1 | // Copyright (C) 2021 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | #include "qtransform.h" |
4 | |
5 | #include "qdatastream.h" |
6 | #include "qdebug.h" |
7 | #include "qhashfunctions.h" |
8 | #include "qregion.h" |
9 | #include "qpainterpath.h" |
10 | #include "qpainterpath_p.h" |
11 | #include "qvariant.h" |
12 | #include "qmath_p.h" |
13 | #include <qnumeric.h> |
14 | |
15 | #include <private/qbezier_p.h> |
16 | |
17 | QT_BEGIN_NAMESPACE |
18 | |
19 | #ifndef QT_NO_DEBUG |
20 | Q_NEVER_INLINE |
21 | static void nanWarning(const char *func) |
22 | { |
23 | qWarning(msg: "QTransform::%s with NaN called" , func); |
24 | } |
25 | #endif // QT_NO_DEBUG |
26 | |
27 | #define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001) |
28 | |
29 | #ifdef MAP |
30 | # undef MAP |
31 | #endif |
32 | #define MAP(x, y, nx, ny) \ |
33 | do { \ |
34 | qreal FX_ = x; \ |
35 | qreal FY_ = y; \ |
36 | switch(t) { \ |
37 | case TxNone: \ |
38 | nx = FX_; \ |
39 | ny = FY_; \ |
40 | break; \ |
41 | case TxTranslate: \ |
42 | nx = FX_ + m_matrix[2][0]; \ |
43 | ny = FY_ + m_matrix[2][1]; \ |
44 | break; \ |
45 | case TxScale: \ |
46 | nx = m_matrix[0][0] * FX_ + m_matrix[2][0]; \ |
47 | ny = m_matrix[1][1] * FY_ + m_matrix[2][1]; \ |
48 | break; \ |
49 | case TxRotate: \ |
50 | case TxShear: \ |
51 | case TxProject: \ |
52 | nx = m_matrix[0][0] * FX_ + m_matrix[1][0] * FY_ + m_matrix[2][0]; \ |
53 | ny = m_matrix[0][1] * FX_ + m_matrix[1][1] * FY_ + m_matrix[2][1]; \ |
54 | if (t == TxProject) { \ |
55 | qreal w = (m_matrix[0][2] * FX_ + m_matrix[1][2] * FY_ + m_matrix[2][2]); \ |
56 | if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); \ |
57 | w = 1./w; \ |
58 | nx *= w; \ |
59 | ny *= w; \ |
60 | } \ |
61 | } \ |
62 | } while (0) |
63 | |
64 | /*! |
65 | \class QTransform |
66 | \brief The QTransform class specifies 2D transformations of a coordinate system. |
67 | \since 4.3 |
68 | \ingroup painting |
69 | \inmodule QtGui |
70 | |
71 | A transformation specifies how to translate, scale, shear, rotate |
72 | or project the coordinate system, and is typically used when |
73 | rendering graphics. |
74 | |
75 | A QTransform object can be built using the setMatrix(), scale(), |
76 | rotate(), translate() and shear() functions. Alternatively, it |
77 | can be built by applying \l {QTransform#Basic Matrix |
78 | Operations}{basic matrix operations}. The matrix can also be |
79 | defined when constructed, and it can be reset to the identity |
80 | matrix (the default) using the reset() function. |
81 | |
82 | The QTransform class supports mapping of graphic primitives: A given |
83 | point, line, polygon, region, or painter path can be mapped to the |
84 | coordinate system defined by \e this matrix using the map() |
85 | function. In case of a rectangle, its coordinates can be |
86 | transformed using the mapRect() function. A rectangle can also be |
87 | transformed into a \e polygon (mapped to the coordinate system |
88 | defined by \e this matrix), using the mapToPolygon() function. |
89 | |
90 | QTransform provides the isIdentity() function which returns \c true if |
91 | the matrix is the identity matrix, and the isInvertible() function |
92 | which returns \c true if the matrix is non-singular (i.e. AB = BA = |
93 | I). The inverted() function returns an inverted copy of \e this |
94 | matrix if it is invertible (otherwise it returns the identity |
95 | matrix), and adjoint() returns the matrix's classical adjoint. |
96 | In addition, QTransform provides the determinant() function which |
97 | returns the matrix's determinant. |
98 | |
99 | Finally, the QTransform class supports matrix multiplication, addition |
100 | and subtraction, and objects of the class can be streamed as well |
101 | as compared. |
102 | |
103 | \tableofcontents |
104 | |
105 | \section1 Rendering Graphics |
106 | |
107 | When rendering graphics, the matrix defines the transformations |
108 | but the actual transformation is performed by the drawing routines |
109 | in QPainter. |
110 | |
111 | By default, QPainter operates on the associated device's own |
112 | coordinate system. The standard coordinate system of a |
113 | QPaintDevice has its origin located at the top-left position. The |
114 | \e x values increase to the right; \e y values increase |
115 | downward. For a complete description, see the \l {Coordinate |
116 | System} {coordinate system} documentation. |
117 | |
118 | QPainter has functions to translate, scale, shear and rotate the |
119 | coordinate system without using a QTransform. For example: |
120 | |
121 | \table 100% |
122 | \row |
123 | \li \inlineimage qtransform-simpletransformation.png |
124 | \li |
125 | \snippet transform/main.cpp 0 |
126 | \endtable |
127 | |
128 | Although these functions are very convenient, it can be more |
129 | efficient to build a QTransform and call QPainter::setTransform() if you |
130 | want to perform more than a single transform operation. For |
131 | example: |
132 | |
133 | \table 100% |
134 | \row |
135 | \li \inlineimage qtransform-combinedtransformation.png |
136 | \li |
137 | \snippet transform/main.cpp 1 |
138 | \endtable |
139 | |
140 | \section1 Basic Matrix Operations |
141 | |
142 | \image qtransform-representation.png |
143 | |
144 | A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and |
145 | \c m32 (\c dy) elements specify horizontal and vertical translation. |
146 | The \c m11 and \c m22 elements specify horizontal and vertical scaling. |
147 | The \c m21 and \c m12 elements specify horizontal and vertical \e shearing. |
148 | And finally, the \c m13 and \c m23 elements specify horizontal and vertical |
149 | projection, with \c m33 as an additional projection factor. |
150 | |
151 | QTransform transforms a point in the plane to another point using the |
152 | following formulas: |
153 | |
154 | \snippet code/src_gui_painting_qtransform.cpp 0 |
155 | |
156 | The point \e (x, y) is the original point, and \e (x', y') is the |
157 | transformed point. \e (x', y') can be transformed back to \e (x, |
158 | y) by performing the same operation on the inverted() matrix. |
159 | |
160 | The various matrix elements can be set when constructing the |
161 | matrix, or by using the setMatrix() function later on. They can also |
162 | be manipulated using the translate(), rotate(), scale() and |
163 | shear() convenience functions. The currently set values can be |
164 | retrieved using the m11(), m12(), m13(), m21(), m22(), m23(), |
165 | m31(), m32(), m33(), dx() and dy() functions. |
166 | |
167 | Translation is the simplest transformation. Setting \c dx and \c |
168 | dy will move the coordinate system \c dx units along the X axis |
169 | and \c dy units along the Y axis. Scaling can be done by setting |
170 | \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
171 | 1.5 will double the height and increase the width by 50%. The |
172 | identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set |
173 | to 0) mapping a point to itself. Shearing is controlled by \c m12 |
174 | and \c m21. Setting these elements to values different from zero |
175 | will twist the coordinate system. Rotation is achieved by |
176 | setting both the shearing factors and the scaling factors. Perspective |
177 | transformation is achieved by setting both the projection factors and |
178 | the scaling factors. |
179 | |
180 | \section2 Combining Transforms |
181 | Here's the combined transformations example using basic matrix |
182 | operations: |
183 | |
184 | \table 100% |
185 | \row |
186 | \li \inlineimage qtransform-combinedtransformation2.png |
187 | \li |
188 | \snippet transform/main.cpp 2 |
189 | \endtable |
190 | |
191 | The combined transform first scales each operand, then rotates it, and |
192 | finally translates it, just as in the order in which the product of its |
193 | factors is written. This means the point to which the transforms are |
194 | applied is implicitly multiplied on the left with the transform |
195 | to its right. |
196 | |
197 | \section2 Relation to Matrix Notation |
198 | The matrix notation in QTransform is the transpose of a commonly-taught |
199 | convention which represents transforms and points as matrices and vectors. |
200 | That convention multiplies its matrix on the left and column vector to the |
201 | right. In other words, when several transforms are applied to a point, the |
202 | right-most matrix acts directly on the vector first. Then the next matrix |
203 | to the left acts on the result of the first operation - and so on. As a |
204 | result, that convention multiplies the matrices that make up a composite |
205 | transform in the reverse of the order in QTransform, as you can see in |
206 | \l {Combining Transforms}. Transposing the matrices, and combining them to |
207 | the right of a row vector that represents the point, lets the matrices of |
208 | transforms appear, in their product, in the order in which we think of the |
209 | transforms being applied to the point. |
210 | |
211 | \sa QPainter, {Coordinate System}, {painting/affine}{Affine |
212 | Transformations Example}, {Transformations Example} |
213 | */ |
214 | |
215 | /*! |
216 | \enum QTransform::TransformationType |
217 | |
218 | \value TxNone |
219 | \value TxTranslate |
220 | \value TxScale |
221 | \value TxRotate |
222 | \value TxShear |
223 | \value TxProject |
224 | */ |
225 | |
226 | /*! |
227 | \fn QTransform::QTransform(Qt::Initialization) |
228 | \internal |
229 | */ |
230 | |
231 | /*! |
232 | \fn QTransform::QTransform() |
233 | |
234 | Constructs an identity matrix. |
235 | |
236 | All elements are set to zero except \c m11 and \c m22 (specifying |
237 | the scale) and \c m33 which are set to 1. |
238 | |
239 | \sa reset() |
240 | */ |
241 | |
242 | /*! |
243 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33) |
244 | |
245 | Constructs a matrix with the elements, \a m11, \a m12, \a m13, |
246 | \a m21, \a m22, \a m23, \a m31, \a m32, \a m33. |
247 | |
248 | \sa setMatrix() |
249 | */ |
250 | |
251 | /*! |
252 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
253 | |
254 | Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy. |
255 | |
256 | \sa setMatrix() |
257 | */ |
258 | |
259 | /*! |
260 | Returns the adjoint of this matrix. |
261 | */ |
262 | QTransform QTransform::adjoint() const |
263 | { |
264 | qreal h11, h12, h13, |
265 | h21, h22, h23, |
266 | h31, h32, h33; |
267 | h11 = m_matrix[1][1] * m_matrix[2][2] - m_matrix[1][2] * m_matrix[2][1]; |
268 | h21 = m_matrix[1][2] * m_matrix[2][0] - m_matrix[1][0] * m_matrix[2][2]; |
269 | h31 = m_matrix[1][0] * m_matrix[2][1] - m_matrix[1][1] * m_matrix[2][0]; |
270 | h12 = m_matrix[0][2] * m_matrix[2][1] - m_matrix[0][1] * m_matrix[2][2]; |
271 | h22 = m_matrix[0][0] * m_matrix[2][2] - m_matrix[0][2] * m_matrix[2][0]; |
272 | h32 = m_matrix[0][1] * m_matrix[2][0] - m_matrix[0][0] * m_matrix[2][1]; |
273 | h13 = m_matrix[0][1] * m_matrix[1][2] - m_matrix[0][2] * m_matrix[1][1]; |
274 | h23 = m_matrix[0][2] * m_matrix[1][0] - m_matrix[0][0] * m_matrix[1][2]; |
275 | h33 = m_matrix[0][0] * m_matrix[1][1] - m_matrix[0][1] * m_matrix[1][0]; |
276 | |
277 | return QTransform(h11, h12, h13, |
278 | h21, h22, h23, |
279 | h31, h32, h33); |
280 | } |
281 | |
282 | /*! |
283 | Returns the transpose of this matrix. |
284 | */ |
285 | QTransform QTransform::transposed() const |
286 | { |
287 | QTransform t(m_matrix[0][0], m_matrix[1][0], m_matrix[2][0], |
288 | m_matrix[0][1], m_matrix[1][1], m_matrix[2][1], |
289 | m_matrix[0][2], m_matrix[1][2], m_matrix[2][2]); |
290 | return t; |
291 | } |
292 | |
293 | /*! |
294 | Returns an inverted copy of this matrix. |
295 | |
296 | If the matrix is singular (not invertible), the returned matrix is |
297 | the identity matrix. If \a invertible is valid (i.e. not 0), its |
298 | value is set to true if the matrix is invertible, otherwise it is |
299 | set to false. |
300 | |
301 | \sa isInvertible() |
302 | */ |
303 | QTransform QTransform::inverted(bool *invertible) const |
304 | { |
305 | QTransform invert; |
306 | bool inv = true; |
307 | |
308 | switch(inline_type()) { |
309 | case TxNone: |
310 | break; |
311 | case TxTranslate: |
312 | invert.m_matrix[2][0] = -m_matrix[2][0]; |
313 | invert.m_matrix[2][1] = -m_matrix[2][1]; |
314 | break; |
315 | case TxScale: |
316 | inv = !qFuzzyIsNull(d: m_matrix[0][0]); |
317 | inv &= !qFuzzyIsNull(d: m_matrix[1][1]); |
318 | if (inv) { |
319 | invert.m_matrix[0][0] = 1. / m_matrix[0][0]; |
320 | invert.m_matrix[1][1] = 1. / m_matrix[1][1]; |
321 | invert.m_matrix[2][0] = -m_matrix[2][0] * invert.m_matrix[0][0]; |
322 | invert.m_matrix[2][1] = -m_matrix[2][1] * invert.m_matrix[1][1]; |
323 | } |
324 | break; |
325 | // case TxRotate: |
326 | // case TxShear: |
327 | // invert.affine = affine.inverted(&inv); |
328 | // break; |
329 | default: |
330 | // general case |
331 | qreal det = determinant(); |
332 | inv = !qFuzzyIsNull(d: det); |
333 | if (inv) |
334 | invert = adjoint() / det; |
335 | break; |
336 | } |
337 | |
338 | if (invertible) |
339 | *invertible = inv; |
340 | |
341 | if (inv) { |
342 | // inverting doesn't change the type |
343 | invert.m_type = m_type; |
344 | invert.m_dirty = m_dirty; |
345 | } |
346 | |
347 | return invert; |
348 | } |
349 | |
350 | /*! |
351 | Moves the coordinate system \a dx along the x axis and \a dy along |
352 | the y axis, and returns a reference to the matrix. |
353 | |
354 | \sa setMatrix() |
355 | */ |
356 | QTransform &QTransform::translate(qreal dx, qreal dy) |
357 | { |
358 | if (dx == 0 && dy == 0) |
359 | return *this; |
360 | #ifndef QT_NO_DEBUG |
361 | if (qIsNaN(d: dx) || qIsNaN(d: dy)) { |
362 | nanWarning(func: "translate" ); |
363 | return *this; |
364 | } |
365 | #endif |
366 | |
367 | switch(inline_type()) { |
368 | case TxNone: |
369 | m_matrix[2][0] = dx; |
370 | m_matrix[2][1] = dy; |
371 | break; |
372 | case TxTranslate: |
373 | m_matrix[2][0] += dx; |
374 | m_matrix[2][1] += dy; |
375 | break; |
376 | case TxScale: |
377 | m_matrix[2][0] += dx * m_matrix[0][0]; |
378 | m_matrix[2][1] += dy * m_matrix[1][1]; |
379 | break; |
380 | case TxProject: |
381 | m_matrix[2][2] += dx * m_matrix[0][2] + dy * m_matrix[1][2]; |
382 | Q_FALLTHROUGH(); |
383 | case TxShear: |
384 | case TxRotate: |
385 | m_matrix[2][0] += dx * m_matrix[0][0] + dy * m_matrix[1][0]; |
386 | m_matrix[2][1] += dy * m_matrix[1][1] + dx * m_matrix[0][1]; |
387 | break; |
388 | } |
389 | if (m_dirty < TxTranslate) |
390 | m_dirty = TxTranslate; |
391 | return *this; |
392 | } |
393 | |
394 | /*! |
395 | Creates a matrix which corresponds to a translation of \a dx along |
396 | the x axis and \a dy along the y axis. This is the same as |
397 | QTransform().translate(dx, dy) but slightly faster. |
398 | |
399 | \since 4.5 |
400 | */ |
401 | QTransform QTransform::fromTranslate(qreal dx, qreal dy) |
402 | { |
403 | #ifndef QT_NO_DEBUG |
404 | if (qIsNaN(d: dx) || qIsNaN(d: dy)) { |
405 | nanWarning(func: "fromTranslate" ); |
406 | return QTransform(); |
407 | } |
408 | #endif |
409 | QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1); |
410 | if (dx == 0 && dy == 0) |
411 | transform.m_type = TxNone; |
412 | else |
413 | transform.m_type = TxTranslate; |
414 | transform.m_dirty = TxNone; |
415 | return transform; |
416 | } |
417 | |
418 | /*! |
419 | Scales the coordinate system by \a sx horizontally and \a sy |
420 | vertically, and returns a reference to the matrix. |
421 | |
422 | \sa setMatrix() |
423 | */ |
424 | QTransform & QTransform::scale(qreal sx, qreal sy) |
425 | { |
426 | if (sx == 1 && sy == 1) |
427 | return *this; |
428 | #ifndef QT_NO_DEBUG |
429 | if (qIsNaN(d: sx) || qIsNaN(d: sy)) { |
430 | nanWarning(func: "scale" ); |
431 | return *this; |
432 | } |
433 | #endif |
434 | |
435 | switch(inline_type()) { |
436 | case TxNone: |
437 | case TxTranslate: |
438 | m_matrix[0][0] = sx; |
439 | m_matrix[1][1] = sy; |
440 | break; |
441 | case TxProject: |
442 | m_matrix[0][2] *= sx; |
443 | m_matrix[1][2] *= sy; |
444 | Q_FALLTHROUGH(); |
445 | case TxRotate: |
446 | case TxShear: |
447 | m_matrix[0][1] *= sx; |
448 | m_matrix[1][0] *= sy; |
449 | Q_FALLTHROUGH(); |
450 | case TxScale: |
451 | m_matrix[0][0] *= sx; |
452 | m_matrix[1][1] *= sy; |
453 | break; |
454 | } |
455 | if (m_dirty < TxScale) |
456 | m_dirty = TxScale; |
457 | return *this; |
458 | } |
459 | |
460 | /*! |
461 | Creates a matrix which corresponds to a scaling of |
462 | \a sx horizontally and \a sy vertically. |
463 | This is the same as QTransform().scale(sx, sy) but slightly faster. |
464 | |
465 | \since 4.5 |
466 | */ |
467 | QTransform QTransform::fromScale(qreal sx, qreal sy) |
468 | { |
469 | #ifndef QT_NO_DEBUG |
470 | if (qIsNaN(d: sx) || qIsNaN(d: sy)) { |
471 | nanWarning(func: "fromScale" ); |
472 | return QTransform(); |
473 | } |
474 | #endif |
475 | QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1); |
476 | if (sx == 1. && sy == 1.) |
477 | transform.m_type = TxNone; |
478 | else |
479 | transform.m_type = TxScale; |
480 | transform.m_dirty = TxNone; |
481 | return transform; |
482 | } |
483 | |
484 | /*! |
485 | Shears the coordinate system by \a sh horizontally and \a sv |
486 | vertically, and returns a reference to the matrix. |
487 | |
488 | \sa setMatrix() |
489 | */ |
490 | QTransform & QTransform::shear(qreal sh, qreal sv) |
491 | { |
492 | if (sh == 0 && sv == 0) |
493 | return *this; |
494 | #ifndef QT_NO_DEBUG |
495 | if (qIsNaN(d: sh) || qIsNaN(d: sv)) { |
496 | nanWarning(func: "shear" ); |
497 | return *this; |
498 | } |
499 | #endif |
500 | |
501 | switch(inline_type()) { |
502 | case TxNone: |
503 | case TxTranslate: |
504 | m_matrix[0][1] = sv; |
505 | m_matrix[1][0] = sh; |
506 | break; |
507 | case TxScale: |
508 | m_matrix[0][1] = sv*m_matrix[1][1]; |
509 | m_matrix[1][0] = sh*m_matrix[0][0]; |
510 | break; |
511 | case TxProject: { |
512 | qreal tm13 = sv * m_matrix[1][2]; |
513 | qreal tm23 = sh * m_matrix[0][2]; |
514 | m_matrix[0][2] += tm13; |
515 | m_matrix[1][2] += tm23; |
516 | } |
517 | Q_FALLTHROUGH(); |
518 | case TxRotate: |
519 | case TxShear: { |
520 | qreal tm11 = sv * m_matrix[1][0]; |
521 | qreal tm22 = sh * m_matrix[0][1]; |
522 | qreal tm12 = sv * m_matrix[1][1]; |
523 | qreal tm21 = sh * m_matrix[0][0]; |
524 | m_matrix[0][0] += tm11; |
525 | m_matrix[0][1] += tm12; |
526 | m_matrix[1][0] += tm21; |
527 | m_matrix[1][1] += tm22; |
528 | break; |
529 | } |
530 | } |
531 | if (m_dirty < TxShear) |
532 | m_dirty = TxShear; |
533 | return *this; |
534 | } |
535 | |
536 | /*! |
537 | \since 6.5 |
538 | |
539 | Rotates the coordinate system counterclockwise by the given angle \a a |
540 | about the specified \a axis at distance \a distanceToPlane from the |
541 | screen and returns a reference to the matrix. |
542 | |
543 | //! [transform-rotate-note] |
544 | Note that if you apply a QTransform to a point defined in widget |
545 | coordinates, the direction of the rotation will be clockwise |
546 | because the y-axis points downwards. |
547 | |
548 | The angle is specified in degrees. |
549 | //! [transform-rotate-note] |
550 | |
551 | If \a distanceToPlane is zero, it will be ignored. This is suitable |
552 | for implementing orthographic projections where the z coordinate should |
553 | be dropped rather than projected. |
554 | |
555 | \sa setMatrix() |
556 | */ |
557 | QTransform & QTransform::rotate(qreal a, Qt::Axis axis, qreal distanceToPlane) |
558 | { |
559 | if (a == 0) |
560 | return *this; |
561 | #ifndef QT_NO_DEBUG |
562 | if (qIsNaN(d: a) || qIsNaN(d: distanceToPlane)) { |
563 | nanWarning(func: "rotate" ); |
564 | return *this; |
565 | } |
566 | #endif |
567 | |
568 | qreal sina = 0; |
569 | qreal cosa = 0; |
570 | if (a == 90. || a == -270.) |
571 | sina = 1.; |
572 | else if (a == 270. || a == -90.) |
573 | sina = -1.; |
574 | else if (a == 180.) |
575 | cosa = -1.; |
576 | else{ |
577 | qreal b = qDegreesToRadians(degrees: a); |
578 | sina = qSin(v: b); // fast and convenient |
579 | cosa = qCos(v: b); |
580 | } |
581 | |
582 | if (axis == Qt::ZAxis) { |
583 | switch(inline_type()) { |
584 | case TxNone: |
585 | case TxTranslate: |
586 | m_matrix[0][0] = cosa; |
587 | m_matrix[0][1] = sina; |
588 | m_matrix[1][0] = -sina; |
589 | m_matrix[1][1] = cosa; |
590 | break; |
591 | case TxScale: { |
592 | qreal tm11 = cosa * m_matrix[0][0]; |
593 | qreal tm12 = sina * m_matrix[1][1]; |
594 | qreal tm21 = -sina * m_matrix[0][0]; |
595 | qreal tm22 = cosa * m_matrix[1][1]; |
596 | m_matrix[0][0] = tm11; |
597 | m_matrix[0][1] = tm12; |
598 | m_matrix[1][0] = tm21; |
599 | m_matrix[1][1] = tm22; |
600 | break; |
601 | } |
602 | case TxProject: { |
603 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
604 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
605 | m_matrix[0][2] = tm13; |
606 | m_matrix[1][2] = tm23; |
607 | Q_FALLTHROUGH(); |
608 | } |
609 | case TxRotate: |
610 | case TxShear: { |
611 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
612 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
613 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
614 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
615 | m_matrix[0][0] = tm11; |
616 | m_matrix[0][1] = tm12; |
617 | m_matrix[1][0] = tm21; |
618 | m_matrix[1][1] = tm22; |
619 | break; |
620 | } |
621 | } |
622 | if (m_dirty < TxRotate) |
623 | m_dirty = TxRotate; |
624 | } else { |
625 | if (!qIsNull(d: distanceToPlane)) |
626 | sina /= distanceToPlane; |
627 | |
628 | QTransform result; |
629 | if (axis == Qt::YAxis) { |
630 | result.m_matrix[0][0] = cosa; |
631 | result.m_matrix[0][2] = -sina; |
632 | } else { |
633 | result.m_matrix[1][1] = cosa; |
634 | result.m_matrix[1][2] = -sina; |
635 | } |
636 | result.m_type = TxProject; |
637 | *this = result * *this; |
638 | } |
639 | |
640 | return *this; |
641 | } |
642 | |
643 | #if QT_VERSION < QT_VERSION_CHECK(7, 0, 0) |
644 | /*! |
645 | \overload |
646 | |
647 | Rotates the coordinate system counterclockwise by the given angle \a a |
648 | about the specified \a axis at distance 1024.0 from the screen and |
649 | returns a reference to the matrix. |
650 | |
651 | \include qtransform.cpp transform-rotate-note |
652 | |
653 | \sa setMatrix |
654 | */ |
655 | QTransform &QTransform::rotate(qreal a, Qt::Axis axis) |
656 | { |
657 | return rotate(a, axis, distanceToPlane: 1024.0); |
658 | } |
659 | #endif |
660 | |
661 | /*! |
662 | \since 6.5 |
663 | |
664 | Rotates the coordinate system counterclockwise by the given angle \a a |
665 | about the specified \a axis at distance \a distanceToPlane from the |
666 | screen and returns a reference to the matrix. |
667 | |
668 | //! [transform-rotate-radians-note] |
669 | Note that if you apply a QTransform to a point defined in widget |
670 | coordinates, the direction of the rotation will be clockwise |
671 | because the y-axis points downwards. |
672 | |
673 | The angle is specified in radians. |
674 | //! [transform-rotate-radians-note] |
675 | |
676 | If \a distanceToPlane is zero, it will be ignored. This is suitable |
677 | for implementing orthographic projections where the z coordinate should |
678 | be dropped rather than projected. |
679 | |
680 | \sa setMatrix() |
681 | */ |
682 | QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis, qreal distanceToPlane) |
683 | { |
684 | #ifndef QT_NO_DEBUG |
685 | if (qIsNaN(d: a) || qIsNaN(d: distanceToPlane)) { |
686 | nanWarning(func: "rotateRadians" ); |
687 | return *this; |
688 | } |
689 | #endif |
690 | qreal sina = qSin(v: a); |
691 | qreal cosa = qCos(v: a); |
692 | |
693 | if (axis == Qt::ZAxis) { |
694 | switch(inline_type()) { |
695 | case TxNone: |
696 | case TxTranslate: |
697 | m_matrix[0][0] = cosa; |
698 | m_matrix[0][1] = sina; |
699 | m_matrix[1][0] = -sina; |
700 | m_matrix[1][1] = cosa; |
701 | break; |
702 | case TxScale: { |
703 | qreal tm11 = cosa * m_matrix[0][0]; |
704 | qreal tm12 = sina * m_matrix[1][1]; |
705 | qreal tm21 = -sina * m_matrix[0][0]; |
706 | qreal tm22 = cosa * m_matrix[1][1]; |
707 | m_matrix[0][0] = tm11; |
708 | m_matrix[0][1] = tm12; |
709 | m_matrix[1][0] = tm21; |
710 | m_matrix[1][1] = tm22; |
711 | break; |
712 | } |
713 | case TxProject: { |
714 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
715 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
716 | m_matrix[0][2] = tm13; |
717 | m_matrix[1][2] = tm23; |
718 | Q_FALLTHROUGH(); |
719 | } |
720 | case TxRotate: |
721 | case TxShear: { |
722 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
723 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
724 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
725 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
726 | m_matrix[0][0] = tm11; |
727 | m_matrix[0][1] = tm12; |
728 | m_matrix[1][0] = tm21; |
729 | m_matrix[1][1] = tm22; |
730 | break; |
731 | } |
732 | } |
733 | if (m_dirty < TxRotate) |
734 | m_dirty = TxRotate; |
735 | } else { |
736 | if (!qIsNull(d: distanceToPlane)) |
737 | sina /= distanceToPlane; |
738 | |
739 | QTransform result; |
740 | if (axis == Qt::YAxis) { |
741 | result.m_matrix[0][0] = cosa; |
742 | result.m_matrix[0][2] = -sina; |
743 | } else { |
744 | result.m_matrix[1][1] = cosa; |
745 | result.m_matrix[1][2] = -sina; |
746 | } |
747 | result.m_type = TxProject; |
748 | *this = result * *this; |
749 | } |
750 | return *this; |
751 | } |
752 | |
753 | #if QT_VERSION < QT_VERSION_CHECK(7, 0, 0) |
754 | /*! |
755 | \overload |
756 | |
757 | Rotates the coordinate system counterclockwise by the given angle \a a |
758 | about the specified \a axis at distance 1024.0 from the screen and |
759 | returns a reference to the matrix. |
760 | |
761 | \include qtransform.cpp transform-rotate-radians-note |
762 | |
763 | \sa setMatrix() |
764 | */ |
765 | QTransform &QTransform::rotateRadians(qreal a, Qt::Axis axis) |
766 | { |
767 | return rotateRadians(a, axis, distanceToPlane: 1024.0); |
768 | } |
769 | #endif |
770 | |
771 | /*! |
772 | \fn bool QTransform::operator==(const QTransform &matrix) const |
773 | Returns \c true if this matrix is equal to the given \a matrix, |
774 | otherwise returns \c false. |
775 | */ |
776 | bool QTransform::operator==(const QTransform &o) const |
777 | { |
778 | return m_matrix[0][0] == o.m_matrix[0][0] && |
779 | m_matrix[0][1] == o.m_matrix[0][1] && |
780 | m_matrix[1][0] == o.m_matrix[1][0] && |
781 | m_matrix[1][1] == o.m_matrix[1][1] && |
782 | m_matrix[2][0] == o.m_matrix[2][0] && |
783 | m_matrix[2][1] == o.m_matrix[2][1] && |
784 | m_matrix[0][2] == o.m_matrix[0][2] && |
785 | m_matrix[1][2] == o.m_matrix[1][2] && |
786 | m_matrix[2][2] == o.m_matrix[2][2]; |
787 | } |
788 | |
789 | /*! |
790 | \since 5.6 |
791 | \relates QTransform |
792 | |
793 | Returns the hash value for \a key, using |
794 | \a seed to seed the calculation. |
795 | */ |
796 | size_t qHash(const QTransform &key, size_t seed) noexcept |
797 | { |
798 | QtPrivate::QHashCombine hash; |
799 | seed = hash(seed, key.m11()); |
800 | seed = hash(seed, key.m12()); |
801 | seed = hash(seed, key.m21()); |
802 | seed = hash(seed, key.m22()); |
803 | seed = hash(seed, key.dx()); |
804 | seed = hash(seed, key.dy()); |
805 | seed = hash(seed, key.m13()); |
806 | seed = hash(seed, key.m23()); |
807 | seed = hash(seed, key.m33()); |
808 | return seed; |
809 | } |
810 | |
811 | |
812 | /*! |
813 | \fn bool QTransform::operator!=(const QTransform &matrix) const |
814 | Returns \c true if this matrix is not equal to the given \a matrix, |
815 | otherwise returns \c false. |
816 | */ |
817 | bool QTransform::operator!=(const QTransform &o) const |
818 | { |
819 | return !operator==(o); |
820 | } |
821 | |
822 | /*! |
823 | \fn QTransform & QTransform::operator*=(const QTransform &matrix) |
824 | \overload |
825 | |
826 | Returns the result of multiplying this matrix by the given \a |
827 | matrix. |
828 | */ |
829 | QTransform & QTransform::operator*=(const QTransform &o) |
830 | { |
831 | const TransformationType otherType = o.inline_type(); |
832 | if (otherType == TxNone) |
833 | return *this; |
834 | |
835 | const TransformationType thisType = inline_type(); |
836 | if (thisType == TxNone) |
837 | return operator=(o); |
838 | |
839 | TransformationType t = qMax(a: thisType, b: otherType); |
840 | switch(t) { |
841 | case TxNone: |
842 | break; |
843 | case TxTranslate: |
844 | m_matrix[2][0] += o.m_matrix[2][0]; |
845 | m_matrix[2][1] += o.m_matrix[2][1]; |
846 | break; |
847 | case TxScale: |
848 | { |
849 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0]; |
850 | qreal m22 = m_matrix[1][1] * o.m_matrix[1][1]; |
851 | |
852 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + o.m_matrix[2][0]; |
853 | qreal m32 = m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
854 | |
855 | m_matrix[0][0] = m11; |
856 | m_matrix[1][1] = m22; |
857 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; |
858 | break; |
859 | } |
860 | case TxRotate: |
861 | case TxShear: |
862 | { |
863 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0]; |
864 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1]; |
865 | |
866 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0]; |
867 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1]; |
868 | |
869 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + o.m_matrix[2][0]; |
870 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
871 | |
872 | m_matrix[0][0] = m11; |
873 | m_matrix[0][1] = m12; |
874 | m_matrix[1][0] = m21; |
875 | m_matrix[1][1] = m22; |
876 | m_matrix[2][0] = m31; |
877 | m_matrix[2][1] = m32; |
878 | break; |
879 | } |
880 | case TxProject: |
881 | { |
882 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0] + m_matrix[0][2] * o.m_matrix[2][0]; |
883 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1] + m_matrix[0][2] * o.m_matrix[2][1]; |
884 | qreal m13 = m_matrix[0][0] * o.m_matrix[0][2] + m_matrix[0][1] * o.m_matrix[1][2] + m_matrix[0][2] * o.m_matrix[2][2]; |
885 | |
886 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0] + m_matrix[1][2] * o.m_matrix[2][0]; |
887 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1] + m_matrix[1][2] * o.m_matrix[2][1]; |
888 | qreal m23 = m_matrix[1][0] * o.m_matrix[0][2] + m_matrix[1][1] * o.m_matrix[1][2] + m_matrix[1][2] * o.m_matrix[2][2]; |
889 | |
890 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + m_matrix[2][2] * o.m_matrix[2][0]; |
891 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + m_matrix[2][2] * o.m_matrix[2][1]; |
892 | qreal m33 = m_matrix[2][0] * o.m_matrix[0][2] + m_matrix[2][1] * o.m_matrix[1][2] + m_matrix[2][2] * o.m_matrix[2][2]; |
893 | |
894 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
895 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
896 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
897 | } |
898 | } |
899 | |
900 | m_dirty = t; |
901 | m_type = t; |
902 | |
903 | return *this; |
904 | } |
905 | |
906 | /*! |
907 | \fn QTransform QTransform::operator*(const QTransform &matrix) const |
908 | Returns the result of multiplying this matrix by the given \a |
909 | matrix. |
910 | |
911 | Note that matrix multiplication is not commutative, i.e. a*b != |
912 | b*a. |
913 | */ |
914 | QTransform QTransform::operator*(const QTransform &m) const |
915 | { |
916 | const TransformationType otherType = m.inline_type(); |
917 | if (otherType == TxNone) |
918 | return *this; |
919 | |
920 | const TransformationType thisType = inline_type(); |
921 | if (thisType == TxNone) |
922 | return m; |
923 | |
924 | QTransform t; |
925 | TransformationType type = qMax(a: thisType, b: otherType); |
926 | switch(type) { |
927 | case TxNone: |
928 | break; |
929 | case TxTranslate: |
930 | t.m_matrix[2][0] = m_matrix[2][0] + m.m_matrix[2][0]; |
931 | t.m_matrix[2][1] = m_matrix[2][1] + m.m_matrix[2][1]; |
932 | break; |
933 | case TxScale: |
934 | { |
935 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0]; |
936 | qreal m22 = m_matrix[1][1] * m.m_matrix[1][1]; |
937 | |
938 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m.m_matrix[2][0]; |
939 | qreal m32 = m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
940 | |
941 | t.m_matrix[0][0] = m11; |
942 | t.m_matrix[1][1] = m22; |
943 | t.m_matrix[2][0] = m31; |
944 | t.m_matrix[2][1] = m32; |
945 | break; |
946 | } |
947 | case TxRotate: |
948 | case TxShear: |
949 | { |
950 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0]; |
951 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1]; |
952 | |
953 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0]; |
954 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1]; |
955 | |
956 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m.m_matrix[2][0]; |
957 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
958 | |
959 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; |
960 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; |
961 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; |
962 | break; |
963 | } |
964 | case TxProject: |
965 | { |
966 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0] + m_matrix[0][2] * m.m_matrix[2][0]; |
967 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1] + m_matrix[0][2] * m.m_matrix[2][1]; |
968 | qreal m13 = m_matrix[0][0] * m.m_matrix[0][2] + m_matrix[0][1] * m.m_matrix[1][2] + m_matrix[0][2] * m.m_matrix[2][2]; |
969 | |
970 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0] + m_matrix[1][2] * m.m_matrix[2][0]; |
971 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1] + m_matrix[1][2] * m.m_matrix[2][1]; |
972 | qreal m23 = m_matrix[1][0] * m.m_matrix[0][2] + m_matrix[1][1] * m.m_matrix[1][2] + m_matrix[1][2] * m.m_matrix[2][2]; |
973 | |
974 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m_matrix[2][2] * m.m_matrix[2][0]; |
975 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m_matrix[2][2] * m.m_matrix[2][1]; |
976 | qreal m33 = m_matrix[2][0] * m.m_matrix[0][2] + m_matrix[2][1] * m.m_matrix[1][2] + m_matrix[2][2] * m.m_matrix[2][2]; |
977 | |
978 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; t.m_matrix[0][2] = m13; |
979 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; t.m_matrix[1][2] = m23; |
980 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; t.m_matrix[2][2] = m33; |
981 | } |
982 | } |
983 | |
984 | t.m_dirty = type; |
985 | t.m_type = type; |
986 | |
987 | return t; |
988 | } |
989 | |
990 | /*! |
991 | \fn QTransform & QTransform::operator*=(qreal scalar) |
992 | \overload |
993 | |
994 | Returns the result of performing an element-wise multiplication of this |
995 | matrix with the given \a scalar. |
996 | */ |
997 | |
998 | /*! |
999 | \fn QTransform & QTransform::operator/=(qreal scalar) |
1000 | \overload |
1001 | |
1002 | Returns the result of performing an element-wise division of this |
1003 | matrix by the given \a scalar. |
1004 | */ |
1005 | |
1006 | /*! |
1007 | \fn QTransform & QTransform::operator+=(qreal scalar) |
1008 | \overload |
1009 | |
1010 | Returns the matrix obtained by adding the given \a scalar to each |
1011 | element of this matrix. |
1012 | */ |
1013 | |
1014 | /*! |
1015 | \fn QTransform & QTransform::operator-=(qreal scalar) |
1016 | \overload |
1017 | |
1018 | Returns the matrix obtained by subtracting the given \a scalar from each |
1019 | element of this matrix. |
1020 | */ |
1021 | |
1022 | /*! |
1023 | \fn QTransform &QTransform::operator=(const QTransform &matrix) noexcept |
1024 | |
1025 | Assigns the given \a matrix's values to this matrix. |
1026 | */ |
1027 | |
1028 | /*! |
1029 | Resets the matrix to an identity matrix, i.e. all elements are set |
1030 | to zero, except \c m11 and \c m22 (specifying the scale) and \c m33 |
1031 | which are set to 1. |
1032 | |
1033 | \sa QTransform(), isIdentity(), {QTransform#Basic Matrix |
1034 | Operations}{Basic Matrix Operations} |
1035 | */ |
1036 | void QTransform::reset() |
1037 | { |
1038 | *this = QTransform(); |
1039 | } |
1040 | |
1041 | #ifndef QT_NO_DATASTREAM |
1042 | /*! |
1043 | \fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix) |
1044 | \since 4.3 |
1045 | \relates QTransform |
1046 | |
1047 | Writes the given \a matrix to the given \a stream and returns a |
1048 | reference to the stream. |
1049 | |
1050 | \sa {Serializing Qt Data Types} |
1051 | */ |
1052 | QDataStream & operator<<(QDataStream &s, const QTransform &m) |
1053 | { |
1054 | s << double(m.m11()) |
1055 | << double(m.m12()) |
1056 | << double(m.m13()) |
1057 | << double(m.m21()) |
1058 | << double(m.m22()) |
1059 | << double(m.m23()) |
1060 | << double(m.m31()) |
1061 | << double(m.m32()) |
1062 | << double(m.m33()); |
1063 | return s; |
1064 | } |
1065 | |
1066 | /*! |
1067 | \fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix) |
1068 | \since 4.3 |
1069 | \relates QTransform |
1070 | |
1071 | Reads the given \a matrix from the given \a stream and returns a |
1072 | reference to the stream. |
1073 | |
1074 | \sa {Serializing Qt Data Types} |
1075 | */ |
1076 | QDataStream & operator>>(QDataStream &s, QTransform &t) |
1077 | { |
1078 | double m11, m12, m13, |
1079 | m21, m22, m23, |
1080 | m31, m32, m33; |
1081 | |
1082 | s >> m11; |
1083 | s >> m12; |
1084 | s >> m13; |
1085 | s >> m21; |
1086 | s >> m22; |
1087 | s >> m23; |
1088 | s >> m31; |
1089 | s >> m32; |
1090 | s >> m33; |
1091 | t.setMatrix(m11, m12, m13, |
1092 | m21, m22, m23, |
1093 | m31, m32, m33); |
1094 | return s; |
1095 | } |
1096 | |
1097 | #endif // QT_NO_DATASTREAM |
1098 | |
1099 | #ifndef QT_NO_DEBUG_STREAM |
1100 | QDebug operator<<(QDebug dbg, const QTransform &m) |
1101 | { |
1102 | static const char typeStr[][12] = |
1103 | { |
1104 | "TxNone" , |
1105 | "TxTranslate" , |
1106 | "TxScale" , |
1107 | "" , |
1108 | "TxRotate" , |
1109 | "" , "" , "" , |
1110 | "TxShear" , |
1111 | "" , "" , "" , "" , "" , "" , "" , |
1112 | "TxProject" |
1113 | }; |
1114 | |
1115 | QDebugStateSaver saver(dbg); |
1116 | dbg.nospace() << "QTransform(type=" << typeStr[m.type()] << ',' |
1117 | << " 11=" << m.m11() |
1118 | << " 12=" << m.m12() |
1119 | << " 13=" << m.m13() |
1120 | << " 21=" << m.m21() |
1121 | << " 22=" << m.m22() |
1122 | << " 23=" << m.m23() |
1123 | << " 31=" << m.m31() |
1124 | << " 32=" << m.m32() |
1125 | << " 33=" << m.m33() |
1126 | << ')'; |
1127 | |
1128 | return dbg; |
1129 | } |
1130 | #endif |
1131 | |
1132 | /*! |
1133 | \fn QPoint operator*(const QPoint &point, const QTransform &matrix) |
1134 | \relates QTransform |
1135 | |
1136 | This is the same as \a{matrix}.map(\a{point}). |
1137 | |
1138 | \sa QTransform::map() |
1139 | */ |
1140 | QPoint QTransform::map(const QPoint &p) const |
1141 | { |
1142 | qreal fx = p.x(); |
1143 | qreal fy = p.y(); |
1144 | |
1145 | qreal x = 0, y = 0; |
1146 | |
1147 | TransformationType t = inline_type(); |
1148 | switch(t) { |
1149 | case TxNone: |
1150 | x = fx; |
1151 | y = fy; |
1152 | break; |
1153 | case TxTranslate: |
1154 | x = fx + m_matrix[2][0]; |
1155 | y = fy + m_matrix[2][1]; |
1156 | break; |
1157 | case TxScale: |
1158 | x = m_matrix[0][0] * fx + m_matrix[2][0]; |
1159 | y = m_matrix[1][1] * fy + m_matrix[2][1]; |
1160 | break; |
1161 | case TxRotate: |
1162 | case TxShear: |
1163 | case TxProject: |
1164 | x = m_matrix[0][0] * fx + m_matrix[1][0] * fy + m_matrix[2][0]; |
1165 | y = m_matrix[0][1] * fx + m_matrix[1][1] * fy + m_matrix[2][1]; |
1166 | if (t == TxProject) { |
1167 | qreal w = 1./(m_matrix[0][2] * fx + m_matrix[1][2] * fy + m_matrix[2][2]); |
1168 | x *= w; |
1169 | y *= w; |
1170 | } |
1171 | } |
1172 | return QPoint(qRound(d: x), qRound(d: y)); |
1173 | } |
1174 | |
1175 | |
1176 | /*! |
1177 | \fn QPointF operator*(const QPointF &point, const QTransform &matrix) |
1178 | \relates QTransform |
1179 | |
1180 | Same as \a{matrix}.map(\a{point}). |
1181 | |
1182 | \sa QTransform::map() |
1183 | */ |
1184 | |
1185 | /*! |
1186 | \overload |
1187 | |
1188 | Creates and returns a QPointF object that is a copy of the given point, |
1189 | \a p, mapped into the coordinate system defined by this matrix. |
1190 | */ |
1191 | QPointF QTransform::map(const QPointF &p) const |
1192 | { |
1193 | qreal fx = p.x(); |
1194 | qreal fy = p.y(); |
1195 | |
1196 | qreal x = 0, y = 0; |
1197 | |
1198 | TransformationType t = inline_type(); |
1199 | switch(t) { |
1200 | case TxNone: |
1201 | x = fx; |
1202 | y = fy; |
1203 | break; |
1204 | case TxTranslate: |
1205 | x = fx + m_matrix[2][0]; |
1206 | y = fy + m_matrix[2][1]; |
1207 | break; |
1208 | case TxScale: |
1209 | x = m_matrix[0][0] * fx + m_matrix[2][0]; |
1210 | y = m_matrix[1][1] * fy + m_matrix[2][1]; |
1211 | break; |
1212 | case TxRotate: |
1213 | case TxShear: |
1214 | case TxProject: |
1215 | x = m_matrix[0][0] * fx + m_matrix[1][0] * fy + m_matrix[2][0]; |
1216 | y = m_matrix[0][1] * fx + m_matrix[1][1] * fy + m_matrix[2][1]; |
1217 | if (t == TxProject) { |
1218 | qreal w = 1./(m_matrix[0][2] * fx + m_matrix[1][2] * fy + m_matrix[2][2]); |
1219 | x *= w; |
1220 | y *= w; |
1221 | } |
1222 | } |
1223 | return QPointF(x, y); |
1224 | } |
1225 | |
1226 | /*! |
1227 | \fn QPoint QTransform::map(const QPoint &point) const |
1228 | \overload |
1229 | |
1230 | Creates and returns a QPoint object that is a copy of the given \a |
1231 | point, mapped into the coordinate system defined by this |
1232 | matrix. Note that the transformed coordinates are rounded to the |
1233 | nearest integer. |
1234 | */ |
1235 | |
1236 | /*! |
1237 | \fn QLineF operator*(const QLineF &line, const QTransform &matrix) |
1238 | \relates QTransform |
1239 | |
1240 | This is the same as \a{matrix}.map(\a{line}). |
1241 | |
1242 | \sa QTransform::map() |
1243 | */ |
1244 | |
1245 | /*! |
1246 | \fn QLine operator*(const QLine &line, const QTransform &matrix) |
1247 | \relates QTransform |
1248 | |
1249 | This is the same as \a{matrix}.map(\a{line}). |
1250 | |
1251 | \sa QTransform::map() |
1252 | */ |
1253 | |
1254 | /*! |
1255 | \overload |
1256 | |
1257 | Creates and returns a QLineF object that is a copy of the given line, |
1258 | \a l, mapped into the coordinate system defined by this matrix. |
1259 | */ |
1260 | QLine QTransform::map(const QLine &l) const |
1261 | { |
1262 | qreal fx1 = l.x1(); |
1263 | qreal fy1 = l.y1(); |
1264 | qreal fx2 = l.x2(); |
1265 | qreal fy2 = l.y2(); |
1266 | |
1267 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
1268 | |
1269 | TransformationType t = inline_type(); |
1270 | switch(t) { |
1271 | case TxNone: |
1272 | x1 = fx1; |
1273 | y1 = fy1; |
1274 | x2 = fx2; |
1275 | y2 = fy2; |
1276 | break; |
1277 | case TxTranslate: |
1278 | x1 = fx1 + m_matrix[2][0]; |
1279 | y1 = fy1 + m_matrix[2][1]; |
1280 | x2 = fx2 + m_matrix[2][0]; |
1281 | y2 = fy2 + m_matrix[2][1]; |
1282 | break; |
1283 | case TxScale: |
1284 | x1 = m_matrix[0][0] * fx1 + m_matrix[2][0]; |
1285 | y1 = m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1286 | x2 = m_matrix[0][0] * fx2 + m_matrix[2][0]; |
1287 | y2 = m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1288 | break; |
1289 | case TxRotate: |
1290 | case TxShear: |
1291 | case TxProject: |
1292 | x1 = m_matrix[0][0] * fx1 + m_matrix[1][0] * fy1 + m_matrix[2][0]; |
1293 | y1 = m_matrix[0][1] * fx1 + m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1294 | x2 = m_matrix[0][0] * fx2 + m_matrix[1][0] * fy2 + m_matrix[2][0]; |
1295 | y2 = m_matrix[0][1] * fx2 + m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1296 | if (t == TxProject) { |
1297 | qreal w = 1./(m_matrix[0][2] * fx1 + m_matrix[1][2] * fy1 + m_matrix[2][2]); |
1298 | x1 *= w; |
1299 | y1 *= w; |
1300 | w = 1./(m_matrix[0][2] * fx2 + m_matrix[1][2] * fy2 + m_matrix[2][2]); |
1301 | x2 *= w; |
1302 | y2 *= w; |
1303 | } |
1304 | } |
1305 | return QLine(qRound(d: x1), qRound(d: y1), qRound(d: x2), qRound(d: y2)); |
1306 | } |
1307 | |
1308 | /*! |
1309 | \overload |
1310 | |
1311 | \fn QLineF QTransform::map(const QLineF &line) const |
1312 | |
1313 | Creates and returns a QLine object that is a copy of the given \a |
1314 | line, mapped into the coordinate system defined by this matrix. |
1315 | Note that the transformed coordinates are rounded to the nearest |
1316 | integer. |
1317 | */ |
1318 | |
1319 | QLineF QTransform::map(const QLineF &l) const |
1320 | { |
1321 | qreal fx1 = l.x1(); |
1322 | qreal fy1 = l.y1(); |
1323 | qreal fx2 = l.x2(); |
1324 | qreal fy2 = l.y2(); |
1325 | |
1326 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
1327 | |
1328 | TransformationType t = inline_type(); |
1329 | switch(t) { |
1330 | case TxNone: |
1331 | x1 = fx1; |
1332 | y1 = fy1; |
1333 | x2 = fx2; |
1334 | y2 = fy2; |
1335 | break; |
1336 | case TxTranslate: |
1337 | x1 = fx1 + m_matrix[2][0]; |
1338 | y1 = fy1 + m_matrix[2][1]; |
1339 | x2 = fx2 + m_matrix[2][0]; |
1340 | y2 = fy2 + m_matrix[2][1]; |
1341 | break; |
1342 | case TxScale: |
1343 | x1 = m_matrix[0][0] * fx1 + m_matrix[2][0]; |
1344 | y1 = m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1345 | x2 = m_matrix[0][0] * fx2 + m_matrix[2][0]; |
1346 | y2 = m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1347 | break; |
1348 | case TxRotate: |
1349 | case TxShear: |
1350 | case TxProject: |
1351 | x1 = m_matrix[0][0] * fx1 + m_matrix[1][0] * fy1 + m_matrix[2][0]; |
1352 | y1 = m_matrix[0][1] * fx1 + m_matrix[1][1] * fy1 + m_matrix[2][1]; |
1353 | x2 = m_matrix[0][0] * fx2 + m_matrix[1][0] * fy2 + m_matrix[2][0]; |
1354 | y2 = m_matrix[0][1] * fx2 + m_matrix[1][1] * fy2 + m_matrix[2][1]; |
1355 | if (t == TxProject) { |
1356 | qreal w = 1./(m_matrix[0][2] * fx1 + m_matrix[1][2] * fy1 + m_matrix[2][2]); |
1357 | x1 *= w; |
1358 | y1 *= w; |
1359 | w = 1./(m_matrix[0][2] * fx2 + m_matrix[1][2] * fy2 + m_matrix[2][2]); |
1360 | x2 *= w; |
1361 | y2 *= w; |
1362 | } |
1363 | } |
1364 | return QLineF(x1, y1, x2, y2); |
1365 | } |
1366 | |
1367 | static QPolygonF mapProjective(const QTransform &transform, const QPolygonF &poly) |
1368 | { |
1369 | if (poly.size() == 0) |
1370 | return poly; |
1371 | |
1372 | if (poly.size() == 1) |
1373 | return QPolygonF() << transform.map(p: poly.at(i: 0)); |
1374 | |
1375 | QPainterPath path; |
1376 | path.addPolygon(polygon: poly); |
1377 | |
1378 | path = transform.map(p: path); |
1379 | |
1380 | QPolygonF result; |
1381 | const int elementCount = path.elementCount(); |
1382 | result.reserve(asize: elementCount); |
1383 | for (int i = 0; i < elementCount; ++i) |
1384 | result << path.elementAt(i); |
1385 | return result; |
1386 | } |
1387 | |
1388 | |
1389 | /*! |
1390 | \fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix) |
1391 | \since 4.3 |
1392 | \relates QTransform |
1393 | |
1394 | This is the same as \a{matrix}.map(\a{polygon}). |
1395 | |
1396 | \sa QTransform::map() |
1397 | */ |
1398 | |
1399 | /*! |
1400 | \fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix) |
1401 | \relates QTransform |
1402 | |
1403 | This is the same as \a{matrix}.map(\a{polygon}). |
1404 | |
1405 | \sa QTransform::map() |
1406 | */ |
1407 | |
1408 | /*! |
1409 | \fn QPolygonF QTransform::map(const QPolygonF &polygon) const |
1410 | \overload |
1411 | |
1412 | Creates and returns a QPolygonF object that is a copy of the given |
1413 | \a polygon, mapped into the coordinate system defined by this |
1414 | matrix. |
1415 | */ |
1416 | QPolygonF QTransform::map(const QPolygonF &a) const |
1417 | { |
1418 | TransformationType t = inline_type(); |
1419 | if (t <= TxTranslate) |
1420 | return a.translated(dx: m_matrix[2][0], dy: m_matrix[2][1]); |
1421 | |
1422 | if (t >= QTransform::TxProject) |
1423 | return mapProjective(transform: *this, poly: a); |
1424 | |
1425 | int size = a.size(); |
1426 | int i; |
1427 | QPolygonF p(size); |
1428 | const QPointF *da = a.constData(); |
1429 | QPointF *dp = p.data(); |
1430 | |
1431 | for(i = 0; i < size; ++i) { |
1432 | MAP(da[i].xp, da[i].yp, dp[i].xp, dp[i].yp); |
1433 | } |
1434 | return p; |
1435 | } |
1436 | |
1437 | /*! |
1438 | \fn QPolygon QTransform::map(const QPolygon &polygon) const |
1439 | \overload |
1440 | |
1441 | Creates and returns a QPolygon object that is a copy of the given |
1442 | \a polygon, mapped into the coordinate system defined by this |
1443 | matrix. Note that the transformed coordinates are rounded to the |
1444 | nearest integer. |
1445 | */ |
1446 | QPolygon QTransform::map(const QPolygon &a) const |
1447 | { |
1448 | TransformationType t = inline_type(); |
1449 | if (t <= TxTranslate) |
1450 | return a.translated(dx: qRound(d: m_matrix[2][0]), dy: qRound(d: m_matrix[2][1])); |
1451 | |
1452 | if (t >= QTransform::TxProject) |
1453 | return mapProjective(transform: *this, poly: QPolygonF(a)).toPolygon(); |
1454 | |
1455 | int size = a.size(); |
1456 | int i; |
1457 | QPolygon p(size); |
1458 | const QPoint *da = a.constData(); |
1459 | QPoint *dp = p.data(); |
1460 | |
1461 | for(i = 0; i < size; ++i) { |
1462 | qreal nx = 0, ny = 0; |
1463 | MAP(da[i].xp, da[i].yp, nx, ny); |
1464 | dp[i].xp = qRound(d: nx); |
1465 | dp[i].yp = qRound(d: ny); |
1466 | } |
1467 | return p; |
1468 | } |
1469 | |
1470 | /*! |
1471 | \fn QRegion operator*(const QRegion ®ion, const QTransform &matrix) |
1472 | \relates QTransform |
1473 | |
1474 | This is the same as \a{matrix}.map(\a{region}). |
1475 | |
1476 | \sa QTransform::map() |
1477 | */ |
1478 | |
1479 | extern QPainterPath qt_regionToPath(const QRegion ®ion); |
1480 | |
1481 | /*! |
1482 | \fn QRegion QTransform::map(const QRegion ®ion) const |
1483 | \overload |
1484 | |
1485 | Creates and returns a QRegion object that is a copy of the given |
1486 | \a region, mapped into the coordinate system defined by this matrix. |
1487 | |
1488 | Calling this method can be rather expensive if rotations or |
1489 | shearing are used. |
1490 | */ |
1491 | QRegion QTransform::map(const QRegion &r) const |
1492 | { |
1493 | TransformationType t = inline_type(); |
1494 | if (t == TxNone) |
1495 | return r; |
1496 | |
1497 | if (t == TxTranslate) { |
1498 | QRegion copy(r); |
1499 | copy.translate(dx: qRound(d: m_matrix[2][0]), dy: qRound(d: m_matrix[2][1])); |
1500 | return copy; |
1501 | } |
1502 | |
1503 | if (t == TxScale) { |
1504 | QRegion res; |
1505 | if (m11() < 0 || m22() < 0) { |
1506 | for (const QRect &rect : r) |
1507 | res += qt_mapFillRect(rect: QRectF(rect), xf: *this); |
1508 | } else { |
1509 | QVarLengthArray<QRect, 32> rects; |
1510 | rects.reserve(sz: r.rectCount()); |
1511 | for (const QRect &rect : r) { |
1512 | QRect nr = qt_mapFillRect(rect: QRectF(rect), xf: *this); |
1513 | if (!nr.isEmpty()) |
1514 | rects.append(t: nr); |
1515 | } |
1516 | res.setRects(rect: rects.constData(), num: rects.size()); |
1517 | } |
1518 | return res; |
1519 | } |
1520 | |
1521 | QPainterPath p = map(p: qt_regionToPath(region: r)); |
1522 | return p.toFillPolygon().toPolygon(); |
1523 | } |
1524 | |
1525 | struct QHomogeneousCoordinate |
1526 | { |
1527 | qreal x; |
1528 | qreal y; |
1529 | qreal w; |
1530 | |
1531 | QHomogeneousCoordinate() {} |
1532 | QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {} |
1533 | |
1534 | const QPointF toPoint() const { |
1535 | qreal iw = 1. / w; |
1536 | return QPointF(x * iw, y * iw); |
1537 | } |
1538 | }; |
1539 | |
1540 | static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p) |
1541 | { |
1542 | QHomogeneousCoordinate c; |
1543 | c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31(); |
1544 | c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32(); |
1545 | c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33(); |
1546 | return c; |
1547 | } |
1548 | |
1549 | static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, |
1550 | bool needsMoveTo, bool needsLineTo = true) |
1551 | { |
1552 | QHomogeneousCoordinate ha = mapHomogeneous(transform, p: a); |
1553 | QHomogeneousCoordinate hb = mapHomogeneous(transform, p: b); |
1554 | |
1555 | if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP) |
1556 | return false; |
1557 | |
1558 | if (hb.w < Q_NEAR_CLIP) { |
1559 | const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w); |
1560 | |
1561 | hb.x += (ha.x - hb.x) * t; |
1562 | hb.y += (ha.y - hb.y) * t; |
1563 | hb.w = qreal(Q_NEAR_CLIP); |
1564 | } else if (ha.w < Q_NEAR_CLIP) { |
1565 | const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w); |
1566 | |
1567 | ha.x += (hb.x - ha.x) * t; |
1568 | ha.y += (hb.y - ha.y) * t; |
1569 | ha.w = qreal(Q_NEAR_CLIP); |
1570 | |
1571 | const QPointF p = ha.toPoint(); |
1572 | if (needsMoveTo) { |
1573 | path.moveTo(p); |
1574 | needsMoveTo = false; |
1575 | } else { |
1576 | path.lineTo(p); |
1577 | } |
1578 | } |
1579 | |
1580 | if (needsMoveTo) |
1581 | path.moveTo(p: ha.toPoint()); |
1582 | |
1583 | if (needsLineTo) |
1584 | path.lineTo(p: hb.toPoint()); |
1585 | |
1586 | return true; |
1587 | } |
1588 | Q_GUI_EXPORT bool qt_scaleForTransform(const QTransform &transform, qreal *scale); |
1589 | |
1590 | static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo) |
1591 | { |
1592 | // Convert projective xformed curves to line |
1593 | // segments so they can be transformed more accurately |
1594 | |
1595 | qreal scale; |
1596 | qt_scaleForTransform(transform, scale: &scale); |
1597 | |
1598 | qreal curveThreshold = scale == 0 ? qreal(0.25) : (qreal(0.25) / scale); |
1599 | |
1600 | QPolygonF segment = QBezier::fromPoints(p1: a, p2: b, p3: c, p4: d).toPolygon(bezier_flattening_threshold: curveThreshold); |
1601 | |
1602 | for (int i = 0; i < segment.size() - 1; ++i) |
1603 | if (lineTo_clipped(path, transform, a: segment.at(i), b: segment.at(i: i+1), needsMoveTo)) |
1604 | needsMoveTo = false; |
1605 | |
1606 | return !needsMoveTo; |
1607 | } |
1608 | |
1609 | static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path) |
1610 | { |
1611 | QPainterPath result; |
1612 | |
1613 | QPointF last; |
1614 | QPointF lastMoveTo; |
1615 | bool needsMoveTo = true; |
1616 | for (int i = 0; i < path.elementCount(); ++i) { |
1617 | switch (path.elementAt(i).type) { |
1618 | case QPainterPath::MoveToElement: |
1619 | if (i > 0 && lastMoveTo != last) |
1620 | lineTo_clipped(path&: result, transform, a: last, b: lastMoveTo, needsMoveTo); |
1621 | |
1622 | lastMoveTo = path.elementAt(i); |
1623 | last = path.elementAt(i); |
1624 | needsMoveTo = true; |
1625 | break; |
1626 | case QPainterPath::LineToElement: |
1627 | if (lineTo_clipped(path&: result, transform, a: last, b: path.elementAt(i), needsMoveTo)) |
1628 | needsMoveTo = false; |
1629 | last = path.elementAt(i); |
1630 | break; |
1631 | case QPainterPath::CurveToElement: |
1632 | if (cubicTo_clipped(path&: result, transform, a: last, b: path.elementAt(i), c: path.elementAt(i: i+1), d: path.elementAt(i: i+2), needsMoveTo)) |
1633 | needsMoveTo = false; |
1634 | i += 2; |
1635 | last = path.elementAt(i); |
1636 | break; |
1637 | default: |
1638 | Q_ASSERT(false); |
1639 | } |
1640 | } |
1641 | |
1642 | if (path.elementCount() > 0 && lastMoveTo != last) |
1643 | lineTo_clipped(path&: result, transform, a: last, b: lastMoveTo, needsMoveTo, needsLineTo: false); |
1644 | |
1645 | result.setFillRule(path.fillRule()); |
1646 | return result; |
1647 | } |
1648 | |
1649 | /*! |
1650 | \fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix) |
1651 | \since 4.3 |
1652 | \relates QTransform |
1653 | |
1654 | This is the same as \a{matrix}.map(\a{path}). |
1655 | |
1656 | \sa QTransform::map() |
1657 | */ |
1658 | |
1659 | /*! |
1660 | \overload |
1661 | |
1662 | Creates and returns a QPainterPath object that is a copy of the |
1663 | given \a path, mapped into the coordinate system defined by this |
1664 | matrix. |
1665 | */ |
1666 | QPainterPath QTransform::map(const QPainterPath &path) const |
1667 | { |
1668 | TransformationType t = inline_type(); |
1669 | if (t == TxNone || path.elementCount() == 0) |
1670 | return path; |
1671 | |
1672 | if (t >= TxProject) |
1673 | return mapProjective(transform: *this, path); |
1674 | |
1675 | QPainterPath copy = path; |
1676 | |
1677 | if (t == TxTranslate) { |
1678 | copy.translate(dx: m_matrix[2][0], dy: m_matrix[2][1]); |
1679 | } else { |
1680 | copy.detach(); |
1681 | // Full xform |
1682 | for (int i=0; i<path.elementCount(); ++i) { |
1683 | QPainterPath::Element &e = copy.d_ptr->elements[i]; |
1684 | MAP(e.x, e.y, e.x, e.y); |
1685 | } |
1686 | } |
1687 | |
1688 | return copy; |
1689 | } |
1690 | |
1691 | /*! |
1692 | \fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const |
1693 | |
1694 | Creates and returns a QPolygon representation of the given \a |
1695 | rectangle, mapped into the coordinate system defined by this |
1696 | matrix. |
1697 | |
1698 | The rectangle's coordinates are transformed using the following |
1699 | formulas: |
1700 | |
1701 | \snippet code/src_gui_painting_qtransform.cpp 1 |
1702 | |
1703 | Polygons and rectangles behave slightly differently when |
1704 | transformed (due to integer rounding), so |
1705 | \c{matrix.map(QPolygon(rectangle))} is not always the same as |
1706 | \c{matrix.mapToPolygon(rectangle)}. |
1707 | |
1708 | \sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix |
1709 | Operations} |
1710 | */ |
1711 | QPolygon QTransform::mapToPolygon(const QRect &rect) const |
1712 | { |
1713 | TransformationType t = inline_type(); |
1714 | |
1715 | QPolygon a(4); |
1716 | qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 }; |
1717 | if (t <= TxScale) { |
1718 | x[0] = m_matrix[0][0]*rect.x() + m_matrix[2][0]; |
1719 | y[0] = m_matrix[1][1]*rect.y() + m_matrix[2][1]; |
1720 | qreal w = m_matrix[0][0]*rect.width(); |
1721 | qreal h = m_matrix[1][1]*rect.height(); |
1722 | if (w < 0) { |
1723 | w = -w; |
1724 | x[0] -= w; |
1725 | } |
1726 | if (h < 0) { |
1727 | h = -h; |
1728 | y[0] -= h; |
1729 | } |
1730 | x[1] = x[0]+w; |
1731 | x[2] = x[1]; |
1732 | x[3] = x[0]; |
1733 | y[1] = y[0]; |
1734 | y[2] = y[0]+h; |
1735 | y[3] = y[2]; |
1736 | } else { |
1737 | qreal right = rect.x() + rect.width(); |
1738 | qreal bottom = rect.y() + rect.height(); |
1739 | MAP(rect.x(), rect.y(), x[0], y[0]); |
1740 | MAP(right, rect.y(), x[1], y[1]); |
1741 | MAP(right, bottom, x[2], y[2]); |
1742 | MAP(rect.x(), bottom, x[3], y[3]); |
1743 | } |
1744 | |
1745 | // all coordinates are correctly, transform to a pointarray |
1746 | // (rounding to the next integer) |
1747 | a.setPoints(nPoints: 4, firstx: qRound(d: x[0]), firsty: qRound(d: y[0]), |
1748 | qRound(d: x[1]), qRound(d: y[1]), |
1749 | qRound(d: x[2]), qRound(d: y[2]), |
1750 | qRound(d: x[3]), qRound(d: y[3])); |
1751 | return a; |
1752 | } |
1753 | |
1754 | /*! |
1755 | Creates a transformation matrix, \a trans, that maps a unit square |
1756 | to a four-sided polygon, \a quad. Returns \c true if the transformation |
1757 | is constructed or false if such a transformation does not exist. |
1758 | |
1759 | \sa quadToSquare(), quadToQuad() |
1760 | */ |
1761 | bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans) |
1762 | { |
1763 | if (quad.size() != 4) |
1764 | return false; |
1765 | |
1766 | qreal dx0 = quad[0].x(); |
1767 | qreal dx1 = quad[1].x(); |
1768 | qreal dx2 = quad[2].x(); |
1769 | qreal dx3 = quad[3].x(); |
1770 | |
1771 | qreal dy0 = quad[0].y(); |
1772 | qreal dy1 = quad[1].y(); |
1773 | qreal dy2 = quad[2].y(); |
1774 | qreal dy3 = quad[3].y(); |
1775 | |
1776 | double ax = dx0 - dx1 + dx2 - dx3; |
1777 | double ay = dy0 - dy1 + dy2 - dy3; |
1778 | |
1779 | if (!ax && !ay) { //afine transform |
1780 | trans.setMatrix(m11: dx1 - dx0, m12: dy1 - dy0, m13: 0, |
1781 | m21: dx2 - dx1, m22: dy2 - dy1, m23: 0, |
1782 | m31: dx0, m32: dy0, m33: 1); |
1783 | } else { |
1784 | double ax1 = dx1 - dx2; |
1785 | double ax2 = dx3 - dx2; |
1786 | double ay1 = dy1 - dy2; |
1787 | double ay2 = dy3 - dy2; |
1788 | |
1789 | /*determinants */ |
1790 | double gtop = ax * ay2 - ax2 * ay; |
1791 | double htop = ax1 * ay - ax * ay1; |
1792 | double bottom = ax1 * ay2 - ax2 * ay1; |
1793 | |
1794 | double a, b, c, d, e, f, g, h; /*i is always 1*/ |
1795 | |
1796 | if (!bottom) |
1797 | return false; |
1798 | |
1799 | g = gtop/bottom; |
1800 | h = htop/bottom; |
1801 | |
1802 | a = dx1 - dx0 + g * dx1; |
1803 | b = dx3 - dx0 + h * dx3; |
1804 | c = dx0; |
1805 | d = dy1 - dy0 + g * dy1; |
1806 | e = dy3 - dy0 + h * dy3; |
1807 | f = dy0; |
1808 | |
1809 | trans.setMatrix(m11: a, m12: d, m13: g, |
1810 | m21: b, m22: e, m23: h, |
1811 | m31: c, m32: f, m33: 1.0); |
1812 | } |
1813 | |
1814 | return true; |
1815 | } |
1816 | |
1817 | /*! |
1818 | \fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
1819 | |
1820 | Creates a transformation matrix, \a trans, that maps a four-sided polygon, |
1821 | \a quad, to a unit square. Returns \c true if the transformation is constructed |
1822 | or false if such a transformation does not exist. |
1823 | |
1824 | \sa squareToQuad(), quadToQuad() |
1825 | */ |
1826 | bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
1827 | { |
1828 | if (!squareToQuad(quad, trans)) |
1829 | return false; |
1830 | |
1831 | bool invertible = false; |
1832 | trans = trans.inverted(invertible: &invertible); |
1833 | |
1834 | return invertible; |
1835 | } |
1836 | |
1837 | /*! |
1838 | Creates a transformation matrix, \a trans, that maps a four-sided |
1839 | polygon, \a one, to another four-sided polygon, \a two. |
1840 | Returns \c true if the transformation is possible; otherwise returns |
1841 | false. |
1842 | |
1843 | This is a convenience method combining quadToSquare() and |
1844 | squareToQuad() methods. It allows the input quad to be |
1845 | transformed into any other quad. |
1846 | |
1847 | \sa squareToQuad(), quadToSquare() |
1848 | */ |
1849 | bool QTransform::quadToQuad(const QPolygonF &one, |
1850 | const QPolygonF &two, |
1851 | QTransform &trans) |
1852 | { |
1853 | QTransform stq; |
1854 | if (!quadToSquare(quad: one, trans)) |
1855 | return false; |
1856 | if (!squareToQuad(quad: two, trans&: stq)) |
1857 | return false; |
1858 | trans *= stq; |
1859 | //qDebug()<<"Final = "<<trans; |
1860 | return true; |
1861 | } |
1862 | |
1863 | /*! |
1864 | Sets the matrix elements to the specified values, \a m11, |
1865 | \a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and |
1866 | \a m33. Note that this function replaces the previous values. |
1867 | QTransform provides the translate(), rotate(), scale() and shear() |
1868 | convenience functions to manipulate the various matrix elements |
1869 | based on the currently defined coordinate system. |
1870 | |
1871 | \sa QTransform() |
1872 | */ |
1873 | |
1874 | void QTransform::setMatrix(qreal m11, qreal m12, qreal m13, |
1875 | qreal m21, qreal m22, qreal m23, |
1876 | qreal m31, qreal m32, qreal m33) |
1877 | { |
1878 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
1879 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
1880 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
1881 | m_type = TxNone; |
1882 | m_dirty = TxProject; |
1883 | } |
1884 | |
1885 | static inline bool needsPerspectiveClipping(const QRectF &rect, const QTransform &transform) |
1886 | { |
1887 | const qreal wx = qMin(a: transform.m13() * rect.left(), b: transform.m13() * rect.right()); |
1888 | const qreal wy = qMin(a: transform.m23() * rect.top(), b: transform.m23() * rect.bottom()); |
1889 | |
1890 | return wx + wy + transform.m33() < Q_NEAR_CLIP; |
1891 | } |
1892 | |
1893 | QRect QTransform::mapRect(const QRect &rect) const |
1894 | { |
1895 | TransformationType t = inline_type(); |
1896 | if (t <= TxTranslate) |
1897 | return rect.translated(dx: qRound(d: m_matrix[2][0]), dy: qRound(d: m_matrix[2][1])); |
1898 | |
1899 | if (t <= TxScale) { |
1900 | int x = qRound(d: m_matrix[0][0] * rect.x() + m_matrix[2][0]); |
1901 | int y = qRound(d: m_matrix[1][1] * rect.y() + m_matrix[2][1]); |
1902 | int w = qRound(d: m_matrix[0][0] * rect.width()); |
1903 | int h = qRound(d: m_matrix[1][1] * rect.height()); |
1904 | if (w < 0) { |
1905 | w = -w; |
1906 | x -= w; |
1907 | } |
1908 | if (h < 0) { |
1909 | h = -h; |
1910 | y -= h; |
1911 | } |
1912 | return QRect(x, y, w, h); |
1913 | } else if (t < TxProject || !needsPerspectiveClipping(rect, transform: *this)) { |
1914 | // see mapToPolygon for explanations of the algorithm. |
1915 | qreal x = 0, y = 0; |
1916 | MAP(rect.left(), rect.top(), x, y); |
1917 | qreal xmin = x; |
1918 | qreal ymin = y; |
1919 | qreal xmax = x; |
1920 | qreal ymax = y; |
1921 | MAP(rect.right() + 1, rect.top(), x, y); |
1922 | xmin = qMin(a: xmin, b: x); |
1923 | ymin = qMin(a: ymin, b: y); |
1924 | xmax = qMax(a: xmax, b: x); |
1925 | ymax = qMax(a: ymax, b: y); |
1926 | MAP(rect.right() + 1, rect.bottom() + 1, x, y); |
1927 | xmin = qMin(a: xmin, b: x); |
1928 | ymin = qMin(a: ymin, b: y); |
1929 | xmax = qMax(a: xmax, b: x); |
1930 | ymax = qMax(a: ymax, b: y); |
1931 | MAP(rect.left(), rect.bottom() + 1, x, y); |
1932 | xmin = qMin(a: xmin, b: x); |
1933 | ymin = qMin(a: ymin, b: y); |
1934 | xmax = qMax(a: xmax, b: x); |
1935 | ymax = qMax(a: ymax, b: y); |
1936 | return QRect(qRound(d: xmin), qRound(d: ymin), qRound(d: xmax)-qRound(d: xmin), qRound(d: ymax)-qRound(d: ymin)); |
1937 | } else { |
1938 | QPainterPath path; |
1939 | path.addRect(rect); |
1940 | return map(path).boundingRect().toRect(); |
1941 | } |
1942 | } |
1943 | |
1944 | /*! |
1945 | \fn QRectF QTransform::mapRect(const QRectF &rectangle) const |
1946 | |
1947 | Creates and returns a QRectF object that is a copy of the given \a |
1948 | rectangle, mapped into the coordinate system defined by this |
1949 | matrix. |
1950 | |
1951 | The rectangle's coordinates are transformed using the following |
1952 | formulas: |
1953 | |
1954 | \snippet code/src_gui_painting_qtransform.cpp 2 |
1955 | |
1956 | If rotation or shearing has been specified, this function returns |
1957 | the \e bounding rectangle. To retrieve the exact region the given |
1958 | \a rectangle maps to, use the mapToPolygon() function instead. |
1959 | |
1960 | \sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix |
1961 | Operations} |
1962 | */ |
1963 | QRectF QTransform::mapRect(const QRectF &rect) const |
1964 | { |
1965 | TransformationType t = inline_type(); |
1966 | if (t <= TxTranslate) |
1967 | return rect.translated(dx: m_matrix[2][0], dy: m_matrix[2][1]); |
1968 | |
1969 | if (t <= TxScale) { |
1970 | qreal x = m_matrix[0][0] * rect.x() + m_matrix[2][0]; |
1971 | qreal y = m_matrix[1][1] * rect.y() + m_matrix[2][1]; |
1972 | qreal w = m_matrix[0][0] * rect.width(); |
1973 | qreal h = m_matrix[1][1] * rect.height(); |
1974 | if (w < 0) { |
1975 | w = -w; |
1976 | x -= w; |
1977 | } |
1978 | if (h < 0) { |
1979 | h = -h; |
1980 | y -= h; |
1981 | } |
1982 | return QRectF(x, y, w, h); |
1983 | } else if (t < TxProject || !needsPerspectiveClipping(rect, transform: *this)) { |
1984 | qreal x = 0, y = 0; |
1985 | MAP(rect.x(), rect.y(), x, y); |
1986 | qreal xmin = x; |
1987 | qreal ymin = y; |
1988 | qreal xmax = x; |
1989 | qreal ymax = y; |
1990 | MAP(rect.x() + rect.width(), rect.y(), x, y); |
1991 | xmin = qMin(a: xmin, b: x); |
1992 | ymin = qMin(a: ymin, b: y); |
1993 | xmax = qMax(a: xmax, b: x); |
1994 | ymax = qMax(a: ymax, b: y); |
1995 | MAP(rect.x() + rect.width(), rect.y() + rect.height(), x, y); |
1996 | xmin = qMin(a: xmin, b: x); |
1997 | ymin = qMin(a: ymin, b: y); |
1998 | xmax = qMax(a: xmax, b: x); |
1999 | ymax = qMax(a: ymax, b: y); |
2000 | MAP(rect.x(), rect.y() + rect.height(), x, y); |
2001 | xmin = qMin(a: xmin, b: x); |
2002 | ymin = qMin(a: ymin, b: y); |
2003 | xmax = qMax(a: xmax, b: x); |
2004 | ymax = qMax(a: ymax, b: y); |
2005 | return QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
2006 | } else { |
2007 | QPainterPath path; |
2008 | path.addRect(rect); |
2009 | return map(path).boundingRect(); |
2010 | } |
2011 | } |
2012 | |
2013 | /*! |
2014 | \fn QRect QTransform::mapRect(const QRect &rectangle) const |
2015 | \overload |
2016 | |
2017 | Creates and returns a QRect object that is a copy of the given \a |
2018 | rectangle, mapped into the coordinate system defined by this |
2019 | matrix. Note that the transformed coordinates are rounded to the |
2020 | nearest integer. |
2021 | */ |
2022 | |
2023 | /*! |
2024 | Maps the given coordinates \a x and \a y into the coordinate |
2025 | system defined by this matrix. The resulting values are put in *\a |
2026 | tx and *\a ty, respectively. |
2027 | |
2028 | The coordinates are transformed using the following formulas: |
2029 | |
2030 | \snippet code/src_gui_painting_qtransform.cpp 3 |
2031 | |
2032 | The point (x, y) is the original point, and (x', y') is the |
2033 | transformed point. |
2034 | |
2035 | \sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations} |
2036 | */ |
2037 | void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
2038 | { |
2039 | TransformationType t = inline_type(); |
2040 | MAP(x, y, *tx, *ty); |
2041 | } |
2042 | |
2043 | /*! |
2044 | \overload |
2045 | |
2046 | Maps the given coordinates \a x and \a y into the coordinate |
2047 | system defined by this matrix. The resulting values are put in *\a |
2048 | tx and *\a ty, respectively. Note that the transformed coordinates |
2049 | are rounded to the nearest integer. |
2050 | */ |
2051 | void QTransform::map(int x, int y, int *tx, int *ty) const |
2052 | { |
2053 | TransformationType t = inline_type(); |
2054 | qreal fx = 0, fy = 0; |
2055 | MAP(x, y, fx, fy); |
2056 | *tx = qRound(d: fx); |
2057 | *ty = qRound(d: fy); |
2058 | } |
2059 | |
2060 | /*! |
2061 | Returns the transformation type of this matrix. |
2062 | |
2063 | The transformation type is the highest enumeration value |
2064 | capturing all of the matrix's transformations. For example, |
2065 | if the matrix both scales and shears, the type would be \c TxShear, |
2066 | because \c TxShear has a higher enumeration value than \c TxScale. |
2067 | |
2068 | Knowing the transformation type of a matrix is useful for optimization: |
2069 | you can often handle specific types more optimally than handling |
2070 | the generic case. |
2071 | */ |
2072 | QTransform::TransformationType QTransform::type() const |
2073 | { |
2074 | if (m_dirty == TxNone || m_dirty < m_type) |
2075 | return static_cast<TransformationType>(m_type); |
2076 | |
2077 | switch (static_cast<TransformationType>(m_dirty)) { |
2078 | case TxProject: |
2079 | if (!qFuzzyIsNull(d: m_matrix[0][2]) || !qFuzzyIsNull(d: m_matrix[1][2]) || !qFuzzyIsNull(d: m_matrix[2][2] - 1)) { |
2080 | m_type = TxProject; |
2081 | break; |
2082 | } |
2083 | Q_FALLTHROUGH(); |
2084 | case TxShear: |
2085 | case TxRotate: |
2086 | if (!qFuzzyIsNull(d: m_matrix[0][1]) || !qFuzzyIsNull(d: m_matrix[1][0])) { |
2087 | const qreal dot = m_matrix[0][0] * m_matrix[1][0] + m_matrix[0][1] * m_matrix[1][1]; |
2088 | if (qFuzzyIsNull(d: dot)) |
2089 | m_type = TxRotate; |
2090 | else |
2091 | m_type = TxShear; |
2092 | break; |
2093 | } |
2094 | Q_FALLTHROUGH(); |
2095 | case TxScale: |
2096 | if (!qFuzzyIsNull(d: m_matrix[0][0] - 1) || !qFuzzyIsNull(d: m_matrix[1][1] - 1)) { |
2097 | m_type = TxScale; |
2098 | break; |
2099 | } |
2100 | Q_FALLTHROUGH(); |
2101 | case TxTranslate: |
2102 | if (!qFuzzyIsNull(d: m_matrix[2][0]) || !qFuzzyIsNull(d: m_matrix[2][1])) { |
2103 | m_type = TxTranslate; |
2104 | break; |
2105 | } |
2106 | Q_FALLTHROUGH(); |
2107 | case TxNone: |
2108 | m_type = TxNone; |
2109 | break; |
2110 | } |
2111 | |
2112 | m_dirty = TxNone; |
2113 | return static_cast<TransformationType>(m_type); |
2114 | } |
2115 | |
2116 | /*! |
2117 | |
2118 | Returns the transform as a QVariant. |
2119 | */ |
2120 | QTransform::operator QVariant() const |
2121 | { |
2122 | return QVariant::fromValue(value: *this); |
2123 | } |
2124 | |
2125 | |
2126 | /*! |
2127 | \fn bool QTransform::isInvertible() const |
2128 | |
2129 | Returns \c true if the matrix is invertible, otherwise returns \c false. |
2130 | |
2131 | \sa inverted() |
2132 | */ |
2133 | |
2134 | /*! |
2135 | \fn qreal QTransform::m11() const |
2136 | |
2137 | Returns the horizontal scaling factor. |
2138 | |
2139 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2140 | Operations} |
2141 | */ |
2142 | |
2143 | /*! |
2144 | \fn qreal QTransform::m12() const |
2145 | |
2146 | Returns the vertical shearing factor. |
2147 | |
2148 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2149 | Operations} |
2150 | */ |
2151 | |
2152 | /*! |
2153 | \fn qreal QTransform::m21() const |
2154 | |
2155 | Returns the horizontal shearing factor. |
2156 | |
2157 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2158 | Operations} |
2159 | */ |
2160 | |
2161 | /*! |
2162 | \fn qreal QTransform::m22() const |
2163 | |
2164 | Returns the vertical scaling factor. |
2165 | |
2166 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2167 | Operations} |
2168 | */ |
2169 | |
2170 | /*! |
2171 | \fn qreal QTransform::dx() const |
2172 | |
2173 | Returns the horizontal translation factor. |
2174 | |
2175 | \sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2176 | Operations} |
2177 | */ |
2178 | |
2179 | /*! |
2180 | \fn qreal QTransform::dy() const |
2181 | |
2182 | Returns the vertical translation factor. |
2183 | |
2184 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2185 | Operations} |
2186 | */ |
2187 | |
2188 | |
2189 | /*! |
2190 | \fn qreal QTransform::m13() const |
2191 | |
2192 | Returns the horizontal projection factor. |
2193 | |
2194 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2195 | Operations} |
2196 | */ |
2197 | |
2198 | |
2199 | /*! |
2200 | \fn qreal QTransform::m23() const |
2201 | |
2202 | Returns the vertical projection factor. |
2203 | |
2204 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2205 | Operations} |
2206 | */ |
2207 | |
2208 | /*! |
2209 | \fn qreal QTransform::m31() const |
2210 | |
2211 | Returns the horizontal translation factor. |
2212 | |
2213 | \sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2214 | Operations} |
2215 | */ |
2216 | |
2217 | /*! |
2218 | \fn qreal QTransform::m32() const |
2219 | |
2220 | Returns the vertical translation factor. |
2221 | |
2222 | \sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2223 | Operations} |
2224 | */ |
2225 | |
2226 | /*! |
2227 | \fn qreal QTransform::m33() const |
2228 | |
2229 | Returns the division factor. |
2230 | |
2231 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
2232 | Operations} |
2233 | */ |
2234 | |
2235 | /*! |
2236 | \fn qreal QTransform::determinant() const |
2237 | |
2238 | Returns the matrix's determinant. |
2239 | */ |
2240 | |
2241 | /*! |
2242 | \fn bool QTransform::isIdentity() const |
2243 | |
2244 | Returns \c true if the matrix is the identity matrix, otherwise |
2245 | returns \c false. |
2246 | |
2247 | \sa reset() |
2248 | */ |
2249 | |
2250 | /*! |
2251 | \fn bool QTransform::isAffine() const |
2252 | |
2253 | Returns \c true if the matrix represent an affine transformation, |
2254 | otherwise returns \c false. |
2255 | */ |
2256 | |
2257 | /*! |
2258 | \fn bool QTransform::isScaling() const |
2259 | |
2260 | Returns \c true if the matrix represents a scaling |
2261 | transformation, otherwise returns \c false. |
2262 | |
2263 | \sa reset() |
2264 | */ |
2265 | |
2266 | /*! |
2267 | \fn bool QTransform::isRotating() const |
2268 | |
2269 | Returns \c true if the matrix represents some kind of a |
2270 | rotating transformation, otherwise returns \c false. |
2271 | |
2272 | \note A rotation transformation of 180 degrees and/or 360 degrees is treated as a scaling transformation. |
2273 | |
2274 | \sa reset() |
2275 | */ |
2276 | |
2277 | /*! |
2278 | \fn bool QTransform::isTranslating() const |
2279 | |
2280 | Returns \c true if the matrix represents a translating |
2281 | transformation, otherwise returns \c false. |
2282 | |
2283 | \sa reset() |
2284 | */ |
2285 | |
2286 | /*! |
2287 | \fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2) |
2288 | |
2289 | \relates QTransform |
2290 | \since 4.6 |
2291 | |
2292 | Returns \c true if \a t1 and \a t2 are equal, allowing for a small |
2293 | fuzziness factor for floating-point comparisons; false otherwise. |
2294 | */ |
2295 | |
2296 | |
2297 | // returns true if the transform is uniformly scaling |
2298 | // (same scale in x and y direction) |
2299 | // scale is set to the max of x and y scaling factors |
2300 | Q_GUI_EXPORT |
2301 | bool qt_scaleForTransform(const QTransform &transform, qreal *scale) |
2302 | { |
2303 | const QTransform::TransformationType type = transform.type(); |
2304 | if (type <= QTransform::TxTranslate) { |
2305 | if (scale) |
2306 | *scale = 1; |
2307 | return true; |
2308 | } else if (type == QTransform::TxScale) { |
2309 | const qreal xScale = qAbs(t: transform.m11()); |
2310 | const qreal yScale = qAbs(t: transform.m22()); |
2311 | if (scale) |
2312 | *scale = qMax(a: xScale, b: yScale); |
2313 | return qFuzzyCompare(p1: xScale, p2: yScale); |
2314 | } |
2315 | |
2316 | // rotate then scale: compare columns |
2317 | const qreal xScale1 = transform.m11() * transform.m11() |
2318 | + transform.m21() * transform.m21(); |
2319 | const qreal yScale1 = transform.m12() * transform.m12() |
2320 | + transform.m22() * transform.m22(); |
2321 | |
2322 | // scale then rotate: compare rows |
2323 | const qreal xScale2 = transform.m11() * transform.m11() |
2324 | + transform.m12() * transform.m12(); |
2325 | const qreal yScale2 = transform.m21() * transform.m21() |
2326 | + transform.m22() * transform.m22(); |
2327 | |
2328 | // decide the order of rotate and scale operations |
2329 | if (qAbs(t: xScale1 - yScale1) > qAbs(t: xScale2 - yScale2)) { |
2330 | if (scale) |
2331 | *scale = qSqrt(v: qMax(a: xScale1, b: yScale1)); |
2332 | |
2333 | return type == QTransform::TxRotate && qFuzzyCompare(p1: xScale1, p2: yScale1); |
2334 | } else { |
2335 | if (scale) |
2336 | *scale = qSqrt(v: qMax(a: xScale2, b: yScale2)); |
2337 | |
2338 | return type == QTransform::TxRotate && qFuzzyCompare(p1: xScale2, p2: yScale2); |
2339 | } |
2340 | } |
2341 | |
2342 | QDataStream & operator>>(QDataStream &s, QTransform::Affine &m) |
2343 | { |
2344 | if (s.version() == 1) { |
2345 | float m11, m12, m21, m22, dx, dy; |
2346 | s >> m11; s >> m12; s >> m21; s >> m22; s >> dx; s >> dy; |
2347 | |
2348 | m.m_matrix[0][0] = m11; |
2349 | m.m_matrix[0][1] = m12; |
2350 | m.m_matrix[1][0] = m21; |
2351 | m.m_matrix[1][1] = m22; |
2352 | m.m_matrix[2][0] = dx; |
2353 | m.m_matrix[2][1] = dy; |
2354 | } else { |
2355 | s >> m.m_matrix[0][0]; |
2356 | s >> m.m_matrix[0][1]; |
2357 | s >> m.m_matrix[1][0]; |
2358 | s >> m.m_matrix[1][1]; |
2359 | s >> m.m_matrix[2][0]; |
2360 | s >> m.m_matrix[2][1]; |
2361 | } |
2362 | m.m_matrix[0][2] = 0; |
2363 | m.m_matrix[1][2] = 0; |
2364 | m.m_matrix[2][2] = 1; |
2365 | return s; |
2366 | } |
2367 | |
2368 | QDataStream &operator<<(QDataStream &s, const QTransform::Affine &m) |
2369 | { |
2370 | if (s.version() == 1) { |
2371 | s << (float)m.m_matrix[0][0] |
2372 | << (float)m.m_matrix[0][1] |
2373 | << (float)m.m_matrix[1][0] |
2374 | << (float)m.m_matrix[1][1] |
2375 | << (float)m.m_matrix[2][0] |
2376 | << (float)m.m_matrix[2][1]; |
2377 | } else { |
2378 | s << m.m_matrix[0][0] |
2379 | << m.m_matrix[0][1] |
2380 | << m.m_matrix[1][0] |
2381 | << m.m_matrix[1][1] |
2382 | << m.m_matrix[2][0] |
2383 | << m.m_matrix[2][1]; |
2384 | } |
2385 | return s; |
2386 | } |
2387 | |
2388 | QT_END_NAMESPACE |
2389 | |