i *)(d + i), _mm_cvtps_ph(vsf, 0)); |
| 1610 | } |
| 1611 | } |
| 1612 | #endif |
| 1613 | |
| 1614 | QT_END_NAMESPACE |
| 1615 | |
| 1616 | #endif |
| 1617 | |