1 | // Copyright (C) 2016 The Qt Company Ltd. |
2 | // Copyright (C) 2000-2016 by David Turner, Robert Wilhelm, and Werner Lemberg. |
3 | // SPDX-License-Identifier: FTL OR GPL-2.0-only |
4 | |
5 | /***************************************************************************/ |
6 | /* */ |
7 | /* qgrayraster.c, derived from ftgrays.c */ |
8 | /* */ |
9 | /* A new `perfect' anti-aliasing renderer (body). */ |
10 | /* */ |
11 | /* Copyright 2000-2016 by */ |
12 | /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
13 | /* */ |
14 | /* This file is part of the FreeType project, and may only be used, */ |
15 | /* modified, and distributed under the terms of the FreeType project */ |
16 | /* license, ../../3rdparty/freetype/docs/FTL.TXT. By continuing to use, */ |
17 | /* modify, or distribute this file you indicate that you have read */ |
18 | /* the license and understand and accept it fully. */ |
19 | /* */ |
20 | /***************************************************************************/ |
21 | |
22 | /*************************************************************************/ |
23 | /* */ |
24 | /* This file can be compiled without the rest of the FreeType engine, by */ |
25 | /* defining the _STANDALONE_ macro when compiling it. You also need to */ |
26 | /* put the files `ftgrays.h' and `ftimage.h' into the current */ |
27 | /* compilation directory. Typically, you could do something like */ |
28 | /* */ |
29 | /* - copy `src/smooth/ftgrays.c' (this file) to your current directory */ |
30 | /* */ |
31 | /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */ |
32 | /* same directory */ |
33 | /* */ |
34 | /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */ |
35 | /* */ |
36 | /* cc -c -D_STANDALONE_ ftgrays.c */ |
37 | /* */ |
38 | /* The renderer can be initialized with a call to */ |
39 | /* `qt_ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */ |
40 | /* with a call to `qt_ft_gray_raster.raster_render'. */ |
41 | /* */ |
42 | /* See the comments and documentation in the file `ftimage.h' for more */ |
43 | /* details on how the raster works. */ |
44 | /* */ |
45 | /*************************************************************************/ |
46 | |
47 | /*************************************************************************/ |
48 | /* */ |
49 | /* This is a new anti-aliasing scan-converter for FreeType 2. The */ |
50 | /* algorithm used here is _very_ different from the one in the standard */ |
51 | /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */ |
52 | /* coverage of the outline on each pixel cell. */ |
53 | /* */ |
54 | /* It is based on ideas that I initially found in Raph Levien's */ |
55 | /* excellent LibArt graphics library (see http://www.levien.com/libart */ |
56 | /* for more information, though the web pages do not tell anything */ |
57 | /* about the renderer; you'll have to dive into the source code to */ |
58 | /* understand how it works). */ |
59 | /* */ |
60 | /* Note, however, that this is a _very_ different implementation */ |
61 | /* compared to Raph's. Coverage information is stored in a very */ |
62 | /* different way, and I don't use sorted vector paths. Also, it doesn't */ |
63 | /* use floating point values. */ |
64 | /* */ |
65 | /* This renderer has the following advantages: */ |
66 | /* */ |
67 | /* - It doesn't need an intermediate bitmap. Instead, one can supply a */ |
68 | /* callback function that will be called by the renderer to draw gray */ |
69 | /* spans on any target surface. You can thus do direct composition on */ |
70 | /* any kind of bitmap, provided that you give the renderer the right */ |
71 | /* callback. */ |
72 | /* */ |
73 | /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */ |
74 | /* each pixel cell. */ |
75 | /* */ |
76 | /* - It performs a single pass on the outline (the `standard' FT2 */ |
77 | /* renderer makes two passes). */ |
78 | /* */ |
79 | /* - It can easily be modified to render to _any_ number of gray levels */ |
80 | /* cheaply. */ |
81 | /* */ |
82 | /* - For small (< 20) pixel sizes, it is faster than the standard */ |
83 | /* renderer. */ |
84 | /* */ |
85 | /*************************************************************************/ |
86 | |
87 | /*************************************************************************/ |
88 | /* */ |
89 | /* The macro QT_FT_COMPONENT is used in trace mode. It is an implicit */ |
90 | /* parameter of the QT_FT_TRACE() and QT_FT_ERROR() macros, used to print/log */ |
91 | /* messages during execution. */ |
92 | /* */ |
93 | #undef QT_FT_COMPONENT |
94 | #define QT_FT_COMPONENT trace_smooth |
95 | |
96 | |
97 | /* Auxiliary macros for token concatenation. */ |
98 | #define QT_FT_ERR_XCAT( x, y ) x ## y |
99 | #define QT_FT_ERR_CAT( x, y ) QT_FT_ERR_XCAT( x, y ) |
100 | |
101 | #define QT_FT_BEGIN_STMNT do { |
102 | #define QT_FT_END_STMNT } while ( 0 ) |
103 | |
104 | #define QT_FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) ) |
105 | #define QT_FT_ABS( a ) ( (a) < 0 ? -(a) : (a) ) |
106 | |
107 | |
108 | /* |
109 | * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min' |
110 | * algorithm. We use alpha = 1, beta = 3/8, giving us results with a |
111 | * largest error less than 7% compared to the exact value. |
112 | */ |
113 | #define QT_FT_HYPOT( x, y ) \ |
114 | ( x = QT_FT_ABS( x ), \ |
115 | y = QT_FT_ABS( y ), \ |
116 | x > y ? x + ( 3 * y >> 3 ) \ |
117 | : y + ( 3 * x >> 3 ) ) |
118 | |
119 | #define ErrRaster_MemoryOverflow -4 |
120 | |
121 | #if defined(VXWORKS) |
122 | # include <vxWorksCommon.h> /* needed for setjmp.h */ |
123 | #endif |
124 | #include <string.h> /* for qt_ft_memcpy() */ |
125 | #include <setjmp.h> |
126 | #include <limits.h> |
127 | |
128 | #define QT_FT_UINT_MAX UINT_MAX |
129 | |
130 | #define qt_ft_memset memset |
131 | |
132 | #define qt_ft_setjmp setjmp |
133 | #define qt_ft_longjmp longjmp |
134 | #define qt_ft_jmp_buf jmp_buf |
135 | |
136 | #include <stddef.h> |
137 | typedef ptrdiff_t QT_FT_PtrDist; |
138 | |
139 | #define ErrRaster_Invalid_Mode -2 |
140 | #define ErrRaster_Invalid_Outline -1 |
141 | #define ErrRaster_Invalid_Argument -3 |
142 | #define ErrRaster_Memory_Overflow -4 |
143 | #define ErrRaster_OutOfMemory -6 |
144 | |
145 | #define |
146 | #define |
147 | |
148 | #include <private/qrasterdefs_p.h> |
149 | #include <private/qgrayraster_p.h> |
150 | |
151 | #include <qcompilerdetection.h> |
152 | |
153 | #include <stdlib.h> |
154 | #include <stdio.h> |
155 | #include <assert.h> |
156 | |
157 | #define QT_FT_UNUSED( x ) (void) x |
158 | |
159 | #define QT_FT_TRACE5( x ) do { } while ( 0 ) /* nothing */ |
160 | #define QT_FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
161 | #define QT_FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
162 | #define QT_FT_THROW( e ) QT_FT_ERR_CAT( ErrRaster_, e ) |
163 | |
164 | #ifndef QT_FT_MEM_SET |
165 | #define QT_FT_MEM_SET( d, s, c ) qt_ft_memset( d, s, c ) |
166 | #endif |
167 | |
168 | #ifndef QT_FT_MEM_ZERO |
169 | #define QT_FT_MEM_ZERO( dest, count ) QT_FT_MEM_SET( dest, 0, count ) |
170 | #endif |
171 | |
172 | |
173 | #define RAS_ARG PWorker worker |
174 | #define RAS_ARG_ PWorker worker, |
175 | |
176 | #define RAS_VAR worker |
177 | #define RAS_VAR_ worker, |
178 | |
179 | #define ras (*worker) |
180 | |
181 | /* must be at least 6 bits! */ |
182 | #define PIXEL_BITS 8 |
183 | |
184 | #define ONE_PIXEL ( 1L << PIXEL_BITS ) |
185 | #define TRUNC( x ) (TCoord)( (x) >> PIXEL_BITS ) |
186 | #define FRACT( x ) (TCoord)( (x) & ( ONE_PIXEL - 1 ) ) |
187 | |
188 | #if PIXEL_BITS >= 6 |
189 | #define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) ) |
190 | #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) |
191 | #else |
192 | #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) |
193 | #define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) ) |
194 | #endif |
195 | |
196 | /* Compute `dividend / divisor' and return both its quotient and */ |
197 | /* remainder, cast to a specific type. This macro also ensures that */ |
198 | /* the remainder is always positive. */ |
199 | #define QT_FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
200 | QT_FT_BEGIN_STMNT \ |
201 | (quotient) = (type)( (dividend) / (divisor) ); \ |
202 | (remainder) = (type)( (dividend) % (divisor) ); \ |
203 | if ( (remainder) < 0 ) \ |
204 | { \ |
205 | (quotient)--; \ |
206 | (remainder) += (type)(divisor); \ |
207 | } \ |
208 | QT_FT_END_STMNT |
209 | |
210 | /* These macros speed up repetitive divisions by replacing them */ |
211 | /* with multiplications and right shifts. */ |
212 | #define QT_FT_UDIVPREP( b ) \ |
213 | long b ## _r = (long)( ULONG_MAX >> PIXEL_BITS ) / ( b ) |
214 | #define QT_FT_UDIV( a, b ) \ |
215 | ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \ |
216 | ( sizeof( long ) * CHAR_BIT - PIXEL_BITS ) ) |
217 | |
218 | |
219 | /*************************************************************************/ |
220 | /* */ |
221 | /* TYPE DEFINITIONS */ |
222 | /* */ |
223 | |
224 | /* don't change the following types to QT_FT_Int or QT_FT_Pos, since we might */ |
225 | /* need to define them to "float" or "double" when experimenting with */ |
226 | /* new algorithms */ |
227 | |
228 | typedef long TCoord; /* integer scanline/pixel coordinate */ |
229 | typedef long TPos; /* sub-pixel coordinate */ |
230 | typedef long TArea ; /* cell areas, coordinate products */ |
231 | |
232 | /* maximal number of gray spans in a call to the span callback */ |
233 | #define QT_FT_MAX_GRAY_SPANS 256 |
234 | |
235 | |
236 | typedef struct TCell_* PCell; |
237 | |
238 | typedef struct TCell_ |
239 | { |
240 | int x; |
241 | int cover; |
242 | TArea area; |
243 | PCell next; |
244 | |
245 | } TCell; |
246 | |
247 | |
248 | typedef struct TWorker_ |
249 | { |
250 | TCoord ex, ey; |
251 | TPos min_ex, max_ex; |
252 | TPos min_ey, max_ey; |
253 | TPos count_ex, count_ey; |
254 | |
255 | TArea area; |
256 | int cover; |
257 | int invalid; |
258 | |
259 | PCell cells; |
260 | QT_FT_PtrDist max_cells; |
261 | QT_FT_PtrDist num_cells; |
262 | |
263 | TPos x, y; |
264 | |
265 | QT_FT_Outline outline; |
266 | QT_FT_Bitmap target; |
267 | QT_FT_BBox clip_box; |
268 | |
269 | QT_FT_Span gray_spans[QT_FT_MAX_GRAY_SPANS]; |
270 | int num_gray_spans; |
271 | |
272 | QT_FT_Raster_Span_Func render_span; |
273 | void* render_span_data; |
274 | |
275 | int band_size; |
276 | int band_shoot; |
277 | |
278 | qt_ft_jmp_buf jump_buffer; |
279 | |
280 | void* buffer; |
281 | long buffer_size; |
282 | |
283 | PCell* ycells; |
284 | TPos ycount; |
285 | |
286 | int skip_spans; |
287 | } TWorker, *PWorker; |
288 | |
289 | |
290 | typedef struct TRaster_ |
291 | { |
292 | void* buffer; |
293 | long buffer_size; |
294 | long buffer_allocated_size; |
295 | int band_size; |
296 | void* memory; |
297 | PWorker worker; |
298 | |
299 | } TRaster, *PRaster; |
300 | |
301 | int q_gray_rendered_spans(TRaster *raster) |
302 | { |
303 | if ( raster && raster->worker ) |
304 | return raster->worker->skip_spans > 0 ? 0 : -raster->worker->skip_spans; |
305 | return 0; |
306 | } |
307 | |
308 | /*************************************************************************/ |
309 | /* */ |
310 | /* Initialize the cells table. */ |
311 | /* */ |
312 | static void |
313 | gray_init_cells( RAS_ARG_ void* buffer, |
314 | long byte_size ) |
315 | { |
316 | ras.buffer = buffer; |
317 | ras.buffer_size = byte_size; |
318 | |
319 | ras.ycells = (PCell*) buffer; |
320 | ras.cells = NULL; |
321 | ras.max_cells = 0; |
322 | ras.num_cells = 0; |
323 | ras.area = 0; |
324 | ras.cover = 0; |
325 | ras.invalid = 1; |
326 | } |
327 | |
328 | |
329 | /*************************************************************************/ |
330 | /* */ |
331 | /* Compute the outline bounding box. */ |
332 | /* */ |
333 | static void |
334 | gray_compute_cbox( RAS_ARG ) |
335 | { |
336 | QT_FT_Outline* outline = &ras.outline; |
337 | QT_FT_Vector* vec = outline->points; |
338 | QT_FT_Vector* limit = vec + outline->n_points; |
339 | |
340 | |
341 | if ( outline->n_points <= 0 ) |
342 | { |
343 | ras.min_ex = ras.max_ex = 0; |
344 | ras.min_ey = ras.max_ey = 0; |
345 | return; |
346 | } |
347 | |
348 | ras.min_ex = ras.max_ex = vec->x; |
349 | ras.min_ey = ras.max_ey = vec->y; |
350 | |
351 | vec++; |
352 | |
353 | for ( ; vec < limit; vec++ ) |
354 | { |
355 | TPos x = vec->x; |
356 | TPos y = vec->y; |
357 | |
358 | |
359 | if ( x < ras.min_ex ) ras.min_ex = x; |
360 | if ( x > ras.max_ex ) ras.max_ex = x; |
361 | if ( y < ras.min_ey ) ras.min_ey = y; |
362 | if ( y > ras.max_ey ) ras.max_ey = y; |
363 | } |
364 | |
365 | /* truncate the bounding box to integer pixels */ |
366 | ras.min_ex = ras.min_ex >> 6; |
367 | ras.min_ey = ras.min_ey >> 6; |
368 | ras.max_ex = ( ras.max_ex + 63 ) >> 6; |
369 | ras.max_ey = ( ras.max_ey + 63 ) >> 6; |
370 | } |
371 | |
372 | |
373 | /*************************************************************************/ |
374 | /* */ |
375 | /* Record the current cell in the table. */ |
376 | /* */ |
377 | static PCell |
378 | gray_find_cell( RAS_ARG ) |
379 | { |
380 | PCell *pcell, cell; |
381 | TPos x = ras.ex; |
382 | |
383 | |
384 | if ( x > ras.count_ex ) |
385 | x = ras.count_ex; |
386 | |
387 | pcell = &ras.ycells[ras.ey]; |
388 | for (;;) |
389 | { |
390 | cell = *pcell; |
391 | if ( cell == NULL || cell->x > x ) |
392 | break; |
393 | |
394 | if ( cell->x == x ) |
395 | goto Exit; |
396 | |
397 | pcell = &cell->next; |
398 | } |
399 | |
400 | if ( ras.num_cells >= ras.max_cells ) |
401 | qt_ft_longjmp( ras.jump_buffer, val: 1 ); |
402 | |
403 | cell = ras.cells + ras.num_cells++; |
404 | cell->x = x; |
405 | cell->area = 0; |
406 | cell->cover = 0; |
407 | |
408 | cell->next = *pcell; |
409 | *pcell = cell; |
410 | |
411 | Exit: |
412 | return cell; |
413 | } |
414 | |
415 | |
416 | static void |
417 | gray_record_cell( RAS_ARG ) |
418 | { |
419 | if ( ras.area | ras.cover ) |
420 | { |
421 | PCell cell = gray_find_cell( RAS_VAR ); |
422 | |
423 | |
424 | cell->area += ras.area; |
425 | cell->cover += ras.cover; |
426 | } |
427 | } |
428 | |
429 | |
430 | /*************************************************************************/ |
431 | /* */ |
432 | /* Set the current cell to a new position. */ |
433 | /* */ |
434 | static void |
435 | gray_set_cell( RAS_ARG_ TCoord ex, |
436 | TCoord ey ) |
437 | { |
438 | /* Move the cell pointer to a new position. We set the `invalid' */ |
439 | /* flag to indicate that the cell isn't part of those we're interested */ |
440 | /* in during the render phase. This means that: */ |
441 | /* */ |
442 | /* . the new vertical position must be within min_ey..max_ey-1. */ |
443 | /* . the new horizontal position must be strictly less than max_ex */ |
444 | /* */ |
445 | /* Note that if a cell is to the left of the clipping region, it is */ |
446 | /* actually set to the (min_ex-1) horizontal position. */ |
447 | |
448 | /* All cells that are on the left of the clipping region go to the */ |
449 | /* min_ex - 1 horizontal position. */ |
450 | ey -= ras.min_ey; |
451 | |
452 | if ( ex > ras.max_ex ) |
453 | ex = ras.max_ex; |
454 | |
455 | ex -= ras.min_ex; |
456 | if ( ex < 0 ) |
457 | ex = -1; |
458 | |
459 | /* are we moving to a different cell ? */ |
460 | if ( ex != ras.ex || ey != ras.ey ) |
461 | { |
462 | /* record the current one if it is valid */ |
463 | if ( !ras.invalid ) |
464 | gray_record_cell( RAS_VAR ); |
465 | |
466 | ras.area = 0; |
467 | ras.cover = 0; |
468 | ras.ex = ex; |
469 | ras.ey = ey; |
470 | } |
471 | |
472 | ras.invalid = ( (unsigned int)ey >= (unsigned int)ras.count_ey || |
473 | ex >= ras.count_ex ); |
474 | } |
475 | |
476 | |
477 | /*************************************************************************/ |
478 | /* */ |
479 | /* Start a new contour at a given cell. */ |
480 | /* */ |
481 | static void |
482 | gray_start_cell( RAS_ARG_ TCoord ex, |
483 | TCoord ey ) |
484 | { |
485 | if ( ex > ras.max_ex ) |
486 | ex = (TCoord)( ras.max_ex ); |
487 | |
488 | if ( ex < ras.min_ex ) |
489 | ex = (TCoord)( ras.min_ex - 1 ); |
490 | |
491 | ras.area = 0; |
492 | ras.cover = 0; |
493 | ras.ex = ex - ras.min_ex; |
494 | ras.ey = ey - ras.min_ey; |
495 | ras.invalid = 0; |
496 | |
497 | gray_set_cell( RAS_VAR_ ex, ey ); |
498 | } |
499 | |
500 | // The new render-line implementation is not yet used |
501 | #if 1 |
502 | |
503 | /*************************************************************************/ |
504 | /* */ |
505 | /* Render a scanline as one or more cells. */ |
506 | /* */ |
507 | static void |
508 | gray_render_scanline( RAS_ARG_ TCoord ey, |
509 | TPos x1, |
510 | TCoord y1, |
511 | TPos x2, |
512 | TCoord y2 ) |
513 | { |
514 | TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod; |
515 | TPos p, dx; |
516 | int incr; |
517 | |
518 | |
519 | ex1 = TRUNC( x1 ); |
520 | ex2 = TRUNC( x2 ); |
521 | |
522 | /* trivial case. Happens often */ |
523 | if ( y1 == y2 ) |
524 | { |
525 | gray_set_cell( RAS_VAR_ ex: ex2, ey ); |
526 | return; |
527 | } |
528 | |
529 | fx1 = FRACT( x1 ); |
530 | fx2 = FRACT( x2 ); |
531 | |
532 | /* everything is located in a single cell. That is easy! */ |
533 | /* */ |
534 | if ( ex1 == ex2 ) |
535 | goto End; |
536 | |
537 | /* ok, we'll have to render a run of adjacent cells on the same */ |
538 | /* scanline... */ |
539 | /* */ |
540 | dx = x2 - x1; |
541 | dy = y2 - y1; |
542 | |
543 | if ( dx > 0 ) |
544 | { |
545 | p = ( ONE_PIXEL - fx1 ) * dy; |
546 | first = ONE_PIXEL; |
547 | incr = 1; |
548 | } else { |
549 | p = fx1 * dy; |
550 | first = 0; |
551 | incr = -1; |
552 | dx = -dx; |
553 | } |
554 | |
555 | QT_FT_DIV_MOD( TCoord, p, dx, delta, mod ); |
556 | |
557 | ras.area += (TArea)( fx1 + first ) * delta; |
558 | ras.cover += delta; |
559 | y1 += delta; |
560 | ex1 += incr; |
561 | gray_set_cell( RAS_VAR_ ex: ex1, ey ); |
562 | |
563 | if ( ex1 != ex2 ) |
564 | { |
565 | TCoord lift, rem; |
566 | |
567 | |
568 | p = ONE_PIXEL * dy; |
569 | QT_FT_DIV_MOD( TCoord, p, dx, lift, rem ); |
570 | |
571 | do |
572 | { |
573 | delta = lift; |
574 | mod += rem; |
575 | if ( mod >= (TCoord)dx ) |
576 | { |
577 | mod -= (TCoord)dx; |
578 | delta++; |
579 | } |
580 | |
581 | ras.area += (TArea)( ONE_PIXEL * delta ); |
582 | ras.cover += delta; |
583 | y1 += delta; |
584 | ex1 += incr; |
585 | gray_set_cell( RAS_VAR_ ex: ex1, ey ); |
586 | } while ( ex1 != ex2 ); |
587 | } |
588 | fx1 = ONE_PIXEL - first; |
589 | |
590 | End: |
591 | dy = y2 - y1; |
592 | |
593 | ras.area += (TArea)( ( fx1 + fx2 ) * dy ); |
594 | ras.cover += dy; |
595 | } |
596 | |
597 | |
598 | /*************************************************************************/ |
599 | /* */ |
600 | /* Render a given line as a series of scanlines. */ |
601 | /* */ |
602 | static void |
603 | gray_render_line( RAS_ARG_ TPos to_x, |
604 | TPos to_y ) |
605 | { |
606 | TCoord ey1, ey2, fy1, fy2, first, delta, mod; |
607 | TPos p, dx, dy, x, x2; |
608 | int incr; |
609 | |
610 | ey1 = TRUNC( ras.y ); |
611 | ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ |
612 | |
613 | /* perform vertical clipping */ |
614 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
615 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
616 | goto End; |
617 | |
618 | fy1 = FRACT( ras.y ); |
619 | fy2 = FRACT( to_y ); |
620 | |
621 | /* everything is on a single scanline */ |
622 | if ( ey1 == ey2 ) |
623 | { |
624 | gray_render_scanline( RAS_VAR_ ey: ey1, ras.x, y1: fy1, x2: to_x, y2: fy2 ); |
625 | goto End; |
626 | } |
627 | |
628 | dx = to_x - ras.x; |
629 | dy = to_y - ras.y; |
630 | |
631 | /* vertical line - avoid calling gray_render_scanline */ |
632 | if ( dx == 0 ) |
633 | { |
634 | TCoord ex = TRUNC( ras.x ); |
635 | TCoord two_fx = FRACT( ras.x ) << 1; |
636 | TPos area, max_ey1; |
637 | |
638 | |
639 | if ( dy > 0) |
640 | { |
641 | first = ONE_PIXEL; |
642 | } |
643 | else |
644 | { |
645 | first = 0; |
646 | } |
647 | |
648 | delta = first - fy1; |
649 | ras.area += (TArea)two_fx * delta; |
650 | ras.cover += delta; |
651 | |
652 | delta = first + first - ONE_PIXEL; |
653 | area = (TArea)two_fx * delta; |
654 | max_ey1 = ras.count_ey + ras.min_ey; |
655 | if (dy < 0) { |
656 | if (ey1 > max_ey1) { |
657 | ey1 = (max_ey1 > ey2) ? max_ey1 : ey2; |
658 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
659 | } else { |
660 | ey1--; |
661 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
662 | } |
663 | while ( ey1 > ey2 && ey1 >= ras.min_ey) |
664 | { |
665 | ras.area += area; |
666 | ras.cover += delta; |
667 | ey1--; |
668 | |
669 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
670 | } |
671 | if (ey1 != ey2) { |
672 | ey1 = ey2; |
673 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
674 | } |
675 | } else { |
676 | if (ey1 < ras.min_ey) { |
677 | ey1 = (ras.min_ey < ey2) ? ras.min_ey : ey2; |
678 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
679 | } else { |
680 | ey1++; |
681 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
682 | } |
683 | while ( ey1 < ey2 && ey1 < max_ey1) |
684 | { |
685 | ras.area += area; |
686 | ras.cover += delta; |
687 | ey1++; |
688 | |
689 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
690 | } |
691 | if (ey1 != ey2) { |
692 | ey1 = ey2; |
693 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
694 | } |
695 | } |
696 | |
697 | delta = (int)( fy2 - ONE_PIXEL + first ); |
698 | ras.area += (TArea)two_fx * delta; |
699 | ras.cover += delta; |
700 | |
701 | goto End; |
702 | } |
703 | |
704 | /* ok, we have to render several scanlines */ |
705 | if ( dy > 0) |
706 | { |
707 | p = ( ONE_PIXEL - fy1 ) * dx; |
708 | first = ONE_PIXEL; |
709 | incr = 1; |
710 | } |
711 | else |
712 | { |
713 | p = fy1 * dx; |
714 | first = 0; |
715 | incr = -1; |
716 | dy = -dy; |
717 | } |
718 | |
719 | /* the fractional part of x-delta is mod/dy. It is essential to */ |
720 | /* keep track of its accumulation for accurate rendering. */ |
721 | QT_FT_DIV_MOD( TCoord, p, dy, delta, mod ); |
722 | |
723 | x = ras.x + delta; |
724 | gray_render_scanline( RAS_VAR_ ey: ey1, ras.x, y1: fy1, x2: x, y2: (TCoord)first ); |
725 | |
726 | ey1 += incr; |
727 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey: ey1 ); |
728 | |
729 | if ( ey1 != ey2 ) |
730 | { |
731 | TCoord lift, rem; |
732 | |
733 | |
734 | p = ONE_PIXEL * dx; |
735 | QT_FT_DIV_MOD( TCoord, p, dy, lift, rem ); |
736 | |
737 | do |
738 | { |
739 | delta = lift; |
740 | mod += rem; |
741 | if ( mod >= (TCoord)dy ) |
742 | { |
743 | mod -= (TCoord)dy; |
744 | delta++; |
745 | } |
746 | |
747 | x2 = x + delta; |
748 | gray_render_scanline( RAS_VAR_ ey: ey1, |
749 | x1: x, ONE_PIXEL - first, |
750 | x2, y2: first ); |
751 | x = x2; |
752 | |
753 | ey1 += incr; |
754 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey: ey1 ); |
755 | } while ( ey1 != ey2 ); |
756 | } |
757 | |
758 | gray_render_scanline( RAS_VAR_ ey: ey1, |
759 | x1: x, ONE_PIXEL - first, |
760 | x2: to_x, y2: fy2 ); |
761 | |
762 | End: |
763 | ras.x = to_x; |
764 | ras.y = to_y; |
765 | } |
766 | |
767 | |
768 | #else |
769 | |
770 | /*************************************************************************/ |
771 | /* */ |
772 | /* Render a straight line across multiple cells in any direction. */ |
773 | /* */ |
774 | static void |
775 | gray_render_line( RAS_ARG_ TPos to_x, |
776 | TPos to_y ) |
777 | { |
778 | TPos dx, dy, fx1, fy1, fx2, fy2; |
779 | TCoord ex1, ex2, ey1, ey2; |
780 | |
781 | |
782 | ex1 = TRUNC( ras.x ); |
783 | ex2 = TRUNC( to_x ); |
784 | ey1 = TRUNC( ras.y ); |
785 | ey2 = TRUNC( to_y ); |
786 | |
787 | /* perform vertical clipping */ |
788 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
789 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
790 | goto End; |
791 | |
792 | dx = to_x - ras.x; |
793 | dy = to_y - ras.y; |
794 | |
795 | fx1 = FRACT( ras.x ); |
796 | fy1 = FRACT( ras.y ); |
797 | |
798 | if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */ |
799 | ; |
800 | else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */ |
801 | { |
802 | ex1 = ex2; |
803 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
804 | } |
805 | else if ( dx == 0 ) |
806 | { |
807 | if ( dy > 0 ) /* vertical line up */ |
808 | do |
809 | { |
810 | fy2 = ONE_PIXEL; |
811 | ras.cover += ( fy2 - fy1 ); |
812 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
813 | fy1 = 0; |
814 | ey1++; |
815 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
816 | } while ( ey1 != ey2 ); |
817 | else /* vertical line down */ |
818 | do |
819 | { |
820 | fy2 = 0; |
821 | ras.cover += ( fy2 - fy1 ); |
822 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
823 | fy1 = ONE_PIXEL; |
824 | ey1--; |
825 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
826 | } while ( ey1 != ey2 ); |
827 | } |
828 | else /* any other line */ |
829 | { |
830 | TArea prod = dx * fy1 - dy * fx1; |
831 | QT_FT_UDIVPREP( dx ); |
832 | QT_FT_UDIVPREP( dy ); |
833 | |
834 | |
835 | /* The fundamental value `prod' determines which side and the */ |
836 | /* exact coordinate where the line exits current cell. It is */ |
837 | /* also easily updated when moving from one cell to the next. */ |
838 | do |
839 | { |
840 | if ( prod <= 0 && |
841 | prod - dx * ONE_PIXEL > 0 ) /* left */ |
842 | { |
843 | fx2 = 0; |
844 | fy2 = (TPos)QT_FT_UDIV( -prod, -dx ); |
845 | prod -= dy * ONE_PIXEL; |
846 | ras.cover += ( fy2 - fy1 ); |
847 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
848 | fx1 = ONE_PIXEL; |
849 | fy1 = fy2; |
850 | ex1--; |
851 | } |
852 | else if ( prod - dx * ONE_PIXEL <= 0 && |
853 | prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */ |
854 | { |
855 | prod -= dx * ONE_PIXEL; |
856 | fx2 = (TPos)QT_FT_UDIV( -prod, dy ); |
857 | fy2 = ONE_PIXEL; |
858 | ras.cover += ( fy2 - fy1 ); |
859 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
860 | fx1 = fx2; |
861 | fy1 = 0; |
862 | ey1++; |
863 | } |
864 | else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 && |
865 | prod + dy * ONE_PIXEL >= 0 ) /* right */ |
866 | { |
867 | prod += dy * ONE_PIXEL; |
868 | fx2 = ONE_PIXEL; |
869 | fy2 = (TPos)QT_FT_UDIV( prod, dx ); |
870 | ras.cover += ( fy2 - fy1 ); |
871 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
872 | fx1 = 0; |
873 | fy1 = fy2; |
874 | ex1++; |
875 | } |
876 | else /* ( prod + dy * ONE_PIXEL < 0 && |
877 | prod > 0 ) down */ |
878 | { |
879 | fx2 = (TPos)QT_FT_UDIV( prod, -dy ); |
880 | fy2 = 0; |
881 | prod += dx * ONE_PIXEL; |
882 | ras.cover += ( fy2 - fy1 ); |
883 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
884 | fx1 = fx2; |
885 | fy1 = ONE_PIXEL; |
886 | ey1--; |
887 | } |
888 | |
889 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
890 | } while ( ex1 != ex2 || ey1 != ey2 ); |
891 | } |
892 | |
893 | fx2 = FRACT( to_x ); |
894 | fy2 = FRACT( to_y ); |
895 | |
896 | ras.cover += ( fy2 - fy1 ); |
897 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
898 | |
899 | End: |
900 | ras.x = to_x; |
901 | ras.y = to_y; |
902 | } |
903 | |
904 | #endif |
905 | |
906 | static void |
907 | gray_split_conic( QT_FT_Vector* base ) |
908 | { |
909 | TPos a, b; |
910 | |
911 | |
912 | base[4].x = base[2].x; |
913 | b = base[1].x; |
914 | a = base[3].x = ( base[2].x + b ) / 2; |
915 | b = base[1].x = ( base[0].x + b ) / 2; |
916 | base[2].x = ( a + b ) / 2; |
917 | |
918 | base[4].y = base[2].y; |
919 | b = base[1].y; |
920 | a = base[3].y = ( base[2].y + b ) / 2; |
921 | b = base[1].y = ( base[0].y + b ) / 2; |
922 | base[2].y = ( a + b ) / 2; |
923 | } |
924 | |
925 | |
926 | static void |
927 | gray_render_conic( RAS_ARG_ const QT_FT_Vector* control, |
928 | const QT_FT_Vector* to ) |
929 | { |
930 | QT_FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */ |
931 | QT_FT_Vector* arc = bez_stack; |
932 | TPos dx, dy; |
933 | int draw, split; |
934 | |
935 | |
936 | arc[0].x = UPSCALE( to->x ); |
937 | arc[0].y = UPSCALE( to->y ); |
938 | arc[1].x = UPSCALE( control->x ); |
939 | arc[1].y = UPSCALE( control->y ); |
940 | arc[2].x = ras.x; |
941 | arc[2].y = ras.y; |
942 | |
943 | /* short-cut the arc that crosses the current band */ |
944 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
945 | TRUNC( arc[1].y ) >= ras.max_ey && |
946 | TRUNC( arc[2].y ) >= ras.max_ey ) || |
947 | ( TRUNC( arc[0].y ) < ras.min_ey && |
948 | TRUNC( arc[1].y ) < ras.min_ey && |
949 | TRUNC( arc[2].y ) < ras.min_ey ) ) |
950 | { |
951 | ras.x = arc[0].x; |
952 | ras.y = arc[0].y; |
953 | return; |
954 | } |
955 | |
956 | dx = QT_FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x ); |
957 | dy = QT_FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y ); |
958 | if ( dx < dy ) |
959 | dx = dy; |
960 | |
961 | /* We can calculate the number of necessary bisections because */ |
962 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
963 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
964 | draw = 1; |
965 | while ( dx > ONE_PIXEL / 4 ) |
966 | { |
967 | dx >>= 2; |
968 | draw <<= 1; |
969 | } |
970 | |
971 | /* We use decrement counter to count the total number of segments */ |
972 | /* to draw starting from 2^level. Before each draw we split as */ |
973 | /* many times as there are trailing zeros in the counter. */ |
974 | do |
975 | { |
976 | split = 1; |
977 | while ( ( draw & split ) == 0 ) |
978 | { |
979 | gray_split_conic( base: arc ); |
980 | arc += 2; |
981 | split <<= 1; |
982 | } |
983 | |
984 | gray_render_line( RAS_VAR_ to_x: arc[0].x, to_y: arc[0].y ); |
985 | arc -= 2; |
986 | |
987 | } while ( --draw ); |
988 | } |
989 | |
990 | |
991 | static void |
992 | gray_split_cubic( QT_FT_Vector* base ) |
993 | { |
994 | TPos a, b, c, d; |
995 | |
996 | |
997 | base[6].x = base[3].x; |
998 | c = base[1].x; |
999 | d = base[2].x; |
1000 | base[1].x = a = ( base[0].x + c ) / 2; |
1001 | base[5].x = b = ( base[3].x + d ) / 2; |
1002 | c = ( c + d ) / 2; |
1003 | base[2].x = a = ( a + c ) / 2; |
1004 | base[4].x = b = ( b + c ) / 2; |
1005 | base[3].x = ( a + b ) / 2; |
1006 | |
1007 | base[6].y = base[3].y; |
1008 | c = base[1].y; |
1009 | d = base[2].y; |
1010 | base[1].y = a = ( base[0].y + c ) / 2; |
1011 | base[5].y = b = ( base[3].y + d ) / 2; |
1012 | c = ( c + d ) / 2; |
1013 | base[2].y = a = ( a + c ) / 2; |
1014 | base[4].y = b = ( b + c ) / 2; |
1015 | base[3].y = ( a + b ) / 2; |
1016 | } |
1017 | |
1018 | |
1019 | static void |
1020 | gray_render_cubic( RAS_ARG_ const QT_FT_Vector* control1, |
1021 | const QT_FT_Vector* control2, |
1022 | const QT_FT_Vector* to ) |
1023 | { |
1024 | QT_FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */ |
1025 | QT_FT_Vector* arc = bez_stack; |
1026 | TPos dx, dy, dx_, dy_; |
1027 | TPos dx1, dy1, dx2, dy2; |
1028 | TPos L, s, s_limit; |
1029 | |
1030 | |
1031 | arc[0].x = UPSCALE( to->x ); |
1032 | arc[0].y = UPSCALE( to->y ); |
1033 | arc[1].x = UPSCALE( control2->x ); |
1034 | arc[1].y = UPSCALE( control2->y ); |
1035 | arc[2].x = UPSCALE( control1->x ); |
1036 | arc[2].y = UPSCALE( control1->y ); |
1037 | arc[3].x = ras.x; |
1038 | arc[3].y = ras.y; |
1039 | |
1040 | /* short-cut the arc that crosses the current band */ |
1041 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
1042 | TRUNC( arc[1].y ) >= ras.max_ey && |
1043 | TRUNC( arc[2].y ) >= ras.max_ey && |
1044 | TRUNC( arc[3].y ) >= ras.max_ey ) || |
1045 | ( TRUNC( arc[0].y ) < ras.min_ey && |
1046 | TRUNC( arc[1].y ) < ras.min_ey && |
1047 | TRUNC( arc[2].y ) < ras.min_ey && |
1048 | TRUNC( arc[3].y ) < ras.min_ey ) ) |
1049 | { |
1050 | ras.x = arc[0].x; |
1051 | ras.y = arc[0].y; |
1052 | return; |
1053 | } |
1054 | |
1055 | for (;;) |
1056 | { |
1057 | /* Decide whether to split or draw. See `Rapid Termination */ |
1058 | /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */ |
1059 | /* F. Hain, at */ |
1060 | /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */ |
1061 | |
1062 | |
1063 | /* dx and dy are x and y components of the P0-P3 chord vector. */ |
1064 | dx = dx_ = arc[3].x - arc[0].x; |
1065 | dy = dy_ = arc[3].y - arc[0].y; |
1066 | |
1067 | L = QT_FT_HYPOT( dx_, dy_ ); |
1068 | |
1069 | /* Avoid possible arithmetic overflow below by splitting. */ |
1070 | if ( L >= (1 << 23) ) |
1071 | goto Split; |
1072 | |
1073 | /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */ |
1074 | s_limit = L * (TPos)( ONE_PIXEL / 6 ); |
1075 | |
1076 | /* s is L * the perpendicular distance from P1 to the line P0-P3. */ |
1077 | dx1 = arc[1].x - arc[0].x; |
1078 | dy1 = arc[1].y - arc[0].y; |
1079 | s = QT_FT_ABS( dy * dx1 - dx * dy1 ); |
1080 | |
1081 | if ( s > s_limit ) |
1082 | goto Split; |
1083 | |
1084 | /* s is L * the perpendicular distance from P2 to the line P0-P3. */ |
1085 | dx2 = arc[2].x - arc[0].x; |
1086 | dy2 = arc[2].y - arc[0].y; |
1087 | s = QT_FT_ABS( dy * dx2 - dx * dy2 ); |
1088 | |
1089 | if ( s > s_limit ) |
1090 | goto Split; |
1091 | |
1092 | /* Split super curvy segments where the off points are so far |
1093 | from the chord that the angles P0-P1-P3 or P0-P2-P3 become |
1094 | acute as detected by appropriate dot products. */ |
1095 | if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 || |
1096 | dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 ) |
1097 | goto Split; |
1098 | |
1099 | gray_render_line( RAS_VAR_ to_x: arc[0].x, to_y: arc[0].y ); |
1100 | |
1101 | if ( arc == bez_stack ) |
1102 | return; |
1103 | |
1104 | arc -= 3; |
1105 | continue; |
1106 | |
1107 | Split: |
1108 | gray_split_cubic( base: arc ); |
1109 | arc += 3; |
1110 | } |
1111 | } |
1112 | |
1113 | |
1114 | |
1115 | static int |
1116 | gray_move_to( const QT_FT_Vector* to, |
1117 | PWorker worker ) |
1118 | { |
1119 | TPos x, y; |
1120 | |
1121 | |
1122 | /* record current cell, if any */ |
1123 | if ( !ras.invalid ) |
1124 | gray_record_cell( worker ); |
1125 | |
1126 | /* start to a new position */ |
1127 | x = UPSCALE( to->x ); |
1128 | y = UPSCALE( to->y ); |
1129 | |
1130 | gray_start_cell( worker, TRUNC( x ), TRUNC( y ) ); |
1131 | |
1132 | ras.x = x; |
1133 | ras.y = y; |
1134 | return 0; |
1135 | } |
1136 | |
1137 | static void |
1138 | gray_render_span( int count, |
1139 | const QT_FT_Span* spans, |
1140 | PWorker worker ) |
1141 | { |
1142 | unsigned char* p; |
1143 | QT_FT_Bitmap* map = &worker->target; |
1144 | |
1145 | for ( ; count > 0; count--, spans++ ) |
1146 | { |
1147 | unsigned char coverage = spans->coverage; |
1148 | |
1149 | /* first of all, compute the scanline offset */ |
1150 | p = (unsigned char*)map->buffer - spans->y * map->pitch; |
1151 | if ( map->pitch >= 0 ) |
1152 | p += ( map->rows - 1 ) * (unsigned int)map->pitch; |
1153 | |
1154 | |
1155 | if ( coverage ) |
1156 | { |
1157 | unsigned char* q = p + spans->x; |
1158 | |
1159 | |
1160 | /* For small-spans it is faster to do it by ourselves than |
1161 | * calling `memset'. This is mainly due to the cost of the |
1162 | * function call. |
1163 | */ |
1164 | switch ( spans->len ) |
1165 | { |
1166 | case 7: *q++ = coverage; Q_FALLTHROUGH(); |
1167 | case 6: *q++ = coverage; Q_FALLTHROUGH(); |
1168 | case 5: *q++ = coverage; Q_FALLTHROUGH(); |
1169 | case 4: *q++ = coverage; Q_FALLTHROUGH(); |
1170 | case 3: *q++ = coverage; Q_FALLTHROUGH(); |
1171 | case 2: *q++ = coverage; Q_FALLTHROUGH(); |
1172 | case 1: *q = coverage; Q_FALLTHROUGH(); |
1173 | case 0: break; |
1174 | default: |
1175 | QT_FT_MEM_SET( q, coverage, spans->len ); |
1176 | } |
1177 | } |
1178 | } |
1179 | } |
1180 | |
1181 | |
1182 | static void |
1183 | gray_hline( RAS_ARG_ TCoord x, |
1184 | TCoord y, |
1185 | TPos area, |
1186 | int acount ) |
1187 | { |
1188 | int coverage; |
1189 | |
1190 | |
1191 | /* compute the coverage line's coverage, depending on the */ |
1192 | /* outline fill rule */ |
1193 | /* */ |
1194 | /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */ |
1195 | /* */ |
1196 | coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) ); |
1197 | /* use range 0..256 */ |
1198 | if ( coverage < 0 ) |
1199 | coverage = -coverage; |
1200 | |
1201 | if ( ras.outline.flags & QT_FT_OUTLINE_EVEN_ODD_FILL ) |
1202 | { |
1203 | coverage &= 511; |
1204 | |
1205 | if ( coverage > 256 ) |
1206 | coverage = 512 - coverage; |
1207 | else if ( coverage == 256 ) |
1208 | coverage = 255; |
1209 | } |
1210 | else |
1211 | { |
1212 | /* normal non-zero winding rule */ |
1213 | if ( coverage >= 256 ) |
1214 | coverage = 255; |
1215 | } |
1216 | |
1217 | y += (TCoord)ras.min_ey; |
1218 | x += (TCoord)ras.min_ex; |
1219 | |
1220 | /* QT_FT_Span.x is an int, so limit our coordinates appropriately */ |
1221 | if ( x >= (1 << 23) ) |
1222 | x = (1 << 23) - 1; |
1223 | |
1224 | /* QT_FT_Span.y is an int, so limit our coordinates appropriately */ |
1225 | if ( y >= (1 << 23) ) |
1226 | y = (1 << 23) - 1; |
1227 | |
1228 | if ( coverage ) |
1229 | { |
1230 | QT_FT_Span* span; |
1231 | int count; |
1232 | int skip; |
1233 | |
1234 | |
1235 | /* see whether we can add this span to the current list */ |
1236 | count = ras.num_gray_spans; |
1237 | span = ras.gray_spans + count - 1; |
1238 | if ( count > 0 && |
1239 | span->y == y && |
1240 | span->x + span->len == x && |
1241 | span->coverage == coverage ) |
1242 | { |
1243 | span->len = span->len + acount; |
1244 | return; |
1245 | } |
1246 | |
1247 | if ( count >= QT_FT_MAX_GRAY_SPANS ) |
1248 | { |
1249 | if ( ras.render_span && count > ras.skip_spans ) |
1250 | { |
1251 | skip = ras.skip_spans > 0 ? ras.skip_spans : 0; |
1252 | ras.render_span( ras.num_gray_spans - skip, |
1253 | ras.gray_spans + skip, |
1254 | ras.render_span_data ); |
1255 | } |
1256 | |
1257 | ras.skip_spans -= ras.num_gray_spans; |
1258 | |
1259 | /* ras.render_span( span->y, ras.gray_spans, count ); */ |
1260 | |
1261 | #ifdef DEBUG_GRAYS |
1262 | |
1263 | if ( 1 ) |
1264 | { |
1265 | int n; |
1266 | |
1267 | |
1268 | fprintf( stderr, "y=%3d " , y ); |
1269 | span = ras.gray_spans; |
1270 | for ( n = 0; n < count; n++, span++ ) |
1271 | fprintf( stderr, "[%d..%d]:%02x " , |
1272 | span->x, span->x + span->len - 1, span->coverage ); |
1273 | fprintf( stderr, "\n" ); |
1274 | } |
1275 | |
1276 | #endif /* DEBUG_GRAYS */ |
1277 | |
1278 | ras.num_gray_spans = 0; |
1279 | |
1280 | span = ras.gray_spans; |
1281 | } |
1282 | else |
1283 | span++; |
1284 | |
1285 | /* add a gray span to the current list */ |
1286 | span->x = x; |
1287 | span->len = acount; |
1288 | span->y = y; |
1289 | span->coverage = (unsigned char)coverage; |
1290 | |
1291 | ras.num_gray_spans++; |
1292 | } |
1293 | } |
1294 | |
1295 | |
1296 | #ifdef DEBUG_GRAYS |
1297 | |
1298 | /* to be called while in the debugger */ |
1299 | gray_dump_cells( RAS_ARG ) |
1300 | { |
1301 | int yindex; |
1302 | |
1303 | |
1304 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1305 | { |
1306 | PCell cell; |
1307 | |
1308 | |
1309 | printf( "%3d:" , yindex ); |
1310 | |
1311 | for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next ) |
1312 | printf( " (%3d, c:%4d, a:%6d)" , cell->x, cell->cover, cell->area ); |
1313 | printf( "\n" ); |
1314 | } |
1315 | } |
1316 | |
1317 | #endif /* DEBUG_GRAYS */ |
1318 | |
1319 | |
1320 | static void |
1321 | gray_sweep( RAS_ARG_ const QT_FT_Bitmap* target ) |
1322 | { |
1323 | int yindex; |
1324 | |
1325 | QT_FT_UNUSED( target ); |
1326 | |
1327 | |
1328 | if ( ras.num_cells == 0 ) |
1329 | return; |
1330 | |
1331 | QT_FT_TRACE7(( "gray_sweep: start\n" )); |
1332 | |
1333 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1334 | { |
1335 | PCell cell = ras.ycells[yindex]; |
1336 | TCoord cover = 0; |
1337 | TCoord x = 0; |
1338 | |
1339 | |
1340 | for ( ; cell != NULL; cell = cell->next ) |
1341 | { |
1342 | TArea area; |
1343 | |
1344 | |
1345 | if ( cell->x > x && cover != 0 ) |
1346 | gray_hline( RAS_VAR_ x, y: yindex, area: cover * ( ONE_PIXEL * 2 ), |
1347 | acount: cell->x - x ); |
1348 | |
1349 | cover += cell->cover; |
1350 | area = cover * ( ONE_PIXEL * 2 ) - cell->area; |
1351 | |
1352 | if ( area != 0 && cell->x >= 0 ) |
1353 | gray_hline( RAS_VAR_ x: cell->x, y: yindex, area, acount: 1 ); |
1354 | |
1355 | x = cell->x + 1; |
1356 | } |
1357 | |
1358 | if ( ras.count_ex > x && cover != 0 ) |
1359 | gray_hline( RAS_VAR_ x, y: yindex, area: cover * ( ONE_PIXEL * 2 ), |
1360 | ras.count_ex - x ); |
1361 | } |
1362 | |
1363 | QT_FT_TRACE7(( "gray_sweep: end\n" )); |
1364 | } |
1365 | |
1366 | /*************************************************************************/ |
1367 | /* */ |
1368 | /* The following function should only compile in stand_alone mode, */ |
1369 | /* i.e., when building this component without the rest of FreeType. */ |
1370 | /* */ |
1371 | /*************************************************************************/ |
1372 | |
1373 | /*************************************************************************/ |
1374 | /* */ |
1375 | /* <Function> */ |
1376 | /* QT_FT_Outline_Decompose */ |
1377 | /* */ |
1378 | /* <Description> */ |
1379 | /* Walks over an outline's structure to decompose it into individual */ |
1380 | /* segments and Bezier arcs. This function is also able to emit */ |
1381 | /* `move to' and `close to' operations to indicate the start and end */ |
1382 | /* of new contours in the outline. */ |
1383 | /* */ |
1384 | /* <Input> */ |
1385 | /* outline :: A pointer to the source target. */ |
1386 | /* */ |
1387 | /* user :: A typeless pointer which is passed to each */ |
1388 | /* emitter during the decomposition. It can be */ |
1389 | /* used to store the state during the */ |
1390 | /* decomposition. */ |
1391 | /* */ |
1392 | /* <Return> */ |
1393 | /* Error code. 0 means success. */ |
1394 | /* */ |
1395 | static |
1396 | int QT_FT_Outline_Decompose( const QT_FT_Outline* outline, |
1397 | void* user ) |
1398 | { |
1399 | #undef SCALED |
1400 | #define SCALED( x ) (x) |
1401 | |
1402 | QT_FT_Vector v_last; |
1403 | QT_FT_Vector v_control; |
1404 | QT_FT_Vector v_start; |
1405 | |
1406 | QT_FT_Vector* point; |
1407 | QT_FT_Vector* limit; |
1408 | char* tags; |
1409 | |
1410 | int n; /* index of contour in outline */ |
1411 | int first; /* index of first point in contour */ |
1412 | int error; |
1413 | char tag; /* current point's state */ |
1414 | |
1415 | if ( !outline ) |
1416 | return ErrRaster_Invalid_Outline; |
1417 | |
1418 | first = 0; |
1419 | |
1420 | for ( n = 0; n < outline->n_contours; n++ ) |
1421 | { |
1422 | int last; /* index of last point in contour */ |
1423 | |
1424 | |
1425 | last = outline->contours[n]; |
1426 | if ( last < 0 ) |
1427 | goto Invalid_Outline; |
1428 | limit = outline->points + last; |
1429 | |
1430 | v_start = outline->points[first]; |
1431 | v_start.x = SCALED( v_start.x ); |
1432 | v_start.y = SCALED( v_start.y ); |
1433 | |
1434 | v_last = outline->points[last]; |
1435 | v_last.x = SCALED( v_last.x ); |
1436 | v_last.y = SCALED( v_last.y ); |
1437 | |
1438 | v_control = v_start; |
1439 | |
1440 | point = outline->points + first; |
1441 | tags = outline->tags + first; |
1442 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1443 | |
1444 | /* A contour cannot start with a cubic control point! */ |
1445 | if ( tag == QT_FT_CURVE_TAG_CUBIC ) |
1446 | goto Invalid_Outline; |
1447 | |
1448 | /* check first point to determine origin */ |
1449 | if ( tag == QT_FT_CURVE_TAG_CONIC ) |
1450 | { |
1451 | /* first point is conic control. Yes, this happens. */ |
1452 | if ( QT_FT_CURVE_TAG( outline->tags[last] ) == QT_FT_CURVE_TAG_ON ) |
1453 | { |
1454 | /* start at last point if it is on the curve */ |
1455 | v_start = v_last; |
1456 | limit--; |
1457 | } |
1458 | else |
1459 | { |
1460 | /* if both first and last points are conic, */ |
1461 | /* start at their middle and record its position */ |
1462 | /* for closure */ |
1463 | v_start.x = ( v_start.x + v_last.x ) / 2; |
1464 | v_start.y = ( v_start.y + v_last.y ) / 2; |
1465 | |
1466 | v_last = v_start; |
1467 | } |
1468 | point--; |
1469 | tags--; |
1470 | } |
1471 | |
1472 | QT_FT_TRACE5(( " move to (%.2f, %.2f)\n" , |
1473 | v_start.x / 64.0, v_start.y / 64.0 )); |
1474 | error = gray_move_to( to: &v_start, worker: user ); |
1475 | if ( error ) |
1476 | goto Exit; |
1477 | |
1478 | while ( point < limit ) |
1479 | { |
1480 | point++; |
1481 | tags++; |
1482 | |
1483 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1484 | switch ( tag ) |
1485 | { |
1486 | case QT_FT_CURVE_TAG_ON: /* emit a single line_to */ |
1487 | { |
1488 | QT_FT_Vector vec; |
1489 | |
1490 | |
1491 | vec.x = SCALED( point->x ); |
1492 | vec.y = SCALED( point->y ); |
1493 | |
1494 | QT_FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1495 | vec.x / 64.0, vec.y / 64.0 )); |
1496 | gray_render_line(worker: user, UPSCALE(vec.x), UPSCALE(vec.y)); |
1497 | continue; |
1498 | } |
1499 | |
1500 | case QT_FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
1501 | { |
1502 | v_control.x = SCALED( point->x ); |
1503 | v_control.y = SCALED( point->y ); |
1504 | |
1505 | Do_Conic: |
1506 | if ( point < limit ) |
1507 | { |
1508 | QT_FT_Vector vec; |
1509 | QT_FT_Vector v_middle; |
1510 | |
1511 | |
1512 | point++; |
1513 | tags++; |
1514 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1515 | |
1516 | vec.x = SCALED( point->x ); |
1517 | vec.y = SCALED( point->y ); |
1518 | |
1519 | if ( tag == QT_FT_CURVE_TAG_ON ) |
1520 | { |
1521 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1522 | " with control (%.2f, %.2f)\n" , |
1523 | vec.x / 64.0, vec.y / 64.0, |
1524 | v_control.x / 64.0, v_control.y / 64.0 )); |
1525 | gray_render_conic(worker: user, control: &v_control, to: &vec); |
1526 | continue; |
1527 | } |
1528 | |
1529 | if ( tag != QT_FT_CURVE_TAG_CONIC ) |
1530 | goto Invalid_Outline; |
1531 | |
1532 | v_middle.x = ( v_control.x + vec.x ) / 2; |
1533 | v_middle.y = ( v_control.y + vec.y ) / 2; |
1534 | |
1535 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1536 | " with control (%.2f, %.2f)\n" , |
1537 | v_middle.x / 64.0, v_middle.y / 64.0, |
1538 | v_control.x / 64.0, v_control.y / 64.0 )); |
1539 | gray_render_conic(worker: user, control: &v_control, to: &v_middle); |
1540 | |
1541 | v_control = vec; |
1542 | goto Do_Conic; |
1543 | } |
1544 | |
1545 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1546 | " with control (%.2f, %.2f)\n" , |
1547 | v_start.x / 64.0, v_start.y / 64.0, |
1548 | v_control.x / 64.0, v_control.y / 64.0 )); |
1549 | gray_render_conic(worker: user, control: &v_control, to: &v_start); |
1550 | goto Close; |
1551 | } |
1552 | |
1553 | default: /* QT_FT_CURVE_TAG_CUBIC */ |
1554 | { |
1555 | QT_FT_Vector vec1, vec2; |
1556 | |
1557 | |
1558 | if ( point + 1 > limit || |
1559 | QT_FT_CURVE_TAG( tags[1] ) != QT_FT_CURVE_TAG_CUBIC ) |
1560 | goto Invalid_Outline; |
1561 | |
1562 | point += 2; |
1563 | tags += 2; |
1564 | |
1565 | vec1.x = SCALED( point[-2].x ); |
1566 | vec1.y = SCALED( point[-2].y ); |
1567 | |
1568 | vec2.x = SCALED( point[-1].x ); |
1569 | vec2.y = SCALED( point[-1].y ); |
1570 | |
1571 | if ( point <= limit ) |
1572 | { |
1573 | QT_FT_Vector vec; |
1574 | |
1575 | |
1576 | vec.x = SCALED( point->x ); |
1577 | vec.y = SCALED( point->y ); |
1578 | |
1579 | QT_FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1580 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1581 | vec.x / 64.0, vec.y / 64.0, |
1582 | vec1.x / 64.0, vec1.y / 64.0, |
1583 | vec2.x / 64.0, vec2.y / 64.0 )); |
1584 | gray_render_cubic(worker: user, control1: &vec1, control2: &vec2, to: &vec); |
1585 | continue; |
1586 | } |
1587 | |
1588 | QT_FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1589 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1590 | v_start.x / 64.0, v_start.y / 64.0, |
1591 | vec1.x / 64.0, vec1.y / 64.0, |
1592 | vec2.x / 64.0, vec2.y / 64.0 )); |
1593 | gray_render_cubic(worker: user, control1: &vec1, control2: &vec2, to: &v_start); |
1594 | goto Close; |
1595 | } |
1596 | } |
1597 | } |
1598 | |
1599 | /* close the contour with a line segment */ |
1600 | QT_FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1601 | v_start.x / 64.0, v_start.y / 64.0 )); |
1602 | gray_render_line(worker: user, UPSCALE(v_start.x), UPSCALE(v_start.y)); |
1603 | |
1604 | Close: |
1605 | first = last + 1; |
1606 | } |
1607 | |
1608 | QT_FT_TRACE5(( "FT_Outline_Decompose: Done\n" , n )); |
1609 | return 0; |
1610 | |
1611 | Exit: |
1612 | QT_FT_TRACE5(( "FT_Outline_Decompose: Error %d\n" , error )); |
1613 | return error; |
1614 | |
1615 | Invalid_Outline: |
1616 | return ErrRaster_Invalid_Outline; |
1617 | } |
1618 | |
1619 | typedef struct TBand_ |
1620 | { |
1621 | TPos min, max; |
1622 | |
1623 | } TBand; |
1624 | |
1625 | static int |
1626 | gray_convert_glyph_inner( RAS_ARG ) |
1627 | { |
1628 | volatile int error = 0; |
1629 | |
1630 | if ( qt_ft_setjmp( ras.jump_buffer ) == 0 ) |
1631 | { |
1632 | error = QT_FT_Outline_Decompose( outline: &ras.outline, user: &ras ); |
1633 | if ( !ras.invalid ) |
1634 | gray_record_cell( RAS_VAR ); |
1635 | } |
1636 | else |
1637 | { |
1638 | error = ErrRaster_Memory_Overflow; |
1639 | } |
1640 | |
1641 | return error; |
1642 | } |
1643 | |
1644 | |
1645 | static int |
1646 | gray_convert_glyph( RAS_ARG ) |
1647 | { |
1648 | TBand bands[40]; |
1649 | TBand* volatile band; |
1650 | int volatile n, num_bands; |
1651 | TPos volatile min, max, max_y; |
1652 | QT_FT_BBox* clip; |
1653 | int skip; |
1654 | |
1655 | ras.num_gray_spans = 0; |
1656 | |
1657 | /* Set up state in the raster object */ |
1658 | gray_compute_cbox( RAS_VAR ); |
1659 | |
1660 | /* clip to target bitmap, exit if nothing to do */ |
1661 | clip = &ras.clip_box; |
1662 | |
1663 | if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax || |
1664 | ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax ) |
1665 | return 0; |
1666 | |
1667 | if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin; |
1668 | if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin; |
1669 | |
1670 | if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax; |
1671 | if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax; |
1672 | |
1673 | ras.count_ex = ras.max_ex - ras.min_ex; |
1674 | ras.count_ey = ras.max_ey - ras.min_ey; |
1675 | |
1676 | /* set up vertical bands */ |
1677 | num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size ); |
1678 | if ( num_bands == 0 ) |
1679 | num_bands = 1; |
1680 | if ( num_bands >= 39 ) |
1681 | num_bands = 39; |
1682 | |
1683 | ras.band_shoot = 0; |
1684 | |
1685 | min = ras.min_ey; |
1686 | max_y = ras.max_ey; |
1687 | |
1688 | for ( n = 0; n < num_bands; n++, min = max ) |
1689 | { |
1690 | max = min + ras.band_size; |
1691 | if ( n == num_bands - 1 || max > max_y ) |
1692 | max = max_y; |
1693 | |
1694 | bands[0].min = min; |
1695 | bands[0].max = max; |
1696 | band = bands; |
1697 | |
1698 | while ( band >= bands ) |
1699 | { |
1700 | TPos bottom, top, middle; |
1701 | int error; |
1702 | |
1703 | { |
1704 | PCell cells_max; |
1705 | int yindex; |
1706 | int cell_start, cell_end, cell_mod; |
1707 | |
1708 | |
1709 | ras.ycells = (PCell*)ras.buffer; |
1710 | ras.ycount = band->max - band->min; |
1711 | |
1712 | cell_start = sizeof ( PCell ) * ras.ycount; |
1713 | cell_mod = cell_start % sizeof ( TCell ); |
1714 | if ( cell_mod > 0 ) |
1715 | cell_start += sizeof ( TCell ) - cell_mod; |
1716 | |
1717 | cell_end = ras.buffer_size; |
1718 | cell_end -= cell_end % sizeof( TCell ); |
1719 | |
1720 | cells_max = (PCell)( (char*)ras.buffer + cell_end ); |
1721 | ras.cells = (PCell)( (char*)ras.buffer + cell_start ); |
1722 | if ( ras.cells >= cells_max ) |
1723 | goto ReduceBands; |
1724 | |
1725 | ras.max_cells = (int)(cells_max - ras.cells); |
1726 | if ( ras.max_cells < 2 ) |
1727 | goto ReduceBands; |
1728 | |
1729 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1730 | ras.ycells[yindex] = NULL; |
1731 | } |
1732 | |
1733 | ras.num_cells = 0; |
1734 | ras.invalid = 1; |
1735 | ras.min_ey = band->min; |
1736 | ras.max_ey = band->max; |
1737 | ras.count_ey = band->max - band->min; |
1738 | |
1739 | error = gray_convert_glyph_inner( RAS_VAR ); |
1740 | |
1741 | if ( !error ) |
1742 | { |
1743 | gray_sweep( RAS_VAR_ target: &ras.target ); |
1744 | band--; |
1745 | continue; |
1746 | } |
1747 | else if ( error != ErrRaster_Memory_Overflow ) |
1748 | return 1; |
1749 | |
1750 | ReduceBands: |
1751 | /* render pool overflow; we will reduce the render band by half */ |
1752 | bottom = band->min; |
1753 | top = band->max; |
1754 | middle = bottom + ( ( top - bottom ) >> 1 ); |
1755 | |
1756 | /* This is too complex for a single scanline; there must */ |
1757 | /* be some problems. */ |
1758 | if ( middle == bottom ) |
1759 | { |
1760 | #ifdef DEBUG_GRAYS |
1761 | fprintf( stderr, "Rotten glyph!\n" ); |
1762 | #endif |
1763 | return ErrRaster_OutOfMemory; |
1764 | } |
1765 | |
1766 | if ( bottom-top >= ras.band_size ) |
1767 | ras.band_shoot++; |
1768 | |
1769 | band[1].min = bottom; |
1770 | band[1].max = middle; |
1771 | band[0].min = middle; |
1772 | band[0].max = top; |
1773 | band++; |
1774 | } |
1775 | } |
1776 | |
1777 | if ( ras.render_span && ras.num_gray_spans > ras.skip_spans ) |
1778 | { |
1779 | skip = ras.skip_spans > 0 ? ras.skip_spans : 0; |
1780 | ras.render_span( ras.num_gray_spans - skip, |
1781 | ras.gray_spans + skip, |
1782 | ras.render_span_data ); |
1783 | } |
1784 | |
1785 | ras.skip_spans -= ras.num_gray_spans; |
1786 | |
1787 | if ( ras.band_shoot > 8 && ras.band_size > 16 ) |
1788 | ras.band_size = ras.band_size / 2; |
1789 | |
1790 | return 0; |
1791 | } |
1792 | |
1793 | |
1794 | static int |
1795 | gray_raster_render( QT_FT_Raster raster, |
1796 | const QT_FT_Raster_Params* params ) |
1797 | { |
1798 | const QT_FT_Outline* outline = (const QT_FT_Outline*)params->source; |
1799 | const QT_FT_Bitmap* target_map = params->target; |
1800 | PWorker worker; |
1801 | |
1802 | |
1803 | if ( !raster || !raster->buffer || !raster->buffer_size ) |
1804 | return ErrRaster_Invalid_Argument; |
1805 | |
1806 | /* Should always be non-null, it is set by raster_reset() which is always */ |
1807 | /* called with a non-null pool, and a pool_size >= MINIMUM_POOL_SIZE. */ |
1808 | assert(raster->worker); |
1809 | |
1810 | raster->worker->skip_spans = params->skip_spans; |
1811 | |
1812 | /* If raster object and raster buffer are allocated, but */ |
1813 | /* raster size isn't of the minimum size, indicate out of */ |
1814 | /* memory. */ |
1815 | if (raster->buffer_allocated_size < MINIMUM_POOL_SIZE ) |
1816 | return ErrRaster_OutOfMemory; |
1817 | |
1818 | if ( !outline ) |
1819 | return ErrRaster_Invalid_Outline; |
1820 | |
1821 | /* return immediately if the outline is empty */ |
1822 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
1823 | return 0; |
1824 | |
1825 | if ( !outline->contours || !outline->points ) |
1826 | return ErrRaster_Invalid_Outline; |
1827 | |
1828 | if ( outline->n_points != |
1829 | outline->contours[outline->n_contours - 1] + 1 ) |
1830 | return ErrRaster_Invalid_Outline; |
1831 | |
1832 | worker = raster->worker; |
1833 | |
1834 | /* if direct mode is not set, we must have a target bitmap */ |
1835 | if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 ) |
1836 | { |
1837 | if ( !target_map ) |
1838 | return ErrRaster_Invalid_Argument; |
1839 | |
1840 | /* nothing to do */ |
1841 | if ( !target_map->width || !target_map->rows ) |
1842 | return 0; |
1843 | |
1844 | if ( !target_map->buffer ) |
1845 | return ErrRaster_Invalid_Argument; |
1846 | } |
1847 | |
1848 | /* this version does not support monochrome rendering */ |
1849 | if ( !( params->flags & QT_FT_RASTER_FLAG_AA ) ) |
1850 | return ErrRaster_Invalid_Mode; |
1851 | |
1852 | /* compute clipping box */ |
1853 | if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 ) |
1854 | { |
1855 | /* compute clip box from target pixmap */ |
1856 | ras.clip_box.xMin = 0; |
1857 | ras.clip_box.yMin = 0; |
1858 | ras.clip_box.xMax = target_map->width; |
1859 | ras.clip_box.yMax = target_map->rows; |
1860 | } |
1861 | else if ( params->flags & QT_FT_RASTER_FLAG_CLIP ) |
1862 | { |
1863 | ras.clip_box = params->clip_box; |
1864 | } |
1865 | else |
1866 | { |
1867 | ras.clip_box.xMin = -(1 << 23); |
1868 | ras.clip_box.yMin = -(1 << 23); |
1869 | ras.clip_box.xMax = (1 << 23) - 1; |
1870 | ras.clip_box.yMax = (1 << 23) - 1; |
1871 | } |
1872 | |
1873 | gray_init_cells( worker, buffer: raster->buffer, byte_size: raster->buffer_size ); |
1874 | |
1875 | ras.outline = *outline; |
1876 | ras.num_cells = 0; |
1877 | ras.invalid = 1; |
1878 | ras.band_size = raster->band_size; |
1879 | |
1880 | if ( target_map ) |
1881 | ras.target = *target_map; |
1882 | |
1883 | ras.render_span = (QT_FT_Raster_Span_Func)gray_render_span; |
1884 | ras.render_span_data = &ras; |
1885 | |
1886 | if ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) |
1887 | { |
1888 | ras.render_span = (QT_FT_Raster_Span_Func)params->gray_spans; |
1889 | ras.render_span_data = params->user; |
1890 | } |
1891 | |
1892 | return gray_convert_glyph( worker ); |
1893 | } |
1894 | |
1895 | |
1896 | /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ |
1897 | /**** a static object. *****/ |
1898 | |
1899 | static int |
1900 | gray_raster_new( QT_FT_Raster* araster ) |
1901 | { |
1902 | *araster = malloc(size: sizeof(TRaster)); |
1903 | if (!*araster) { |
1904 | *araster = 0; |
1905 | return ErrRaster_Memory_Overflow; |
1906 | } |
1907 | QT_FT_MEM_ZERO(*araster, sizeof(TRaster)); |
1908 | |
1909 | return 0; |
1910 | } |
1911 | |
1912 | |
1913 | static void |
1914 | gray_raster_done( QT_FT_Raster raster ) |
1915 | { |
1916 | free(ptr: raster); |
1917 | } |
1918 | |
1919 | |
1920 | static void |
1921 | gray_raster_reset( QT_FT_Raster raster, |
1922 | char* pool_base, |
1923 | long pool_size ) |
1924 | { |
1925 | PRaster rast = (PRaster)raster; |
1926 | |
1927 | if ( raster ) |
1928 | { |
1929 | if ( pool_base && ( pool_size >= MINIMUM_POOL_SIZE ) ) |
1930 | { |
1931 | PWorker worker = (PWorker)pool_base; |
1932 | |
1933 | |
1934 | rast->worker = worker; |
1935 | rast->buffer = pool_base + |
1936 | ( ( sizeof ( TWorker ) + sizeof ( TCell ) - 1 ) & |
1937 | ~( sizeof ( TCell ) - 1 ) ); |
1938 | rast->buffer_size = (long)( ( pool_base + pool_size ) - |
1939 | (char*)rast->buffer ) & |
1940 | ~( sizeof ( TCell ) - 1 ); |
1941 | rast->band_size = (int)( rast->buffer_size / |
1942 | ( sizeof ( TCell ) * 8 ) ); |
1943 | } |
1944 | else if ( pool_base) |
1945 | { /* Case when there is a raster pool allocated, but it */ |
1946 | /* doesn't have the minimum size (and so memory will be reallocated) */ |
1947 | rast->buffer = pool_base; |
1948 | rast->worker = NULL; |
1949 | rast->buffer_size = pool_size; |
1950 | } |
1951 | else |
1952 | { |
1953 | rast->buffer = NULL; |
1954 | rast->buffer_size = 0; |
1955 | rast->worker = NULL; |
1956 | } |
1957 | rast->buffer_allocated_size = pool_size; |
1958 | } |
1959 | } |
1960 | |
1961 | const QT_FT_Raster_Funcs qt_ft_grays_raster = |
1962 | { |
1963 | QT_FT_GLYPH_FORMAT_OUTLINE, |
1964 | |
1965 | (QT_FT_Raster_New_Func) gray_raster_new, |
1966 | (QT_FT_Raster_Reset_Func) gray_raster_reset, |
1967 | (QT_FT_Raster_Set_Mode_Func)0, |
1968 | (QT_FT_Raster_Render_Func) gray_raster_render, |
1969 | (QT_FT_Raster_Done_Func) gray_raster_done |
1970 | }; |
1971 | |
1972 | /* END */ |
1973 | |