1 | // Copyright (C) 2016 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qpathsimplifier_p.h" |
5 | |
6 | #include <QtCore/qvarlengtharray.h> |
7 | #include <QtCore/qglobal.h> |
8 | #include <QtCore/qpoint.h> |
9 | #include <QtCore/qalgorithms.h> |
10 | |
11 | #if QT_CONFIG(opengl) |
12 | # include <private/qopengl_p.h> |
13 | #endif |
14 | #include <private/qrbtree_p.h> |
15 | |
16 | QT_BEGIN_NAMESPACE |
17 | |
18 | #define Q_FIXED_POINT_SCALE 256 |
19 | #define Q_TRIANGULATE_END_OF_POLYGON quint32(-1) |
20 | |
21 | |
22 | |
23 | //============================================================================// |
24 | // QPoint // |
25 | //============================================================================// |
26 | |
27 | inline bool operator < (const QPoint &a, const QPoint &b) |
28 | { |
29 | return a.y() < b.y() || (a.y() == b.y() && a.x() < b.x()); |
30 | } |
31 | |
32 | inline bool operator > (const QPoint &a, const QPoint &b) |
33 | { |
34 | return b < a; |
35 | } |
36 | |
37 | inline bool operator <= (const QPoint &a, const QPoint &b) |
38 | { |
39 | return !(a > b); |
40 | } |
41 | |
42 | inline bool operator >= (const QPoint &a, const QPoint &b) |
43 | { |
44 | return !(a < b); |
45 | } |
46 | |
47 | namespace { |
48 | |
49 | inline int cross(const QPoint &u, const QPoint &v) |
50 | { |
51 | return u.x() * v.y() - u.y() * v.x(); |
52 | } |
53 | |
54 | inline int dot(const QPoint &u, const QPoint &v) |
55 | { |
56 | return u.x() * v.x() + u.y() * v.y(); |
57 | } |
58 | |
59 | //============================================================================// |
60 | // Fraction // |
61 | //============================================================================// |
62 | |
63 | // Fraction must be in the range [0, 1) |
64 | struct Fraction |
65 | { |
66 | bool isValid() const { return denominator != 0; } |
67 | |
68 | // numerator and denominator must not have common denominators. |
69 | unsigned int numerator, denominator; |
70 | }; |
71 | |
72 | inline unsigned int gcd(unsigned int x, unsigned int y) |
73 | { |
74 | while (y != 0) { |
75 | unsigned int z = y; |
76 | y = x % y; |
77 | x = z; |
78 | } |
79 | return x; |
80 | } |
81 | |
82 | // Fraction must be in the range [0, 1) |
83 | // Assume input is valid. |
84 | Fraction fraction(unsigned int n, unsigned int d) { |
85 | Fraction result; |
86 | if (n == 0) { |
87 | result.numerator = 0; |
88 | result.denominator = 1; |
89 | } else { |
90 | unsigned int g = gcd(x: n, y: d); |
91 | result.numerator = n / g; |
92 | result.denominator = d / g; |
93 | } |
94 | return result; |
95 | } |
96 | |
97 | //============================================================================// |
98 | // Rational // |
99 | //============================================================================// |
100 | |
101 | struct Rational |
102 | { |
103 | int integer; |
104 | Fraction fraction; |
105 | }; |
106 | |
107 | //============================================================================// |
108 | // IntersectionPoint // |
109 | //============================================================================// |
110 | |
111 | struct IntersectionPoint |
112 | { |
113 | bool isValid() const { return x.fraction.isValid() && y.fraction.isValid(); } |
114 | QPoint round() const; |
115 | bool isAccurate() const { return x.fraction.numerator == 0 && y.fraction.numerator == 0; } |
116 | |
117 | Rational x; // 8:8 signed, 32/32 |
118 | Rational y; // 8:8 signed, 32/32 |
119 | }; |
120 | |
121 | QPoint IntersectionPoint::round() const |
122 | { |
123 | QPoint result(x.integer, y.integer); |
124 | if (2 * x.fraction.numerator >= x.fraction.denominator) |
125 | ++result.rx(); |
126 | if (2 * y.fraction.numerator >= y.fraction.denominator) |
127 | ++result.ry(); |
128 | return result; |
129 | } |
130 | |
131 | // Return positive value if 'p' is to the right of the line 'v1'->'v2', negative if left of the |
132 | // line and zero if exactly on the line. |
133 | // The returned value is the z-component of the qCross product between 'v2-v1' and 'p-v1', |
134 | // which is twice the signed area of the triangle 'p'->'v1'->'v2' (positive for CW order). |
135 | inline int pointDistanceFromLine(const QPoint &p, const QPoint &v1, const QPoint &v2) |
136 | { |
137 | return cross(u: v2 - v1, v: p - v1); |
138 | } |
139 | |
140 | IntersectionPoint intersectionPoint(const QPoint &u1, const QPoint &u2, |
141 | const QPoint &v1, const QPoint &v2) |
142 | { |
143 | IntersectionPoint result = {.x: {.integer: 0, .fraction: {.numerator: 0, .denominator: 0}}, .y: {.integer: 0, .fraction: {.numerator: 0, .denominator: 0}}}; |
144 | |
145 | QPoint u = u2 - u1; |
146 | QPoint v = v2 - v1; |
147 | int d1 = cross(u, v: v1 - u1); |
148 | int d2 = cross(u, v: v2 - u1); |
149 | int det = d2 - d1; |
150 | int d3 = cross(u: v, v: u1 - v1); |
151 | int d4 = d3 - det; //qCross(v, u2 - v1); |
152 | |
153 | // Check that the math is correct. |
154 | Q_ASSERT(d4 == cross(v, u2 - v1)); |
155 | |
156 | // The intersection point can be expressed as: |
157 | // v1 - v * d1/det |
158 | // v2 - v * d2/det |
159 | // u1 + u * d3/det |
160 | // u2 + u * d4/det |
161 | |
162 | // I'm only interested in lines that are crossing, so ignore parallel lines even if they overlap. |
163 | if (det == 0) |
164 | return result; |
165 | |
166 | if (det < 0) { |
167 | det = -det; |
168 | d1 = -d1; |
169 | d2 = -d2; |
170 | d3 = -d3; |
171 | d4 = -d4; |
172 | } |
173 | |
174 | // I'm only interested in lines intersecting at their interior, not at their end points. |
175 | // The lines intersect at their interior if and only if 'd1 < 0', 'd2 > 0', 'd3 < 0' and 'd4 > 0'. |
176 | if (d1 >= 0 || d2 <= 0 || d3 <= 0 || d4 >= 0) |
177 | return result; |
178 | |
179 | // Calculate the intersection point as follows: |
180 | // v1 - v * d1/det | v1 <= v2 (component-wise) |
181 | // v2 - v * d2/det | v2 < v1 (component-wise) |
182 | |
183 | // Assuming 16 bits per vector component. |
184 | if (v.x() >= 0) { |
185 | result.x.integer = v1.x() + int(qint64(-v.x()) * d1 / det); |
186 | result.x.fraction = fraction(n: (unsigned int)(qint64(-v.x()) * d1 % det), d: (unsigned int)det); |
187 | } else { |
188 | result.x.integer = v2.x() + int(qint64(-v.x()) * d2 / det); |
189 | result.x.fraction = fraction(n: (unsigned int)(qint64(-v.x()) * d2 % det), d: (unsigned int)det); |
190 | } |
191 | |
192 | if (v.y() >= 0) { |
193 | result.y.integer = v1.y() + int(qint64(-v.y()) * d1 / det); |
194 | result.y.fraction = fraction(n: (unsigned int)(qint64(-v.y()) * d1 % det), d: (unsigned int)det); |
195 | } else { |
196 | result.y.integer = v2.y() + int(qint64(-v.y()) * d2 / det); |
197 | result.y.fraction = fraction(n: (unsigned int)(qint64(-v.y()) * d2 % det), d: (unsigned int)det); |
198 | } |
199 | |
200 | Q_ASSERT(result.x.fraction.isValid()); |
201 | Q_ASSERT(result.y.fraction.isValid()); |
202 | return result; |
203 | } |
204 | |
205 | //============================================================================// |
206 | // PathSimplifier // |
207 | //============================================================================// |
208 | |
209 | class PathSimplifier |
210 | { |
211 | public: |
212 | PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
213 | QDataBuffer<quint32> &indices, const QTransform &matrix); |
214 | |
215 | private: |
216 | struct Element; |
217 | |
218 | class BoundingVolumeHierarchy |
219 | { |
220 | public: |
221 | struct Node |
222 | { |
223 | enum Type |
224 | { |
225 | Leaf, |
226 | Split |
227 | }; |
228 | Type type; |
229 | QPoint minimum; |
230 | QPoint maximum; |
231 | union { |
232 | Element *element; // type == Leaf |
233 | Node *left; // type == Split |
234 | }; |
235 | Node *right; |
236 | }; |
237 | |
238 | BoundingVolumeHierarchy(); |
239 | ~BoundingVolumeHierarchy(); |
240 | void allocate(int nodeCount); |
241 | void free(); |
242 | Node *newNode(); |
243 | |
244 | Node *root; |
245 | private: |
246 | void freeNode(Node *n); |
247 | |
248 | Node *nodeBlock; |
249 | int blockSize; |
250 | int firstFree; |
251 | }; |
252 | |
253 | struct Element |
254 | { |
255 | enum Degree |
256 | { |
257 | Line = 1, |
258 | Quadratic = 2, |
259 | Cubic = 3 |
260 | }; |
261 | |
262 | quint32 &upperIndex() { return indices[pointingUp ? degree : 0]; } |
263 | quint32 &lowerIndex() { return indices[pointingUp ? 0 : degree]; } |
264 | quint32 upperIndex() const { return indices[pointingUp ? degree : 0]; } |
265 | quint32 lowerIndex() const { return indices[pointingUp ? 0 : degree]; } |
266 | void flip(); |
267 | |
268 | QPoint middle; |
269 | quint32 indices[4]; // index to points |
270 | Element *next, *previous; // used in connectElements() |
271 | int winding; // used in connectElements() |
272 | union { |
273 | QRBTree<Element *>::Node *edgeNode; // used in connectElements() |
274 | BoundingVolumeHierarchy::Node *bvhNode; |
275 | }; |
276 | Degree degree : 8; |
277 | uint processed : 1; // initially false, true when the element has been checked for intersections. |
278 | uint pointingUp : 1; // used in connectElements() |
279 | uint originallyPointingUp : 1; // used in connectElements() |
280 | }; |
281 | |
282 | class ElementAllocator |
283 | { |
284 | public: |
285 | ElementAllocator(); |
286 | ~ElementAllocator(); |
287 | void allocate(int count); |
288 | Element *newElement(); |
289 | private: |
290 | struct ElementBlock |
291 | { |
292 | ElementBlock *next; |
293 | int blockSize; |
294 | int firstFree; |
295 | Element elements[1]; |
296 | } *blocks; |
297 | }; |
298 | |
299 | struct Event |
300 | { |
301 | enum Type { Upper, Lower }; |
302 | bool operator < (const Event &other) const; |
303 | |
304 | QPoint point; |
305 | Type type; |
306 | Element *element; |
307 | }; |
308 | friend class QTypeInfo<Event>; |
309 | |
310 | typedef QRBTree<Element *>::Node RBNode; |
311 | typedef BoundingVolumeHierarchy::Node BVHNode; |
312 | |
313 | void initElements(const QVectorPath &path, const QTransform &matrix); |
314 | void removeIntersections(); |
315 | void connectElements(); |
316 | void fillIndices(); |
317 | BVHNode *buildTree(Element **elements, int elementCount); |
318 | bool intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, BVHNode *treeNode); |
319 | bool equalElements(const Element *e1, const Element *e2); |
320 | bool splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, quint32 pointIndex, bool processAgain); |
321 | void appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element); |
322 | QPair<int, int> calculateSeparatingAxisRange(const QPoint &axis, Element *element); |
323 | void splitCurve(QDataBuffer<Element *> &elements, BVHNode *node); |
324 | bool setElementToQuadratic(Element *element, quint32 pointIndex1, const QPoint &ctrl, quint32 pointIndex2); |
325 | bool setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
326 | void setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, const QPoint &ctrl1, const QPoint &ctrl2, quint32 pointIndex2); |
327 | RBNode *findElementLeftOf(const Element *element, const QPair<RBNode *, RBNode *> &bounds); |
328 | bool elementIsLeftOf(const Element *left, const Element *right); |
329 | QPair<RBNode *, RBNode *> outerBounds(const QPoint &point); |
330 | static bool flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
331 | static bool flattenCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
332 | static bool splitQuadratic(const QPoint &u, const QPoint &v, const QPoint &w, QPoint *result); |
333 | static bool splitCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q, QPoint *result); |
334 | void subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w); |
335 | void subDivCubic(const QPoint &u, const QPoint &v, const QPoint &w, const QPoint &q); |
336 | static void sortEvents(Event *events, int count); |
337 | |
338 | ElementAllocator m_elementAllocator; |
339 | QDataBuffer<Element *> m_elements; |
340 | QDataBuffer<QPoint> *m_points; |
341 | BoundingVolumeHierarchy m_bvh; |
342 | QDataBuffer<quint32> *m_indices; |
343 | QRBTree<Element *> m_elementList; |
344 | uint m_hints; |
345 | }; |
346 | |
347 | } // unnamed namespace |
348 | |
349 | Q_DECLARE_TYPEINFO(PathSimplifier::Event, Q_PRIMITIVE_TYPE); |
350 | |
351 | inline PathSimplifier::BoundingVolumeHierarchy::BoundingVolumeHierarchy() |
352 | : root(nullptr) |
353 | , nodeBlock(nullptr) |
354 | , blockSize(0) |
355 | , firstFree(0) |
356 | { |
357 | } |
358 | |
359 | inline PathSimplifier::BoundingVolumeHierarchy::~BoundingVolumeHierarchy() |
360 | { |
361 | free(); |
362 | } |
363 | |
364 | inline void PathSimplifier::BoundingVolumeHierarchy::allocate(int nodeCount) |
365 | { |
366 | Q_ASSERT(nodeBlock == nullptr); |
367 | Q_ASSERT(firstFree == 0); |
368 | nodeBlock = new Node[blockSize = nodeCount]; |
369 | } |
370 | |
371 | inline void PathSimplifier::BoundingVolumeHierarchy::free() |
372 | { |
373 | freeNode(n: root); |
374 | delete[] nodeBlock; |
375 | nodeBlock = nullptr; |
376 | firstFree = blockSize = 0; |
377 | root = nullptr; |
378 | } |
379 | |
380 | inline PathSimplifier::BVHNode *PathSimplifier::BoundingVolumeHierarchy::newNode() |
381 | { |
382 | if (firstFree < blockSize) |
383 | return &nodeBlock[firstFree++]; |
384 | return new Node; |
385 | } |
386 | |
387 | inline void PathSimplifier::BoundingVolumeHierarchy::freeNode(Node *n) |
388 | { |
389 | if (!n) |
390 | return; |
391 | Q_ASSERT(n->type == Node::Split || n->type == Node::Leaf); |
392 | if (n->type == Node::Split) { |
393 | freeNode(n: n->left); |
394 | freeNode(n: n->right); |
395 | } |
396 | if (!(n >= nodeBlock && n < nodeBlock + blockSize)) |
397 | delete n; |
398 | } |
399 | |
400 | inline PathSimplifier::ElementAllocator::ElementAllocator() |
401 | : blocks(nullptr) |
402 | { |
403 | } |
404 | |
405 | inline PathSimplifier::ElementAllocator::~ElementAllocator() |
406 | { |
407 | while (blocks) { |
408 | ElementBlock *block = blocks; |
409 | blocks = blocks->next; |
410 | free(ptr: block); |
411 | } |
412 | } |
413 | |
414 | inline void PathSimplifier::ElementAllocator::allocate(int count) |
415 | { |
416 | Q_ASSERT(blocks == nullptr); |
417 | Q_ASSERT(count > 0); |
418 | blocks = (ElementBlock *)malloc(size: sizeof(ElementBlock) + (count - 1) * sizeof(Element)); |
419 | blocks->blockSize = count; |
420 | blocks->next = nullptr; |
421 | blocks->firstFree = 0; |
422 | } |
423 | |
424 | inline PathSimplifier::Element *PathSimplifier::ElementAllocator::newElement() |
425 | { |
426 | Q_ASSERT(blocks); |
427 | if (blocks->firstFree < blocks->blockSize) |
428 | return &blocks->elements[blocks->firstFree++]; |
429 | ElementBlock *oldBlock = blocks; |
430 | blocks = (ElementBlock *)malloc(size: sizeof(ElementBlock) + (oldBlock->blockSize - 1) * sizeof(Element)); |
431 | blocks->blockSize = oldBlock->blockSize; |
432 | blocks->next = oldBlock; |
433 | blocks->firstFree = 0; |
434 | return &blocks->elements[blocks->firstFree++]; |
435 | } |
436 | |
437 | |
438 | inline bool PathSimplifier::Event::operator < (const Event &other) const |
439 | { |
440 | if (point == other.point) |
441 | return type < other.type; |
442 | return other.point < point; |
443 | } |
444 | |
445 | inline void PathSimplifier::Element::flip() |
446 | { |
447 | for (int i = 0; i < (degree + 1) >> 1; ++i) { |
448 | Q_ASSERT(degree >= Line && degree <= Cubic); |
449 | Q_ASSERT(i >= 0 && i < degree); |
450 | qSwap(value1&: indices[i], value2&: indices[degree - i]); |
451 | } |
452 | pointingUp = !pointingUp; |
453 | Q_ASSERT(next == nullptr && previous == nullptr); |
454 | } |
455 | |
456 | PathSimplifier::PathSimplifier(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
457 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
458 | : m_elements(0) |
459 | , m_points(&vertices) |
460 | , m_indices(&indices) |
461 | { |
462 | m_points->reset(); |
463 | m_indices->reset(); |
464 | initElements(path, matrix); |
465 | if (!m_elements.isEmpty()) { |
466 | removeIntersections(); |
467 | connectElements(); |
468 | fillIndices(); |
469 | } |
470 | } |
471 | |
472 | void PathSimplifier::initElements(const QVectorPath &path, const QTransform &matrix) |
473 | { |
474 | m_hints = path.hints(); |
475 | int pathElementCount = path.elementCount(); |
476 | if (pathElementCount == 0) |
477 | return; |
478 | m_elements.reserve(size: 2 * pathElementCount); |
479 | m_elementAllocator.allocate(count: 2 * pathElementCount); |
480 | m_points->reserve(size: 2 * pathElementCount); |
481 | const QPainterPath::ElementType *e = path.elements(); |
482 | const qreal *p = path.points(); |
483 | if (e) { |
484 | qreal x, y; |
485 | quint32 moveToIndex = 0; |
486 | quint32 previousIndex = 0; |
487 | for (int i = 0; i < pathElementCount; ++i, ++e, p += 2) { |
488 | switch (*e) { |
489 | case QPainterPath::MoveToElement: |
490 | { |
491 | if (!m_points->isEmpty()) { |
492 | const QPoint &from = m_points->at(i: previousIndex); |
493 | const QPoint &to = m_points->at(i: moveToIndex); |
494 | if (from != to) { |
495 | Element *element = m_elementAllocator.newElement(); |
496 | element->degree = Element::Line; |
497 | element->indices[0] = previousIndex; |
498 | element->indices[1] = moveToIndex; |
499 | element->middle.rx() = (from.x() + to.x()) >> 1; |
500 | element->middle.ry() = (from.y() + to.y()) >> 1; |
501 | m_elements.add(t: element); |
502 | } |
503 | } |
504 | previousIndex = moveToIndex = m_points->size(); |
505 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
506 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
507 | m_points->add(t: to); |
508 | } |
509 | break; |
510 | case QPainterPath::LineToElement: |
511 | Q_ASSERT(!m_points->isEmpty()); |
512 | { |
513 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
514 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
515 | const QPoint &from = m_points->last(); |
516 | if (to != from) { |
517 | Element *element = m_elementAllocator.newElement(); |
518 | element->degree = Element::Line; |
519 | element->indices[0] = previousIndex; |
520 | element->indices[1] = quint32(m_points->size()); |
521 | element->middle.rx() = (from.x() + to.x()) >> 1; |
522 | element->middle.ry() = (from.y() + to.y()) >> 1; |
523 | m_elements.add(t: element); |
524 | previousIndex = m_points->size(); |
525 | m_points->add(t: to); |
526 | } |
527 | } |
528 | break; |
529 | case QPainterPath::CurveToElement: |
530 | Q_ASSERT(i + 2 < pathElementCount); |
531 | Q_ASSERT(!m_points->isEmpty()); |
532 | Q_ASSERT(e[1] == QPainterPath::CurveToDataElement); |
533 | Q_ASSERT(e[2] == QPainterPath::CurveToDataElement); |
534 | { |
535 | quint32 startPointIndex = previousIndex; |
536 | matrix.map(x: p[4], y: p[5], tx: &x, ty: &y); |
537 | QPoint end(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
538 | previousIndex = m_points->size(); |
539 | m_points->add(t: end); |
540 | |
541 | // See if this cubic bezier is really quadratic. |
542 | qreal x1 = p[-2] + qreal(1.5) * (p[0] - p[-2]); |
543 | qreal y1 = p[-1] + qreal(1.5) * (p[1] - p[-1]); |
544 | qreal x2 = p[4] + qreal(1.5) * (p[2] - p[4]); |
545 | qreal y2 = p[5] + qreal(1.5) * (p[3] - p[5]); |
546 | |
547 | Element *element = m_elementAllocator.newElement(); |
548 | if (qAbs(t: x1 - x2) < qreal(1e-3) && qAbs(t: y1 - y2) < qreal(1e-3)) { |
549 | // The bezier curve is quadratic. |
550 | matrix.map(x: x1, y: y1, tx: &x, ty: &y); |
551 | QPoint ctrl(qRound(d: x * Q_FIXED_POINT_SCALE), |
552 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
553 | setElementToQuadratic(element, pointIndex1: startPointIndex, ctrl, pointIndex2: previousIndex); |
554 | } else { |
555 | // The bezier curve is cubic. |
556 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
557 | QPoint ctrl1(qRound(d: x * Q_FIXED_POINT_SCALE), |
558 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
559 | matrix.map(x: p[2], y: p[3], tx: &x, ty: &y); |
560 | QPoint ctrl2(qRound(d: x * Q_FIXED_POINT_SCALE), |
561 | qRound(d: y * Q_FIXED_POINT_SCALE)); |
562 | setElementToCubicAndSimplify(element, pointIndex1: startPointIndex, ctrl1, ctrl2, |
563 | pointIndex2: previousIndex); |
564 | } |
565 | m_elements.add(t: element); |
566 | } |
567 | i += 2; |
568 | e += 2; |
569 | p += 4; |
570 | |
571 | break; |
572 | default: |
573 | Q_ASSERT_X(0, "QSGPathSimplifier::initialize" , "Unexpected element type." ); |
574 | break; |
575 | } |
576 | } |
577 | if (!m_points->isEmpty()) { |
578 | const QPoint &from = m_points->at(i: previousIndex); |
579 | const QPoint &to = m_points->at(i: moveToIndex); |
580 | if (from != to) { |
581 | Element *element = m_elementAllocator.newElement(); |
582 | element->degree = Element::Line; |
583 | element->indices[0] = previousIndex; |
584 | element->indices[1] = moveToIndex; |
585 | element->middle.rx() = (from.x() + to.x()) >> 1; |
586 | element->middle.ry() = (from.y() + to.y()) >> 1; |
587 | m_elements.add(t: element); |
588 | } |
589 | } |
590 | } else { |
591 | qreal x, y; |
592 | |
593 | for (int i = 0; i < pathElementCount; ++i, p += 2) { |
594 | matrix.map(x: p[0], y: p[1], tx: &x, ty: &y); |
595 | QPoint to(qRound(d: x * Q_FIXED_POINT_SCALE), qRound(d: y * Q_FIXED_POINT_SCALE)); |
596 | if (to != m_points->last()) |
597 | m_points->add(t: to); |
598 | } |
599 | |
600 | while (!m_points->isEmpty() && m_points->last() == m_points->first()) |
601 | m_points->pop_back(); |
602 | |
603 | if (m_points->isEmpty()) |
604 | return; |
605 | |
606 | quint32 prev = quint32(m_points->size() - 1); |
607 | for (int i = 0; i < m_points->size(); ++i) { |
608 | QPoint &to = m_points->at(i); |
609 | QPoint &from = m_points->at(i: prev); |
610 | Element *element = m_elementAllocator.newElement(); |
611 | element->degree = Element::Line; |
612 | element->indices[0] = prev; |
613 | element->indices[1] = quint32(i); |
614 | element->middle.rx() = (from.x() + to.x()) >> 1; |
615 | element->middle.ry() = (from.y() + to.y()) >> 1; |
616 | m_elements.add(t: element); |
617 | prev = i; |
618 | } |
619 | } |
620 | |
621 | for (int i = 0; i < m_elements.size(); ++i) |
622 | m_elements.at(i)->processed = false; |
623 | } |
624 | |
625 | void PathSimplifier::removeIntersections() |
626 | { |
627 | Q_ASSERT(!m_elements.isEmpty()); |
628 | QDataBuffer<Element *> elements(m_elements.size()); |
629 | for (int i = 0; i < m_elements.size(); ++i) |
630 | elements.add(t: m_elements.at(i)); |
631 | m_bvh.allocate(nodeCount: 2 * m_elements.size()); |
632 | m_bvh.root = buildTree(elements: elements.data(), elementCount: elements.size()); |
633 | |
634 | elements.reset(); |
635 | for (int i = 0; i < m_elements.size(); ++i) |
636 | elements.add(t: m_elements.at(i)); |
637 | |
638 | while (!elements.isEmpty()) { |
639 | Element *element = elements.last(); |
640 | elements.pop_back(); |
641 | BVHNode *node = element->bvhNode; |
642 | Q_ASSERT(node->type == BVHNode::Leaf); |
643 | Q_ASSERT(node->element == element); |
644 | if (!element->processed) { |
645 | if (!intersectNodes(elements, elementNode: node, treeNode: m_bvh.root)) |
646 | element->processed = true; |
647 | } |
648 | } |
649 | |
650 | m_bvh.free(); // The bounding volume hierarchy is not needed anymore. |
651 | } |
652 | |
653 | void PathSimplifier::connectElements() |
654 | { |
655 | Q_ASSERT(!m_elements.isEmpty()); |
656 | QDataBuffer<Event> events(m_elements.size() * 2); |
657 | for (int i = 0; i < m_elements.size(); ++i) { |
658 | Element *element = m_elements.at(i); |
659 | element->next = element->previous = nullptr; |
660 | element->winding = 0; |
661 | element->edgeNode = nullptr; |
662 | const QPoint &u = m_points->at(i: element->indices[0]); |
663 | const QPoint &v = m_points->at(i: element->indices[element->degree]); |
664 | if (u != v) { |
665 | element->pointingUp = element->originallyPointingUp = v < u; |
666 | |
667 | Event event; |
668 | event.element = element; |
669 | event.point = u; |
670 | event.type = element->pointingUp ? Event::Lower : Event::Upper; |
671 | events.add(t: event); |
672 | event.point = v; |
673 | event.type = element->pointingUp ? Event::Upper : Event::Lower; |
674 | events.add(t: event); |
675 | } |
676 | } |
677 | QVarLengthArray<Element *, 8> orderedElements; |
678 | if (!events.isEmpty()) |
679 | sortEvents(events: events.data(), count: events.size()); |
680 | while (!events.isEmpty()) { |
681 | const Event *event = &events.last(); |
682 | QPoint eventPoint = event->point; |
683 | |
684 | // Find all elements passing through the event point. |
685 | QPair<RBNode *, RBNode *> bounds = outerBounds(point: eventPoint); |
686 | |
687 | // Special case: single element above and single element below event point. |
688 | int eventCount = events.size(); |
689 | if (event->type == Event::Lower && eventCount > 2) { |
690 | QPair<RBNode *, RBNode *> range; |
691 | range.first = bounds.first ? m_elementList.next(node: bounds.first) |
692 | : m_elementList.front(node: m_elementList.root); |
693 | range.second = bounds.second ? m_elementList.previous(node: bounds.second) |
694 | : m_elementList.back(node: m_elementList.root); |
695 | |
696 | const Event *event2 = &events.at(i: eventCount - 2); |
697 | const Event *event3 = &events.at(i: eventCount - 3); |
698 | Q_ASSERT(event2->point == eventPoint); // There are always at least two events at a point. |
699 | if (range.first == range.second && event2->type == Event::Upper && event3->point != eventPoint) { |
700 | Element *element = event->element; |
701 | Element *element2 = event2->element; |
702 | element->edgeNode->data = event2->element; |
703 | element2->edgeNode = element->edgeNode; |
704 | element->edgeNode = nullptr; |
705 | |
706 | events.pop_back(); |
707 | events.pop_back(); |
708 | |
709 | if (element2->pointingUp != element->pointingUp) |
710 | element2->flip(); |
711 | element2->winding = element->winding; |
712 | int winding = element->winding; |
713 | if (element->originallyPointingUp) |
714 | ++winding; |
715 | if (winding == 0 || winding == 1) { |
716 | if (element->pointingUp) { |
717 | element->previous = event2->element; |
718 | element2->next = event->element; |
719 | } else { |
720 | element->next = event2->element; |
721 | element2->previous = event->element; |
722 | } |
723 | } |
724 | continue; |
725 | } |
726 | } |
727 | orderedElements.clear(); |
728 | |
729 | // First, find the ones above the event point. |
730 | if (m_elementList.root) { |
731 | RBNode *current = bounds.first ? m_elementList.next(node: bounds.first) |
732 | : m_elementList.front(node: m_elementList.root); |
733 | while (current != bounds.second) { |
734 | Element *element = current->data; |
735 | Q_ASSERT(element->edgeNode == current); |
736 | int winding = element->winding; |
737 | if (element->originallyPointingUp) |
738 | ++winding; |
739 | const QPoint &lower = m_points->at(i: element->lowerIndex()); |
740 | if (lower == eventPoint) { |
741 | if (winding == 0 || winding == 1) |
742 | orderedElements.append(t: current->data); |
743 | } else { |
744 | // The element is passing through 'event.point'. |
745 | Q_ASSERT(m_points->at(element->upperIndex()) != eventPoint); |
746 | Q_ASSERT(element->degree == Element::Line); |
747 | // Split the line. |
748 | Element *eventElement = event->element; |
749 | int indexIndex = (event->type == Event::Upper) == eventElement->pointingUp |
750 | ? eventElement->degree : 0; |
751 | quint32 pointIndex = eventElement->indices[indexIndex]; |
752 | Q_ASSERT(eventPoint == m_points->at(pointIndex)); |
753 | |
754 | Element *upperElement = m_elementAllocator.newElement(); |
755 | *upperElement = *element; |
756 | upperElement->lowerIndex() = element->upperIndex() = pointIndex; |
757 | upperElement->edgeNode = nullptr; |
758 | element->next = element->previous = nullptr; |
759 | if (upperElement->next) |
760 | upperElement->next->previous = upperElement; |
761 | else if (upperElement->previous) |
762 | upperElement->previous->next = upperElement; |
763 | if (element->pointingUp != element->originallyPointingUp) |
764 | element->flip(); |
765 | if (winding == 0 || winding == 1) |
766 | orderedElements.append(t: upperElement); |
767 | m_elements.add(t: upperElement); |
768 | } |
769 | current = m_elementList.next(node: current); |
770 | } |
771 | } |
772 | while (!events.isEmpty() && events.last().point == eventPoint) { |
773 | event = &events.last(); |
774 | if (event->type == Event::Upper) { |
775 | Q_ASSERT(event->point == m_points->at(event->element->upperIndex())); |
776 | RBNode *left = findElementLeftOf(element: event->element, bounds); |
777 | RBNode *node = m_elementList.newNode(); |
778 | node->data = event->element; |
779 | Q_ASSERT(event->element->edgeNode == nullptr); |
780 | event->element->edgeNode = node; |
781 | m_elementList.attachAfter(parent: left, child: node); |
782 | } else { |
783 | Q_ASSERT(event->type == Event::Lower); |
784 | Q_ASSERT(event->point == m_points->at(event->element->lowerIndex())); |
785 | Element *element = event->element; |
786 | Q_ASSERT(element->edgeNode); |
787 | m_elementList.deleteNode(node&: element->edgeNode); |
788 | Q_ASSERT(element->edgeNode == nullptr); |
789 | } |
790 | events.pop_back(); |
791 | } |
792 | |
793 | if (m_elementList.root) { |
794 | RBNode *current = bounds.first ? m_elementList.next(node: bounds.first) |
795 | : m_elementList.front(node: m_elementList.root); |
796 | int winding = bounds.first ? bounds.first->data->winding : 0; |
797 | |
798 | // Calculate winding numbers and flip elements if necessary. |
799 | while (current != bounds.second) { |
800 | Element *element = current->data; |
801 | Q_ASSERT(element->edgeNode == current); |
802 | int ccw = winding & 1; |
803 | Q_ASSERT(element->pointingUp == element->originallyPointingUp); |
804 | if (element->originallyPointingUp) { |
805 | --winding; |
806 | } else { |
807 | ++winding; |
808 | ccw ^= 1; |
809 | } |
810 | element->winding = winding; |
811 | if (ccw == 0) |
812 | element->flip(); |
813 | current = m_elementList.next(node: current); |
814 | } |
815 | |
816 | // Pick elements with correct winding number. |
817 | current = bounds.second ? m_elementList.previous(node: bounds.second) |
818 | : m_elementList.back(node: m_elementList.root); |
819 | while (current != bounds.first) { |
820 | Element *element = current->data; |
821 | Q_ASSERT(element->edgeNode == current); |
822 | Q_ASSERT(m_points->at(element->upperIndex()) == eventPoint); |
823 | int winding = element->winding; |
824 | if (element->originallyPointingUp) |
825 | ++winding; |
826 | if (winding == 0 || winding == 1) |
827 | orderedElements.append(t: current->data); |
828 | current = m_elementList.previous(node: current); |
829 | } |
830 | } |
831 | |
832 | if (!orderedElements.isEmpty()) { |
833 | Q_ASSERT((orderedElements.size() & 1) == 0); |
834 | int i = 0; |
835 | Element *firstElement = orderedElements.at(idx: 0); |
836 | if (m_points->at(i: firstElement->indices[0]) != eventPoint) { |
837 | orderedElements.append(t: firstElement); |
838 | i = 1; |
839 | } |
840 | for (; i < orderedElements.size(); i += 2) { |
841 | Q_ASSERT(i + 1 < orderedElements.size()); |
842 | Element *next = orderedElements.at(idx: i); |
843 | Element *previous = orderedElements.at(idx: i + 1); |
844 | Q_ASSERT(next->previous == nullptr); |
845 | Q_ASSERT(previous->next == nullptr); |
846 | next->previous = previous; |
847 | previous->next = next; |
848 | } |
849 | } |
850 | } |
851 | #ifndef QT_NO_DEBUG |
852 | for (int i = 0; i < m_elements.size(); ++i) { |
853 | const Element *element = m_elements.at(i); |
854 | Q_ASSERT(element->next == nullptr || element->next->previous == element); |
855 | Q_ASSERT(element->previous == nullptr || element->previous->next == element); |
856 | Q_ASSERT((element->next == nullptr) == (element->previous == nullptr)); |
857 | } |
858 | #endif |
859 | } |
860 | |
861 | void PathSimplifier::fillIndices() |
862 | { |
863 | for (int i = 0; i < m_elements.size(); ++i) |
864 | m_elements.at(i)->processed = false; |
865 | for (int i = 0; i < m_elements.size(); ++i) { |
866 | Element *element = m_elements.at(i); |
867 | if (element->processed || element->next == nullptr) |
868 | continue; |
869 | do { |
870 | m_indices->add(t: element->indices[0]); |
871 | switch (element->degree) { |
872 | case Element::Quadratic: |
873 | { |
874 | QPoint pts[] = { |
875 | m_points->at(i: element->indices[0]), |
876 | m_points->at(i: element->indices[1]), |
877 | m_points->at(i: element->indices[2]) |
878 | }; |
879 | subDivQuadratic(u: pts[0], v: pts[1], w: pts[2]); |
880 | } |
881 | break; |
882 | case Element::Cubic: |
883 | { |
884 | QPoint pts[] = { |
885 | m_points->at(i: element->indices[0]), |
886 | m_points->at(i: element->indices[1]), |
887 | m_points->at(i: element->indices[2]), |
888 | m_points->at(i: element->indices[3]) |
889 | }; |
890 | subDivCubic(u: pts[0], v: pts[1], w: pts[2], q: pts[3]); |
891 | } |
892 | break; |
893 | default: |
894 | break; |
895 | } |
896 | Q_ASSERT(element->next); |
897 | element->processed = true; |
898 | element = element->next; |
899 | } while (element != m_elements.at(i)); |
900 | m_indices->add(Q_TRIANGULATE_END_OF_POLYGON); |
901 | } |
902 | } |
903 | |
904 | PathSimplifier::BVHNode *PathSimplifier::buildTree(Element **elements, int elementCount) |
905 | { |
906 | Q_ASSERT(elementCount > 0); |
907 | BVHNode *node = m_bvh.newNode(); |
908 | if (elementCount == 1) { |
909 | Element *element = *elements; |
910 | element->bvhNode = node; |
911 | node->type = BVHNode::Leaf; |
912 | node->element = element; |
913 | node->minimum = node->maximum = m_points->at(i: element->indices[0]); |
914 | for (int i = 1; i <= element->degree; ++i) { |
915 | const QPoint &p = m_points->at(i: element->indices[i]); |
916 | node->minimum.rx() = qMin(a: node->minimum.x(), b: p.x()); |
917 | node->minimum.ry() = qMin(a: node->minimum.y(), b: p.y()); |
918 | node->maximum.rx() = qMax(a: node->maximum.x(), b: p.x()); |
919 | node->maximum.ry() = qMax(a: node->maximum.y(), b: p.y()); |
920 | } |
921 | return node; |
922 | } |
923 | |
924 | node->type = BVHNode::Split; |
925 | |
926 | QPoint minimum, maximum; |
927 | minimum = maximum = elements[0]->middle; |
928 | |
929 | for (int i = 1; i < elementCount; ++i) { |
930 | const QPoint &p = elements[i]->middle; |
931 | minimum.rx() = qMin(a: minimum.x(), b: p.x()); |
932 | minimum.ry() = qMin(a: minimum.y(), b: p.y()); |
933 | maximum.rx() = qMax(a: maximum.x(), b: p.x()); |
934 | maximum.ry() = qMax(a: maximum.y(), b: p.y()); |
935 | } |
936 | |
937 | int comp, pivot; |
938 | if (maximum.x() - minimum.x() > maximum.y() - minimum.y()) { |
939 | comp = 0; |
940 | pivot = (maximum.x() + minimum.x()) >> 1; |
941 | } else { |
942 | comp = 1; |
943 | pivot = (maximum.y() + minimum.y()) >> 1; |
944 | } |
945 | |
946 | int lo = 0; |
947 | int hi = elementCount - 1; |
948 | while (lo < hi) { |
949 | while (lo < hi && (&elements[lo]->middle.rx())[comp] <= pivot) |
950 | ++lo; |
951 | while (lo < hi && (&elements[hi]->middle.rx())[comp] > pivot) |
952 | --hi; |
953 | if (lo < hi) |
954 | qSwap(value1&: elements[lo], value2&: elements[hi]); |
955 | } |
956 | |
957 | if (lo == elementCount) { |
958 | // All points are the same. |
959 | Q_ASSERT(minimum.x() == maximum.x() && minimum.y() == maximum.y()); |
960 | lo = elementCount >> 1; |
961 | } |
962 | |
963 | node->left = buildTree(elements, elementCount: lo); |
964 | node->right = buildTree(elements: elements + lo, elementCount: elementCount - lo); |
965 | |
966 | const BVHNode *left = node->left; |
967 | const BVHNode *right = node->right; |
968 | node->minimum.rx() = qMin(a: left->minimum.x(), b: right->minimum.x()); |
969 | node->minimum.ry() = qMin(a: left->minimum.y(), b: right->minimum.y()); |
970 | node->maximum.rx() = qMax(a: left->maximum.x(), b: right->maximum.x()); |
971 | node->maximum.ry() = qMax(a: left->maximum.y(), b: right->maximum.y()); |
972 | |
973 | return node; |
974 | } |
975 | |
976 | bool PathSimplifier::intersectNodes(QDataBuffer<Element *> &elements, BVHNode *elementNode, |
977 | BVHNode *treeNode) |
978 | { |
979 | if (elementNode->minimum.x() >= treeNode->maximum.x() |
980 | || elementNode->minimum.y() >= treeNode->maximum.y() |
981 | || elementNode->maximum.x() <= treeNode->minimum.x() |
982 | || elementNode->maximum.y() <= treeNode->minimum.y()) |
983 | { |
984 | return false; |
985 | } |
986 | |
987 | Q_ASSERT(elementNode->type == BVHNode::Leaf); |
988 | Element *element = elementNode->element; |
989 | Q_ASSERT(!element->processed); |
990 | |
991 | if (treeNode->type == BVHNode::Leaf) { |
992 | Element *nodeElement = treeNode->element; |
993 | if (!nodeElement->processed) |
994 | return false; |
995 | |
996 | if (treeNode->element == elementNode->element) |
997 | return false; |
998 | |
999 | if (equalElements(e1: treeNode->element, e2: elementNode->element)) |
1000 | return false; // element doesn't split itself. |
1001 | |
1002 | if (element->degree == Element::Line && nodeElement->degree == Element::Line) { |
1003 | const QPoint &u1 = m_points->at(i: element->indices[0]); |
1004 | const QPoint &u2 = m_points->at(i: element->indices[1]); |
1005 | const QPoint &v1 = m_points->at(i: nodeElement->indices[0]); |
1006 | const QPoint &v2 = m_points->at(i: nodeElement->indices[1]); |
1007 | IntersectionPoint intersection = intersectionPoint(u1, u2, v1, v2); |
1008 | if (!intersection.isValid()) |
1009 | return false; |
1010 | |
1011 | Q_ASSERT(intersection.x.integer >= qMin(u1.x(), u2.x())); |
1012 | Q_ASSERT(intersection.y.integer >= qMin(u1.y(), u2.y())); |
1013 | Q_ASSERT(intersection.x.integer >= qMin(v1.x(), v2.x())); |
1014 | Q_ASSERT(intersection.y.integer >= qMin(v1.y(), v2.y())); |
1015 | |
1016 | Q_ASSERT(intersection.x.integer <= qMax(u1.x(), u2.x())); |
1017 | Q_ASSERT(intersection.y.integer <= qMax(u1.y(), u2.y())); |
1018 | Q_ASSERT(intersection.x.integer <= qMax(v1.x(), v2.x())); |
1019 | Q_ASSERT(intersection.y.integer <= qMax(v1.y(), v2.y())); |
1020 | |
1021 | m_points->add(t: intersection.round()); |
1022 | splitLineAt(elements, node: treeNode, pointIndex: m_points->size() - 1, processAgain: !intersection.isAccurate()); |
1023 | return splitLineAt(elements, node: elementNode, pointIndex: m_points->size() - 1, processAgain: false); |
1024 | } else { |
1025 | QVarLengthArray<QPoint, 12> axes; |
1026 | appendSeparatingAxes(axes, element: elementNode->element); |
1027 | appendSeparatingAxes(axes, element: treeNode->element); |
1028 | for (int i = 0; i < axes.size(); ++i) { |
1029 | QPair<int, int> range1 = calculateSeparatingAxisRange(axis: axes.at(idx: i), element: elementNode->element); |
1030 | QPair<int, int> range2 = calculateSeparatingAxisRange(axis: axes.at(idx: i), element: treeNode->element); |
1031 | if (range1.first >= range2.second || range1.second <= range2.first) { |
1032 | return false; // Separating axis found. |
1033 | } |
1034 | } |
1035 | // Bounding areas overlap. |
1036 | if (nodeElement->degree > Element::Line) |
1037 | splitCurve(elements, node: treeNode); |
1038 | if (element->degree > Element::Line) { |
1039 | splitCurve(elements, node: elementNode); |
1040 | } else { |
1041 | // The element was not split, so it can be processed further. |
1042 | if (intersectNodes(elements, elementNode, treeNode: treeNode->left)) |
1043 | return true; |
1044 | if (intersectNodes(elements, elementNode, treeNode: treeNode->right)) |
1045 | return true; |
1046 | return false; |
1047 | } |
1048 | return true; |
1049 | } |
1050 | } else { |
1051 | if (intersectNodes(elements, elementNode, treeNode: treeNode->left)) |
1052 | return true; |
1053 | if (intersectNodes(elements, elementNode, treeNode: treeNode->right)) |
1054 | return true; |
1055 | return false; |
1056 | } |
1057 | } |
1058 | |
1059 | bool PathSimplifier::equalElements(const Element *e1, const Element *e2) |
1060 | { |
1061 | Q_ASSERT(e1 != e2); |
1062 | if (e1->degree != e2->degree) |
1063 | return false; |
1064 | |
1065 | // Possibly equal and in the same direction. |
1066 | bool equalSame = true; |
1067 | for (int i = 0; i <= e1->degree; ++i) |
1068 | equalSame &= m_points->at(i: e1->indices[i]) == m_points->at(i: e2->indices[i]); |
1069 | |
1070 | // Possibly equal and in opposite directions. |
1071 | bool equalOpposite = true; |
1072 | for (int i = 0; i <= e1->degree; ++i) |
1073 | equalOpposite &= m_points->at(i: e1->indices[e1->degree - i]) == m_points->at(i: e2->indices[i]); |
1074 | |
1075 | return equalSame || equalOpposite; |
1076 | } |
1077 | |
1078 | bool PathSimplifier::splitLineAt(QDataBuffer<Element *> &elements, BVHNode *node, |
1079 | quint32 pointIndex, bool processAgain) |
1080 | { |
1081 | Q_ASSERT(node->type == BVHNode::Leaf); |
1082 | Element *element = node->element; |
1083 | Q_ASSERT(element->degree == Element::Line); |
1084 | const QPoint &u = m_points->at(i: element->indices[0]); |
1085 | const QPoint &v = m_points->at(i: element->indices[1]); |
1086 | const QPoint &p = m_points->at(i: pointIndex); |
1087 | if (u == p || v == p) |
1088 | return false; // No split needed. |
1089 | |
1090 | if (processAgain) |
1091 | element->processed = false; // Needs to be processed again. |
1092 | |
1093 | Element *first = node->element; |
1094 | Element *second = m_elementAllocator.newElement(); |
1095 | *second = *first; |
1096 | first->indices[1] = second->indices[0] = pointIndex; |
1097 | first->middle.rx() = (u.x() + p.x()) >> 1; |
1098 | first->middle.ry() = (u.y() + p.y()) >> 1; |
1099 | second->middle.rx() = (v.x() + p.x()) >> 1; |
1100 | second->middle.ry() = (v.y() + p.y()) >> 1; |
1101 | m_elements.add(t: second); |
1102 | |
1103 | BVHNode *left = m_bvh.newNode(); |
1104 | BVHNode *right = m_bvh.newNode(); |
1105 | left->type = right->type = BVHNode::Leaf; |
1106 | left->element = first; |
1107 | right->element = second; |
1108 | left->minimum = right->minimum = node->minimum; |
1109 | left->maximum = right->maximum = node->maximum; |
1110 | if (u.x() < v.x()) |
1111 | left->maximum.rx() = right->minimum.rx() = p.x(); |
1112 | else |
1113 | left->minimum.rx() = right->maximum.rx() = p.x(); |
1114 | if (u.y() < v.y()) |
1115 | left->maximum.ry() = right->minimum.ry() = p.y(); |
1116 | else |
1117 | left->minimum.ry() = right->maximum.ry() = p.y(); |
1118 | left->element->bvhNode = left; |
1119 | right->element->bvhNode = right; |
1120 | |
1121 | node->type = BVHNode::Split; |
1122 | node->left = left; |
1123 | node->right = right; |
1124 | |
1125 | if (!first->processed) { |
1126 | elements.add(t: left->element); |
1127 | elements.add(t: right->element); |
1128 | } |
1129 | return true; |
1130 | } |
1131 | |
1132 | void PathSimplifier::appendSeparatingAxes(QVarLengthArray<QPoint, 12> &axes, Element *element) |
1133 | { |
1134 | switch (element->degree) { |
1135 | case Element::Cubic: |
1136 | { |
1137 | const QPoint &u = m_points->at(i: element->indices[0]); |
1138 | const QPoint &v = m_points->at(i: element->indices[1]); |
1139 | const QPoint &w = m_points->at(i: element->indices[2]); |
1140 | const QPoint &q = m_points->at(i: element->indices[3]); |
1141 | QPoint ns[] = { |
1142 | QPoint(u.y() - v.y(), v.x() - u.x()), |
1143 | QPoint(v.y() - w.y(), w.x() - v.x()), |
1144 | QPoint(w.y() - q.y(), q.x() - w.x()), |
1145 | QPoint(q.y() - u.y(), u.x() - q.x()), |
1146 | QPoint(u.y() - w.y(), w.x() - u.x()), |
1147 | QPoint(v.y() - q.y(), q.x() - v.x()) |
1148 | }; |
1149 | for (int i = 0; i < 6; ++i) { |
1150 | if (ns[i].x() || ns[i].y()) |
1151 | axes.append(t: ns[i]); |
1152 | } |
1153 | } |
1154 | break; |
1155 | case Element::Quadratic: |
1156 | { |
1157 | const QPoint &u = m_points->at(i: element->indices[0]); |
1158 | const QPoint &v = m_points->at(i: element->indices[1]); |
1159 | const QPoint &w = m_points->at(i: element->indices[2]); |
1160 | QPoint ns[] = { |
1161 | QPoint(u.y() - v.y(), v.x() - u.x()), |
1162 | QPoint(v.y() - w.y(), w.x() - v.x()), |
1163 | QPoint(w.y() - u.y(), u.x() - w.x()) |
1164 | }; |
1165 | for (int i = 0; i < 3; ++i) { |
1166 | if (ns[i].x() || ns[i].y()) |
1167 | axes.append(t: ns[i]); |
1168 | } |
1169 | } |
1170 | break; |
1171 | case Element::Line: |
1172 | { |
1173 | const QPoint &u = m_points->at(i: element->indices[0]); |
1174 | const QPoint &v = m_points->at(i: element->indices[1]); |
1175 | QPoint n(u.y() - v.y(), v.x() - u.x()); |
1176 | if (n.x() || n.y()) |
1177 | axes.append(t: n); |
1178 | } |
1179 | break; |
1180 | default: |
1181 | Q_ASSERT_X(0, "QSGPathSimplifier::appendSeparatingAxes" , "Unexpected element type." ); |
1182 | break; |
1183 | } |
1184 | } |
1185 | |
1186 | QPair<int, int> PathSimplifier::calculateSeparatingAxisRange(const QPoint &axis, Element *element) |
1187 | { |
1188 | QPair<int, int> range(0x7fffffff, -0x7fffffff); |
1189 | for (int i = 0; i <= element->degree; ++i) { |
1190 | const QPoint &p = m_points->at(i: element->indices[i]); |
1191 | int dist = dot(u: axis, v: p); |
1192 | range.first = qMin(a: range.first, b: dist); |
1193 | range.second = qMax(a: range.second, b: dist); |
1194 | } |
1195 | return range; |
1196 | } |
1197 | |
1198 | void PathSimplifier::splitCurve(QDataBuffer<Element *> &elements, BVHNode *node) |
1199 | { |
1200 | Q_ASSERT(node->type == BVHNode::Leaf); |
1201 | |
1202 | Element *first = node->element; |
1203 | Element *second = m_elementAllocator.newElement(); |
1204 | *second = *first; |
1205 | m_elements.add(t: second); |
1206 | Q_ASSERT(first->degree > Element::Line); |
1207 | |
1208 | bool accurate = true; |
1209 | const QPoint &u = m_points->at(i: first->indices[0]); |
1210 | const QPoint &v = m_points->at(i: first->indices[1]); |
1211 | const QPoint &w = m_points->at(i: first->indices[2]); |
1212 | |
1213 | if (first->degree == Element::Quadratic) { |
1214 | QPoint pts[3]; |
1215 | accurate = splitQuadratic(u, v, w, result: pts); |
1216 | int pointIndex = m_points->size(); |
1217 | m_points->add(t: pts[1]); |
1218 | accurate &= setElementToQuadratic(element: first, pointIndex1: first->indices[0], ctrl: pts[0], pointIndex2: pointIndex); |
1219 | accurate &= setElementToQuadratic(element: second, pointIndex1: pointIndex, ctrl: pts[2], pointIndex2: second->indices[2]); |
1220 | } else { |
1221 | Q_ASSERT(first->degree == Element::Cubic); |
1222 | const QPoint &q = m_points->at(i: first->indices[3]); |
1223 | QPoint pts[5]; |
1224 | accurate = splitCubic(u, v, w, q, result: pts); |
1225 | int pointIndex = m_points->size(); |
1226 | m_points->add(t: pts[2]); |
1227 | accurate &= setElementToCubic(element: first, pointIndex1: first->indices[0], ctrl1: pts[0], ctrl2: pts[1], pointIndex2: pointIndex); |
1228 | accurate &= setElementToCubic(element: second, pointIndex1: pointIndex, ctrl1: pts[3], ctrl2: pts[4], pointIndex2: second->indices[3]); |
1229 | } |
1230 | |
1231 | if (!accurate) |
1232 | first->processed = second->processed = false; // Needs to be processed again. |
1233 | |
1234 | BVHNode *left = m_bvh.newNode(); |
1235 | BVHNode *right = m_bvh.newNode(); |
1236 | left->type = right->type = BVHNode::Leaf; |
1237 | left->element = first; |
1238 | right->element = second; |
1239 | |
1240 | left->minimum.rx() = left->minimum.ry() = right->minimum.rx() = right->minimum.ry() = INT_MAX; |
1241 | left->maximum.rx() = left->maximum.ry() = right->maximum.rx() = right->maximum.ry() = INT_MIN; |
1242 | |
1243 | for (int i = 0; i <= first->degree; ++i) { |
1244 | QPoint &p = m_points->at(i: first->indices[i]); |
1245 | left->minimum.rx() = qMin(a: left->minimum.x(), b: p.x()); |
1246 | left->minimum.ry() = qMin(a: left->minimum.y(), b: p.y()); |
1247 | left->maximum.rx() = qMax(a: left->maximum.x(), b: p.x()); |
1248 | left->maximum.ry() = qMax(a: left->maximum.y(), b: p.y()); |
1249 | } |
1250 | for (int i = 0; i <= second->degree; ++i) { |
1251 | QPoint &p = m_points->at(i: second->indices[i]); |
1252 | right->minimum.rx() = qMin(a: right->minimum.x(), b: p.x()); |
1253 | right->minimum.ry() = qMin(a: right->minimum.y(), b: p.y()); |
1254 | right->maximum.rx() = qMax(a: right->maximum.x(), b: p.x()); |
1255 | right->maximum.ry() = qMax(a: right->maximum.y(), b: p.y()); |
1256 | } |
1257 | left->element->bvhNode = left; |
1258 | right->element->bvhNode = right; |
1259 | |
1260 | node->type = BVHNode::Split; |
1261 | node->left = left; |
1262 | node->right = right; |
1263 | |
1264 | if (!first->processed) { |
1265 | elements.add(t: left->element); |
1266 | elements.add(t: right->element); |
1267 | } |
1268 | } |
1269 | |
1270 | bool PathSimplifier::setElementToQuadratic(Element *element, quint32 pointIndex1, |
1271 | const QPoint &ctrl, quint32 pointIndex2) |
1272 | { |
1273 | const QPoint &p1 = m_points->at(i: pointIndex1); |
1274 | const QPoint &p2 = m_points->at(i: pointIndex2); |
1275 | if (flattenQuadratic(u: p1, v: ctrl, w: p2)) { |
1276 | // Insert line. |
1277 | element->degree = Element::Line; |
1278 | element->indices[0] = pointIndex1; |
1279 | element->indices[1] = pointIndex2; |
1280 | element->middle.rx() = (p1.x() + p2.x()) >> 1; |
1281 | element->middle.ry() = (p1.y() + p2.y()) >> 1; |
1282 | return false; |
1283 | } else { |
1284 | // Insert bezier. |
1285 | element->degree = Element::Quadratic; |
1286 | element->indices[0] = pointIndex1; |
1287 | element->indices[1] = m_points->size(); |
1288 | element->indices[2] = pointIndex2; |
1289 | element->middle.rx() = (p1.x() + ctrl.x() + p2.x()) / 3; |
1290 | element->middle.ry() = (p1.y() + ctrl.y() + p2.y()) / 3; |
1291 | m_points->add(t: ctrl); |
1292 | return true; |
1293 | } |
1294 | } |
1295 | |
1296 | bool PathSimplifier::setElementToCubic(Element *element, quint32 pointIndex1, const QPoint &v, |
1297 | const QPoint &w, quint32 pointIndex2) |
1298 | { |
1299 | const QPoint &u = m_points->at(i: pointIndex1); |
1300 | const QPoint &q = m_points->at(i: pointIndex2); |
1301 | if (flattenCubic(u, v, w, q)) { |
1302 | // Insert line. |
1303 | element->degree = Element::Line; |
1304 | element->indices[0] = pointIndex1; |
1305 | element->indices[1] = pointIndex2; |
1306 | element->middle.rx() = (u.x() + q.x()) >> 1; |
1307 | element->middle.ry() = (u.y() + q.y()) >> 1; |
1308 | return false; |
1309 | } else { |
1310 | // Insert bezier. |
1311 | element->degree = Element::Cubic; |
1312 | element->indices[0] = pointIndex1; |
1313 | element->indices[1] = m_points->size(); |
1314 | element->indices[2] = m_points->size() + 1; |
1315 | element->indices[3] = pointIndex2; |
1316 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
1317 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
1318 | m_points->add(t: v); |
1319 | m_points->add(t: w); |
1320 | return true; |
1321 | } |
1322 | } |
1323 | |
1324 | void PathSimplifier::setElementToCubicAndSimplify(Element *element, quint32 pointIndex1, |
1325 | const QPoint &v, const QPoint &w, |
1326 | quint32 pointIndex2) |
1327 | { |
1328 | const QPoint &u = m_points->at(i: pointIndex1); |
1329 | const QPoint &q = m_points->at(i: pointIndex2); |
1330 | if (flattenCubic(u, v, w, q)) { |
1331 | // Insert line. |
1332 | element->degree = Element::Line; |
1333 | element->indices[0] = pointIndex1; |
1334 | element->indices[1] = pointIndex2; |
1335 | element->middle.rx() = (u.x() + q.x()) >> 1; |
1336 | element->middle.ry() = (u.y() + q.y()) >> 1; |
1337 | return; |
1338 | } |
1339 | |
1340 | bool intersecting = (u == q) || intersectionPoint(u1: u, u2: v, v1: w, v2: q).isValid(); |
1341 | if (!intersecting) { |
1342 | // Insert bezier. |
1343 | element->degree = Element::Cubic; |
1344 | element->indices[0] = pointIndex1; |
1345 | element->indices[1] = m_points->size(); |
1346 | element->indices[2] = m_points->size() + 1; |
1347 | element->indices[3] = pointIndex2; |
1348 | element->middle.rx() = (u.x() + v.x() + w.x() + q.x()) >> 2; |
1349 | element->middle.ry() = (u.y() + v.y() + w.y() + q.y()) >> 2; |
1350 | m_points->add(t: v); |
1351 | m_points->add(t: w); |
1352 | return; |
1353 | } |
1354 | |
1355 | QPoint pts[5]; |
1356 | splitCubic(u, v, w, q, result: pts); |
1357 | int pointIndex = m_points->size(); |
1358 | m_points->add(t: pts[2]); |
1359 | Element *element2 = m_elementAllocator.newElement(); |
1360 | m_elements.add(t: element2); |
1361 | setElementToCubicAndSimplify(element, pointIndex1, v: pts[0], w: pts[1], pointIndex2: pointIndex); |
1362 | setElementToCubicAndSimplify(element: element2, pointIndex1: pointIndex, v: pts[3], w: pts[4], pointIndex2); |
1363 | } |
1364 | |
1365 | PathSimplifier::RBNode *PathSimplifier::findElementLeftOf(const Element *element, |
1366 | const QPair<RBNode *, RBNode *> &bounds) |
1367 | { |
1368 | if (!m_elementList.root) |
1369 | return nullptr; |
1370 | RBNode *current = bounds.first; |
1371 | Q_ASSERT(!current || !elementIsLeftOf(element, current->data)); |
1372 | if (!current) |
1373 | current = m_elementList.front(node: m_elementList.root); |
1374 | Q_ASSERT(current); |
1375 | RBNode *result = nullptr; |
1376 | while (current != bounds.second && !elementIsLeftOf(left: element, right: current->data)) { |
1377 | result = current; |
1378 | current = m_elementList.next(node: current); |
1379 | } |
1380 | return result; |
1381 | } |
1382 | |
1383 | bool PathSimplifier::elementIsLeftOf(const Element *left, const Element *right) |
1384 | { |
1385 | const QPoint &leftU = m_points->at(i: left->upperIndex()); |
1386 | const QPoint &leftL = m_points->at(i: left->lowerIndex()); |
1387 | const QPoint &rightU = m_points->at(i: right->upperIndex()); |
1388 | const QPoint &rightL = m_points->at(i: right->lowerIndex()); |
1389 | Q_ASSERT(leftL >= rightU && rightL >= leftU); |
1390 | if (leftU.x() < qMin(a: rightL.x(), b: rightU.x())) |
1391 | return true; |
1392 | if (leftU.x() > qMax(a: rightL.x(), b: rightU.x())) |
1393 | return false; |
1394 | int d = pointDistanceFromLine(p: leftU, v1: rightL, v2: rightU); |
1395 | // d < 0: left, d > 0: right, d == 0: on top |
1396 | if (d == 0) { |
1397 | d = pointDistanceFromLine(p: leftL, v1: rightL, v2: rightU); |
1398 | if (d == 0) { |
1399 | if (right->degree > Element::Line) { |
1400 | d = pointDistanceFromLine(p: leftL, v1: rightL, v2: m_points->at(i: right->indices[1])); |
1401 | if (d == 0) |
1402 | d = pointDistanceFromLine(p: leftL, v1: rightL, v2: m_points->at(i: right->indices[2])); |
1403 | } else if (left->degree > Element::Line) { |
1404 | d = pointDistanceFromLine(p: m_points->at(i: left->indices[1]), v1: rightL, v2: rightU); |
1405 | if (d == 0) |
1406 | d = pointDistanceFromLine(p: m_points->at(i: left->indices[2]), v1: rightL, v2: rightU); |
1407 | } |
1408 | } |
1409 | } |
1410 | return d < 0; |
1411 | } |
1412 | |
1413 | QPair<PathSimplifier::RBNode *, PathSimplifier::RBNode *> PathSimplifier::outerBounds(const QPoint &point) |
1414 | { |
1415 | RBNode *current = m_elementList.root; |
1416 | QPair<RBNode *, RBNode *> result(nullptr, nullptr); |
1417 | |
1418 | while (current) { |
1419 | const Element *element = current->data; |
1420 | Q_ASSERT(element->edgeNode == current); |
1421 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
1422 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
1423 | Q_ASSERT(point >= v2 && point <= v1); |
1424 | if (point == v1 || point == v2) |
1425 | break; |
1426 | int d = pointDistanceFromLine(p: point, v1, v2); |
1427 | if (d == 0) { |
1428 | if (element->degree == Element::Line) |
1429 | break; |
1430 | d = pointDistanceFromLine(p: point, v1, v2: m_points->at(i: element->indices[1])); |
1431 | if (d == 0) |
1432 | d = pointDistanceFromLine(p: point, v1, v2: m_points->at(i: element->indices[2])); |
1433 | Q_ASSERT(d != 0); |
1434 | } |
1435 | if (d < 0) { |
1436 | result.second = current; |
1437 | current = current->left; |
1438 | } else { |
1439 | result.first = current; |
1440 | current = current->right; |
1441 | } |
1442 | } |
1443 | |
1444 | if (!current) |
1445 | return result; |
1446 | |
1447 | RBNode *mid = current; |
1448 | |
1449 | current = mid->left; |
1450 | while (current) { |
1451 | const Element *element = current->data; |
1452 | Q_ASSERT(element->edgeNode == current); |
1453 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
1454 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
1455 | Q_ASSERT(point >= v2 && point <= v1); |
1456 | bool equal = (point == v1 || point == v2); |
1457 | if (!equal) { |
1458 | int d = pointDistanceFromLine(p: point, v1, v2); |
1459 | Q_ASSERT(d >= 0); |
1460 | equal = (d == 0 && element->degree == Element::Line); |
1461 | } |
1462 | if (equal) { |
1463 | current = current->left; |
1464 | } else { |
1465 | result.first = current; |
1466 | current = current->right; |
1467 | } |
1468 | } |
1469 | |
1470 | current = mid->right; |
1471 | while (current) { |
1472 | const Element *element = current->data; |
1473 | Q_ASSERT(element->edgeNode == current); |
1474 | const QPoint &v1 = m_points->at(i: element->lowerIndex()); |
1475 | const QPoint &v2 = m_points->at(i: element->upperIndex()); |
1476 | Q_ASSERT(point >= v2 && point <= v1); |
1477 | bool equal = (point == v1 || point == v2); |
1478 | if (!equal) { |
1479 | int d = pointDistanceFromLine(p: point, v1, v2); |
1480 | Q_ASSERT(d <= 0); |
1481 | equal = (d == 0 && element->degree == Element::Line); |
1482 | } |
1483 | if (equal) { |
1484 | current = current->right; |
1485 | } else { |
1486 | result.second = current; |
1487 | current = current->left; |
1488 | } |
1489 | } |
1490 | |
1491 | return result; |
1492 | } |
1493 | |
1494 | inline bool PathSimplifier::flattenQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
1495 | { |
1496 | QPoint deltas[2] = { v - u, w - v }; |
1497 | int d = qAbs(t: cross(u: deltas[0], v: deltas[1])); |
1498 | int l = qAbs(t: deltas[0].x()) + qAbs(t: deltas[0].y()) + qAbs(t: deltas[1].x()) + qAbs(t: deltas[1].y()); |
1499 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3 / 2) || l <= Q_FIXED_POINT_SCALE * 2; |
1500 | } |
1501 | |
1502 | inline bool PathSimplifier::flattenCubic(const QPoint &u, const QPoint &v, |
1503 | const QPoint &w, const QPoint &q) |
1504 | { |
1505 | QPoint deltas[] = { v - u, w - v, q - w, q - u }; |
1506 | int d = qAbs(t: cross(u: deltas[0], v: deltas[1])) + qAbs(t: cross(u: deltas[1], v: deltas[2])) |
1507 | + qAbs(t: cross(u: deltas[0], v: deltas[3])) + qAbs(t: cross(u: deltas[3], v: deltas[2])); |
1508 | int l = qAbs(t: deltas[0].x()) + qAbs(t: deltas[0].y()) + qAbs(t: deltas[1].x()) + qAbs(t: deltas[1].y()) |
1509 | + qAbs(t: deltas[2].x()) + qAbs(t: deltas[2].y()); |
1510 | return d < (Q_FIXED_POINT_SCALE * Q_FIXED_POINT_SCALE * 3) || l <= Q_FIXED_POINT_SCALE * 2; |
1511 | } |
1512 | |
1513 | inline bool PathSimplifier::splitQuadratic(const QPoint &u, const QPoint &v, |
1514 | const QPoint &w, QPoint *result) |
1515 | { |
1516 | result[0] = u + v; |
1517 | result[2] = v + w; |
1518 | result[1] = result[0] + result[2]; |
1519 | bool accurate = ((result[0].x() | result[0].y() | result[2].x() | result[2].y()) & 1) == 0 |
1520 | && ((result[1].x() | result[1].y()) & 3) == 0; |
1521 | result[0].rx() >>= 1; |
1522 | result[0].ry() >>= 1; |
1523 | result[1].rx() >>= 2; |
1524 | result[1].ry() >>= 2; |
1525 | result[2].rx() >>= 1; |
1526 | result[2].ry() >>= 1; |
1527 | return accurate; |
1528 | } |
1529 | |
1530 | inline bool PathSimplifier::splitCubic(const QPoint &u, const QPoint &v, |
1531 | const QPoint &w, const QPoint &q, QPoint *result) |
1532 | { |
1533 | result[0] = u + v; |
1534 | result[2] = v + w; |
1535 | result[4] = w + q; |
1536 | result[1] = result[0] + result[2]; |
1537 | result[3] = result[2] + result[4]; |
1538 | result[2] = result[1] + result[3]; |
1539 | bool accurate = ((result[0].x() | result[0].y() | result[4].x() | result[4].y()) & 1) == 0 |
1540 | && ((result[1].x() | result[1].y() | result[3].x() | result[3].y()) & 3) == 0 |
1541 | && ((result[2].x() | result[2].y()) & 7) == 0; |
1542 | result[0].rx() >>= 1; |
1543 | result[0].ry() >>= 1; |
1544 | result[1].rx() >>= 2; |
1545 | result[1].ry() >>= 2; |
1546 | result[2].rx() >>= 3; |
1547 | result[2].ry() >>= 3; |
1548 | result[3].rx() >>= 2; |
1549 | result[3].ry() >>= 2; |
1550 | result[4].rx() >>= 1; |
1551 | result[4].ry() >>= 1; |
1552 | return accurate; |
1553 | } |
1554 | |
1555 | inline void PathSimplifier::subDivQuadratic(const QPoint &u, const QPoint &v, const QPoint &w) |
1556 | { |
1557 | if (flattenQuadratic(u, v, w)) |
1558 | return; |
1559 | QPoint pts[3]; |
1560 | splitQuadratic(u, v, w, result: pts); |
1561 | subDivQuadratic(u, v: pts[0], w: pts[1]); |
1562 | m_indices->add(t: m_points->size()); |
1563 | m_points->add(t: pts[1]); |
1564 | subDivQuadratic(u: pts[1], v: pts[2], w); |
1565 | } |
1566 | |
1567 | inline void PathSimplifier::subDivCubic(const QPoint &u, const QPoint &v, |
1568 | const QPoint &w, const QPoint &q) |
1569 | { |
1570 | if (flattenCubic(u, v, w, q)) |
1571 | return; |
1572 | QPoint pts[5]; |
1573 | splitCubic(u, v, w, q, result: pts); |
1574 | subDivCubic(u, v: pts[0], w: pts[1], q: pts[2]); |
1575 | m_indices->add(t: m_points->size()); |
1576 | m_points->add(t: pts[2]); |
1577 | subDivCubic(u: pts[2], v: pts[3], w: pts[4], q); |
1578 | } |
1579 | |
1580 | void PathSimplifier::sortEvents(Event *events, int count) |
1581 | { |
1582 | // Bucket sort + insertion sort. |
1583 | Q_ASSERT(count > 0); |
1584 | QDataBuffer<Event> buffer(count); |
1585 | buffer.resize(size: count); |
1586 | QScopedArrayPointer<int> bins(new int[count]); |
1587 | int counts[0x101]; |
1588 | memset(s: counts, c: 0, n: sizeof(counts)); |
1589 | |
1590 | int minimum, maximum; |
1591 | minimum = maximum = events[0].point.y(); |
1592 | for (int i = 1; i < count; ++i) { |
1593 | minimum = qMin(a: minimum, b: events[i].point.y()); |
1594 | maximum = qMax(a: maximum, b: events[i].point.y()); |
1595 | } |
1596 | |
1597 | for (int i = 0; i < count; ++i) { |
1598 | bins[i] = ((maximum - events[i].point.y()) << 8) / (maximum - minimum + 1); |
1599 | Q_ASSERT(bins[i] >= 0 && bins[i] < 0x100); |
1600 | ++counts[bins[i]]; |
1601 | } |
1602 | |
1603 | for (int i = 1; i < 0x100; ++i) |
1604 | counts[i] += counts[i - 1]; |
1605 | counts[0x100] = counts[0xff]; |
1606 | Q_ASSERT(counts[0x100] == count); |
1607 | |
1608 | for (int i = 0; i < count; ++i) |
1609 | buffer.at(i: --counts[bins[i]]) = events[i]; |
1610 | |
1611 | int j = 0; |
1612 | for (int i = 0; i < 0x100; ++i) { |
1613 | for (; j < counts[i + 1]; ++j) { |
1614 | int k = j; |
1615 | while (k > 0 && (buffer.at(i: j) < events[k - 1])) { |
1616 | events[k] = events[k - 1]; |
1617 | --k; |
1618 | } |
1619 | events[k] = buffer.at(i: j); |
1620 | } |
1621 | } |
1622 | } |
1623 | |
1624 | void qSimplifyPath(const QVectorPath &path, QDataBuffer<QPoint> &vertices, |
1625 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
1626 | { |
1627 | PathSimplifier(path, vertices, indices, matrix); |
1628 | } |
1629 | |
1630 | void qSimplifyPath(const QPainterPath &path, QDataBuffer<QPoint> &vertices, |
1631 | QDataBuffer<quint32> &indices, const QTransform &matrix) |
1632 | { |
1633 | qSimplifyPath(path: qtVectorPathForPath(path), vertices, indices, matrix); |
1634 | } |
1635 | |
1636 | |
1637 | QT_END_NAMESPACE |
1638 | |
1639 | #undef Q_FIXED_POINT_SCALE |
1640 | |