1 | // Copyright (C) 2016 The Qt Company Ltd. |
---|---|
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qpathsimplifier_p.h" |
5 | |
6 | #include <QtCore/qvarlengtharray.h> |
7 | #include <QtCore/qglobal.h> |
8 | #include <QtCore/qpoint.h> |
9 | #include <QtCore/qalgorithms.h> |
10 | |
11 | #if QT_CONFIG(opengl) |
12 | # include <private/qopengl_p.h> |
13 | #endif |
14 | #include <private/qrbtree_p.h> |
15 | |
16 | QT_BEGIN_NAMESPACE |
17 | |
18 | #define Q_FIXED_POINT_SCALE 256 |
19 | #define Q_TRIANGULATE_END_OF_POLYGON quint32(-1) |
20 | |
21 | |
22 | |
23 | //============================================================================// |
24 | // QPoint // |
25 | //============================================================================// |
26 | |
27 | inline bool operator < (const QPoint &a, const QPoint &b) |
28 | { |
29 | return a.y() < b.y() || (a.y() == b.y() && a.x() < b.x()); |
30 | } |
31 | |
32 | inline bool operator > (const QPoint &a, const QPoint &b) |
33 | { |
34 | return b < a; |
35 | } |
36 | |
37 | inline bool operator <= (const QPoint &a, const QPoint &b) |
38 | { |
39 | return !(a > b); |
40 | } |
41 | |
42 | inline bool operator >= (const QPoint &a, const QPoint &b) |
43 | { |
44 | return !(a < b); |
45 | } |
46 | |
47 | namespace { |
48 | |
49 | inline int cross(const QPoint &u, const QPoint &v) |
50 | { |
51 | return u.x() * v.y() - u.y() * v.x(); |
52 | } |
53 | |
54 | inline int dot(const QPoint &u, const QPoint &v) |
55 | { |
56 | return u.x() * v.x() + u.y() * v.y(); |
57 | } |
58 | |
59 | //============================================================================// |
60 | // Fraction // |
61 | //============================================================================// |
62 | |
63 | // Fraction must be in the range [0, 1) |
64 | struct Fraction |
65 | { |
66 | bool isValid() const { return denominator != 0; } |
67 | |
68 | // numerator and denominator must not have common denominators. |
69 | unsigned int numerator, denominator; |
70 | }; |
71 | |
72 | inline unsigned int gcd(unsigned int x, unsigned int y) |
73 | { |
74 | while (y != 0) { |
75 | unsigned int z = y; |
76 | y = x % y; |
77 | x = z; |
78 | } |
79 | return x; |
80 | } |
81 | |
82 | // Fraction must be in the range [0, 1) |
83 | // Assume input is valid. |
84 | Fraction fraction(unsigned int n, unsigned int d) { |
85 | Fraction result; |
86 | if (n == 0) { |
87 | result.numerator = 0; |
88 | result.denominator = 1; |
89 | } else { |
90 | unsigned int g = gcd(x: n, y: d); |
91 | result.numerator = n / g; |
92 | result.denominator = d / g; |
93 | } |
94 | return result; |
95 | } |
96 | |
97 | //============================================================================// |
98 | // Rational // |
99 | //============================================================================// |
100 | |
101 | struct Rational |
102 | { |
103 | int integer; |
104 | Fraction fraction; |
105 | }; |
106 | |
107 | //============================================================================// |
108 | // IntersectionPoint // |
109 | //============================================================================// |
110 | |
111 | struct IntersectionPoint |
112 | { |
113 | bool isValid() const { return x.fraction.isValid() && y.fraction.isValid(); } |
114 | QPoint round() const; |
115 | bool isAccurate() const { return x.fraction.numerator == 0 && y.fraction.numerator == 0; } |
116 | |
117 | Rational x; // 8:8 signed, 32/32 |
118 | Rational y; // 8:8 signed, 32/32 |
119 | }; |
120 | |
121 | QPoint IntersectionPoint::round() const |
122 | { |
123 | QPoint result(x.integer, y.integer); |
124 | if (2 * x.fraction.numerator >= x.fraction.denominator) |
125 | ++result.rx(); |
126 | if (2 * y.fraction.numerator >= y.fraction.denominator) |
127 | ++result.ry(); |
128 | return result; |
129 | } |
130 | |
131 | // Return positive value if 'p' is to the right of the line 'v1'->'v2', negative if left of the |
132 | // line and zero if exactly on the line. |
133 | // The returned value is the sign of the cross product between 'v2-v1' and 'p-v1'. |
134 | inline int pointSideOfLine(const QPoint &p, const QPoint &v1, const QPoint &v2) |
135 | { |
136 | qint64 ux = qint64(v2.x()) - v1.x(); |
137 | qint64 uy = qint64(v2.y()) - v1.y(); |
138 | qint64 vx = qint64(p.x()) - v1.x(); |
139 | qint64 vy = qint64(p.y()) - v1.y(); |
140 | qint64 c = (ux * vy) - (uy * vx); |
141 | return (c > 0) ? 1 : (c < 0) ? -1 : 0; |
142 | } |
143 | |
144 | IntersectionPoint intersectionPoint(const QPoint &u1, const QPoint &u2, |
145 | const QPoint &v1, const QPoint &v2) |
146 | { |
147 | IntersectionPoint result = {.x: {.integer: 0, .fraction: {.numerator: 0, .denominator: 0}}, .y: {.integer: 0, .fraction: {.numerator: 0, .denominator: 0}}}; |
148 | |
149 | QPoint u = u2 - u1; |
150 | QPoint v = v2 - v1; |
151 | int d1 = cross(u, v: v1 - u1); |
152 | int d2 = cross(u, v: v2 - u1); |
153 | int det = d2 - d1; |
154 | int d3 = cross(u: v, v: u1 - v1); |
155 | int d4 = d3 - det; //qCross(v, u2 - v1); |
156 | |
157 | // Check that the math is correct. |
158 | Q_ASSERT(d4 == cross(v, u2 - v1)); |
159 | |
160 | // The intersection point can be expressed as: |
161 | // v1 - v * d1/det |
162 | // v2 - v * d2/det |
163 | // u1 + u * d3/det |
164 | // u2 + u * d4/det |
165 | |
166 | // I'm only interested in lines that are crossing, so ignore parallel lines even if they overlap. |
167 | if (det == 0) |
168 | return result; |
169 | |
170 | if (det < 0) { |
171 | det = -det; |
172 | d1 = -d1; |
173 | d2 = -d2; |
174 | d3 = -d3; |
175 | d4 = -d4; |
176 | } |
177 | |
178 | // I'm only interested in lines intersecting at their interior, not at their end points. |
179 | // The lines intersect at their interior if and only if 'd1 < 0', 'd2 > 0', 'd3 < 0' and 'd4 > 0'. |
180 | if (d1 >= 0 || d2 <= 0 || d3 <= 0 || d4 >= 0) |
181 | return result; |
182 | |
183 | // Calculate the intersection point as follows: |
184 | // v1 - v * d1/det | v1 <= v2 (component-wise) |
185 | // v2 - v * d2/det | v2 < v1 (component-wise) |
186 | |
187 | // Assuming 16 bits per vector component. |
188 | if (v.x() >= 0) { |
189 | result.x.integer = v1.x() + int(qint64(-v.x()) * d1 / det); |
190 | result.x.fraction = fraction(n: (unsigned int)(qint64(-v.x()) * d1 % det), d: (unsigned int)det); |
191 | } else { |
192 | result.x.integer = v2.x() + int(qint64(-v.x()) * d2 / det); |
193 | result.x.fraction = fraction(n: (unsigned int)(qint64(-v.x()) * d2 % det), d: (unsigned int)det); |
194 | } |
195 | |
196 | if (v.y() >= 0) { |
197 | result.y.integer = v1.y() + int(qint64(-v.y()) * d1 / det); |
198 | result.y.fraction = fraction(n: (unsigned int)(qint64(-v.y()) * d1 % det), d: (unsigned int)det); |
199 | } else { |
200 | result.y.integer = v2.y() + int(qint64(-v.y()) * d2 / det); |
201 | result.y.fraction = fraction(n: (unsigned int)(qint64(-v.y()) * d2 % det), d: (unsigned int)det); |
202 | } |
203 | |
204 | Q_ASSERT(result.x.fraction.isValid()); |
205 | Q_ASSERT(result.y.fraction.isValid()); |
206 | return result; |
207 | } |
208 | |
209 | //============================================================================// |
210 | // PathSimplifier // |
211 | //============================================================================// |
212 | |
213 | class PathSimplifier |
214 | { |
215 | public: |
216 | PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
217 | QDataBuffer<quint32> &indices, const QTransform &matrix); |
218 | |
219 | private: |
220 | struct Element; |
221 | |
222 | class BoundingVolumeHierarchy |
223 | { |
224 | public: |
225 | struct Node |
226 | { |
227 | enum Type |
228 | { |
229 | Leaf, |
230 | Split |
231 | }; |
232 | Type type; |
233 | QPoint minimum; |
234 | QPoint maximum; |
235 | union { |
236 | Element *element; // type == Leaf |
237 | Node *left; // type == Split |
238 | }; |
239 | Node *right; |
240 | }; |
241 | |
242 | BoundingVolumeHierarchy(); |
243 | ~BoundingVolumeHierarchy(); |
244 | void allocate(int nodeCount); |
245 | void free(); |
246 | Node *newNode(); |
247 | |
248 | Node *root; |
249 | private: |
250 | void freeNode(Node *n); |
251 | |
252 | Node *nodeBlock; |
253 | int blockSize; |
254 | int firstFree; |
255 | }; |
256 | |
257 | struct Element |
258 | { |
259 | enum Degree |
260 | { |
261 | Line = 1, |
262 | Quadratic = 2, |
263 | Cubic = 3 |
264 | }; |
265 | |
266 | quint32 &upperIndex() { return indices[pointingUp ? degree : 0]; } |
267 | quint32 &lowerIndex() { return indices[pointingUp ? 0 : degree]; } |
268 | quint32 upperIndex() const { return indices[pointingUp ? degree : 0]; } |
269 | quint32 lowerIndex() const { return indices[pointingUp ? 0 : degree]; } |
270 | void flip(); |
271 | |
272 | QPoint middle; |
273 | quint32 indices[4]; // index to points |
274 | Element *next, *previous; // used in connectElements() |
275 | int winding; // used in connectElements() |
276 | union { |
277 | QRBTree<Element *>::Node *edgeNode; // used in connectElements() |
278 | BoundingVolumeHierarchy::Node *bvhNode; |
279 | }; |
280 | Degree degree : 8; |
281 | uint processed : 1; // initially false, true when the element has been checked for intersections. |
282 | uint pointingUp : 1; // used in connectElements() |
283 | uint originallyPointingUp : 1; // used in connectElements() |
284 | }; |
285 | |
286 | class ElementAllocator |
287 | { |
288 | public: |
289 | ElementAllocator(); |
290 | ~ElementAllocator(); |
291 | void allocate(int count); |
292 | Element *newElement(); |
293 | private: |
294 | struct ElementBlock |
295 | { |
296 | ElementBlock *next; |
297 | int blockSize; |
298 | int firstFree; |
299 | Element elements[1]; |
300 | } *blocks; |
301 | }; |
302 | |
303 | struct Event |
304 | { |
305 | enum Type { Upper, Lower }; |
306 | bool operator < (const Event &other) const; |
307 | |
308 | QPoint point; |
309 | Type type; |
310 | Element *element; |
311 | }; |
312 | friend class QTypeInfo<Event>; |
313 | |
314 | typedef QRBTree<Element *>::Node RBNode; |
315 | typedef BoundingVolumeHierarchy::Node BVHNode; |
316 | |
317 | void initElements(const QVectorPath &path, const QTransform &matrix); |
318 | void removeIntersections(); |
319 | bool connectElements(); |
320 | void fillIndices(); |
321 | BVHNode *buildTree(Element **elements, int elementCount); |
322 | bool intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, BVHNode *treeNode); |
323 | bool equalElements(const Element *e1, const Element *e2); |
324 | bool splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, quint32 pointIndex, bool processAgain); |
325 | void appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element); |
326 | QPair<int, int> calculateSeparatingAxisRange(const QPoint &axis, Element *element); |
327 | void splitCurve(QDataBuffer<Element *> &elements, BVHNode *node); |
328 | bool setElementToQuadratic(Element *element, quint32 pointIndex1, const QPoint &ctrl, quint32 pointIndex2); |
329 | bool setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
330 | void setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
331 | RBNode *findElementLeftOf(const Element *element, const QPair<RBNode *, RBNode *> &bounds); |
332 | bool elementIsLeftOf(const Element *left, const Element *right); |
333 | QPair<RBNode *, RBNode *> outerBounds(const QPoint &point); |
334 | static bool flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
335 | static bool flattenCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
336 | static bool splitQuadratic(const QPoint &u, const QPoint &v, const QPoint &w, QPoint *result); |
337 | static bool splitCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q, QPoint *result); |
338 | void subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
339 | void subDivCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
340 | static void sortEvents(Event *events, int count); |
341 | |
342 | ElementAllocator m_elementAllocator; |
343 | QDataBuffer<Element *> m_elements; |
344 | QDataBuffer<QPoint> *m_points; |
345 | BoundingVolumeHierarchy m_bvh; |
346 | QDataBuffer<quint32> *m_indices; |
347 | QRBTree<Element *> m_elementList; |
348 | uint m_hints; |
349 | }; |
350 | |
351 | } // unnamed namespace |
352 | |
353 | Q_DECLARE_TYPEINFO(PathSimplifier::Event, Q_PRIMITIVE_TYPE); |
354 | |
355 | inline PathSimplifier::BoundingVolumeHierarchy::BoundingVolumeHierarchy() |
356 | : root(nullptr) |
357 | , nodeBlock(nullptr) |
358 | , blockSize(0) |
359 | , firstFree(0) |
360 | { |
361 | } |
362 | |
363 | inline PathSimplifier::BoundingVolumeHierarchy::~BoundingVolumeHierarchy() |
364 | { |
365 | free(); |
366 | } |
367 | |
368 | inline void PathSimplifier::BoundingVolumeHierarchy::allocate(int nodeCount) |
369 | { |
370 | Q_ASSERT(nodeBlock == nullptr); |
371 | Q_ASSERT(firstFree == 0); |
372 | nodeBlock = new Node[blockSize = nodeCount]; |
373 | } |
374 | |
375 | inline void PathSimplifier::BoundingVolumeHierarchy::free() |
376 | { |
377 | freeNode(n: root); |
378 | delete[] nodeBlock; |
379 | nodeBlock = nullptr; |
380 | firstFree = blockSize = 0; |
381 | root = nullptr; |
382 | } |
383 | |
384 | inline PathSimplifier::BVHNode *PathSimplifier::BoundingVolumeHierarchy::newNode() |
385 | { |
386 | if (firstFree < blockSize) |
387 | return &nodeBlock[firstFree++]; |
388 | return new Node; |
389 | } |
390 | |
391 | inline void PathSimplifier::BoundingVolumeHierarchy::freeNode(Node *n) |
392 | { |
393 | if (!n) |
394 | return; |
395 | Q_ASSERT(n->type == Node::Split || n->type == Node::Leaf); |
396 | if (n->type == Node::Split) { |
397 | freeNode(n: n->left); |
398 | freeNode(n: n->right); |
399 | } |
400 | if (!(n >= nodeBlock && n < nodeBlock + blockSize)) |
401 | delete n; |
402 | } |
403 | |
404 | inline PathSimplifier::ElementAllocator::ElementAllocator() |
405 | : blocks(nullptr) |
406 | { |
407 | } |
408 | |
409 | inline PathSimplifier::ElementAllocator::~ElementAllocator() |
410 | { |
411 | while (blocks) { |
412 | ElementBlock *block = blocks; |
413 | blocks = blocks->next; |
414 | free(ptr: block); |
415 | } |
416 | } |
417 | |
418 | inline void PathSimplifier::ElementAllocator::allocate(int count) |
419 | { |
420 | Q_ASSERT(blocks == nullptr); |
421 | Q_ASSERT(count > 0); |
422 | blocks = (ElementBlock *)malloc(size: sizeof(ElementBlock) + (count - 1) * sizeof(Element)); |
423 | blocks->blockSize = count; |
424 | blocks->next = nullptr; |
425 | blocks->firstFree = 0; |
426 | } |
427 | |
428 | inline PathSimplifier::Element *PathSimplifier::ElementAllocator::newElement() |
429 | { |
430 | Q_ASSERT(blocks); |
431 | if (blocks->firstFree < blocks->blockSize) |
432 | return &blocks->elements[blocks->firstFree++]; |
433 | ElementBlock *oldBlock = blocks; |
434 | blocks = (ElementBlock *)malloc(size: sizeof(ElementBlock) + (oldBlock->blockSize - 1) * sizeof(Element)); |
435 | blocks->blockSize = oldBlock->blockSize; |
436 | blocks->next = oldBlock; |
437 | blocks->firstFree = 0; |
438 | return &blocks->elements[blocks->firstFree++]; |
439 | } |
440 | |
441 | |
442 | inline bool PathSimplifier::Event::operator < (const Event &other) const |
443 | { |
444 | if (point == other.point) |
445 | return type < other.type; |
446 | return other.point < point; |
447 | } |
448 | |
449 | inline void PathSimplifier::Element::flip() |
450 | { |
451 | for (int i = 0; i < (degree + 1) >> 1; ++i) { |
452 | Q_ASSERT(degree >= Line && degree <= Cubic); |
453 | Q_ASSERT(i >= 0 && i < degree); |
454 | qSwap(value1&: indices[i], value2&: indices[degree - i]); |
455 | } |
456 | pointingUp = !pointingUp; |
457 | Q_ASSERT(next == nullptr && previous == nullptr); |
458 | } |
459 | |
460 | PathSimplifier::PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
461 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
462 | : m_elements(0) |
463 | , m_points(&vertices) |
464 | , m_indices(&indices) |
465 | { |
466 | m_points->reset(); |
467 | m_indices->reset(); |
468 | bool ok = true; |
469 | initElements(path, matrix); |
470 | if (!m_elements.isEmpty()) { |
471 | removeIntersections(); |
472 | ok = connectElements(); |
473 | if (ok) |
474 | fillIndices(); |
475 | } |
476 | if (!ok) { |
477 | m_points->reset(); |
478 | m_indices->reset(); |
479 | } |
480 | } |
481 | |
482 | void PathSimplifier::initElements(const QVectorPath &path, const QTransform &matrix) |
483 | { |
484 | m_hints = path.hints(); |
485 | int pathElementCount = path.elementCount(); |
486 | if (pathElementCount == 0) |
487 | return; |
488 | m_elements.reserve(size: 2 * pathElementCount); |
489 | m_elementAllocator.allocate(count: 2 * pathElementCount); |
490 | m_points->reserve(size: 2 * pathElementCount); |
491 | const QPainterPath::ElementType *e = path.elements(); |
492 | const qreal *p = path.points(); |
493 | if (e) { |
494 | qreal x, y; |
495 | quint32 moveToIndex = 0; |
496 | quint32 previousIndex = 0; |
497 | for (int i = 0; i < pathElementCount; ++i, ++e, p += 2) { |
498 | switch (*e) { |
499 | case QPainterPath::MoveToElement: |
500 | { |
501 | if (!m_points->isEmpty()) { |
502 | const QPoint &from = m_points->at(i: previousIndex); |
503 | const QPoint &to = m_points->at(i: moveToIndex); |
504 | if (from != to) { |
505 | Element *element = m_elementAllocator.newElement(); |
506 | element->degree = Element::Line; |
507 | element->indices[0] = previousIndex; |
508 | element->indices[1] = moveToIndex; |
509 | element->middle.rx() = (from.x() + to.x()) >> 1; |
510 | element->middle.ry() = (from.y() + to.y()) >> 1; |
511 | m_elements.add(t: element); |
512 | } |
513 | } |
514 | previousIndex = moveToIndex = m_points->size(); |
515 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
516 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
517 | m_points->add(t: to); |
518 | } |
519 | break; |
520 | case QPainterPath::LineToElement: |
521 | Q_ASSERT(!m_points->isEmpty()); |
522 | { |
523 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
524 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
525 | const QPoint &from = m_points->last(); |
526 | if (to != from) { |
527 | Element *element = m_elementAllocator.newElement(); |
528 | element->degree = Element::Line; |
529 | element->indices[0] = previousIndex; |
530 | element->indices[1] = quint32(m_points->size()); |
531 | element->middle.rx() = (from.x() + to.x()) >> 1; |
532 | element->middle.ry() = (from.y() + to.y()) >> 1; |
533 | m_elements.add(t: element); |
534 | previousIndex = m_points->size(); |
535 | m_points->add(t: to); |
536 | } |
537 | } |
538 | break; |
539 | case QPainterPath::CurveToElement: |
540 | Q_ASSERT(i + 2 < pathElementCount); |
541 | Q_ASSERT(!m_points->isEmpty()); |
542 | Q_ASSERT(e[1] == QPainterPath::CurveToDataElement); |
543 | Q_ASSERT(e[2] == QPainterPath::CurveToDataElement); |
544 | { |
545 | quint32 startPointIndex = previousIndex; |
546 | matrix.map(x: p[4], y: p[5], tx: &x, ty: &y); |
547 | QPoint end(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
548 | previousIndex = m_points->size(); |
549 | m_points->add(t: end); |
550 | |
551 | // See if this cubic bezier is really quadratic. |
552 | qreal x1 = p[-2] + qreal(1.5) * (p[0] - p[-2]); |
553 | qreal y1 = p[-1] + qreal(1.5) * (p[1] - p[-1]); |
554 | qreal x2 = p[4] + qreal(1.5) * (p[2] - p[4]); |
555 | qreal y2 = p[5] + qreal(1.5) * (p[3] - p[5]); |
556 | |
557 | Element *element = m_elementAllocator.newElement(); |
558 | if (qAbs(t: x1 - x2) < qreal(1e-3) && qAbs(t: y1 - y2) < qreal(1e-3)) { |
559 | // The bezier curve is quadratic. |
560 | matrix.map(x: x1, y: y1, tx: &x, ty: &y); |
561 | QPoint ctrl(qRound(d: x * Q_FIXED_POINT_SCALE), |
562 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
563 | setElementToQuadratic(element, pointIndex1: startPointIndex, ctrl, pointIndex2: previousIndex); |
564 | } else { |
565 | // The bezier curve is cubic. |
566 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
567 | QPoint ctrl1(qRound(d: x * Q_FIXED_POINT_SCALE), |
568 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
569 | matrix.map(x: p[2], y: p[3], tx: &x, ty: &y); |
570 | QPoint ctrl2(qRound(d: x * Q_FIXED_POINT_SCALE), |
571 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
572 | setElementToCubicAndSimplify(element, pointIndex1: startPointIndex, ctrl1, ctrl2, |
573 | pointIndex2: previousIndex); |
574 | } |
575 | m_elements.add(t: element); |
576 | } |
577 | i += 2; |
578 | e += 2; |
579 | p += 4; |
580 | |
581 | break; |
582 | default: |
583 | Q_ASSERT_X(0, "QSGPathSimplifier::initialize", "Unexpected element type."); |
584 | break; |
585 | } |
586 | } |
587 | if (!m_points->isEmpty()) { |
588 | const QPoint &from = m_points->at(i: previousIndex); |
589 | const QPoint &to = m_points->at(i: moveToIndex); |
590 | if (from != to) { |
591 | Element *element = m_elementAllocator.newElement(); |
592 | element->degree = Element::Line; |
593 | element->indices[0] = previousIndex; |
594 | element->indices[1] = moveToIndex; |
595 | element->middle.rx() = (from.x() + to.x()) >> 1; |
596 | element->middle.ry() = (from.y() + to.y()) >> 1; |
597 | m_elements.add(t: element); |
598 | } |
599 | } |
600 | } else { |
601 | qreal x, y; |
602 | |
603 | for (int i = 0; i < pathElementCount; ++i, p += 2) { |
604 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
605 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
606 | if (to != m_points->last()) |
607 | m_points->add(t: to); |
608 | } |
609 | |
610 | while (!m_points->isEmpty() && m_points->last() == m_points->first()) |
611 | m_points->pop_back(); |
612 | |
613 | if (m_points->isEmpty()) |
614 | return; |
615 | |
616 | quint32 prev = quint32(m_points->size() - 1); |
617 | for (int i = 0; i < m_points->size(); ++i) { |
618 | QPoint &to = m_points->at(i); |
619 | QPoint &from = m_points->at(i: prev); |
620 | Element *element = m_elementAllocator.newElement(); |
621 | element->degree = Element::Line; |
622 | element->indices[0] = prev; |
623 | element->indices[1] = quint32(i); |
624 | element->middle.rx() = (from.x() + to.x()) >> 1; |
625 | element->middle.ry() = (from.y() + to.y()) >> 1; |
626 | m_elements.add(t: element); |
627 | prev = i; |
628 | } |
629 | } |
630 | |
631 | for (int i = 0; i < m_elements.size(); ++i) |
632 | m_elements.at(i)->processed = false; |
633 | } |
634 | |
635 | void PathSimplifier::removeIntersections() |
636 | { |
637 | Q_ASSERT(!m_elements.isEmpty()); |
638 | QDataBuffer<Element *> elements(m_elements.size()); |
639 | for (int i = 0; i < m_elements.size(); ++i) |
640 | elements.add(t: m_elements.at(i)); |
641 | m_bvh.allocate(nodeCount: 2 * m_elements.size()); |
642 | m_bvh.root = buildTree(elements: elements.data(), elementCount: elements.size()); |
643 | |
644 | elements.reset(); |
645 | for (int i = 0; i < m_elements.size(); ++i) |
646 | elements.add(t: m_elements.at(i)); |
647 | |
648 | while (!elements.isEmpty()) { |
649 | Element *element = elements.last(); |
650 | elements.pop_back(); |
651 | BVHNode *node = element->bvhNode; |
652 | Q_ASSERT(node->type == BVHNode::Leaf); |
653 | Q_ASSERT(node->element == element); |
654 | if (!element->processed) { |
655 | if (!intersectNodes(elements, elementNode: node, treeNode: m_bvh.root)) |
656 | element->processed = true; |
657 | } |
658 | } |
659 | |
660 | m_bvh.free(); // The bounding volume hierarchy is not needed anymore. |
661 | } |
662 | |
663 | bool PathSimplifier::connectElements() |
664 | { |
665 | Q_ASSERT(!m_elements.isEmpty()); |
666 | QDataBuffer<Event> events(m_elements.size() * 2); |
667 | for (int i = 0; i < m_elements.size(); ++i) { |
668 | Element *element = m_elements.at(i); |
669 | element->next = element->previous = nullptr; |
670 | element->winding = 0; |
671 | element->edgeNode = nullptr; |
672 | const QPoint &u = m_points->at(i: element->indices[0]); |
673 | const QPoint &v = m_points->at(i: element->indices[element->degree]); |
674 | if (u != v) { |
675 | element->pointingUp = element->originallyPointingUp = v < u; |
676 | |
677 | Event event; |
678 | event.element = element; |
679 | event.point = u; |
680 | event.type = element->pointingUp ? Event::Lower : Event::Upper; |
681 | events.add(t: event); |
682 | event.point = v; |
683 | event.type = element->pointingUp ? Event::Upper : Event::Lower; |
684 | events.add(t: event); |
685 | } |
686 | } |
687 | QVarLengthArray<Element *, 8> orderedElements; |
688 | if (!events.isEmpty()) |
689 | sortEvents(events: events.data(), count: events.size()); |
690 | while (!events.isEmpty()) { |
691 | const Event *event = &events.last(); |
692 | QPoint eventPoint = event->point; |
693 | |
694 | // Find all elements passing through the event point. |
695 | QPair<RBNode *, RBNode *> bounds = outerBounds(point: eventPoint); |
696 | |
697 | // Special case: single element above and single element below event point. |
698 | int eventCount = events.size(); |
699 | if (event->type == Event::Lower && eventCount > 2) { |
700 | QPair<RBNode *, RBNode *> range; |
701 | range.first = bounds.first ? m_elementList.next(node: bounds.first) |
702 | : m_elementList.front(node: m_elementList.root); |
703 | range.second = bounds.second ? m_elementList.previous(node: bounds.second) |
704 | : m_elementList.back(node: m_elementList.root); |
705 | |
706 | const Event *event2 = &events.at(i: eventCount - 2); |
707 | const Event *event3 = &events.at(i: eventCount - 3); |
708 | Q_ASSERT(event2->point == eventPoint); // There are always at least two events at a point. |
709 | if (range.first == range.second && event2->type == Event::Upper && event3->point != eventPoint) { |
710 | Element *element = event->element; |
711 | Element *element2 = event2->element; |
712 | element->edgeNode->data = event2->element; |
713 | element2->edgeNode = element->edgeNode; |
714 | element->edgeNode = nullptr; |
715 | |
716 | events.pop_back(); |
717 | events.pop_back(); |
718 | |
719 | if (element2->pointingUp != element->pointingUp) |
720 | element2->flip(); |
721 | element2->winding = element->winding; |
722 | int winding = element->winding; |
723 | if (element->originallyPointingUp) |
724 | ++winding; |
725 | if (winding == 0 || winding == 1) { |
726 | if (element->pointingUp) { |
727 | element->previous = event2->element; |
728 | element2->next = event->element; |
729 | } else { |
730 | element->next = event2->element; |
731 | element2->previous = event->element; |
732 | } |
733 | } |
734 | continue; |
735 | } |
736 | } |
737 | orderedElements.clear(); |
738 | |
739 | // First, find the ones above the event point. |
740 | if (m_elementList.root) { |
741 | RBNode *current = bounds.first ? m_elementList.next(node: bounds.first) |
742 | : m_elementList.front(node: m_elementList.root); |
743 | while (current != bounds.second) { |
744 | Element *element = current->data; |
745 | Q_ASSERT(element->edgeNode == current); |
746 | int winding = element->winding; |
747 | if (element->originallyPointingUp) |
748 | ++winding; |
749 | const QPoint &lower = m_points->at(i: element->lowerIndex()); |
750 | if (lower == eventPoint) { |
751 | if (winding == 0 || winding == 1) |
752 | orderedElements.append(t: current->data); |
753 | } else { |
754 | // The element is passing through 'event.point'. |
755 | Q_ASSERT(m_points->at(element->upperIndex()) != eventPoint); |
756 | Q_ASSERT(element->degree == Element::Line); |
757 | // Split the line. |
758 | Element *eventElement = event->element; |
759 | int indexIndex = (event->type == Event::Upper) == eventElement->pointingUp |
760 | ? eventElement->degree : 0; |
761 | quint32 pointIndex = eventElement->indices[indexIndex]; |
762 | Q_ASSERT(eventPoint == m_points->at(pointIndex)); |
763 | |
764 | Element *upperElement = m_elementAllocator.newElement(); |
765 | *upperElement = *element; |
766 | upperElement->lowerIndex() = element->upperIndex() = pointIndex; |
767 | upperElement->edgeNode = nullptr; |
768 | element->next = element->previous = nullptr; |
769 | if (upperElement->next) |
770 | upperElement->next->previous = upperElement; |
771 | else if (upperElement->previous) |
772 | upperElement->previous->next = upperElement; |
773 | if (element->pointingUp != element->originallyPointingUp) |
774 | element->flip(); |
775 | if (winding == 0 || winding == 1) |
776 | orderedElements.append(t: upperElement); |
777 | m_elements.add(t: upperElement); |
778 | } |
779 | current = m_elementList.next(node: current); |
780 | } |
781 | } |
782 | while (!events.isEmpty() && events.last().point == eventPoint) { |
783 | event = &events.last(); |
784 | if (event->type == Event::Upper) { |
785 | Q_ASSERT(event->point == m_points->at(event->element->upperIndex())); |
786 | RBNode *left = findElementLeftOf(element: event->element, bounds); |
787 | RBNode *node = m_elementList.newNode(); |
788 | node->data = event->element; |
789 | Q_ASSERT(event->element->edgeNode == nullptr); |
790 | event->element->edgeNode = node; |
791 | m_elementList.attachAfter(parent: left, child: node); |
792 | } else { |
793 | Q_ASSERT(event->type == Event::Lower); |
794 | Q_ASSERT(event->point == m_points->at(event->element->lowerIndex())); |
795 | Element *element = event->element; |
796 | Q_ASSERT(element->edgeNode); |
797 | m_elementList.deleteNode(node&: element->edgeNode); |
798 | Q_ASSERT(element->edgeNode == nullptr); |
799 | } |
800 | events.pop_back(); |
801 | } |
802 | |
803 | if (m_elementList.root) { |
804 | RBNode *current = bounds.first ? m_elementList.next(node: bounds.first) |
805 | : m_elementList.front(node: m_elementList.root); |
806 | int winding = bounds.first ? bounds.first->data->winding : 0; |
807 | |
808 | // Calculate winding numbers and flip elements if necessary. |
809 | while (current != bounds.second) { |
810 | Element *element = current->data; |
811 | Q_ASSERT(element->edgeNode == current); |
812 | int ccw = winding & 1; |
813 | Q_ASSERT(element->pointingUp == element->originallyPointingUp); |
814 | if (element->originallyPointingUp) { |
815 | --winding; |
816 | } else { |
817 | ++winding; |
818 | ccw ^= 1; |
819 | } |
820 | element->winding = winding; |
821 | if (ccw == 0) |
822 | element->flip(); |
823 | current = m_elementList.next(node: current); |
824 | } |
825 | |
826 | // Pick elements with correct winding number. |
827 | current = bounds.second ? m_elementList.previous(node: bounds.second) |
828 | : m_elementList.back(node: m_elementList.root); |
829 | while (current != bounds.first) { |
830 | Element *element = current->data; |
831 | Q_ASSERT(element->edgeNode == current); |
832 | Q_ASSERT(m_points->at(element->upperIndex()) == eventPoint); |
833 | int winding = element->winding; |
834 | if (element->originallyPointingUp) |
835 | ++winding; |
836 | if (winding == 0 || winding == 1) |
837 | orderedElements.append(t: current->data); |
838 | current = m_elementList.previous(node: current); |
839 | } |
840 | } |
841 | |
842 | if (!orderedElements.isEmpty()) { |
843 | if (orderedElements.size() & 1) // Unexpected path structure |
844 | return false; |
845 | int i = 0; |
846 | Element *firstElement = orderedElements.at(idx: 0); |
847 | if (m_points->at(i: firstElement->indices[0]) != eventPoint) { |
848 | orderedElements.append(t: firstElement); |
849 | i = 1; |
850 | } |
851 | for (; i < orderedElements.size(); i += 2) { |
852 | Q_ASSERT(i + 1 < orderedElements.size()); |
853 | Element *next = orderedElements.at(idx: i); |
854 | Element *previous = orderedElements.at(idx: i + 1); |
855 | Q_ASSERT(next->previous == nullptr); |
856 | Q_ASSERT(previous->next == nullptr); |
857 | next->previous = previous; |
858 | previous->next = next; |
859 | } |
860 | } |
861 | } |
862 | #ifndef QT_NO_DEBUG |
863 | for (int i = 0; i < m_elements.size(); ++i) { |
864 | const Element *element = m_elements.at(i); |
865 | Q_ASSERT(element->next == nullptr || element->next->previous == element); |
866 | Q_ASSERT(element->previous == nullptr || element->previous->next == element); |
867 | Q_ASSERT((element->next == nullptr) == (element->previous == nullptr)); |
868 | } |
869 | #endif |
870 | return true; |
871 | } |
872 | |
873 | void PathSimplifier::fillIndices() |
874 | { |
875 | for (int i = 0; i < m_elements.size(); ++i) |
876 | m_elements.at(i)->processed = false; |
877 | for (int i = 0; i < m_elements.size(); ++i) { |
878 | Element *element = m_elements.at(i); |
879 | if (element->processed || element->next == nullptr) |
880 | continue; |
881 | do { |
882 | m_indices->add(t: element->indices[0]); |
883 | switch (element->degree) { |
884 | case Element::Quadratic: |
885 | { |
886 | QPoint pts[] = { |
887 | m_points->at(i: element->indices[0]), |
888 | m_points->at(i: element->indices[1]), |
889 | m_points->at(i: element->indices[2]) |
890 | }; |
891 | subDivQuadratic(u: pts[0], v: pts[1], w: pts[2]); |
892 | } |
893 | break; |
894 | case Element::Cubic: |
895 | { |
896 | QPoint pts[] = { |
897 | m_points->at(i: element->indices[0]), |
898 | m_points->at(i: element->indices[1]), |
899 | m_points->at(i: element->indices[2]), |
900 | m_points->at(i: element->indices[3]) |
901 | }; |
902 | subDivCubic(u: pts[0], v: pts[1], w: pts[2], q: pts[3]); |
903 | } |
904 | break; |
905 | default: |
906 | break; |
907 | } |
908 | Q_ASSERT(element->next); |
909 | element->processed = true; |
910 | element = element->next; |
911 | } while (element != m_elements.at(i)); |
912 | m_indices->add(Q_TRIANGULATE_END_OF_POLYGON); |
913 | } |
914 | } |
915 | |
916 | PathSimplifier::BVHNode *PathSimplifier::buildTree(Element **elements, int elementCount) |
917 | { |
918 | Q_ASSERT(elementCount > 0); |
919 | BVHNode *node = m_bvh.newNode(); |
920 | if (elementCount == 1) { |
921 | Element *element = *elements; |
922 | element->bvhNode = node; |
923 | node->type = BVHNode::Leaf; |
924 | node->element = element; |
925 | node->minimum = node->maximum = m_points->at(i: element->indices[0]); |
926 | for (int i = 1; i <= element->degree; ++i) { |
927 | const QPoint &p = m_points->at(i: element->indices[i]); |
928 | node->minimum.rx() = qMin(a: node->minimum.x(), b: p.x()); |
929 | node->minimum.ry() = qMin(a: node->minimum.y(), b: p.y()); |
930 | node->maximum.rx() = qMax(a: node->maximum.x(), b: p.x()); |
931 | node->maximum.ry() = qMax(a: node->maximum.y(), b: p.y()); |
932 | } |
933 | return node; |
934 | } |
935 | |
936 | node->type = BVHNode::Split; |
937 | |
938 | QPoint minimum, maximum; |
939 | minimum = maximum = elements[0]->middle; |
940 | |
941 | for (int i = 1; i < elementCount; ++i) { |
942 | const QPoint &p = elements[i]->middle; |
943 | minimum.rx() = qMin(a: minimum.x(), b: p.x()); |
944 | minimum.ry() = qMin(a: minimum.y(), b: p.y()); |
945 | maximum.rx() = qMax(a: maximum.x(), b: p.x()); |
946 | maximum.ry() = qMax(a: maximum.y(), b: p.y()); |
947 | } |
948 | |
949 | int comp, pivot; |
950 | if (maximum.x() - minimum.x() > maximum.y() - minimum.y()) { |
951 | comp = 0; |
952 | pivot = (maximum.x() + minimum.x()) >> 1; |
953 | } else { |
954 | comp = 1; |
955 | pivot = (maximum.y() + minimum.y()) >> 1; |
956 | } |
957 | |
958 | int lo = 0; |
959 | int hi = elementCount - 1; |
960 | while (lo < hi) { |
961 | while (lo < hi && (&elements[lo]->middle.rx())[comp] <= pivot) |
962 | ++lo; |
963 | while (lo < hi && (&elements[hi]->middle.rx())[comp] > pivot) |
964 | --hi; |
965 | if (lo < hi) |
966 | qSwap(value1&: elements[lo], value2&: elements[hi]); |
967 | } |
968 | |
969 | if (lo == elementCount) { |
970 | // All points are the same. |
971 | Q_ASSERT(minimum.x() == maximum.x() && minimum.y() == maximum.y()); |
972 | lo = elementCount >> 1; |
973 | } |
974 | |
975 | node->left = buildTree(elements, elementCount: lo); |
976 | node->right = buildTree(elements: elements + lo, elementCount: elementCount - lo); |
977 | |
978 | const BVHNode *left = node->left; |
979 | const BVHNode *right = node->right; |
980 | node->minimum.rx() = qMin(a: left->minimum.x(), b: right->minimum.x()); |
981 | node->minimum.ry() = qMin(a: left->minimum.y(), b: right->minimum.y()); |
982 | node->maximum.rx() = qMax(a: left->maximum.x(), b: right->maximum.x()); |
983 | node->maximum.ry() = qMax(a: left->maximum.y(), b: right->maximum.y()); |
984 | |
985 | return node; |
986 | } |
987 | |
988 | bool PathSimplifier::intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, |
989 | BVHNode *treeNode) |
990 | { |
991 | if (elementNode->minimum.x() >= treeNode->maximum.x() |
992 | || elementNode->minimum.y() >= treeNode->maximum.y() |
993 | || elementNode->maximum.x() <= treeNode->minimum.x() |
994 | || elementNode->maximum.y() <= treeNode->minimum.y()) |
995 | { |
996 | return false; |
997 | } |
998 | |
999 | Q_ASSERT(elementNode->type == BVHNode::Leaf); |
1000 | Element *element = elementNode->element; |
1001 | Q_ASSERT(!element->processed); |
1002 | |
1003 | if (treeNode->type == BVHNode::Leaf) { |
1004 | Element *nodeElement = treeNode->element; |
1005 | if (!nodeElement->processed) |
1006 | return false; |
1007 | |
1008 | if (treeNode->element == elementNode->element) |
1009 | return false; |
1010 | |
1011 | if (equalElements(e1: treeNode->element, e2: elementNode->element)) |
1012 | return false; // element doesn't split itself. |
1013 | |
1014 | if (element->degree == Element::Line && nodeElement->degree == Element::Line) { |
1015 | const QPoint &u1 = m_points->at(i: element->indices[0]); |
1016 | const QPoint &u2 = m_points->at(i: element->indices[1]); |
1017 | const QPoint &v1 = m_points->at(i: nodeElement->indices[0]); |
1018 | const QPoint &v2 = m_points->at(i: nodeElement->indices[1]); |
1019 | IntersectionPoint intersection = intersectionPoint(u1, u2, v1, v2); |
1020 | if (!intersection.isValid()) |
1021 | return false; |
1022 | |
1023 | Q_ASSERT(intersection.x.integer >= qMin(u1.x(), u2.x())); |
1024 | Q_ASSERT(intersection.y.integer >= qMin(u1.y(), u2.y())); |
1025 | Q_ASSERT(intersection.x.integer >= qMin(v1.x(), v2.x())); |
1026 | Q_ASSERT(intersection.y.integer >= qMin(v1.y(), v2.y())); |
1027 | |
1028 | Q_ASSERT(intersection.x.integer <= qMax(u1.x(), u2.x())); |
1029 | Q_ASSERT(intersection.y.integer <= qMax(u1.y(), u2.y())); |
1030 | Q_ASSERT(intersection.x.integer <= qMax(v1.x(), v2.x())); |
1031 | Q_ASSERT(intersection.y.integer <= qMax(v1.y(), v2.y())); |
1032 | |
1033 | m_points->add(t: intersection.round()); |
1034 | splitLineAt(elements, node: treeNode, pointIndex: m_points->size() - 1, processAgain: !intersection.isAccurate()); |
1035 | return splitLineAt(elements, node: elementNode, pointIndex: m_points->size() - 1, processAgain: false); |
1036 | } else { |
1037 | QVarLengthArray<QPoint, 12> axes; |
1038 | appendSeparatingAxes(axes, element: elementNode->element); |
1039 | appendSeparatingAxes(axes, element: treeNode->element); |
1040 | for (int i = 0; i < axes.size(); ++i) { |
1041 | QPair<int, int> range1 = calculateSeparatingAxisRange(axis: axes.at(idx: i), element: elementNode->element); |
1042 | QPair<int, int> range2 = calculateSeparatingAxisRange(axis: axes.at(idx: i), element: treeNode->element); |
1043 | if (range1.first >= range2.second || range1.second <= range2.first) { |
1044 | return false; // Separating axis found. |
1045 | } |
1046 | } |
1047 | // Bounding areas overlap. |
1048 | if (nodeElement->degree > Element::Line) |
1049 | splitCurve(elements, node: treeNode); |
1050 | if (element->degree > Element::Line) { |
1051 | splitCurve(elements, node: elementNode); |
1052 | } else { |
1053 | // The element was not split, so it can be processed further. |
1054 | if (intersectNodes(elements, elementNode, treeNode: treeNode->left)) |
1055 | return true; |
1056 | if (intersectNodes(elements, elementNode, treeNode: treeNode->right)) |
1057 | return true; |
1058 | return false; |
1059 | } |
1060 | return true; |
1061 | } |
1062 | } else { |
1063 | if (intersectNodes(elements, elementNode, treeNode: treeNode->left)) |
1064 | return true; |
1065 | if (intersectNodes(elements, elementNode, treeNode: treeNode->right)) |
1066 | return true; |
1067 | return false; |
1068 | } |
1069 | } |
1070 | |
1071 | bool PathSimplifier::equalElements(const Element *e1, const Element *e2) |
1072 | { |
1073 | Q_ASSERT(e1 != e2); |
1074 | if (e1->degree != e2->degree) |
1075 | return false; |
1076 | |
1077 | // Possibly equal and in the same direction. |
1078 | bool equalSame = true; |
1079 | for (int i = 0; i <= e1->degree; ++i) |
1080 | equalSame &= m_points->at(i: e1->indices[i]) == m_points->at(i: e2->indices[i]); |
1081 | |
1082 | // Possibly equal and in opposite directions. |
1083 | bool equalOpposite = true; |
1084 | for (int i = 0; i <= e1->degree; ++i) |
1085 | equalOpposite &= m_points->at(i: e1->indices[e1->degree - i]) == m_points->at(i: e2->indices[i]); |
1086 | |
1087 | return equalSame || equalOpposite; |
1088 | } |
1089 | |
1090 | bool PathSimplifier::splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, |
1091 | quint32 pointIndex, bool processAgain) |
1092 | { |
1093 | Q_ASSERT(node->type == BVHNode::Leaf); |
1094 | Element *element = node->element; |
1095 | Q_ASSERT(element->degree == Element::Line); |
1096 | const QPoint &u = m_points->at(i: element->indices[0]); |
1097 | const QPoint &v = m_points->at(i: element->indices[1]); |
1098 | const QPoint &p = m_points->at(i: pointIndex); |
1099 | if (u == p || v == p) |
1100 | return false; // No split needed. |
1101 | |
1102 | if (processAgain) |
1103 | element->processed = false; // Needs to be processed again. |
1104 | |
1105 | Element *first = node->element; |
1106 | Element *second = m_elementAllocator.newElement(); |
1107 | *second = *first; |
1108 | first->indices[1] = second->indices[0] = pointIndex; |
1109 | first->middle.rx() = (u.x() + p.x()) >> 1; |
1110 | first->middle.ry() = (u.y() + p.y()) >> 1; |
1111 | second->middle.rx() = (v.x() + p.x()) >> 1; |
1112 | second->middle.ry() = (v.y() + p.y()) >> 1; |
1113 | m_elements.add(t: second); |
1114 | |
1115 | BVHNode *left = m_bvh.newNode(); |
1116 | BVHNode *right = m_bvh.newNode(); |
1117 | left->type = right->type = BVHNode::Leaf; |
1118 | left->element = first; |
1119 | right->element = second; |
1120 | left->minimum = right->minimum = node->minimum; |
1121 | left->maximum = right->maximum = node->maximum; |
1122 | if (u.x() < v.x()) |
1123 | left->maximum.rx() = right->minimum.rx() = p.x(); |
1124 | else |
1125 | left->minimum.rx() = right->maximum.rx() = p.x(); |
1126 | if (u.y() < v.y()) |
1127 | left->maximum.ry() = right->minimum.ry() = p.y(); |
1128 | else |
1129 | left->minimum.ry() = right->maximum.ry() = p.y(); |
1130 | left->element->bvhNode = left; |
1131 | right->element->bvhNode = right; |
1132 | |
1133 | node->type = BVHNode::Split; |
1134 | node->left = left; |
1135 | node->right = right; |
1136 | |
1137 | if (!first->processed) { |
1138 | elements.add(t: left->element); |
1139 | elements.add(t: right->element); |
1140 | } |
1141 | return true; |
1142 | } |
1143 | |
1144 | void PathSimplifier::appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element) |
1145 | { |
1146 | switch (element->degree) { |
1147 | case Element::Cubic: |
1148 | { |
1149 | const QPoint &u = m_points->at(i: element->indices[0]); |
1150 | const QPoint &v = m_points->at(i: element->indices[1]); |
1151 | const QPoint &w = m_points->at(i: element->indices[2]); |
1152 | const QPoint &q = m_points->at(i: element->indices[3]); |
1153 | QPoint ns[] = { |
1154 | QPoint(u.y() - v.y(), v.x() - u.x()), |
1155 | QPoint(v.y() - w.y(), w.x() - v.x()), |
1156 | QPoint(w.y() - q.y(), q.x() - w.x()), |
1157 | QPoint(q.y() - u.y(), u.x() - q.x()), |
1158 | QPoint(u.y() - w.y(), w.x() - u.x()), |
1159 | QPoint(v.y() - q.y(), q.x() - v.x()) |
1160 | }; |
1161 | for (int i = 0; i < 6; ++i) { |
1162 | if (ns[i].x() || ns[i].y()) |
1163 | axes.append(t: ns[i]); |
1164 | } |
1165 | } |
1166 | break; |
1167 | case Element::Quadratic: |
1168 | { |
1169 | const QPoint &u = m_points->at(i: element->indices[0]); |
1170 | const QPoint &v = m_points->at(i: element->indices[1]); |
1171 | const QPoint &w = m_points->at(i: element->indices[2]); |
1172 | QPoint ns[] = { |
1173 | QPoint(u.y() - v.y(), v.x() - u.x()), |
1174 | QPoint(v.y() - w.y(), w.x() - v.x()), |
1175 | QPoint(w.y() - u.y(), u.x() - w.x()) |
1176 | }; |
1177 | for (int i = 0; i < 3; ++i) { |
1178 | if (ns[i].x() || ns[i].y()) |
1179 | axes.append(t: ns[i]); |
1180 | } |
1181 | } |
1182 | break; |
1183 | case Element::Line: |
1184 | { |
1185 | const QPoint &u = m_points->at(i: element->indices[0]); |
1186 | const QPoint &v = m_points->at(i: element->indices[1]); |
1187 | QPoint n(u.y() - v.y(), v.x() - u.x()); |
1188 | if (n.x() || n.y()) |
1189 | axes.append(t: n); |
1190 | } |
1191 | break; |
1192 | default: |
1193 | Q_ASSERT_X(0, "QSGPathSimplifier::appendSeparatingAxes", "Unexpected element type."); |
1194 | break; |
1195 | } |
1196 | } |
1197 | |
1198 | QPair<int, int> PathSimplifier::calculateSeparatingAxisRange(const QPoint &axis, Element *element) |
1199 | { |
1200 | QPair<int, int> range(0x7fffffff, -0x7fffffff); |
1201 | for (int i = 0; i <= element->degree; ++i) { |
1202 | const QPoint &p = m_points->at(i: element->indices[i]); |
1203 | int dist = dot(u: axis, v: p); |
1204 | range.first = qMin(a: range.first, b: dist); |
1205 | range.second = qMax(a: range.second, b: dist); |
1206 | } |
1207 | return range; |
1208 | } |
1209 | |
1210 | void PathSimplifier::splitCurve(QDataBuffer<Element *> &elements, BVHNode *node) |
1211 | { |
1212 | Q_ASSERT(node->type == BVHNode::Leaf); |
1213 | |
1214 | Element *first = node->element; |
1215 | Element *second = m_elementAllocator.newElement(); |
1216 | *second = *first; |
1217 | m_elements.add(t: second); |
1218 | Q_ASSERT(first->degree > Element::Line); |
1219 | |
1220 | bool accurate = true; |
1221 | const QPoint &u = m_points->at(i: first->indices[0]); |
1222 | const QPoint &v = m_points->at(i: first->indices[1]); |
1223 | const QPoint &w = m_points->at(i: first->indices[2]); |
1224 | |
1225 | if (first->degree == Element::Quadratic) { |
1226 | QPoint pts[3]; |
1227 | accurate = splitQuadratic(u, v, w, result: pts); |
1228 | int pointIndex = m_points->size(); |
1229 | m_points->add(t: pts[1]); |
1230 | accurate &= setElementToQuadratic(element: first, pointIndex1: first->indices[0], ctrl: pts[0], pointIndex2: pointIndex); |
1231 | accurate &= setElementToQuadratic(element: second, pointIndex1: pointIndex, ctrl: pts[2], pointIndex2: second->indices[2]); |
1232 | } else { |
1233 | Q_ASSERT(first->degree == Element::Cubic); |
1234 | const QPoint &q = m_points->at(i: first->indices[3]); |
1235 | QPoint pts[5]; |
1236 | accurate = splitCubic(u, v, w, q, result: pts); |
1237 | int pointIndex = m_points->size(); |
1238 | m_points->add(t: pts[2]); |
1239 | accurate &= setElementToCubic(element: first, pointIndex1: first->indices[0], ctrl1: pts[0], ctrl2: pts[1], pointIndex2: pointIndex); |
1240 | accurate &= setElementToCubic(element: second, pointIndex1: pointIndex, ctrl1: pts[3], ctrl2: pts[4], pointIndex2: second->indices[3]); |
1241 | } |
1242 | |
1243 | if (!accurate) |
1244 | first->processed = second->processed = false; // Needs to be processed again. |
1245 | |
1246 | BVHNode *left = m_bvh.newNode(); |
1247 | BVHNode *right = m_bvh.newNode(); |
1248 | left->type = right->type = BVHNode::Leaf; |
1249 | left->element = first; |
1250 | right->element = second; |
1251 | |
1252 | left->minimum.rx() = left->minimum.ry() = right->minimum.rx() = right->minimum.ry() = INT_MAX; |
1253 | left->maximum.rx() = left->maximum.ry() = right->maximum.rx() = right->maximum.ry() = INT_MIN; |
1254 | |
1255 | for (int i = 0; i <= first->degree; ++i) { |
1256 | QPoint &p = m_points->at(i: first->indices[i]); |
1257 | left->minimum.rx() = qMin(a: left->minimum.x(), b: p.x()); |
1258 | left->minimum.ry() = qMin(a: left->minimum.y(), b: p.y()); |
1259 | left->maximum.rx() = qMax(a: left->maximum.x(), b: p.x()); |
1260 | left->maximum.ry() = qMax(a: left->maximum.y(), b: p.y()); |
1261 | } |
1262 | for (int i = 0; i <= second->degree; ++i) { |
1263 | QPoint &p = m_points->at(i: second->indices[i]); |
1264 | right->minimum.rx() = qMin(a: right->minimum.x(), b: p.x()); |
1265 | right->minimum.ry() = qMin(a: right->minimum.y(), b: p.y()); |
1266 | right->maximum.rx() = qMax(a: right->maximum.x(), b: p.x()); |
1267 | right->maximum.ry() = qMax(a: right->maximum.y(), b: p.y()); |
1268 | } |
1269 | left->element->bvhNode = left; |
1270 | right->element->bvhNode = right; |
1271 | |
1272 | node->type = BVHNode::Split; |
1273 | node->left = left; |
1274 | node->right = right; |
1275 | |
1276 | if (!first->processed) { |
1277 | elements.add(t: left->element); |
1278 | elements.add(t: right->element); |
1279 | } |
1280 | } |
1281 | |
1282 | bool PathSimplifier::setElementToQuadratic(Element *element, quint32 pointIndex1, |
1283 | const QPoint &ctrl, quint32 pointIndex2) |
1284 | { |
1285 | const QPoint &p1 = m_points->at(i: pointIndex1); |
1286 | const QPoint &p2 = m_points->at(i: pointIndex2); |
1287 | if (flattenQuadratic(u: p1, v: ctrl, w: p2)) { |
1288 | // Insert line. |
1289 | element->degree = Element::Line; |
1290 | element->indices[0] = pointIndex1; |
1291 | element->indices[1] = pointIndex2; |
1292 | element->middle.rx() = (p1.x() + p2.x()) >> 1; |
1293 | element->middle.ry() = (p1.y() + p2.y()) >> 1; |
1294 | return false; |
1295 | } else { |
1296 | // Insert bezier. |
1297 | element->degree = Element::Quadratic; |
1298 | element->indices[0] = pointIndex1; |
1299 | element->indices[1] = m_points->size(); |
1300 | element->indices[2] = pointIndex2; |
1301 | element->middle.rx() = (p1.x() + ctrl.x() + p2.x()) / 3; |
1302 | element->middle.ry() = (p1.y() + ctrl.y() + p2.y()) / 3; |
1303 | m_points->add(t: ctrl); |
1304 | return true; |
1305 | } |
1306 | } |
1307 | |
1308 | bool PathSimplifier::setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &v, |
1309 | const QPoint &w, quint32 pointIndex2) |
1310 | { |
1311 | const QPoint &u = m_points->at(i: pointIndex1); |
1312 | const QPoint &q = m_points->at(i: pointIndex2); |
1313 | if (flattenCubic(u, v, w, q)) { |
1314 | // Insert line. |
1315 | element->degree = Element::Line; |
1316 | element->indices[0] = pointIndex1; |
1317 | element->indices[1] = pointIndex2; |
1318 | element->middle.rx() = (u.x() + q.x()) >> 1; |
1319 | element->middle.ry() = (u.y() + q.y()) >> 1; |
1320 | return false; |
1321 | } else { |
1322 | // Insert bezier. |
1323 | element->degree = Element::Cubic; |
1324 | element->indices[0] = pointIndex1; |
1325 | element->indices[1] = m_points->size(); |
1326 | element->indices[2] = m_points->size() + 1; |
1327 | element->indices[3] = pointIndex2; |
1328 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
1329 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
1330 | m_points->add(t: v); |
1331 | m_points->add(t: w); |
1332 | return true; |
1333 | } |
1334 | } |
1335 | |
1336 | void PathSimplifier::setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, |
1337 | const QPoint &v, const QPoint &w, |
1338 | quint32 pointIndex2) |
1339 | { |
1340 | const QPoint &u = m_points->at(i: pointIndex1); |
1341 | const QPoint &q = m_points->at(i: pointIndex2); |
1342 | if (flattenCubic(u, v, w, q)) { |
1343 | // Insert line. |
1344 | element->degree = Element::Line; |
1345 | element->indices[0] = pointIndex1; |
1346 | element->indices[1] = pointIndex2; |
1347 | element->middle.rx() = (u.x() + q.x()) >> 1; |
1348 | element->middle.ry() = (u.y() + q.y()) >> 1; |
1349 | return; |
1350 | } |
1351 | |
1352 | bool intersecting = (u == q) || intersectionPoint(u1: u, u2: v, v1: w, v2: q).isValid(); |
1353 | if (!intersecting) { |
1354 | // Insert bezier. |
1355 | element->degree = Element::Cubic; |
1356 | element->indices[0] = pointIndex1; |
1357 | element->indices[1] = m_points->size(); |
1358 | element->indices[2] = m_points->size() + 1; |
1359 | element->indices[3] = pointIndex2; |
1360 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
1361 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
1362 | m_points->add(t: v); |
1363 | m_points->add(t: w); |
1364 | return; |
1365 | } |
1366 | |
1367 | QPoint pts[5]; |
1368 | splitCubic(u, v, w, q, result: pts); |
1369 | int pointIndex = m_points->size(); |
1370 | m_points->add(t: pts[2]); |
1371 | Element *element2 = m_elementAllocator.newElement(); |
1372 | m_elements.add(t: element2); |
1373 | setElementToCubicAndSimplify(element, pointIndex1, v: pts[0], w: pts[1], pointIndex2: pointIndex); |
1374 | setElementToCubicAndSimplify(element: element2, pointIndex1: pointIndex, v: pts[3], w: pts[4], pointIndex2); |
1375 | } |
1376 | |
1377 | PathSimplifier::RBNode *PathSimplifier::findElementLeftOf(const Element *element, |
1378 | const QPair<RBNode *, RBNode *> &bounds) |
1379 | { |
1380 | if (!m_elementList.root) |
1381 | return nullptr; |
1382 | RBNode *current = bounds.first; |
1383 | Q_ASSERT(!current || !elementIsLeftOf(element, current->data)); |
1384 | if (!current) |
1385 | current = m_elementList.front(node: m_elementList.root); |
1386 | Q_ASSERT(current); |
1387 | RBNode *result = nullptr; |
1388 | while (current != bounds.second && !elementIsLeftOf(left: element, right: current->data)) { |
1389 | result = current; |
1390 | current = m_elementList.next(node: current); |
1391 | } |
1392 | return result; |
1393 | } |
1394 | |
1395 | bool PathSimplifier::elementIsLeftOf(const Element *left, const Element *right) |
1396 | { |
1397 | const QPoint &leftU = m_points->at(i: left->upperIndex()); |
1398 | const QPoint &leftL = m_points->at(i: left->lowerIndex()); |
1399 | const QPoint &rightU = m_points->at(i: right->upperIndex()); |
1400 | const QPoint &rightL = m_points->at(i: right->lowerIndex()); |
1401 | Q_ASSERT(leftL >= rightU && rightL >= leftU); |
1402 | if (leftU.x() < qMin(a: rightL.x(), b: rightU.x())) |
1403 | return true; |
1404 | if (leftU.x() > qMax(a: rightL.x(), b: rightU.x())) |
1405 | return false; |
1406 | int d = pointSideOfLine(p: leftU, v1: rightL, v2: rightU); |
1407 | // d < 0: left, d > 0: right, d == 0: on top |
1408 | if (d == 0) { |
1409 | d = pointSideOfLine(p: leftL, v1: rightL, v2: rightU); |
1410 | if (d == 0) { |
1411 | if (right->degree > Element::Line) { |
1412 | d = pointSideOfLine(p: leftL, v1: rightL, v2: m_points->at(i: right->indices[1])); |
1413 | if (d == 0) |
1414 | d = pointSideOfLine(p: leftL, v1: rightL, v2: m_points->at(i: right->indices[2])); |
1415 | } else if (left->degree > Element::Line) { |
1416 | d = pointSideOfLine(p: m_points->at(i: left->indices[1]), v1: rightL, v2: rightU); |
1417 | if (d == 0) |
1418 | d = pointSideOfLine(p: m_points->at(i: left->indices[2]), v1: rightL, v2: rightU); |
1419 | } |
1420 | } |
1421 | } |
1422 | return d < 0; |
1423 | } |
1424 | |
1425 | QPair<PathSimplifier::RBNode *, PathSimplifier::RBNode *> PathSimplifier::outerBounds(const QPoint &point) |
1426 | { |
1427 | RBNode *current = m_elementList.root; |
1428 | QPair<RBNode *, RBNode *> result(nullptr, nullptr); |
1429 | |
1430 | while (current) { |
1431 | const Element *element = current->data; |
1432 | Q_ASSERT(element->edgeNode == current); |
1433 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
1434 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
1435 | Q_ASSERT(point >= v2 && point <= v1); |
1436 | if (point == v1 || point == v2) |
1437 | break; |
1438 | int d = pointSideOfLine(p: point, v1, v2); |
1439 | if (d == 0) { |
1440 | if (element->degree == Element::Line) |
1441 | break; |
1442 | d = pointSideOfLine(p: point, v1, v2: m_points->at(i: element->indices[1])); |
1443 | if (d == 0) |
1444 | d = pointSideOfLine(p: point, v1, v2: m_points->at(i: element->indices[2])); |
1445 | Q_ASSERT(d != 0); |
1446 | } |
1447 | if (d < 0) { |
1448 | result.second = current; |
1449 | current = current->left; |
1450 | } else { |
1451 | result.first = current; |
1452 | current = current->right; |
1453 | } |
1454 | } |
1455 | |
1456 | if (!current) |
1457 | return result; |
1458 | |
1459 | RBNode *mid = current; |
1460 | |
1461 | current = mid->left; |
1462 | while (current) { |
1463 | const Element *element = current->data; |
1464 | Q_ASSERT(element->edgeNode == current); |
1465 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
1466 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
1467 | Q_ASSERT(point >= v2 && point <= v1); |
1468 | bool equal = (point == v1 || point == v2); |
1469 | if (!equal) { |
1470 | int d = pointSideOfLine(p: point, v1, v2); |
1471 | Q_ASSERT(d >= 0); |
1472 | equal = (d == 0 && element->degree == Element::Line); |
1473 | } |
1474 | if (equal) { |
1475 | current = current->left; |
1476 | } else { |
1477 | result.first = current; |
1478 | current = current->right; |
1479 | } |
1480 | } |
1481 | |
1482 | current = mid->right; |
1483 | while (current) { |
1484 | const Element *element = current->data; |
1485 | Q_ASSERT(element->edgeNode == current); |
1486 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
1487 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
1488 | Q_ASSERT(point >= v2 && point <= v1); |
1489 | bool equal = (point == v1 || point == v2); |
1490 | if (!equal) { |
1491 | int d = pointSideOfLine(p: point, v1, v2); |
1492 | Q_ASSERT(d <= 0); |
1493 | equal = (d == 0 && element->degree == Element::Line); |
1494 | } |
1495 | if (equal) { |
1496 | current = current->right; |
1497 | } else { |
1498 | result.second = current; |
1499 | current = current->left; |
1500 | } |
1501 | } |
1502 | |
1503 | return result; |
1504 | } |
1505 | |
1506 | inline bool PathSimplifier::flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
1507 | { |
1508 | QPoint deltas[2] = { v - u, w - v }; |
1509 | int d = qAbs(t: cross(u: deltas[0], v: deltas[1])); |
1510 | int l = qAbs(t: deltas[0].x()) + qAbs(t: deltas[0].y()) + qAbs(t: deltas[1].x()) + qAbs(t: deltas[1].y()); |
1511 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3 / 2) || l <= Q_FIXED_POINT_SCALE * 2; |
1512 | } |
1513 | |
1514 | inline bool PathSimplifier::flattenCubic(const QPoint &u, const QPoint &v, |
1515 | const QPoint &w, const QPoint &q) |
1516 | { |
1517 | QPoint deltas[] = { v - u, w - v, q - w, q - u }; |
1518 | int d = qAbs(t: cross(u: deltas[0], v: deltas[1])) + qAbs(t: cross(u: deltas[1], v: deltas[2])) |
1519 | + qAbs(t: cross(u: deltas[0], v: deltas[3])) + qAbs(t: cross(u: deltas[3], v: deltas[2])); |
1520 | int l = qAbs(t: deltas[0].x()) + qAbs(t: deltas[0].y()) + qAbs(t: deltas[1].x()) + qAbs(t: deltas[1].y()) |
1521 | + qAbs(t: deltas[2].x()) + qAbs(t: deltas[2].y()); |
1522 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3) || l <= Q_FIXED_POINT_SCALE * 2; |
1523 | } |
1524 | |
1525 | inline bool PathSimplifier::splitQuadratic(const QPoint &u, const QPoint &v, |
1526 | const QPoint &w, QPoint *result) |
1527 | { |
1528 | result[0] = u + v; |
1529 | result[2] = v + w; |
1530 | result[1] = result[0] + result[2]; |
1531 | bool accurate = ((result[0].x() | result[0].y() | result[2].x() | result[2].y()) & 1) == 0 |
1532 | && ((result[1].x() | result[1].y()) & 3) == 0; |
1533 | result[0].rx() >>= 1; |
1534 | result[0].ry() >>= 1; |
1535 | result[1].rx() >>= 2; |
1536 | result[1].ry() >>= 2; |
1537 | result[2].rx() >>= 1; |
1538 | result[2].ry() >>= 1; |
1539 | return accurate; |
1540 | } |
1541 | |
1542 | inline bool PathSimplifier::splitCubic(const QPoint &u, const QPoint &v, |
1543 | const QPoint &w, const QPoint &q, QPoint *result) |
1544 | { |
1545 | result[0] = u + v; |
1546 | result[2] = v + w; |
1547 | result[4] = w + q; |
1548 | result[1] = result[0] + result[2]; |
1549 | result[3] = result[2] + result[4]; |
1550 | result[2] = result[1] + result[3]; |
1551 | bool accurate = ((result[0].x() | result[0].y() | result[4].x() | result[4].y()) & 1) == 0 |
1552 | && ((result[1].x() | result[1].y() | result[3].x() | result[3].y()) & 3) == 0 |
1553 | && ((result[2].x() | result[2].y()) & 7) == 0; |
1554 | result[0].rx() >>= 1; |
1555 | result[0].ry() >>= 1; |
1556 | result[1].rx() >>= 2; |
1557 | result[1].ry() >>= 2; |
1558 | result[2].rx() >>= 3; |
1559 | result[2].ry() >>= 3; |
1560 | result[3].rx() >>= 2; |
1561 | result[3].ry() >>= 2; |
1562 | result[4].rx() >>= 1; |
1563 | result[4].ry() >>= 1; |
1564 | return accurate; |
1565 | } |
1566 | |
1567 | inline void PathSimplifier::subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
1568 | { |
1569 | if (flattenQuadratic(u, v, w)) |
1570 | return; |
1571 | QPoint pts[3]; |
1572 | splitQuadratic(u, v, w, result: pts); |
1573 | subDivQuadratic(u, v: pts[0], w: pts[1]); |
1574 | m_indices->add(t: m_points->size()); |
1575 | m_points->add(t: pts[1]); |
1576 | subDivQuadratic(u: pts[1], v: pts[2], w); |
1577 | } |
1578 | |
1579 | inline void PathSimplifier::subDivCubic(const QPoint &u, const QPoint &v, |
1580 | const QPoint &w, const QPoint &q) |
1581 | { |
1582 | if (flattenCubic(u, v, w, q)) |
1583 | return; |
1584 | QPoint pts[5]; |
1585 | splitCubic(u, v, w, q, result: pts); |
1586 | subDivCubic(u, v: pts[0], w: pts[1], q: pts[2]); |
1587 | m_indices->add(t: m_points->size()); |
1588 | m_points->add(t: pts[2]); |
1589 | subDivCubic(u: pts[2], v: pts[3], w: pts[4], q); |
1590 | } |
1591 | |
1592 | void PathSimplifier::sortEvents(Event *events, int count) |
1593 | { |
1594 | // Bucket sort + insertion sort. |
1595 | Q_ASSERT(count > 0); |
1596 | QDataBuffer<Event> buffer(count); |
1597 | buffer.resize(size: count); |
1598 | QScopedArrayPointer<int> bins(new int[count]); |
1599 | int counts[0x101]; |
1600 | memset(s: counts, c: 0, n: sizeof(counts)); |
1601 | |
1602 | int minimum, maximum; |
1603 | minimum = maximum = events[0].point.y(); |
1604 | for (int i = 1; i < count; ++i) { |
1605 | minimum = qMin(a: minimum, b: events[i].point.y()); |
1606 | maximum = qMax(a: maximum, b: events[i].point.y()); |
1607 | } |
1608 | |
1609 | for (int i = 0; i < count; ++i) { |
1610 | bins[i] = ((maximum - events[i].point.y()) << 8) / (maximum - minimum + 1); |
1611 | Q_ASSERT(bins[i] >= 0 && bins[i] < 0x100); |
1612 | ++counts[bins[i]]; |
1613 | } |
1614 | |
1615 | for (int i = 1; i < 0x100; ++i) |
1616 | counts[i] += counts[i - 1]; |
1617 | counts[0x100] = counts[0xff]; |
1618 | Q_ASSERT(counts[0x100] == count); |
1619 | |
1620 | for (int i = 0; i < count; ++i) |
1621 | buffer.at(i: --counts[bins[i]]) = events[i]; |
1622 | |
1623 | int j = 0; |
1624 | for (int i = 0; i < 0x100; ++i) { |
1625 | for (; j < counts[i + 1]; ++j) { |
1626 | int k = j; |
1627 | while (k > 0 && (buffer.at(i: j) < events[k - 1])) { |
1628 | events[k] = events[k - 1]; |
1629 | --k; |
1630 | } |
1631 | events[k] = buffer.at(i: j); |
1632 | } |
1633 | } |
1634 | } |
1635 | |
1636 | void qSimplifyPath(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
1637 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
1638 | { |
1639 | PathSimplifier(path, vertices, indices, matrix); |
1640 | } |
1641 | |
1642 | void qSimplifyPath(const QPainterPath &path, QDataBuffer<QPoint> &vertices, |
1643 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
1644 | { |
1645 | qSimplifyPath(path: qtVectorPathForPath(path), vertices, indices, matrix); |
1646 | } |
1647 | |
1648 | |
1649 | QT_END_NAMESPACE |
1650 | |
1651 | #undef Q_FIXED_POINT_SCALE |
1652 |
Definitions
- operator <
- operator >
- operator <=
- operator >=
- cross
- dot
- Fraction
- isValid
- gcd
- fraction
- Rational
- IntersectionPoint
- isValid
- isAccurate
- round
- pointSideOfLine
- intersectionPoint
- PathSimplifier
- BoundingVolumeHierarchy
- Node
- Type
- Element
- Degree
- upperIndex
- lowerIndex
- upperIndex
- lowerIndex
- ElementAllocator
- ElementBlock
- Event
- Type
- BoundingVolumeHierarchy
- ~BoundingVolumeHierarchy
- allocate
- free
- newNode
- freeNode
- ElementAllocator
- ~ElementAllocator
- allocate
- newElement
- operator <
- flip
- PathSimplifier
- initElements
- removeIntersections
- connectElements
- fillIndices
- buildTree
- intersectNodes
- equalElements
- splitLineAt
- appendSeparatingAxes
- calculateSeparatingAxisRange
- splitCurve
- setElementToQuadratic
- setElementToCubic
- setElementToCubicAndSimplify
- findElementLeftOf
- elementIsLeftOf
- outerBounds
- flattenQuadratic
- flattenCubic
- splitQuadratic
- splitCubic
- subDivQuadratic
- subDivCubic
- sortEvents
- qSimplifyPath
Learn to use CMake with our Intro Training
Find out more