1 | // Copyright (C) 2016 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | /***************************************************************************/ |
5 | /* */ |
6 | /* qgrayraster.c, derived from ftgrays.c */ |
7 | /* */ |
8 | /* A new `perfect' anti-aliasing renderer (body). */ |
9 | /* */ |
10 | /* Copyright 2000-2016 by */ |
11 | /* David Turner, Robert Wilhelm, and Werner Lemberg. */ |
12 | /* */ |
13 | /* This file is part of the FreeType project, and may only be used, */ |
14 | /* modified, and distributed under the terms of the FreeType project */ |
15 | /* license, ../../3rdparty/freetype/docs/FTL.TXT. By continuing to use, */ |
16 | /* modify, or distribute this file you indicate that you have read */ |
17 | /* the license and understand and accept it fully. */ |
18 | /* */ |
19 | /***************************************************************************/ |
20 | |
21 | /*************************************************************************/ |
22 | /* */ |
23 | /* This file can be compiled without the rest of the FreeType engine, by */ |
24 | /* defining the _STANDALONE_ macro when compiling it. You also need to */ |
25 | /* put the files `ftgrays.h' and `ftimage.h' into the current */ |
26 | /* compilation directory. Typically, you could do something like */ |
27 | /* */ |
28 | /* - copy `src/smooth/ftgrays.c' (this file) to your current directory */ |
29 | /* */ |
30 | /* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */ |
31 | /* same directory */ |
32 | /* */ |
33 | /* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */ |
34 | /* */ |
35 | /* cc -c -D_STANDALONE_ ftgrays.c */ |
36 | /* */ |
37 | /* The renderer can be initialized with a call to */ |
38 | /* `qt_ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */ |
39 | /* with a call to `qt_ft_gray_raster.raster_render'. */ |
40 | /* */ |
41 | /* See the comments and documentation in the file `ftimage.h' for more */ |
42 | /* details on how the raster works. */ |
43 | /* */ |
44 | /*************************************************************************/ |
45 | |
46 | /*************************************************************************/ |
47 | /* */ |
48 | /* This is a new anti-aliasing scan-converter for FreeType 2. The */ |
49 | /* algorithm used here is _very_ different from the one in the standard */ |
50 | /* `ftraster' module. Actually, `ftgrays' computes the _exact_ */ |
51 | /* coverage of the outline on each pixel cell. */ |
52 | /* */ |
53 | /* It is based on ideas that I initially found in Raph Levien's */ |
54 | /* excellent LibArt graphics library (see http://www.levien.com/libart */ |
55 | /* for more information, though the web pages do not tell anything */ |
56 | /* about the renderer; you'll have to dive into the source code to */ |
57 | /* understand how it works). */ |
58 | /* */ |
59 | /* Note, however, that this is a _very_ different implementation */ |
60 | /* compared to Raph's. Coverage information is stored in a very */ |
61 | /* different way, and I don't use sorted vector paths. Also, it doesn't */ |
62 | /* use floating point values. */ |
63 | /* */ |
64 | /* This renderer has the following advantages: */ |
65 | /* */ |
66 | /* - It doesn't need an intermediate bitmap. Instead, one can supply a */ |
67 | /* callback function that will be called by the renderer to draw gray */ |
68 | /* spans on any target surface. You can thus do direct composition on */ |
69 | /* any kind of bitmap, provided that you give the renderer the right */ |
70 | /* callback. */ |
71 | /* */ |
72 | /* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */ |
73 | /* each pixel cell. */ |
74 | /* */ |
75 | /* - It performs a single pass on the outline (the `standard' FT2 */ |
76 | /* renderer makes two passes). */ |
77 | /* */ |
78 | /* - It can easily be modified to render to _any_ number of gray levels */ |
79 | /* cheaply. */ |
80 | /* */ |
81 | /* - For small (< 20) pixel sizes, it is faster than the standard */ |
82 | /* renderer. */ |
83 | /* */ |
84 | /*************************************************************************/ |
85 | |
86 | /*************************************************************************/ |
87 | /* */ |
88 | /* The macro QT_FT_COMPONENT is used in trace mode. It is an implicit */ |
89 | /* parameter of the QT_FT_TRACE() and QT_FT_ERROR() macros, used to print/log */ |
90 | /* messages during execution. */ |
91 | /* */ |
92 | #undef QT_FT_COMPONENT |
93 | #define QT_FT_COMPONENT trace_smooth |
94 | |
95 | |
96 | /* Auxiliary macros for token concatenation. */ |
97 | #define QT_FT_ERR_XCAT( x, y ) x ## y |
98 | #define QT_FT_ERR_CAT( x, y ) QT_FT_ERR_XCAT( x, y ) |
99 | |
100 | #define QT_FT_BEGIN_STMNT do { |
101 | #define QT_FT_END_STMNT } while ( 0 ) |
102 | |
103 | #define QT_FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) ) |
104 | #define QT_FT_ABS( a ) ( (a) < 0 ? -(a) : (a) ) |
105 | |
106 | |
107 | /* |
108 | * Approximate sqrt(x*x+y*y) using the `alpha max plus beta min' |
109 | * algorithm. We use alpha = 1, beta = 3/8, giving us results with a |
110 | * largest error less than 7% compared to the exact value. |
111 | */ |
112 | #define QT_FT_HYPOT( x, y ) \ |
113 | ( x = QT_FT_ABS( x ), \ |
114 | y = QT_FT_ABS( y ), \ |
115 | x > y ? x + ( 3 * y >> 3 ) \ |
116 | : y + ( 3 * x >> 3 ) ) |
117 | |
118 | #define ErrRaster_MemoryOverflow -4 |
119 | |
120 | #if defined(VXWORKS) |
121 | # include <vxWorksCommon.h> /* needed for setjmp.h */ |
122 | #endif |
123 | #include <string.h> /* for qt_ft_memcpy() */ |
124 | #include <setjmp.h> |
125 | #include <limits.h> |
126 | |
127 | #define QT_FT_UINT_MAX UINT_MAX |
128 | |
129 | #define qt_ft_memset memset |
130 | |
131 | #define qt_ft_setjmp setjmp |
132 | #define qt_ft_longjmp longjmp |
133 | #define qt_ft_jmp_buf jmp_buf |
134 | |
135 | #include <stddef.h> |
136 | typedef ptrdiff_t QT_FT_PtrDist; |
137 | |
138 | #define ErrRaster_Invalid_Mode -2 |
139 | #define ErrRaster_Invalid_Outline -1 |
140 | #define ErrRaster_Invalid_Argument -3 |
141 | #define ErrRaster_Memory_Overflow -4 |
142 | #define ErrRaster_OutOfMemory -6 |
143 | |
144 | #define |
145 | #define |
146 | |
147 | #include <private/qrasterdefs_p.h> |
148 | #include <private/qgrayraster_p.h> |
149 | |
150 | #include <qcompilerdetection.h> |
151 | |
152 | #include <stdlib.h> |
153 | #include <stdio.h> |
154 | #include <assert.h> |
155 | |
156 | #define QT_FT_UNUSED( x ) (void) x |
157 | |
158 | #define QT_FT_TRACE5( x ) do { } while ( 0 ) /* nothing */ |
159 | #define QT_FT_TRACE7( x ) do { } while ( 0 ) /* nothing */ |
160 | #define QT_FT_ERROR( x ) do { } while ( 0 ) /* nothing */ |
161 | #define QT_FT_THROW( e ) QT_FT_ERR_CAT( ErrRaster_, e ) |
162 | |
163 | #ifndef QT_FT_MEM_SET |
164 | #define QT_FT_MEM_SET( d, s, c ) qt_ft_memset( d, s, c ) |
165 | #endif |
166 | |
167 | #ifndef QT_FT_MEM_ZERO |
168 | #define QT_FT_MEM_ZERO( dest, count ) QT_FT_MEM_SET( dest, 0, count ) |
169 | #endif |
170 | |
171 | |
172 | #define RAS_ARG PWorker worker |
173 | #define RAS_ARG_ PWorker worker, |
174 | |
175 | #define RAS_VAR worker |
176 | #define RAS_VAR_ worker, |
177 | |
178 | #define ras (*worker) |
179 | |
180 | /* must be at least 6 bits! */ |
181 | #define PIXEL_BITS 8 |
182 | |
183 | #define ONE_PIXEL ( 1L << PIXEL_BITS ) |
184 | #define TRUNC( x ) (TCoord)( (x) >> PIXEL_BITS ) |
185 | #define FRACT( x ) (TCoord)( (x) & ( ONE_PIXEL - 1 ) ) |
186 | |
187 | #if PIXEL_BITS >= 6 |
188 | #define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) ) |
189 | #define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) ) |
190 | #else |
191 | #define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) ) |
192 | #define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) ) |
193 | #endif |
194 | |
195 | /* Compute `dividend / divisor' and return both its quotient and */ |
196 | /* remainder, cast to a specific type. This macro also ensures that */ |
197 | /* the remainder is always positive. */ |
198 | #define QT_FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \ |
199 | QT_FT_BEGIN_STMNT \ |
200 | (quotient) = (type)( (dividend) / (divisor) ); \ |
201 | (remainder) = (type)( (dividend) % (divisor) ); \ |
202 | if ( (remainder) < 0 ) \ |
203 | { \ |
204 | (quotient)--; \ |
205 | (remainder) += (type)(divisor); \ |
206 | } \ |
207 | QT_FT_END_STMNT |
208 | |
209 | /* These macros speed up repetitive divisions by replacing them */ |
210 | /* with multiplications and right shifts. */ |
211 | #define QT_FT_UDIVPREP( b ) \ |
212 | long b ## _r = (long)( ULONG_MAX >> PIXEL_BITS ) / ( b ) |
213 | #define QT_FT_UDIV( a, b ) \ |
214 | ( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \ |
215 | ( sizeof( long ) * CHAR_BIT - PIXEL_BITS ) ) |
216 | |
217 | |
218 | /*************************************************************************/ |
219 | /* */ |
220 | /* TYPE DEFINITIONS */ |
221 | /* */ |
222 | |
223 | /* don't change the following types to QT_FT_Int or QT_FT_Pos, since we might */ |
224 | /* need to define them to "float" or "double" when experimenting with */ |
225 | /* new algorithms */ |
226 | |
227 | typedef long TCoord; /* integer scanline/pixel coordinate */ |
228 | typedef long TPos; /* sub-pixel coordinate */ |
229 | typedef long TArea ; /* cell areas, coordinate products */ |
230 | |
231 | /* maximal number of gray spans in a call to the span callback */ |
232 | #define QT_FT_MAX_GRAY_SPANS 256 |
233 | |
234 | |
235 | typedef struct TCell_* PCell; |
236 | |
237 | typedef struct TCell_ |
238 | { |
239 | int x; |
240 | int cover; |
241 | TArea area; |
242 | PCell next; |
243 | |
244 | } TCell; |
245 | |
246 | |
247 | typedef struct TWorker_ |
248 | { |
249 | TCoord ex, ey; |
250 | TPos min_ex, max_ex; |
251 | TPos min_ey, max_ey; |
252 | TPos count_ex, count_ey; |
253 | |
254 | TArea area; |
255 | int cover; |
256 | int invalid; |
257 | |
258 | PCell cells; |
259 | QT_FT_PtrDist max_cells; |
260 | QT_FT_PtrDist num_cells; |
261 | |
262 | TPos x, y; |
263 | |
264 | QT_FT_Outline outline; |
265 | QT_FT_Bitmap target; |
266 | QT_FT_BBox clip_box; |
267 | |
268 | QT_FT_Span gray_spans[QT_FT_MAX_GRAY_SPANS]; |
269 | int num_gray_spans; |
270 | |
271 | QT_FT_Raster_Span_Func render_span; |
272 | void* render_span_data; |
273 | |
274 | int band_size; |
275 | int band_shoot; |
276 | |
277 | qt_ft_jmp_buf jump_buffer; |
278 | |
279 | void* buffer; |
280 | long buffer_size; |
281 | |
282 | PCell* ycells; |
283 | TPos ycount; |
284 | |
285 | int skip_spans; |
286 | } TWorker, *PWorker; |
287 | |
288 | |
289 | typedef struct TRaster_ |
290 | { |
291 | void* buffer; |
292 | long buffer_size; |
293 | long buffer_allocated_size; |
294 | int band_size; |
295 | void* memory; |
296 | PWorker worker; |
297 | |
298 | } TRaster, *PRaster; |
299 | |
300 | int q_gray_rendered_spans(TRaster *raster) |
301 | { |
302 | if ( raster && raster->worker ) |
303 | return raster->worker->skip_spans > 0 ? 0 : -raster->worker->skip_spans; |
304 | return 0; |
305 | } |
306 | |
307 | /*************************************************************************/ |
308 | /* */ |
309 | /* Initialize the cells table. */ |
310 | /* */ |
311 | static void |
312 | gray_init_cells( RAS_ARG_ void* buffer, |
313 | long byte_size ) |
314 | { |
315 | ras.buffer = buffer; |
316 | ras.buffer_size = byte_size; |
317 | |
318 | ras.ycells = (PCell*) buffer; |
319 | ras.cells = NULL; |
320 | ras.max_cells = 0; |
321 | ras.num_cells = 0; |
322 | ras.area = 0; |
323 | ras.cover = 0; |
324 | ras.invalid = 1; |
325 | } |
326 | |
327 | |
328 | /*************************************************************************/ |
329 | /* */ |
330 | /* Compute the outline bounding box. */ |
331 | /* */ |
332 | static void |
333 | gray_compute_cbox( RAS_ARG ) |
334 | { |
335 | QT_FT_Outline* outline = &ras.outline; |
336 | QT_FT_Vector* vec = outline->points; |
337 | QT_FT_Vector* limit = vec + outline->n_points; |
338 | |
339 | |
340 | if ( outline->n_points <= 0 ) |
341 | { |
342 | ras.min_ex = ras.max_ex = 0; |
343 | ras.min_ey = ras.max_ey = 0; |
344 | return; |
345 | } |
346 | |
347 | ras.min_ex = ras.max_ex = vec->x; |
348 | ras.min_ey = ras.max_ey = vec->y; |
349 | |
350 | vec++; |
351 | |
352 | for ( ; vec < limit; vec++ ) |
353 | { |
354 | TPos x = vec->x; |
355 | TPos y = vec->y; |
356 | |
357 | |
358 | if ( x < ras.min_ex ) ras.min_ex = x; |
359 | if ( x > ras.max_ex ) ras.max_ex = x; |
360 | if ( y < ras.min_ey ) ras.min_ey = y; |
361 | if ( y > ras.max_ey ) ras.max_ey = y; |
362 | } |
363 | |
364 | /* truncate the bounding box to integer pixels */ |
365 | ras.min_ex = ras.min_ex >> 6; |
366 | ras.min_ey = ras.min_ey >> 6; |
367 | ras.max_ex = ( ras.max_ex + 63 ) >> 6; |
368 | ras.max_ey = ( ras.max_ey + 63 ) >> 6; |
369 | } |
370 | |
371 | |
372 | /*************************************************************************/ |
373 | /* */ |
374 | /* Record the current cell in the table. */ |
375 | /* */ |
376 | static PCell |
377 | gray_find_cell( RAS_ARG ) |
378 | { |
379 | PCell *pcell, cell; |
380 | TPos x = ras.ex; |
381 | |
382 | |
383 | if ( x > ras.count_ex ) |
384 | x = ras.count_ex; |
385 | |
386 | pcell = &ras.ycells[ras.ey]; |
387 | for (;;) |
388 | { |
389 | cell = *pcell; |
390 | if ( cell == NULL || cell->x > x ) |
391 | break; |
392 | |
393 | if ( cell->x == x ) |
394 | goto Exit; |
395 | |
396 | pcell = &cell->next; |
397 | } |
398 | |
399 | if ( ras.num_cells >= ras.max_cells ) |
400 | qt_ft_longjmp( ras.jump_buffer, val: 1 ); |
401 | |
402 | cell = ras.cells + ras.num_cells++; |
403 | cell->x = x; |
404 | cell->area = 0; |
405 | cell->cover = 0; |
406 | |
407 | cell->next = *pcell; |
408 | *pcell = cell; |
409 | |
410 | Exit: |
411 | return cell; |
412 | } |
413 | |
414 | |
415 | static void |
416 | gray_record_cell( RAS_ARG ) |
417 | { |
418 | if ( ras.area | ras.cover ) |
419 | { |
420 | PCell cell = gray_find_cell( RAS_VAR ); |
421 | |
422 | |
423 | cell->area += ras.area; |
424 | cell->cover += ras.cover; |
425 | } |
426 | } |
427 | |
428 | |
429 | /*************************************************************************/ |
430 | /* */ |
431 | /* Set the current cell to a new position. */ |
432 | /* */ |
433 | static void |
434 | gray_set_cell( RAS_ARG_ TCoord ex, |
435 | TCoord ey ) |
436 | { |
437 | /* Move the cell pointer to a new position. We set the `invalid' */ |
438 | /* flag to indicate that the cell isn't part of those we're interested */ |
439 | /* in during the render phase. This means that: */ |
440 | /* */ |
441 | /* . the new vertical position must be within min_ey..max_ey-1. */ |
442 | /* . the new horizontal position must be strictly less than max_ex */ |
443 | /* */ |
444 | /* Note that if a cell is to the left of the clipping region, it is */ |
445 | /* actually set to the (min_ex-1) horizontal position. */ |
446 | |
447 | /* All cells that are on the left of the clipping region go to the */ |
448 | /* min_ex - 1 horizontal position. */ |
449 | ey -= ras.min_ey; |
450 | |
451 | if ( ex > ras.max_ex ) |
452 | ex = ras.max_ex; |
453 | |
454 | ex -= ras.min_ex; |
455 | if ( ex < 0 ) |
456 | ex = -1; |
457 | |
458 | /* are we moving to a different cell ? */ |
459 | if ( ex != ras.ex || ey != ras.ey ) |
460 | { |
461 | /* record the current one if it is valid */ |
462 | if ( !ras.invalid ) |
463 | gray_record_cell( RAS_VAR ); |
464 | |
465 | ras.area = 0; |
466 | ras.cover = 0; |
467 | ras.ex = ex; |
468 | ras.ey = ey; |
469 | } |
470 | |
471 | ras.invalid = ( (unsigned int)ey >= (unsigned int)ras.count_ey || |
472 | ex >= ras.count_ex ); |
473 | } |
474 | |
475 | |
476 | /*************************************************************************/ |
477 | /* */ |
478 | /* Start a new contour at a given cell. */ |
479 | /* */ |
480 | static void |
481 | gray_start_cell( RAS_ARG_ TCoord ex, |
482 | TCoord ey ) |
483 | { |
484 | if ( ex > ras.max_ex ) |
485 | ex = (TCoord)( ras.max_ex ); |
486 | |
487 | if ( ex < ras.min_ex ) |
488 | ex = (TCoord)( ras.min_ex - 1 ); |
489 | |
490 | ras.area = 0; |
491 | ras.cover = 0; |
492 | ras.ex = ex - ras.min_ex; |
493 | ras.ey = ey - ras.min_ey; |
494 | ras.invalid = 0; |
495 | |
496 | gray_set_cell( RAS_VAR_ ex, ey ); |
497 | } |
498 | |
499 | // The new render-line implementation is not yet used |
500 | #if 1 |
501 | |
502 | /*************************************************************************/ |
503 | /* */ |
504 | /* Render a scanline as one or more cells. */ |
505 | /* */ |
506 | static void |
507 | gray_render_scanline( RAS_ARG_ TCoord ey, |
508 | TPos x1, |
509 | TCoord y1, |
510 | TPos x2, |
511 | TCoord y2 ) |
512 | { |
513 | TCoord ex1, ex2, fx1, fx2, first, dy, delta, mod; |
514 | TPos p, dx; |
515 | int incr; |
516 | |
517 | |
518 | ex1 = TRUNC( x1 ); |
519 | ex2 = TRUNC( x2 ); |
520 | |
521 | /* trivial case. Happens often */ |
522 | if ( y1 == y2 ) |
523 | { |
524 | gray_set_cell( RAS_VAR_ ex: ex2, ey ); |
525 | return; |
526 | } |
527 | |
528 | fx1 = FRACT( x1 ); |
529 | fx2 = FRACT( x2 ); |
530 | |
531 | /* everything is located in a single cell. That is easy! */ |
532 | /* */ |
533 | if ( ex1 == ex2 ) |
534 | goto End; |
535 | |
536 | /* ok, we'll have to render a run of adjacent cells on the same */ |
537 | /* scanline... */ |
538 | /* */ |
539 | dx = x2 - x1; |
540 | dy = y2 - y1; |
541 | |
542 | if ( dx > 0 ) |
543 | { |
544 | p = ( ONE_PIXEL - fx1 ) * dy; |
545 | first = ONE_PIXEL; |
546 | incr = 1; |
547 | } else { |
548 | p = fx1 * dy; |
549 | first = 0; |
550 | incr = -1; |
551 | dx = -dx; |
552 | } |
553 | |
554 | QT_FT_DIV_MOD( TCoord, p, dx, delta, mod ); |
555 | |
556 | ras.area += (TArea)( fx1 + first ) * delta; |
557 | ras.cover += delta; |
558 | y1 += delta; |
559 | ex1 += incr; |
560 | gray_set_cell( RAS_VAR_ ex: ex1, ey ); |
561 | |
562 | if ( ex1 != ex2 ) |
563 | { |
564 | TCoord lift, rem; |
565 | |
566 | |
567 | p = ONE_PIXEL * dy; |
568 | QT_FT_DIV_MOD( TCoord, p, dx, lift, rem ); |
569 | |
570 | do |
571 | { |
572 | delta = lift; |
573 | mod += rem; |
574 | if ( mod >= (TCoord)dx ) |
575 | { |
576 | mod -= (TCoord)dx; |
577 | delta++; |
578 | } |
579 | |
580 | ras.area += (TArea)( ONE_PIXEL * delta ); |
581 | ras.cover += delta; |
582 | y1 += delta; |
583 | ex1 += incr; |
584 | gray_set_cell( RAS_VAR_ ex: ex1, ey ); |
585 | } while ( ex1 != ex2 ); |
586 | } |
587 | fx1 = ONE_PIXEL - first; |
588 | |
589 | End: |
590 | dy = y2 - y1; |
591 | |
592 | ras.area += (TArea)( ( fx1 + fx2 ) * dy ); |
593 | ras.cover += dy; |
594 | } |
595 | |
596 | |
597 | /*************************************************************************/ |
598 | /* */ |
599 | /* Render a given line as a series of scanlines. */ |
600 | /* */ |
601 | static void |
602 | gray_render_line( RAS_ARG_ TPos to_x, |
603 | TPos to_y ) |
604 | { |
605 | TCoord ey1, ey2, fy1, fy2, first, delta, mod; |
606 | TPos p, dx, dy, x, x2; |
607 | int incr; |
608 | |
609 | ey1 = TRUNC( ras.y ); |
610 | ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */ |
611 | |
612 | /* perform vertical clipping */ |
613 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
614 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
615 | goto End; |
616 | |
617 | fy1 = FRACT( ras.y ); |
618 | fy2 = FRACT( to_y ); |
619 | |
620 | /* everything is on a single scanline */ |
621 | if ( ey1 == ey2 ) |
622 | { |
623 | gray_render_scanline( RAS_VAR_ ey: ey1, ras.x, y1: fy1, x2: to_x, y2: fy2 ); |
624 | goto End; |
625 | } |
626 | |
627 | dx = to_x - ras.x; |
628 | dy = to_y - ras.y; |
629 | |
630 | /* vertical line - avoid calling gray_render_scanline */ |
631 | if ( dx == 0 ) |
632 | { |
633 | TCoord ex = TRUNC( ras.x ); |
634 | TCoord two_fx = FRACT( ras.x ) << 1; |
635 | TPos area, max_ey1; |
636 | |
637 | |
638 | if ( dy > 0) |
639 | { |
640 | first = ONE_PIXEL; |
641 | } |
642 | else |
643 | { |
644 | first = 0; |
645 | } |
646 | |
647 | delta = first - fy1; |
648 | ras.area += (TArea)two_fx * delta; |
649 | ras.cover += delta; |
650 | |
651 | delta = first + first - ONE_PIXEL; |
652 | area = (TArea)two_fx * delta; |
653 | max_ey1 = ras.count_ey + ras.min_ey; |
654 | if (dy < 0) { |
655 | if (ey1 > max_ey1) { |
656 | ey1 = (max_ey1 > ey2) ? max_ey1 : ey2; |
657 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
658 | } else { |
659 | ey1--; |
660 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
661 | } |
662 | while ( ey1 > ey2 && ey1 >= ras.min_ey) |
663 | { |
664 | ras.area += area; |
665 | ras.cover += delta; |
666 | ey1--; |
667 | |
668 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
669 | } |
670 | if (ey1 != ey2) { |
671 | ey1 = ey2; |
672 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
673 | } |
674 | } else { |
675 | if (ey1 < ras.min_ey) { |
676 | ey1 = (ras.min_ey < ey2) ? ras.min_ey : ey2; |
677 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
678 | } else { |
679 | ey1++; |
680 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
681 | } |
682 | while ( ey1 < ey2 && ey1 < max_ey1) |
683 | { |
684 | ras.area += area; |
685 | ras.cover += delta; |
686 | ey1++; |
687 | |
688 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
689 | } |
690 | if (ey1 != ey2) { |
691 | ey1 = ey2; |
692 | gray_set_cell( worker: &ras, ex, ey: ey1 ); |
693 | } |
694 | } |
695 | |
696 | delta = (int)( fy2 - ONE_PIXEL + first ); |
697 | ras.area += (TArea)two_fx * delta; |
698 | ras.cover += delta; |
699 | |
700 | goto End; |
701 | } |
702 | |
703 | /* ok, we have to render several scanlines */ |
704 | if ( dy > 0) |
705 | { |
706 | p = ( ONE_PIXEL - fy1 ) * dx; |
707 | first = ONE_PIXEL; |
708 | incr = 1; |
709 | } |
710 | else |
711 | { |
712 | p = fy1 * dx; |
713 | first = 0; |
714 | incr = -1; |
715 | dy = -dy; |
716 | } |
717 | |
718 | /* the fractional part of x-delta is mod/dy. It is essential to */ |
719 | /* keep track of its accumulation for accurate rendering. */ |
720 | QT_FT_DIV_MOD( TCoord, p, dy, delta, mod ); |
721 | |
722 | x = ras.x + delta; |
723 | gray_render_scanline( RAS_VAR_ ey: ey1, ras.x, y1: fy1, x2: x, y2: (TCoord)first ); |
724 | |
725 | ey1 += incr; |
726 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey: ey1 ); |
727 | |
728 | if ( ey1 != ey2 ) |
729 | { |
730 | TCoord lift, rem; |
731 | |
732 | |
733 | p = ONE_PIXEL * dx; |
734 | QT_FT_DIV_MOD( TCoord, p, dy, lift, rem ); |
735 | |
736 | do |
737 | { |
738 | delta = lift; |
739 | mod += rem; |
740 | if ( mod >= (TCoord)dy ) |
741 | { |
742 | mod -= (TCoord)dy; |
743 | delta++; |
744 | } |
745 | |
746 | x2 = x + delta; |
747 | gray_render_scanline( RAS_VAR_ ey: ey1, |
748 | x1: x, ONE_PIXEL - first, |
749 | x2, y2: first ); |
750 | x = x2; |
751 | |
752 | ey1 += incr; |
753 | gray_set_cell( RAS_VAR_ TRUNC( x ), ey: ey1 ); |
754 | } while ( ey1 != ey2 ); |
755 | } |
756 | |
757 | gray_render_scanline( RAS_VAR_ ey: ey1, |
758 | x1: x, ONE_PIXEL - first, |
759 | x2: to_x, y2: fy2 ); |
760 | |
761 | End: |
762 | ras.x = to_x; |
763 | ras.y = to_y; |
764 | } |
765 | |
766 | |
767 | #else |
768 | |
769 | /*************************************************************************/ |
770 | /* */ |
771 | /* Render a straight line across multiple cells in any direction. */ |
772 | /* */ |
773 | static void |
774 | gray_render_line( RAS_ARG_ TPos to_x, |
775 | TPos to_y ) |
776 | { |
777 | TPos dx, dy, fx1, fy1, fx2, fy2; |
778 | TCoord ex1, ex2, ey1, ey2; |
779 | |
780 | |
781 | ex1 = TRUNC( ras.x ); |
782 | ex2 = TRUNC( to_x ); |
783 | ey1 = TRUNC( ras.y ); |
784 | ey2 = TRUNC( to_y ); |
785 | |
786 | /* perform vertical clipping */ |
787 | if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) || |
788 | ( ey1 < ras.min_ey && ey2 < ras.min_ey ) ) |
789 | goto End; |
790 | |
791 | dx = to_x - ras.x; |
792 | dy = to_y - ras.y; |
793 | |
794 | fx1 = FRACT( ras.x ); |
795 | fy1 = FRACT( ras.y ); |
796 | |
797 | if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */ |
798 | ; |
799 | else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */ |
800 | { |
801 | ex1 = ex2; |
802 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
803 | } |
804 | else if ( dx == 0 ) |
805 | { |
806 | if ( dy > 0 ) /* vertical line up */ |
807 | do |
808 | { |
809 | fy2 = ONE_PIXEL; |
810 | ras.cover += ( fy2 - fy1 ); |
811 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
812 | fy1 = 0; |
813 | ey1++; |
814 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
815 | } while ( ey1 != ey2 ); |
816 | else /* vertical line down */ |
817 | do |
818 | { |
819 | fy2 = 0; |
820 | ras.cover += ( fy2 - fy1 ); |
821 | ras.area += ( fy2 - fy1 ) * fx1 * 2; |
822 | fy1 = ONE_PIXEL; |
823 | ey1--; |
824 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
825 | } while ( ey1 != ey2 ); |
826 | } |
827 | else /* any other line */ |
828 | { |
829 | TArea prod = dx * fy1 - dy * fx1; |
830 | QT_FT_UDIVPREP( dx ); |
831 | QT_FT_UDIVPREP( dy ); |
832 | |
833 | |
834 | /* The fundamental value `prod' determines which side and the */ |
835 | /* exact coordinate where the line exits current cell. It is */ |
836 | /* also easily updated when moving from one cell to the next. */ |
837 | do |
838 | { |
839 | if ( prod <= 0 && |
840 | prod - dx * ONE_PIXEL > 0 ) /* left */ |
841 | { |
842 | fx2 = 0; |
843 | fy2 = (TPos)QT_FT_UDIV( -prod, -dx ); |
844 | prod -= dy * ONE_PIXEL; |
845 | ras.cover += ( fy2 - fy1 ); |
846 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
847 | fx1 = ONE_PIXEL; |
848 | fy1 = fy2; |
849 | ex1--; |
850 | } |
851 | else if ( prod - dx * ONE_PIXEL <= 0 && |
852 | prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */ |
853 | { |
854 | prod -= dx * ONE_PIXEL; |
855 | fx2 = (TPos)QT_FT_UDIV( -prod, dy ); |
856 | fy2 = ONE_PIXEL; |
857 | ras.cover += ( fy2 - fy1 ); |
858 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
859 | fx1 = fx2; |
860 | fy1 = 0; |
861 | ey1++; |
862 | } |
863 | else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 && |
864 | prod + dy * ONE_PIXEL >= 0 ) /* right */ |
865 | { |
866 | prod += dy * ONE_PIXEL; |
867 | fx2 = ONE_PIXEL; |
868 | fy2 = (TPos)QT_FT_UDIV( prod, dx ); |
869 | ras.cover += ( fy2 - fy1 ); |
870 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
871 | fx1 = 0; |
872 | fy1 = fy2; |
873 | ex1++; |
874 | } |
875 | else /* ( prod + dy * ONE_PIXEL < 0 && |
876 | prod > 0 ) down */ |
877 | { |
878 | fx2 = (TPos)QT_FT_UDIV( prod, -dy ); |
879 | fy2 = 0; |
880 | prod += dx * ONE_PIXEL; |
881 | ras.cover += ( fy2 - fy1 ); |
882 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
883 | fx1 = fx2; |
884 | fy1 = ONE_PIXEL; |
885 | ey1--; |
886 | } |
887 | |
888 | gray_set_cell( RAS_VAR_ ex1, ey1 ); |
889 | } while ( ex1 != ex2 || ey1 != ey2 ); |
890 | } |
891 | |
892 | fx2 = FRACT( to_x ); |
893 | fy2 = FRACT( to_y ); |
894 | |
895 | ras.cover += ( fy2 - fy1 ); |
896 | ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 ); |
897 | |
898 | End: |
899 | ras.x = to_x; |
900 | ras.y = to_y; |
901 | } |
902 | |
903 | #endif |
904 | |
905 | static void |
906 | gray_split_conic( QT_FT_Vector* base ) |
907 | { |
908 | TPos a, b; |
909 | |
910 | |
911 | base[4].x = base[2].x; |
912 | b = base[1].x; |
913 | a = base[3].x = ( base[2].x + b ) / 2; |
914 | b = base[1].x = ( base[0].x + b ) / 2; |
915 | base[2].x = ( a + b ) / 2; |
916 | |
917 | base[4].y = base[2].y; |
918 | b = base[1].y; |
919 | a = base[3].y = ( base[2].y + b ) / 2; |
920 | b = base[1].y = ( base[0].y + b ) / 2; |
921 | base[2].y = ( a + b ) / 2; |
922 | } |
923 | |
924 | |
925 | static void |
926 | gray_render_conic( RAS_ARG_ const QT_FT_Vector* control, |
927 | const QT_FT_Vector* to ) |
928 | { |
929 | QT_FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */ |
930 | QT_FT_Vector* arc = bez_stack; |
931 | TPos dx, dy; |
932 | int draw, split; |
933 | |
934 | |
935 | arc[0].x = UPSCALE( to->x ); |
936 | arc[0].y = UPSCALE( to->y ); |
937 | arc[1].x = UPSCALE( control->x ); |
938 | arc[1].y = UPSCALE( control->y ); |
939 | arc[2].x = ras.x; |
940 | arc[2].y = ras.y; |
941 | |
942 | /* short-cut the arc that crosses the current band */ |
943 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
944 | TRUNC( arc[1].y ) >= ras.max_ey && |
945 | TRUNC( arc[2].y ) >= ras.max_ey ) || |
946 | ( TRUNC( arc[0].y ) < ras.min_ey && |
947 | TRUNC( arc[1].y ) < ras.min_ey && |
948 | TRUNC( arc[2].y ) < ras.min_ey ) ) |
949 | { |
950 | ras.x = arc[0].x; |
951 | ras.y = arc[0].y; |
952 | return; |
953 | } |
954 | |
955 | dx = QT_FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x ); |
956 | dy = QT_FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y ); |
957 | if ( dx < dy ) |
958 | dx = dy; |
959 | |
960 | /* We can calculate the number of necessary bisections because */ |
961 | /* each bisection predictably reduces deviation exactly 4-fold. */ |
962 | /* Even 32-bit deviation would vanish after 16 bisections. */ |
963 | draw = 1; |
964 | while ( dx > ONE_PIXEL / 4 ) |
965 | { |
966 | dx >>= 2; |
967 | draw <<= 1; |
968 | } |
969 | |
970 | /* We use decrement counter to count the total number of segments */ |
971 | /* to draw starting from 2^level. Before each draw we split as */ |
972 | /* many times as there are trailing zeros in the counter. */ |
973 | do |
974 | { |
975 | split = 1; |
976 | while ( ( draw & split ) == 0 ) |
977 | { |
978 | gray_split_conic( base: arc ); |
979 | arc += 2; |
980 | split <<= 1; |
981 | } |
982 | |
983 | gray_render_line( RAS_VAR_ to_x: arc[0].x, to_y: arc[0].y ); |
984 | arc -= 2; |
985 | |
986 | } while ( --draw ); |
987 | } |
988 | |
989 | |
990 | static void |
991 | gray_split_cubic( QT_FT_Vector* base ) |
992 | { |
993 | TPos a, b, c, d; |
994 | |
995 | |
996 | base[6].x = base[3].x; |
997 | c = base[1].x; |
998 | d = base[2].x; |
999 | base[1].x = a = ( base[0].x + c ) / 2; |
1000 | base[5].x = b = ( base[3].x + d ) / 2; |
1001 | c = ( c + d ) / 2; |
1002 | base[2].x = a = ( a + c ) / 2; |
1003 | base[4].x = b = ( b + c ) / 2; |
1004 | base[3].x = ( a + b ) / 2; |
1005 | |
1006 | base[6].y = base[3].y; |
1007 | c = base[1].y; |
1008 | d = base[2].y; |
1009 | base[1].y = a = ( base[0].y + c ) / 2; |
1010 | base[5].y = b = ( base[3].y + d ) / 2; |
1011 | c = ( c + d ) / 2; |
1012 | base[2].y = a = ( a + c ) / 2; |
1013 | base[4].y = b = ( b + c ) / 2; |
1014 | base[3].y = ( a + b ) / 2; |
1015 | } |
1016 | |
1017 | |
1018 | static void |
1019 | gray_render_cubic( RAS_ARG_ const QT_FT_Vector* control1, |
1020 | const QT_FT_Vector* control2, |
1021 | const QT_FT_Vector* to ) |
1022 | { |
1023 | QT_FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */ |
1024 | QT_FT_Vector* arc = bez_stack; |
1025 | TPos dx, dy, dx_, dy_; |
1026 | TPos dx1, dy1, dx2, dy2; |
1027 | TPos L, s, s_limit; |
1028 | |
1029 | |
1030 | arc[0].x = UPSCALE( to->x ); |
1031 | arc[0].y = UPSCALE( to->y ); |
1032 | arc[1].x = UPSCALE( control2->x ); |
1033 | arc[1].y = UPSCALE( control2->y ); |
1034 | arc[2].x = UPSCALE( control1->x ); |
1035 | arc[2].y = UPSCALE( control1->y ); |
1036 | arc[3].x = ras.x; |
1037 | arc[3].y = ras.y; |
1038 | |
1039 | /* short-cut the arc that crosses the current band */ |
1040 | if ( ( TRUNC( arc[0].y ) >= ras.max_ey && |
1041 | TRUNC( arc[1].y ) >= ras.max_ey && |
1042 | TRUNC( arc[2].y ) >= ras.max_ey && |
1043 | TRUNC( arc[3].y ) >= ras.max_ey ) || |
1044 | ( TRUNC( arc[0].y ) < ras.min_ey && |
1045 | TRUNC( arc[1].y ) < ras.min_ey && |
1046 | TRUNC( arc[2].y ) < ras.min_ey && |
1047 | TRUNC( arc[3].y ) < ras.min_ey ) ) |
1048 | { |
1049 | ras.x = arc[0].x; |
1050 | ras.y = arc[0].y; |
1051 | return; |
1052 | } |
1053 | |
1054 | for (;;) |
1055 | { |
1056 | /* Decide whether to split or draw. See `Rapid Termination */ |
1057 | /* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */ |
1058 | /* F. Hain, at */ |
1059 | /* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */ |
1060 | |
1061 | |
1062 | /* dx and dy are x and y components of the P0-P3 chord vector. */ |
1063 | dx = dx_ = arc[3].x - arc[0].x; |
1064 | dy = dy_ = arc[3].y - arc[0].y; |
1065 | |
1066 | L = QT_FT_HYPOT( dx_, dy_ ); |
1067 | |
1068 | /* Avoid possible arithmetic overflow below by splitting. */ |
1069 | if ( L >= (1 << 23) ) |
1070 | goto Split; |
1071 | |
1072 | /* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */ |
1073 | s_limit = L * (TPos)( ONE_PIXEL / 6 ); |
1074 | |
1075 | /* s is L * the perpendicular distance from P1 to the line P0-P3. */ |
1076 | dx1 = arc[1].x - arc[0].x; |
1077 | dy1 = arc[1].y - arc[0].y; |
1078 | s = QT_FT_ABS( dy * dx1 - dx * dy1 ); |
1079 | |
1080 | if ( s > s_limit ) |
1081 | goto Split; |
1082 | |
1083 | /* s is L * the perpendicular distance from P2 to the line P0-P3. */ |
1084 | dx2 = arc[2].x - arc[0].x; |
1085 | dy2 = arc[2].y - arc[0].y; |
1086 | s = QT_FT_ABS( dy * dx2 - dx * dy2 ); |
1087 | |
1088 | if ( s > s_limit ) |
1089 | goto Split; |
1090 | |
1091 | /* Split super curvy segments where the off points are so far |
1092 | from the chord that the angles P0-P1-P3 or P0-P2-P3 become |
1093 | acute as detected by appropriate dot products. */ |
1094 | if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 || |
1095 | dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 ) |
1096 | goto Split; |
1097 | |
1098 | gray_render_line( RAS_VAR_ to_x: arc[0].x, to_y: arc[0].y ); |
1099 | |
1100 | if ( arc == bez_stack ) |
1101 | return; |
1102 | |
1103 | arc -= 3; |
1104 | continue; |
1105 | |
1106 | Split: |
1107 | gray_split_cubic( base: arc ); |
1108 | arc += 3; |
1109 | } |
1110 | } |
1111 | |
1112 | |
1113 | |
1114 | static int |
1115 | gray_move_to( const QT_FT_Vector* to, |
1116 | PWorker worker ) |
1117 | { |
1118 | TPos x, y; |
1119 | |
1120 | |
1121 | /* record current cell, if any */ |
1122 | if ( !ras.invalid ) |
1123 | gray_record_cell( worker ); |
1124 | |
1125 | /* start to a new position */ |
1126 | x = UPSCALE( to->x ); |
1127 | y = UPSCALE( to->y ); |
1128 | |
1129 | gray_start_cell( worker, TRUNC( x ), TRUNC( y ) ); |
1130 | |
1131 | ras.x = x; |
1132 | ras.y = y; |
1133 | return 0; |
1134 | } |
1135 | |
1136 | static void |
1137 | gray_render_span( int count, |
1138 | const QT_FT_Span* spans, |
1139 | PWorker worker ) |
1140 | { |
1141 | unsigned char* p; |
1142 | QT_FT_Bitmap* map = &worker->target; |
1143 | |
1144 | for ( ; count > 0; count--, spans++ ) |
1145 | { |
1146 | unsigned char coverage = spans->coverage; |
1147 | |
1148 | /* first of all, compute the scanline offset */ |
1149 | p = (unsigned char*)map->buffer - spans->y * map->pitch; |
1150 | if ( map->pitch >= 0 ) |
1151 | p += ( map->rows - 1 ) * (unsigned int)map->pitch; |
1152 | |
1153 | |
1154 | if ( coverage ) |
1155 | { |
1156 | unsigned char* q = p + spans->x; |
1157 | |
1158 | |
1159 | /* For small-spans it is faster to do it by ourselves than |
1160 | * calling `memset'. This is mainly due to the cost of the |
1161 | * function call. |
1162 | */ |
1163 | switch ( spans->len ) |
1164 | { |
1165 | case 7: *q++ = coverage; Q_FALLTHROUGH(); |
1166 | case 6: *q++ = coverage; Q_FALLTHROUGH(); |
1167 | case 5: *q++ = coverage; Q_FALLTHROUGH(); |
1168 | case 4: *q++ = coverage; Q_FALLTHROUGH(); |
1169 | case 3: *q++ = coverage; Q_FALLTHROUGH(); |
1170 | case 2: *q++ = coverage; Q_FALLTHROUGH(); |
1171 | case 1: *q = coverage; Q_FALLTHROUGH(); |
1172 | case 0: break; |
1173 | default: |
1174 | QT_FT_MEM_SET( q, coverage, spans->len ); |
1175 | } |
1176 | } |
1177 | } |
1178 | } |
1179 | |
1180 | |
1181 | static void |
1182 | gray_hline( RAS_ARG_ TCoord x, |
1183 | TCoord y, |
1184 | TPos area, |
1185 | int acount ) |
1186 | { |
1187 | int coverage; |
1188 | |
1189 | |
1190 | /* compute the coverage line's coverage, depending on the */ |
1191 | /* outline fill rule */ |
1192 | /* */ |
1193 | /* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */ |
1194 | /* */ |
1195 | coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) ); |
1196 | /* use range 0..256 */ |
1197 | if ( coverage < 0 ) |
1198 | coverage = -coverage; |
1199 | |
1200 | if ( ras.outline.flags & QT_FT_OUTLINE_EVEN_ODD_FILL ) |
1201 | { |
1202 | coverage &= 511; |
1203 | |
1204 | if ( coverage > 256 ) |
1205 | coverage = 512 - coverage; |
1206 | else if ( coverage == 256 ) |
1207 | coverage = 255; |
1208 | } |
1209 | else |
1210 | { |
1211 | /* normal non-zero winding rule */ |
1212 | if ( coverage >= 256 ) |
1213 | coverage = 255; |
1214 | } |
1215 | |
1216 | y += (TCoord)ras.min_ey; |
1217 | x += (TCoord)ras.min_ex; |
1218 | |
1219 | /* QT_FT_Span.x is an int, so limit our coordinates appropriately */ |
1220 | if ( x >= (1 << 23) ) |
1221 | x = (1 << 23) - 1; |
1222 | |
1223 | /* QT_FT_Span.y is an int, so limit our coordinates appropriately */ |
1224 | if ( y >= (1 << 23) ) |
1225 | y = (1 << 23) - 1; |
1226 | |
1227 | if ( coverage ) |
1228 | { |
1229 | QT_FT_Span* span; |
1230 | int count; |
1231 | int skip; |
1232 | |
1233 | |
1234 | /* see whether we can add this span to the current list */ |
1235 | count = ras.num_gray_spans; |
1236 | span = ras.gray_spans + count - 1; |
1237 | if ( count > 0 && |
1238 | span->y == y && |
1239 | span->x + span->len == x && |
1240 | span->coverage == coverage ) |
1241 | { |
1242 | span->len = span->len + acount; |
1243 | return; |
1244 | } |
1245 | |
1246 | if ( count >= QT_FT_MAX_GRAY_SPANS ) |
1247 | { |
1248 | if ( ras.render_span && count > ras.skip_spans ) |
1249 | { |
1250 | skip = ras.skip_spans > 0 ? ras.skip_spans : 0; |
1251 | ras.render_span( ras.num_gray_spans - skip, |
1252 | ras.gray_spans + skip, |
1253 | ras.render_span_data ); |
1254 | } |
1255 | |
1256 | ras.skip_spans -= ras.num_gray_spans; |
1257 | |
1258 | /* ras.render_span( span->y, ras.gray_spans, count ); */ |
1259 | |
1260 | #ifdef DEBUG_GRAYS |
1261 | |
1262 | if ( 1 ) |
1263 | { |
1264 | int n; |
1265 | |
1266 | |
1267 | fprintf( stderr, "y=%3d " , y ); |
1268 | span = ras.gray_spans; |
1269 | for ( n = 0; n < count; n++, span++ ) |
1270 | fprintf( stderr, "[%d..%d]:%02x " , |
1271 | span->x, span->x + span->len - 1, span->coverage ); |
1272 | fprintf( stderr, "\n" ); |
1273 | } |
1274 | |
1275 | #endif /* DEBUG_GRAYS */ |
1276 | |
1277 | ras.num_gray_spans = 0; |
1278 | |
1279 | span = ras.gray_spans; |
1280 | } |
1281 | else |
1282 | span++; |
1283 | |
1284 | /* add a gray span to the current list */ |
1285 | span->x = x; |
1286 | span->len = acount; |
1287 | span->y = y; |
1288 | span->coverage = (unsigned char)coverage; |
1289 | |
1290 | ras.num_gray_spans++; |
1291 | } |
1292 | } |
1293 | |
1294 | |
1295 | #ifdef DEBUG_GRAYS |
1296 | |
1297 | /* to be called while in the debugger */ |
1298 | gray_dump_cells( RAS_ARG ) |
1299 | { |
1300 | int yindex; |
1301 | |
1302 | |
1303 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1304 | { |
1305 | PCell cell; |
1306 | |
1307 | |
1308 | printf( "%3d:" , yindex ); |
1309 | |
1310 | for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next ) |
1311 | printf( " (%3d, c:%4d, a:%6d)" , cell->x, cell->cover, cell->area ); |
1312 | printf( "\n" ); |
1313 | } |
1314 | } |
1315 | |
1316 | #endif /* DEBUG_GRAYS */ |
1317 | |
1318 | |
1319 | static void |
1320 | gray_sweep( RAS_ARG_ const QT_FT_Bitmap* target ) |
1321 | { |
1322 | int yindex; |
1323 | |
1324 | QT_FT_UNUSED( target ); |
1325 | |
1326 | |
1327 | if ( ras.num_cells == 0 ) |
1328 | return; |
1329 | |
1330 | QT_FT_TRACE7(( "gray_sweep: start\n" )); |
1331 | |
1332 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1333 | { |
1334 | PCell cell = ras.ycells[yindex]; |
1335 | TCoord cover = 0; |
1336 | TCoord x = 0; |
1337 | |
1338 | |
1339 | for ( ; cell != NULL; cell = cell->next ) |
1340 | { |
1341 | TArea area; |
1342 | |
1343 | |
1344 | if ( cell->x > x && cover != 0 ) |
1345 | gray_hline( RAS_VAR_ x, y: yindex, area: cover * ( ONE_PIXEL * 2 ), |
1346 | acount: cell->x - x ); |
1347 | |
1348 | cover += cell->cover; |
1349 | area = cover * ( ONE_PIXEL * 2 ) - cell->area; |
1350 | |
1351 | if ( area != 0 && cell->x >= 0 ) |
1352 | gray_hline( RAS_VAR_ x: cell->x, y: yindex, area, acount: 1 ); |
1353 | |
1354 | x = cell->x + 1; |
1355 | } |
1356 | |
1357 | if ( ras.count_ex > x && cover != 0 ) |
1358 | gray_hline( RAS_VAR_ x, y: yindex, area: cover * ( ONE_PIXEL * 2 ), |
1359 | ras.count_ex - x ); |
1360 | } |
1361 | |
1362 | QT_FT_TRACE7(( "gray_sweep: end\n" )); |
1363 | } |
1364 | |
1365 | /*************************************************************************/ |
1366 | /* */ |
1367 | /* The following function should only compile in stand_alone mode, */ |
1368 | /* i.e., when building this component without the rest of FreeType. */ |
1369 | /* */ |
1370 | /*************************************************************************/ |
1371 | |
1372 | /*************************************************************************/ |
1373 | /* */ |
1374 | /* <Function> */ |
1375 | /* QT_FT_Outline_Decompose */ |
1376 | /* */ |
1377 | /* <Description> */ |
1378 | /* Walks over an outline's structure to decompose it into individual */ |
1379 | /* segments and Bezier arcs. This function is also able to emit */ |
1380 | /* `move to' and `close to' operations to indicate the start and end */ |
1381 | /* of new contours in the outline. */ |
1382 | /* */ |
1383 | /* <Input> */ |
1384 | /* outline :: A pointer to the source target. */ |
1385 | /* */ |
1386 | /* user :: A typeless pointer which is passed to each */ |
1387 | /* emitter during the decomposition. It can be */ |
1388 | /* used to store the state during the */ |
1389 | /* decomposition. */ |
1390 | /* */ |
1391 | /* <Return> */ |
1392 | /* Error code. 0 means success. */ |
1393 | /* */ |
1394 | static |
1395 | int QT_FT_Outline_Decompose( const QT_FT_Outline* outline, |
1396 | void* user ) |
1397 | { |
1398 | #undef SCALED |
1399 | #define SCALED( x ) (x) |
1400 | |
1401 | QT_FT_Vector v_last; |
1402 | QT_FT_Vector v_control; |
1403 | QT_FT_Vector v_start; |
1404 | |
1405 | QT_FT_Vector* point; |
1406 | QT_FT_Vector* limit; |
1407 | char* tags; |
1408 | |
1409 | int n; /* index of contour in outline */ |
1410 | int first; /* index of first point in contour */ |
1411 | int error; |
1412 | char tag; /* current point's state */ |
1413 | |
1414 | if ( !outline ) |
1415 | return ErrRaster_Invalid_Outline; |
1416 | |
1417 | first = 0; |
1418 | |
1419 | for ( n = 0; n < outline->n_contours; n++ ) |
1420 | { |
1421 | int last; /* index of last point in contour */ |
1422 | |
1423 | |
1424 | last = outline->contours[n]; |
1425 | if ( last < 0 ) |
1426 | goto Invalid_Outline; |
1427 | limit = outline->points + last; |
1428 | |
1429 | v_start = outline->points[first]; |
1430 | v_start.x = SCALED( v_start.x ); |
1431 | v_start.y = SCALED( v_start.y ); |
1432 | |
1433 | v_last = outline->points[last]; |
1434 | v_last.x = SCALED( v_last.x ); |
1435 | v_last.y = SCALED( v_last.y ); |
1436 | |
1437 | v_control = v_start; |
1438 | |
1439 | point = outline->points + first; |
1440 | tags = outline->tags + first; |
1441 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1442 | |
1443 | /* A contour cannot start with a cubic control point! */ |
1444 | if ( tag == QT_FT_CURVE_TAG_CUBIC ) |
1445 | goto Invalid_Outline; |
1446 | |
1447 | /* check first point to determine origin */ |
1448 | if ( tag == QT_FT_CURVE_TAG_CONIC ) |
1449 | { |
1450 | /* first point is conic control. Yes, this happens. */ |
1451 | if ( QT_FT_CURVE_TAG( outline->tags[last] ) == QT_FT_CURVE_TAG_ON ) |
1452 | { |
1453 | /* start at last point if it is on the curve */ |
1454 | v_start = v_last; |
1455 | limit--; |
1456 | } |
1457 | else |
1458 | { |
1459 | /* if both first and last points are conic, */ |
1460 | /* start at their middle and record its position */ |
1461 | /* for closure */ |
1462 | v_start.x = ( v_start.x + v_last.x ) / 2; |
1463 | v_start.y = ( v_start.y + v_last.y ) / 2; |
1464 | |
1465 | v_last = v_start; |
1466 | } |
1467 | point--; |
1468 | tags--; |
1469 | } |
1470 | |
1471 | QT_FT_TRACE5(( " move to (%.2f, %.2f)\n" , |
1472 | v_start.x / 64.0, v_start.y / 64.0 )); |
1473 | error = gray_move_to( to: &v_start, worker: user ); |
1474 | if ( error ) |
1475 | goto Exit; |
1476 | |
1477 | while ( point < limit ) |
1478 | { |
1479 | point++; |
1480 | tags++; |
1481 | |
1482 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1483 | switch ( tag ) |
1484 | { |
1485 | case QT_FT_CURVE_TAG_ON: /* emit a single line_to */ |
1486 | { |
1487 | QT_FT_Vector vec; |
1488 | |
1489 | |
1490 | vec.x = SCALED( point->x ); |
1491 | vec.y = SCALED( point->y ); |
1492 | |
1493 | QT_FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1494 | vec.x / 64.0, vec.y / 64.0 )); |
1495 | gray_render_line(worker: user, UPSCALE(vec.x), UPSCALE(vec.y)); |
1496 | continue; |
1497 | } |
1498 | |
1499 | case QT_FT_CURVE_TAG_CONIC: /* consume conic arcs */ |
1500 | { |
1501 | v_control.x = SCALED( point->x ); |
1502 | v_control.y = SCALED( point->y ); |
1503 | |
1504 | Do_Conic: |
1505 | if ( point < limit ) |
1506 | { |
1507 | QT_FT_Vector vec; |
1508 | QT_FT_Vector v_middle; |
1509 | |
1510 | |
1511 | point++; |
1512 | tags++; |
1513 | tag = QT_FT_CURVE_TAG( tags[0] ); |
1514 | |
1515 | vec.x = SCALED( point->x ); |
1516 | vec.y = SCALED( point->y ); |
1517 | |
1518 | if ( tag == QT_FT_CURVE_TAG_ON ) |
1519 | { |
1520 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1521 | " with control (%.2f, %.2f)\n" , |
1522 | vec.x / 64.0, vec.y / 64.0, |
1523 | v_control.x / 64.0, v_control.y / 64.0 )); |
1524 | gray_render_conic(worker: user, control: &v_control, to: &vec); |
1525 | continue; |
1526 | } |
1527 | |
1528 | if ( tag != QT_FT_CURVE_TAG_CONIC ) |
1529 | goto Invalid_Outline; |
1530 | |
1531 | v_middle.x = ( v_control.x + vec.x ) / 2; |
1532 | v_middle.y = ( v_control.y + vec.y ) / 2; |
1533 | |
1534 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1535 | " with control (%.2f, %.2f)\n" , |
1536 | v_middle.x / 64.0, v_middle.y / 64.0, |
1537 | v_control.x / 64.0, v_control.y / 64.0 )); |
1538 | gray_render_conic(worker: user, control: &v_control, to: &v_middle); |
1539 | |
1540 | v_control = vec; |
1541 | goto Do_Conic; |
1542 | } |
1543 | |
1544 | QT_FT_TRACE5(( " conic to (%.2f, %.2f)" |
1545 | " with control (%.2f, %.2f)\n" , |
1546 | v_start.x / 64.0, v_start.y / 64.0, |
1547 | v_control.x / 64.0, v_control.y / 64.0 )); |
1548 | gray_render_conic(worker: user, control: &v_control, to: &v_start); |
1549 | goto Close; |
1550 | } |
1551 | |
1552 | default: /* QT_FT_CURVE_TAG_CUBIC */ |
1553 | { |
1554 | QT_FT_Vector vec1, vec2; |
1555 | |
1556 | |
1557 | if ( point + 1 > limit || |
1558 | QT_FT_CURVE_TAG( tags[1] ) != QT_FT_CURVE_TAG_CUBIC ) |
1559 | goto Invalid_Outline; |
1560 | |
1561 | point += 2; |
1562 | tags += 2; |
1563 | |
1564 | vec1.x = SCALED( point[-2].x ); |
1565 | vec1.y = SCALED( point[-2].y ); |
1566 | |
1567 | vec2.x = SCALED( point[-1].x ); |
1568 | vec2.y = SCALED( point[-1].y ); |
1569 | |
1570 | if ( point <= limit ) |
1571 | { |
1572 | QT_FT_Vector vec; |
1573 | |
1574 | |
1575 | vec.x = SCALED( point->x ); |
1576 | vec.y = SCALED( point->y ); |
1577 | |
1578 | QT_FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1579 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1580 | vec.x / 64.0, vec.y / 64.0, |
1581 | vec1.x / 64.0, vec1.y / 64.0, |
1582 | vec2.x / 64.0, vec2.y / 64.0 )); |
1583 | gray_render_cubic(worker: user, control1: &vec1, control2: &vec2, to: &vec); |
1584 | continue; |
1585 | } |
1586 | |
1587 | QT_FT_TRACE5(( " cubic to (%.2f, %.2f)" |
1588 | " with controls (%.2f, %.2f) and (%.2f, %.2f)\n" , |
1589 | v_start.x / 64.0, v_start.y / 64.0, |
1590 | vec1.x / 64.0, vec1.y / 64.0, |
1591 | vec2.x / 64.0, vec2.y / 64.0 )); |
1592 | gray_render_cubic(worker: user, control1: &vec1, control2: &vec2, to: &v_start); |
1593 | goto Close; |
1594 | } |
1595 | } |
1596 | } |
1597 | |
1598 | /* close the contour with a line segment */ |
1599 | QT_FT_TRACE5(( " line to (%.2f, %.2f)\n" , |
1600 | v_start.x / 64.0, v_start.y / 64.0 )); |
1601 | gray_render_line(worker: user, UPSCALE(v_start.x), UPSCALE(v_start.y)); |
1602 | |
1603 | Close: |
1604 | first = last + 1; |
1605 | } |
1606 | |
1607 | QT_FT_TRACE5(( "FT_Outline_Decompose: Done\n" , n )); |
1608 | return 0; |
1609 | |
1610 | Exit: |
1611 | QT_FT_TRACE5(( "FT_Outline_Decompose: Error %d\n" , error )); |
1612 | return error; |
1613 | |
1614 | Invalid_Outline: |
1615 | return ErrRaster_Invalid_Outline; |
1616 | } |
1617 | |
1618 | typedef struct TBand_ |
1619 | { |
1620 | TPos min, max; |
1621 | |
1622 | } TBand; |
1623 | |
1624 | static int |
1625 | gray_convert_glyph_inner( RAS_ARG ) |
1626 | { |
1627 | volatile int error = 0; |
1628 | |
1629 | if ( qt_ft_setjmp( ras.jump_buffer ) == 0 ) |
1630 | { |
1631 | error = QT_FT_Outline_Decompose( outline: &ras.outline, user: &ras ); |
1632 | if ( !ras.invalid ) |
1633 | gray_record_cell( RAS_VAR ); |
1634 | } |
1635 | else |
1636 | { |
1637 | error = ErrRaster_Memory_Overflow; |
1638 | } |
1639 | |
1640 | return error; |
1641 | } |
1642 | |
1643 | |
1644 | static int |
1645 | gray_convert_glyph( RAS_ARG ) |
1646 | { |
1647 | TBand bands[40]; |
1648 | TBand* volatile band; |
1649 | int volatile n, num_bands; |
1650 | TPos volatile min, max, max_y; |
1651 | QT_FT_BBox* clip; |
1652 | int skip; |
1653 | |
1654 | ras.num_gray_spans = 0; |
1655 | |
1656 | /* Set up state in the raster object */ |
1657 | gray_compute_cbox( RAS_VAR ); |
1658 | |
1659 | /* clip to target bitmap, exit if nothing to do */ |
1660 | clip = &ras.clip_box; |
1661 | |
1662 | if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax || |
1663 | ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax ) |
1664 | return 0; |
1665 | |
1666 | if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin; |
1667 | if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin; |
1668 | |
1669 | if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax; |
1670 | if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax; |
1671 | |
1672 | ras.count_ex = ras.max_ex - ras.min_ex; |
1673 | ras.count_ey = ras.max_ey - ras.min_ey; |
1674 | |
1675 | /* set up vertical bands */ |
1676 | num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size ); |
1677 | if ( num_bands == 0 ) |
1678 | num_bands = 1; |
1679 | if ( num_bands >= 39 ) |
1680 | num_bands = 39; |
1681 | |
1682 | ras.band_shoot = 0; |
1683 | |
1684 | min = ras.min_ey; |
1685 | max_y = ras.max_ey; |
1686 | |
1687 | for ( n = 0; n < num_bands; n++, min = max ) |
1688 | { |
1689 | max = min + ras.band_size; |
1690 | if ( n == num_bands - 1 || max > max_y ) |
1691 | max = max_y; |
1692 | |
1693 | bands[0].min = min; |
1694 | bands[0].max = max; |
1695 | band = bands; |
1696 | |
1697 | while ( band >= bands ) |
1698 | { |
1699 | TPos bottom, top, middle; |
1700 | int error; |
1701 | |
1702 | { |
1703 | PCell cells_max; |
1704 | int yindex; |
1705 | int cell_start, cell_end, cell_mod; |
1706 | |
1707 | |
1708 | ras.ycells = (PCell*)ras.buffer; |
1709 | ras.ycount = band->max - band->min; |
1710 | |
1711 | cell_start = sizeof ( PCell ) * ras.ycount; |
1712 | cell_mod = cell_start % sizeof ( TCell ); |
1713 | if ( cell_mod > 0 ) |
1714 | cell_start += sizeof ( TCell ) - cell_mod; |
1715 | |
1716 | cell_end = ras.buffer_size; |
1717 | cell_end -= cell_end % sizeof( TCell ); |
1718 | |
1719 | cells_max = (PCell)( (char*)ras.buffer + cell_end ); |
1720 | ras.cells = (PCell)( (char*)ras.buffer + cell_start ); |
1721 | if ( ras.cells >= cells_max ) |
1722 | goto ReduceBands; |
1723 | |
1724 | ras.max_cells = (int)(cells_max - ras.cells); |
1725 | if ( ras.max_cells < 2 ) |
1726 | goto ReduceBands; |
1727 | |
1728 | for ( yindex = 0; yindex < ras.ycount; yindex++ ) |
1729 | ras.ycells[yindex] = NULL; |
1730 | } |
1731 | |
1732 | ras.num_cells = 0; |
1733 | ras.invalid = 1; |
1734 | ras.min_ey = band->min; |
1735 | ras.max_ey = band->max; |
1736 | ras.count_ey = band->max - band->min; |
1737 | |
1738 | error = gray_convert_glyph_inner( RAS_VAR ); |
1739 | |
1740 | if ( !error ) |
1741 | { |
1742 | gray_sweep( RAS_VAR_ target: &ras.target ); |
1743 | band--; |
1744 | continue; |
1745 | } |
1746 | else if ( error != ErrRaster_Memory_Overflow ) |
1747 | return 1; |
1748 | |
1749 | ReduceBands: |
1750 | /* render pool overflow; we will reduce the render band by half */ |
1751 | bottom = band->min; |
1752 | top = band->max; |
1753 | middle = bottom + ( ( top - bottom ) >> 1 ); |
1754 | |
1755 | /* This is too complex for a single scanline; there must */ |
1756 | /* be some problems. */ |
1757 | if ( middle == bottom ) |
1758 | { |
1759 | #ifdef DEBUG_GRAYS |
1760 | fprintf( stderr, "Rotten glyph!\n" ); |
1761 | #endif |
1762 | return ErrRaster_OutOfMemory; |
1763 | } |
1764 | |
1765 | if ( bottom-top >= ras.band_size ) |
1766 | ras.band_shoot++; |
1767 | |
1768 | band[1].min = bottom; |
1769 | band[1].max = middle; |
1770 | band[0].min = middle; |
1771 | band[0].max = top; |
1772 | band++; |
1773 | } |
1774 | } |
1775 | |
1776 | if ( ras.render_span && ras.num_gray_spans > ras.skip_spans ) |
1777 | { |
1778 | skip = ras.skip_spans > 0 ? ras.skip_spans : 0; |
1779 | ras.render_span( ras.num_gray_spans - skip, |
1780 | ras.gray_spans + skip, |
1781 | ras.render_span_data ); |
1782 | } |
1783 | |
1784 | ras.skip_spans -= ras.num_gray_spans; |
1785 | |
1786 | if ( ras.band_shoot > 8 && ras.band_size > 16 ) |
1787 | ras.band_size = ras.band_size / 2; |
1788 | |
1789 | return 0; |
1790 | } |
1791 | |
1792 | |
1793 | static int |
1794 | gray_raster_render( QT_FT_Raster raster, |
1795 | const QT_FT_Raster_Params* params ) |
1796 | { |
1797 | const QT_FT_Outline* outline = (const QT_FT_Outline*)params->source; |
1798 | const QT_FT_Bitmap* target_map = params->target; |
1799 | PWorker worker; |
1800 | |
1801 | |
1802 | if ( !raster || !raster->buffer || !raster->buffer_size ) |
1803 | return ErrRaster_Invalid_Argument; |
1804 | |
1805 | /* Should always be non-null, it is set by raster_reset() which is always */ |
1806 | /* called with a non-null pool, and a pool_size >= MINIMUM_POOL_SIZE. */ |
1807 | assert(raster->worker); |
1808 | |
1809 | raster->worker->skip_spans = params->skip_spans; |
1810 | |
1811 | /* If raster object and raster buffer are allocated, but */ |
1812 | /* raster size isn't of the minimum size, indicate out of */ |
1813 | /* memory. */ |
1814 | if (raster->buffer_allocated_size < MINIMUM_POOL_SIZE ) |
1815 | return ErrRaster_OutOfMemory; |
1816 | |
1817 | if ( !outline ) |
1818 | return ErrRaster_Invalid_Outline; |
1819 | |
1820 | /* return immediately if the outline is empty */ |
1821 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) |
1822 | return 0; |
1823 | |
1824 | if ( !outline->contours || !outline->points ) |
1825 | return ErrRaster_Invalid_Outline; |
1826 | |
1827 | if ( outline->n_points != |
1828 | outline->contours[outline->n_contours - 1] + 1 ) |
1829 | return ErrRaster_Invalid_Outline; |
1830 | |
1831 | worker = raster->worker; |
1832 | |
1833 | /* if direct mode is not set, we must have a target bitmap */ |
1834 | if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 ) |
1835 | { |
1836 | if ( !target_map ) |
1837 | return ErrRaster_Invalid_Argument; |
1838 | |
1839 | /* nothing to do */ |
1840 | if ( !target_map->width || !target_map->rows ) |
1841 | return 0; |
1842 | |
1843 | if ( !target_map->buffer ) |
1844 | return ErrRaster_Invalid_Argument; |
1845 | } |
1846 | |
1847 | /* this version does not support monochrome rendering */ |
1848 | if ( !( params->flags & QT_FT_RASTER_FLAG_AA ) ) |
1849 | return ErrRaster_Invalid_Mode; |
1850 | |
1851 | /* compute clipping box */ |
1852 | if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 ) |
1853 | { |
1854 | /* compute clip box from target pixmap */ |
1855 | ras.clip_box.xMin = 0; |
1856 | ras.clip_box.yMin = 0; |
1857 | ras.clip_box.xMax = target_map->width; |
1858 | ras.clip_box.yMax = target_map->rows; |
1859 | } |
1860 | else if ( params->flags & QT_FT_RASTER_FLAG_CLIP ) |
1861 | { |
1862 | ras.clip_box = params->clip_box; |
1863 | } |
1864 | else |
1865 | { |
1866 | ras.clip_box.xMin = -(1 << 23); |
1867 | ras.clip_box.yMin = -(1 << 23); |
1868 | ras.clip_box.xMax = (1 << 23) - 1; |
1869 | ras.clip_box.yMax = (1 << 23) - 1; |
1870 | } |
1871 | |
1872 | gray_init_cells( worker, buffer: raster->buffer, byte_size: raster->buffer_size ); |
1873 | |
1874 | ras.outline = *outline; |
1875 | ras.num_cells = 0; |
1876 | ras.invalid = 1; |
1877 | ras.band_size = raster->band_size; |
1878 | |
1879 | if ( target_map ) |
1880 | ras.target = *target_map; |
1881 | |
1882 | ras.render_span = (QT_FT_Raster_Span_Func)gray_render_span; |
1883 | ras.render_span_data = &ras; |
1884 | |
1885 | if ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) |
1886 | { |
1887 | ras.render_span = (QT_FT_Raster_Span_Func)params->gray_spans; |
1888 | ras.render_span_data = params->user; |
1889 | } |
1890 | |
1891 | return gray_convert_glyph( worker ); |
1892 | } |
1893 | |
1894 | |
1895 | /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ |
1896 | /**** a static object. *****/ |
1897 | |
1898 | static int |
1899 | gray_raster_new( QT_FT_Raster* araster ) |
1900 | { |
1901 | *araster = malloc(size: sizeof(TRaster)); |
1902 | if (!*araster) { |
1903 | *araster = 0; |
1904 | return ErrRaster_Memory_Overflow; |
1905 | } |
1906 | QT_FT_MEM_ZERO(*araster, sizeof(TRaster)); |
1907 | |
1908 | return 0; |
1909 | } |
1910 | |
1911 | |
1912 | static void |
1913 | gray_raster_done( QT_FT_Raster raster ) |
1914 | { |
1915 | free(ptr: raster); |
1916 | } |
1917 | |
1918 | |
1919 | static void |
1920 | gray_raster_reset( QT_FT_Raster raster, |
1921 | char* pool_base, |
1922 | long pool_size ) |
1923 | { |
1924 | PRaster rast = (PRaster)raster; |
1925 | |
1926 | if ( raster ) |
1927 | { |
1928 | if ( pool_base && ( pool_size >= MINIMUM_POOL_SIZE ) ) |
1929 | { |
1930 | PWorker worker = (PWorker)pool_base; |
1931 | |
1932 | |
1933 | rast->worker = worker; |
1934 | rast->buffer = pool_base + |
1935 | ( ( sizeof ( TWorker ) + sizeof ( TCell ) - 1 ) & |
1936 | ~( sizeof ( TCell ) - 1 ) ); |
1937 | rast->buffer_size = (long)( ( pool_base + pool_size ) - |
1938 | (char*)rast->buffer ) & |
1939 | ~( sizeof ( TCell ) - 1 ); |
1940 | rast->band_size = (int)( rast->buffer_size / |
1941 | ( sizeof ( TCell ) * 8 ) ); |
1942 | } |
1943 | else if ( pool_base) |
1944 | { /* Case when there is a raster pool allocated, but it */ |
1945 | /* doesn't have the minimum size (and so memory will be reallocated) */ |
1946 | rast->buffer = pool_base; |
1947 | rast->worker = NULL; |
1948 | rast->buffer_size = pool_size; |
1949 | } |
1950 | else |
1951 | { |
1952 | rast->buffer = NULL; |
1953 | rast->buffer_size = 0; |
1954 | rast->worker = NULL; |
1955 | } |
1956 | rast->buffer_allocated_size = pool_size; |
1957 | } |
1958 | } |
1959 | |
1960 | const QT_FT_Raster_Funcs qt_ft_grays_raster = |
1961 | { |
1962 | QT_FT_GLYPH_FORMAT_OUTLINE, |
1963 | |
1964 | (QT_FT_Raster_New_Func) gray_raster_new, |
1965 | (QT_FT_Raster_Reset_Func) gray_raster_reset, |
1966 | (QT_FT_Raster_Set_Mode_Func)0, |
1967 | (QT_FT_Raster_Render_Func) gray_raster_render, |
1968 | (QT_FT_Raster_Done_Func) gray_raster_done |
1969 | }; |
1970 | |
1971 | /* END */ |
1972 | |