| 1 | // Copyright (C) 2021 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | #include "qtransform.h" |
| 4 | |
| 5 | #include "qdatastream.h" |
| 6 | #include "qdebug.h" |
| 7 | #include "qhashfunctions.h" |
| 8 | #include "qregion.h" |
| 9 | #include "qpainterpath.h" |
| 10 | #include "qpainterpath_p.h" |
| 11 | #include "qvariant.h" |
| 12 | #include "qmath_p.h" |
| 13 | #include <qnumeric.h> |
| 14 | |
| 15 | #include <private/qbezier_p.h> |
| 16 | |
| 17 | QT_BEGIN_NAMESPACE |
| 18 | |
| 19 | #ifndef QT_NO_DEBUG |
| 20 | Q_NEVER_INLINE |
| 21 | static void nanWarning(const char *func) |
| 22 | { |
| 23 | qWarning(msg: "QTransform::%s with NaN called" , func); |
| 24 | } |
| 25 | #endif // QT_NO_DEBUG |
| 26 | |
| 27 | #define Q_NEAR_CLIP (sizeof(qreal) == sizeof(double) ? 0.000001 : 0.0001) |
| 28 | |
| 29 | void QTransform::do_map(qreal x, qreal y, qreal &nx, qreal &ny) const |
| 30 | { |
| 31 | const TransformationType t = inline_type(); |
| 32 | switch (t) { |
| 33 | case QTransform::TxNone: |
| 34 | nx = x; |
| 35 | ny = y; |
| 36 | return; |
| 37 | case QTransform::TxTranslate: |
| 38 | nx = x + m_matrix[2][0]; |
| 39 | ny = y + m_matrix[2][1]; |
| 40 | return; |
| 41 | case QTransform::TxScale: |
| 42 | nx = m_matrix[0][0] * x + m_matrix[2][0]; |
| 43 | ny = m_matrix[1][1] * y + m_matrix[2][1]; |
| 44 | return; |
| 45 | case QTransform::TxRotate: |
| 46 | case QTransform::TxShear: |
| 47 | case QTransform::TxProject: |
| 48 | nx = m_matrix[0][0] * x + m_matrix[1][0] * y + m_matrix[2][0]; |
| 49 | ny = m_matrix[0][1] * x + m_matrix[1][1] * y + m_matrix[2][1]; |
| 50 | if (t == QTransform::TxProject) { |
| 51 | qreal w = (m_matrix[0][2] * x + m_matrix[1][2] * y + m_matrix[2][2]); |
| 52 | if (w < qreal(Q_NEAR_CLIP)) w = qreal(Q_NEAR_CLIP); |
| 53 | w = qreal(1.)/w; |
| 54 | nx *= w; |
| 55 | ny *= w; |
| 56 | } |
| 57 | return; |
| 58 | } |
| 59 | Q_UNREACHABLE_RETURN(); |
| 60 | } |
| 61 | |
| 62 | /*! |
| 63 | \class QTransform |
| 64 | \brief The QTransform class specifies 2D transformations of a coordinate system. |
| 65 | \since 4.3 |
| 66 | \ingroup painting |
| 67 | \inmodule QtGui |
| 68 | |
| 69 | A transformation specifies how to translate, scale, shear, rotate |
| 70 | or project the coordinate system, and is typically used when |
| 71 | rendering graphics. |
| 72 | |
| 73 | A QTransform object can be built using the setMatrix(), scale(), |
| 74 | rotate(), translate() and shear() functions. Alternatively, it |
| 75 | can be built by applying \l {QTransform#Basic Matrix |
| 76 | Operations}{basic matrix operations}. The matrix can also be |
| 77 | defined when constructed, and it can be reset to the identity |
| 78 | matrix (the default) using the reset() function. |
| 79 | |
| 80 | The QTransform class supports mapping of graphic primitives: A given |
| 81 | point, line, polygon, region, or painter path can be mapped to the |
| 82 | coordinate system defined by \e this matrix using the map() |
| 83 | function. In case of a rectangle, its coordinates can be |
| 84 | transformed using the mapRect() function. A rectangle can also be |
| 85 | transformed into a \e polygon (mapped to the coordinate system |
| 86 | defined by \e this matrix), using the mapToPolygon() function. |
| 87 | |
| 88 | QTransform provides the isIdentity() function which returns \c true if |
| 89 | the matrix is the identity matrix, and the isInvertible() function |
| 90 | which returns \c true if the matrix is non-singular (i.e. AB = BA = |
| 91 | I). The inverted() function returns an inverted copy of \e this |
| 92 | matrix if it is invertible (otherwise it returns the identity |
| 93 | matrix), and adjoint() returns the matrix's classical adjoint. |
| 94 | In addition, QTransform provides the determinant() function which |
| 95 | returns the matrix's determinant. |
| 96 | |
| 97 | Finally, the QTransform class supports matrix multiplication, addition |
| 98 | and subtraction, and objects of the class can be streamed as well |
| 99 | as compared. |
| 100 | |
| 101 | \section1 Rendering Graphics |
| 102 | |
| 103 | When rendering graphics, the matrix defines the transformations |
| 104 | but the actual transformation is performed by the drawing routines |
| 105 | in QPainter. |
| 106 | |
| 107 | By default, QPainter operates on the associated device's own |
| 108 | coordinate system. The standard coordinate system of a |
| 109 | QPaintDevice has its origin located at the top-left position. The |
| 110 | \e x values increase to the right; \e y values increase |
| 111 | downward. For a complete description, see the \l {Coordinate |
| 112 | System} {coordinate system} documentation. |
| 113 | |
| 114 | QPainter has functions to translate, scale, shear and rotate the |
| 115 | coordinate system without using a QTransform. For example: |
| 116 | |
| 117 | \table 100% |
| 118 | \row |
| 119 | \li \inlineimage qtransform-simpletransformation.png |
| 120 | \li |
| 121 | \snippet transform/main.cpp 0 |
| 122 | \endtable |
| 123 | |
| 124 | Although these functions are very convenient, it can be more |
| 125 | efficient to build a QTransform and call QPainter::setTransform() if you |
| 126 | want to perform more than a single transform operation. For |
| 127 | example: |
| 128 | |
| 129 | \table 100% |
| 130 | \row |
| 131 | \li \inlineimage qtransform-combinedtransformation.png |
| 132 | \li |
| 133 | \snippet transform/main.cpp 1 |
| 134 | \endtable |
| 135 | |
| 136 | \section1 Basic Matrix Operations |
| 137 | |
| 138 | \image qtransform-representation.png |
| 139 | |
| 140 | A QTransform object contains a 3 x 3 matrix. The \c m31 (\c dx) and |
| 141 | \c m32 (\c dy) elements specify horizontal and vertical translation. |
| 142 | The \c m11 and \c m22 elements specify horizontal and vertical scaling. |
| 143 | The \c m21 and \c m12 elements specify horizontal and vertical \e shearing. |
| 144 | And finally, the \c m13 and \c m23 elements specify horizontal and vertical |
| 145 | projection, with \c m33 as an additional projection factor. |
| 146 | |
| 147 | QTransform transforms a point in the plane to another point using the |
| 148 | following formulas: |
| 149 | |
| 150 | \snippet code/src_gui_painting_qtransform.cpp 0 |
| 151 | |
| 152 | The point \e (x, y) is the original point, and \e (x', y') is the |
| 153 | transformed point. \e (x', y') can be transformed back to \e (x, |
| 154 | y) by performing the same operation on the inverted() matrix. |
| 155 | |
| 156 | The various matrix elements can be set when constructing the |
| 157 | matrix, or by using the setMatrix() function later on. They can also |
| 158 | be manipulated using the translate(), rotate(), scale() and |
| 159 | shear() convenience functions. The currently set values can be |
| 160 | retrieved using the m11(), m12(), m13(), m21(), m22(), m23(), |
| 161 | m31(), m32(), m33(), dx() and dy() functions. |
| 162 | |
| 163 | Translation is the simplest transformation. Setting \c dx and \c |
| 164 | dy will move the coordinate system \c dx units along the X axis |
| 165 | and \c dy units along the Y axis. Scaling can be done by setting |
| 166 | \c m11 and \c m22. For example, setting \c m11 to 2 and \c m22 to |
| 167 | 1.5 will double the height and increase the width by 50%. The |
| 168 | identity matrix has \c m11, \c m22, and \c m33 set to 1 (all others are set |
| 169 | to 0) mapping a point to itself. Shearing is controlled by \c m12 |
| 170 | and \c m21. Setting these elements to values different from zero |
| 171 | will twist the coordinate system. Rotation is achieved by |
| 172 | setting both the shearing factors and the scaling factors. Perspective |
| 173 | transformation is achieved by setting both the projection factors and |
| 174 | the scaling factors. |
| 175 | |
| 176 | \section2 Combining Transforms |
| 177 | Here's the combined transformations example using basic matrix |
| 178 | operations: |
| 179 | |
| 180 | \table 100% |
| 181 | \row |
| 182 | \li \inlineimage qtransform-combinedtransformation2.png |
| 183 | \li |
| 184 | \snippet transform/main.cpp 2 |
| 185 | \endtable |
| 186 | |
| 187 | The combined transform first scales each operand, then rotates it, and |
| 188 | finally translates it, just as in the order in which the product of its |
| 189 | factors is written. This means the point to which the transforms are |
| 190 | applied is implicitly multiplied on the left with the transform |
| 191 | to its right. |
| 192 | |
| 193 | \section2 Relation to Matrix Notation |
| 194 | The matrix notation in QTransform is the transpose of a commonly-taught |
| 195 | convention which represents transforms and points as matrices and vectors. |
| 196 | That convention multiplies its matrix on the left and column vector to the |
| 197 | right. In other words, when several transforms are applied to a point, the |
| 198 | right-most matrix acts directly on the vector first. Then the next matrix |
| 199 | to the left acts on the result of the first operation - and so on. As a |
| 200 | result, that convention multiplies the matrices that make up a composite |
| 201 | transform in the reverse of the order in QTransform, as you can see in |
| 202 | \l {Combining Transforms}. Transposing the matrices, and combining them to |
| 203 | the right of a row vector that represents the point, lets the matrices of |
| 204 | transforms appear, in their product, in the order in which we think of the |
| 205 | transforms being applied to the point. |
| 206 | |
| 207 | \sa QPainter, {Coordinate System}, {painting/affine}{Affine |
| 208 | Transformations Example}, {Transformations Example} |
| 209 | */ |
| 210 | |
| 211 | /*! |
| 212 | \enum QTransform::TransformationType |
| 213 | |
| 214 | \value TxNone |
| 215 | \value TxTranslate |
| 216 | \value TxScale |
| 217 | \value TxRotate |
| 218 | \value TxShear |
| 219 | \value TxProject |
| 220 | */ |
| 221 | |
| 222 | /*! |
| 223 | \fn QTransform::QTransform(Qt::Initialization) |
| 224 | \internal |
| 225 | */ |
| 226 | |
| 227 | /*! |
| 228 | \fn QTransform::QTransform() |
| 229 | |
| 230 | Constructs an identity matrix. |
| 231 | |
| 232 | All elements are set to zero except \c m11 and \c m22 (specifying |
| 233 | the scale) and \c m33 which are set to 1. |
| 234 | |
| 235 | \sa reset() |
| 236 | */ |
| 237 | |
| 238 | /*! |
| 239 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m13, qreal m21, qreal m22, qreal m23, qreal m31, qreal m32, qreal m33) |
| 240 | |
| 241 | Constructs a matrix with the elements, \a m11, \a m12, \a m13, |
| 242 | \a m21, \a m22, \a m23, \a m31, \a m32, \a m33. |
| 243 | |
| 244 | \sa setMatrix() |
| 245 | */ |
| 246 | |
| 247 | /*! |
| 248 | \fn QTransform::QTransform(qreal m11, qreal m12, qreal m21, qreal m22, qreal dx, qreal dy) |
| 249 | |
| 250 | Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a m22, \a dx and \a dy. |
| 251 | |
| 252 | \sa setMatrix() |
| 253 | */ |
| 254 | |
| 255 | /*! |
| 256 | Returns the adjoint of this matrix. |
| 257 | */ |
| 258 | QTransform QTransform::adjoint() const |
| 259 | { |
| 260 | qreal h11, h12, h13, |
| 261 | h21, h22, h23, |
| 262 | h31, h32, h33; |
| 263 | h11 = m_matrix[1][1] * m_matrix[2][2] - m_matrix[1][2] * m_matrix[2][1]; |
| 264 | h21 = m_matrix[1][2] * m_matrix[2][0] - m_matrix[1][0] * m_matrix[2][2]; |
| 265 | h31 = m_matrix[1][0] * m_matrix[2][1] - m_matrix[1][1] * m_matrix[2][0]; |
| 266 | h12 = m_matrix[0][2] * m_matrix[2][1] - m_matrix[0][1] * m_matrix[2][2]; |
| 267 | h22 = m_matrix[0][0] * m_matrix[2][2] - m_matrix[0][2] * m_matrix[2][0]; |
| 268 | h32 = m_matrix[0][1] * m_matrix[2][0] - m_matrix[0][0] * m_matrix[2][1]; |
| 269 | h13 = m_matrix[0][1] * m_matrix[1][2] - m_matrix[0][2] * m_matrix[1][1]; |
| 270 | h23 = m_matrix[0][2] * m_matrix[1][0] - m_matrix[0][0] * m_matrix[1][2]; |
| 271 | h33 = m_matrix[0][0] * m_matrix[1][1] - m_matrix[0][1] * m_matrix[1][0]; |
| 272 | |
| 273 | return QTransform(h11, h12, h13, |
| 274 | h21, h22, h23, |
| 275 | h31, h32, h33); |
| 276 | } |
| 277 | |
| 278 | /*! |
| 279 | Returns the transpose of this matrix. |
| 280 | */ |
| 281 | QTransform QTransform::transposed() const |
| 282 | { |
| 283 | QTransform t(m_matrix[0][0], m_matrix[1][0], m_matrix[2][0], |
| 284 | m_matrix[0][1], m_matrix[1][1], m_matrix[2][1], |
| 285 | m_matrix[0][2], m_matrix[1][2], m_matrix[2][2]); |
| 286 | return t; |
| 287 | } |
| 288 | |
| 289 | /*! |
| 290 | Returns an inverted copy of this matrix. |
| 291 | |
| 292 | If the matrix is singular (not invertible), the returned matrix is |
| 293 | the identity matrix. If \a invertible is valid (i.e. not 0), its |
| 294 | value is set to true if the matrix is invertible, otherwise it is |
| 295 | set to false. |
| 296 | |
| 297 | \sa isInvertible() |
| 298 | */ |
| 299 | QTransform QTransform::inverted(bool *invertible) const |
| 300 | { |
| 301 | QTransform invert; |
| 302 | bool inv = true; |
| 303 | |
| 304 | switch(inline_type()) { |
| 305 | case TxNone: |
| 306 | break; |
| 307 | case TxTranslate: |
| 308 | invert.m_matrix[2][0] = -m_matrix[2][0]; |
| 309 | invert.m_matrix[2][1] = -m_matrix[2][1]; |
| 310 | break; |
| 311 | case TxScale: |
| 312 | inv = !qFuzzyIsNull(d: m_matrix[0][0]); |
| 313 | inv &= !qFuzzyIsNull(d: m_matrix[1][1]); |
| 314 | if (inv) { |
| 315 | invert.m_matrix[0][0] = 1. / m_matrix[0][0]; |
| 316 | invert.m_matrix[1][1] = 1. / m_matrix[1][1]; |
| 317 | invert.m_matrix[2][0] = -m_matrix[2][0] * invert.m_matrix[0][0]; |
| 318 | invert.m_matrix[2][1] = -m_matrix[2][1] * invert.m_matrix[1][1]; |
| 319 | } |
| 320 | break; |
| 321 | // case TxRotate: |
| 322 | // case TxShear: |
| 323 | // invert.affine = affine.inverted(&inv); |
| 324 | // break; |
| 325 | default: |
| 326 | // general case |
| 327 | qreal det = determinant(); |
| 328 | inv = !qFuzzyIsNull(d: det); |
| 329 | if (inv) |
| 330 | invert = adjoint() / det; |
| 331 | break; |
| 332 | } |
| 333 | |
| 334 | if (invertible) |
| 335 | *invertible = inv; |
| 336 | |
| 337 | if (inv) { |
| 338 | // inverting doesn't change the type |
| 339 | invert.m_type = m_type; |
| 340 | invert.m_dirty = m_dirty; |
| 341 | } |
| 342 | |
| 343 | return invert; |
| 344 | } |
| 345 | |
| 346 | /*! |
| 347 | Moves the coordinate system \a dx along the x axis and \a dy along |
| 348 | the y axis, and returns a reference to the matrix. |
| 349 | |
| 350 | \sa setMatrix() |
| 351 | */ |
| 352 | QTransform &QTransform::translate(qreal dx, qreal dy) |
| 353 | { |
| 354 | if (dx == 0 && dy == 0) |
| 355 | return *this; |
| 356 | #ifndef QT_NO_DEBUG |
| 357 | if (qIsNaN(d: dx) || qIsNaN(d: dy)) { |
| 358 | nanWarning(func: "translate" ); |
| 359 | return *this; |
| 360 | } |
| 361 | #endif |
| 362 | |
| 363 | switch(inline_type()) { |
| 364 | case TxNone: |
| 365 | m_matrix[2][0] = dx; |
| 366 | m_matrix[2][1] = dy; |
| 367 | break; |
| 368 | case TxTranslate: |
| 369 | m_matrix[2][0] += dx; |
| 370 | m_matrix[2][1] += dy; |
| 371 | break; |
| 372 | case TxScale: |
| 373 | m_matrix[2][0] += dx * m_matrix[0][0]; |
| 374 | m_matrix[2][1] += dy * m_matrix[1][1]; |
| 375 | break; |
| 376 | case TxProject: |
| 377 | m_matrix[2][2] += dx * m_matrix[0][2] + dy * m_matrix[1][2]; |
| 378 | Q_FALLTHROUGH(); |
| 379 | case TxShear: |
| 380 | case TxRotate: |
| 381 | m_matrix[2][0] += dx * m_matrix[0][0] + dy * m_matrix[1][0]; |
| 382 | m_matrix[2][1] += dy * m_matrix[1][1] + dx * m_matrix[0][1]; |
| 383 | break; |
| 384 | } |
| 385 | if (m_dirty < TxTranslate) |
| 386 | m_dirty = TxTranslate; |
| 387 | return *this; |
| 388 | } |
| 389 | |
| 390 | /*! |
| 391 | Creates a matrix which corresponds to a translation of \a dx along |
| 392 | the x axis and \a dy along the y axis. This is the same as |
| 393 | QTransform().translate(dx, dy) but slightly faster. |
| 394 | |
| 395 | \since 4.5 |
| 396 | */ |
| 397 | QTransform QTransform::fromTranslate(qreal dx, qreal dy) |
| 398 | { |
| 399 | #ifndef QT_NO_DEBUG |
| 400 | if (qIsNaN(d: dx) || qIsNaN(d: dy)) { |
| 401 | nanWarning(func: "fromTranslate" ); |
| 402 | return QTransform(); |
| 403 | } |
| 404 | #endif |
| 405 | QTransform transform(1, 0, 0, 0, 1, 0, dx, dy, 1); |
| 406 | if (dx == 0 && dy == 0) |
| 407 | transform.m_type = TxNone; |
| 408 | else |
| 409 | transform.m_type = TxTranslate; |
| 410 | transform.m_dirty = TxNone; |
| 411 | return transform; |
| 412 | } |
| 413 | |
| 414 | /*! |
| 415 | Scales the coordinate system by \a sx horizontally and \a sy |
| 416 | vertically, and returns a reference to the matrix. |
| 417 | |
| 418 | \sa setMatrix() |
| 419 | */ |
| 420 | QTransform & QTransform::scale(qreal sx, qreal sy) |
| 421 | { |
| 422 | if (sx == 1 && sy == 1) |
| 423 | return *this; |
| 424 | #ifndef QT_NO_DEBUG |
| 425 | if (qIsNaN(d: sx) || qIsNaN(d: sy)) { |
| 426 | nanWarning(func: "scale" ); |
| 427 | return *this; |
| 428 | } |
| 429 | #endif |
| 430 | |
| 431 | switch(inline_type()) { |
| 432 | case TxNone: |
| 433 | case TxTranslate: |
| 434 | m_matrix[0][0] = sx; |
| 435 | m_matrix[1][1] = sy; |
| 436 | break; |
| 437 | case TxProject: |
| 438 | m_matrix[0][2] *= sx; |
| 439 | m_matrix[1][2] *= sy; |
| 440 | Q_FALLTHROUGH(); |
| 441 | case TxRotate: |
| 442 | case TxShear: |
| 443 | m_matrix[0][1] *= sx; |
| 444 | m_matrix[1][0] *= sy; |
| 445 | Q_FALLTHROUGH(); |
| 446 | case TxScale: |
| 447 | m_matrix[0][0] *= sx; |
| 448 | m_matrix[1][1] *= sy; |
| 449 | break; |
| 450 | } |
| 451 | if (m_dirty < TxScale) |
| 452 | m_dirty = TxScale; |
| 453 | return *this; |
| 454 | } |
| 455 | |
| 456 | /*! |
| 457 | Creates a matrix which corresponds to a scaling of |
| 458 | \a sx horizontally and \a sy vertically. |
| 459 | This is the same as QTransform().scale(sx, sy) but slightly faster. |
| 460 | |
| 461 | \since 4.5 |
| 462 | */ |
| 463 | QTransform QTransform::fromScale(qreal sx, qreal sy) |
| 464 | { |
| 465 | #ifndef QT_NO_DEBUG |
| 466 | if (qIsNaN(d: sx) || qIsNaN(d: sy)) { |
| 467 | nanWarning(func: "fromScale" ); |
| 468 | return QTransform(); |
| 469 | } |
| 470 | #endif |
| 471 | QTransform transform(sx, 0, 0, 0, sy, 0, 0, 0, 1); |
| 472 | if (sx == 1. && sy == 1.) |
| 473 | transform.m_type = TxNone; |
| 474 | else |
| 475 | transform.m_type = TxScale; |
| 476 | transform.m_dirty = TxNone; |
| 477 | return transform; |
| 478 | } |
| 479 | |
| 480 | /*! |
| 481 | Shears the coordinate system by \a sh horizontally and \a sv |
| 482 | vertically, and returns a reference to the matrix. |
| 483 | |
| 484 | \sa setMatrix() |
| 485 | */ |
| 486 | QTransform & QTransform::shear(qreal sh, qreal sv) |
| 487 | { |
| 488 | if (sh == 0 && sv == 0) |
| 489 | return *this; |
| 490 | #ifndef QT_NO_DEBUG |
| 491 | if (qIsNaN(d: sh) || qIsNaN(d: sv)) { |
| 492 | nanWarning(func: "shear" ); |
| 493 | return *this; |
| 494 | } |
| 495 | #endif |
| 496 | |
| 497 | switch(inline_type()) { |
| 498 | case TxNone: |
| 499 | case TxTranslate: |
| 500 | m_matrix[0][1] = sv; |
| 501 | m_matrix[1][0] = sh; |
| 502 | break; |
| 503 | case TxScale: |
| 504 | m_matrix[0][1] = sv*m_matrix[1][1]; |
| 505 | m_matrix[1][0] = sh*m_matrix[0][0]; |
| 506 | break; |
| 507 | case TxProject: { |
| 508 | qreal tm13 = sv * m_matrix[1][2]; |
| 509 | qreal tm23 = sh * m_matrix[0][2]; |
| 510 | m_matrix[0][2] += tm13; |
| 511 | m_matrix[1][2] += tm23; |
| 512 | } |
| 513 | Q_FALLTHROUGH(); |
| 514 | case TxRotate: |
| 515 | case TxShear: { |
| 516 | qreal tm11 = sv * m_matrix[1][0]; |
| 517 | qreal tm22 = sh * m_matrix[0][1]; |
| 518 | qreal tm12 = sv * m_matrix[1][1]; |
| 519 | qreal tm21 = sh * m_matrix[0][0]; |
| 520 | m_matrix[0][0] += tm11; |
| 521 | m_matrix[0][1] += tm12; |
| 522 | m_matrix[1][0] += tm21; |
| 523 | m_matrix[1][1] += tm22; |
| 524 | break; |
| 525 | } |
| 526 | } |
| 527 | if (m_dirty < TxShear) |
| 528 | m_dirty = TxShear; |
| 529 | return *this; |
| 530 | } |
| 531 | |
| 532 | /*! |
| 533 | \since 6.5 |
| 534 | |
| 535 | Rotates the coordinate system counterclockwise by the given angle \a a |
| 536 | about the specified \a axis at distance \a distanceToPlane from the |
| 537 | screen and returns a reference to the matrix. |
| 538 | |
| 539 | //! [transform-rotate-note] |
| 540 | Note that if you apply a QTransform to a point defined in widget |
| 541 | coordinates, the direction of the rotation will be clockwise |
| 542 | because the y-axis points downwards. |
| 543 | |
| 544 | The angle is specified in degrees. |
| 545 | //! [transform-rotate-note] |
| 546 | |
| 547 | If \a distanceToPlane is zero, it will be ignored. This is suitable |
| 548 | for implementing orthographic projections where the z coordinate should |
| 549 | be dropped rather than projected. |
| 550 | |
| 551 | \sa setMatrix() |
| 552 | */ |
| 553 | QTransform & QTransform::rotate(qreal a, Qt::Axis axis, qreal distanceToPlane) |
| 554 | { |
| 555 | if (a == 0) |
| 556 | return *this; |
| 557 | #ifndef QT_NO_DEBUG |
| 558 | if (qIsNaN(d: a) || qIsNaN(d: distanceToPlane)) { |
| 559 | nanWarning(func: "rotate" ); |
| 560 | return *this; |
| 561 | } |
| 562 | #endif |
| 563 | |
| 564 | qreal sina = 0; |
| 565 | qreal cosa = 0; |
| 566 | if (a == 90. || a == -270.) |
| 567 | sina = 1.; |
| 568 | else if (a == 270. || a == -90.) |
| 569 | sina = -1.; |
| 570 | else if (a == 180.) |
| 571 | cosa = -1.; |
| 572 | else{ |
| 573 | qreal b = qDegreesToRadians(degrees: a); |
| 574 | sina = qSin(v: b); // fast and convenient |
| 575 | cosa = qCos(v: b); |
| 576 | } |
| 577 | |
| 578 | if (axis == Qt::ZAxis) { |
| 579 | switch(inline_type()) { |
| 580 | case TxNone: |
| 581 | case TxTranslate: |
| 582 | m_matrix[0][0] = cosa; |
| 583 | m_matrix[0][1] = sina; |
| 584 | m_matrix[1][0] = -sina; |
| 585 | m_matrix[1][1] = cosa; |
| 586 | break; |
| 587 | case TxScale: { |
| 588 | qreal tm11 = cosa * m_matrix[0][0]; |
| 589 | qreal tm12 = sina * m_matrix[1][1]; |
| 590 | qreal tm21 = -sina * m_matrix[0][0]; |
| 591 | qreal tm22 = cosa * m_matrix[1][1]; |
| 592 | m_matrix[0][0] = tm11; |
| 593 | m_matrix[0][1] = tm12; |
| 594 | m_matrix[1][0] = tm21; |
| 595 | m_matrix[1][1] = tm22; |
| 596 | break; |
| 597 | } |
| 598 | case TxProject: { |
| 599 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
| 600 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
| 601 | m_matrix[0][2] = tm13; |
| 602 | m_matrix[1][2] = tm23; |
| 603 | Q_FALLTHROUGH(); |
| 604 | } |
| 605 | case TxRotate: |
| 606 | case TxShear: { |
| 607 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
| 608 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
| 609 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
| 610 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
| 611 | m_matrix[0][0] = tm11; |
| 612 | m_matrix[0][1] = tm12; |
| 613 | m_matrix[1][0] = tm21; |
| 614 | m_matrix[1][1] = tm22; |
| 615 | break; |
| 616 | } |
| 617 | } |
| 618 | if (m_dirty < TxRotate) |
| 619 | m_dirty = TxRotate; |
| 620 | } else { |
| 621 | if (!qIsNull(d: distanceToPlane)) |
| 622 | sina /= distanceToPlane; |
| 623 | |
| 624 | QTransform result; |
| 625 | if (axis == Qt::YAxis) { |
| 626 | result.m_matrix[0][0] = cosa; |
| 627 | result.m_matrix[0][2] = -sina; |
| 628 | } else { |
| 629 | result.m_matrix[1][1] = cosa; |
| 630 | result.m_matrix[1][2] = -sina; |
| 631 | } |
| 632 | result.m_type = TxProject; |
| 633 | *this = result * *this; |
| 634 | } |
| 635 | |
| 636 | return *this; |
| 637 | } |
| 638 | |
| 639 | #if QT_VERSION < QT_VERSION_CHECK(7, 0, 0) |
| 640 | /*! |
| 641 | \overload |
| 642 | |
| 643 | Rotates the coordinate system counterclockwise by the given angle \a a |
| 644 | about the specified \a axis at distance 1024.0 from the screen and |
| 645 | returns a reference to the matrix. |
| 646 | |
| 647 | \include qtransform.cpp transform-rotate-note |
| 648 | |
| 649 | \sa setMatrix |
| 650 | */ |
| 651 | QTransform &QTransform::rotate(qreal a, Qt::Axis axis) |
| 652 | { |
| 653 | return rotate(a, axis, distanceToPlane: 1024.0); |
| 654 | } |
| 655 | #endif |
| 656 | |
| 657 | /*! |
| 658 | \since 6.5 |
| 659 | |
| 660 | Rotates the coordinate system counterclockwise by the given angle \a a |
| 661 | about the specified \a axis at distance \a distanceToPlane from the |
| 662 | screen and returns a reference to the matrix. |
| 663 | |
| 664 | //! [transform-rotate-radians-note] |
| 665 | Note that if you apply a QTransform to a point defined in widget |
| 666 | coordinates, the direction of the rotation will be clockwise |
| 667 | because the y-axis points downwards. |
| 668 | |
| 669 | The angle is specified in radians. |
| 670 | //! [transform-rotate-radians-note] |
| 671 | |
| 672 | If \a distanceToPlane is zero, it will be ignored. This is suitable |
| 673 | for implementing orthographic projections where the z coordinate should |
| 674 | be dropped rather than projected. |
| 675 | |
| 676 | \sa setMatrix() |
| 677 | */ |
| 678 | QTransform & QTransform::rotateRadians(qreal a, Qt::Axis axis, qreal distanceToPlane) |
| 679 | { |
| 680 | #ifndef QT_NO_DEBUG |
| 681 | if (qIsNaN(d: a) || qIsNaN(d: distanceToPlane)) { |
| 682 | nanWarning(func: "rotateRadians" ); |
| 683 | return *this; |
| 684 | } |
| 685 | #endif |
| 686 | qreal sina = qSin(v: a); |
| 687 | qreal cosa = qCos(v: a); |
| 688 | |
| 689 | if (axis == Qt::ZAxis) { |
| 690 | switch(inline_type()) { |
| 691 | case TxNone: |
| 692 | case TxTranslate: |
| 693 | m_matrix[0][0] = cosa; |
| 694 | m_matrix[0][1] = sina; |
| 695 | m_matrix[1][0] = -sina; |
| 696 | m_matrix[1][1] = cosa; |
| 697 | break; |
| 698 | case TxScale: { |
| 699 | qreal tm11 = cosa * m_matrix[0][0]; |
| 700 | qreal tm12 = sina * m_matrix[1][1]; |
| 701 | qreal tm21 = -sina * m_matrix[0][0]; |
| 702 | qreal tm22 = cosa * m_matrix[1][1]; |
| 703 | m_matrix[0][0] = tm11; |
| 704 | m_matrix[0][1] = tm12; |
| 705 | m_matrix[1][0] = tm21; |
| 706 | m_matrix[1][1] = tm22; |
| 707 | break; |
| 708 | } |
| 709 | case TxProject: { |
| 710 | qreal tm13 = cosa * m_matrix[0][2] + sina * m_matrix[1][2]; |
| 711 | qreal tm23 = -sina * m_matrix[0][2] + cosa * m_matrix[1][2]; |
| 712 | m_matrix[0][2] = tm13; |
| 713 | m_matrix[1][2] = tm23; |
| 714 | Q_FALLTHROUGH(); |
| 715 | } |
| 716 | case TxRotate: |
| 717 | case TxShear: { |
| 718 | qreal tm11 = cosa * m_matrix[0][0] + sina * m_matrix[1][0]; |
| 719 | qreal tm12 = cosa * m_matrix[0][1] + sina * m_matrix[1][1]; |
| 720 | qreal tm21 = -sina * m_matrix[0][0] + cosa * m_matrix[1][0]; |
| 721 | qreal tm22 = -sina * m_matrix[0][1] + cosa * m_matrix[1][1]; |
| 722 | m_matrix[0][0] = tm11; |
| 723 | m_matrix[0][1] = tm12; |
| 724 | m_matrix[1][0] = tm21; |
| 725 | m_matrix[1][1] = tm22; |
| 726 | break; |
| 727 | } |
| 728 | } |
| 729 | if (m_dirty < TxRotate) |
| 730 | m_dirty = TxRotate; |
| 731 | } else { |
| 732 | if (!qIsNull(d: distanceToPlane)) |
| 733 | sina /= distanceToPlane; |
| 734 | |
| 735 | QTransform result; |
| 736 | if (axis == Qt::YAxis) { |
| 737 | result.m_matrix[0][0] = cosa; |
| 738 | result.m_matrix[0][2] = -sina; |
| 739 | } else { |
| 740 | result.m_matrix[1][1] = cosa; |
| 741 | result.m_matrix[1][2] = -sina; |
| 742 | } |
| 743 | result.m_type = TxProject; |
| 744 | *this = result * *this; |
| 745 | } |
| 746 | return *this; |
| 747 | } |
| 748 | |
| 749 | #if QT_VERSION < QT_VERSION_CHECK(7, 0, 0) |
| 750 | /*! |
| 751 | \overload |
| 752 | |
| 753 | Rotates the coordinate system counterclockwise by the given angle \a a |
| 754 | about the specified \a axis at distance 1024.0 from the screen and |
| 755 | returns a reference to the matrix. |
| 756 | |
| 757 | \include qtransform.cpp transform-rotate-radians-note |
| 758 | |
| 759 | \sa setMatrix() |
| 760 | */ |
| 761 | QTransform &QTransform::rotateRadians(qreal a, Qt::Axis axis) |
| 762 | { |
| 763 | return rotateRadians(a, axis, distanceToPlane: 1024.0); |
| 764 | } |
| 765 | #endif |
| 766 | |
| 767 | /*! |
| 768 | \fn bool QTransform::operator==(const QTransform &matrix) const |
| 769 | Returns \c true if this matrix is equal to the given \a matrix, |
| 770 | otherwise returns \c false. |
| 771 | */ |
| 772 | bool QTransform::operator==(const QTransform &o) const |
| 773 | { |
| 774 | return m_matrix[0][0] == o.m_matrix[0][0] && |
| 775 | m_matrix[0][1] == o.m_matrix[0][1] && |
| 776 | m_matrix[1][0] == o.m_matrix[1][0] && |
| 777 | m_matrix[1][1] == o.m_matrix[1][1] && |
| 778 | m_matrix[2][0] == o.m_matrix[2][0] && |
| 779 | m_matrix[2][1] == o.m_matrix[2][1] && |
| 780 | m_matrix[0][2] == o.m_matrix[0][2] && |
| 781 | m_matrix[1][2] == o.m_matrix[1][2] && |
| 782 | m_matrix[2][2] == o.m_matrix[2][2]; |
| 783 | } |
| 784 | |
| 785 | /*! |
| 786 | \since 5.6 |
| 787 | \qhashold{QTransform} |
| 788 | */ |
| 789 | size_t qHash(const QTransform &key, size_t seed) noexcept |
| 790 | { |
| 791 | QtPrivate::QHashCombine hash; |
| 792 | seed = hash(seed, key.m11()); |
| 793 | seed = hash(seed, key.m12()); |
| 794 | seed = hash(seed, key.m21()); |
| 795 | seed = hash(seed, key.m22()); |
| 796 | seed = hash(seed, key.dx()); |
| 797 | seed = hash(seed, key.dy()); |
| 798 | seed = hash(seed, key.m13()); |
| 799 | seed = hash(seed, key.m23()); |
| 800 | seed = hash(seed, key.m33()); |
| 801 | return seed; |
| 802 | } |
| 803 | |
| 804 | |
| 805 | /*! |
| 806 | \fn bool QTransform::operator!=(const QTransform &matrix) const |
| 807 | Returns \c true if this matrix is not equal to the given \a matrix, |
| 808 | otherwise returns \c false. |
| 809 | */ |
| 810 | bool QTransform::operator!=(const QTransform &o) const |
| 811 | { |
| 812 | return !operator==(o); |
| 813 | } |
| 814 | |
| 815 | /*! |
| 816 | \fn QTransform & QTransform::operator*=(const QTransform &matrix) |
| 817 | \overload |
| 818 | |
| 819 | Returns the result of multiplying this matrix by the given \a |
| 820 | matrix. |
| 821 | */ |
| 822 | QTransform & QTransform::operator*=(const QTransform &o) |
| 823 | { |
| 824 | const TransformationType otherType = o.inline_type(); |
| 825 | if (otherType == TxNone) |
| 826 | return *this; |
| 827 | |
| 828 | const TransformationType thisType = inline_type(); |
| 829 | if (thisType == TxNone) |
| 830 | return operator=(o); |
| 831 | |
| 832 | TransformationType t = qMax(a: thisType, b: otherType); |
| 833 | switch(t) { |
| 834 | case TxNone: |
| 835 | break; |
| 836 | case TxTranslate: |
| 837 | m_matrix[2][0] += o.m_matrix[2][0]; |
| 838 | m_matrix[2][1] += o.m_matrix[2][1]; |
| 839 | break; |
| 840 | case TxScale: |
| 841 | { |
| 842 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0]; |
| 843 | qreal m22 = m_matrix[1][1] * o.m_matrix[1][1]; |
| 844 | |
| 845 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + o.m_matrix[2][0]; |
| 846 | qreal m32 = m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
| 847 | |
| 848 | m_matrix[0][0] = m11; |
| 849 | m_matrix[1][1] = m22; |
| 850 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; |
| 851 | break; |
| 852 | } |
| 853 | case TxRotate: |
| 854 | case TxShear: |
| 855 | { |
| 856 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0]; |
| 857 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1]; |
| 858 | |
| 859 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0]; |
| 860 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1]; |
| 861 | |
| 862 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + o.m_matrix[2][0]; |
| 863 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + o.m_matrix[2][1]; |
| 864 | |
| 865 | m_matrix[0][0] = m11; |
| 866 | m_matrix[0][1] = m12; |
| 867 | m_matrix[1][0] = m21; |
| 868 | m_matrix[1][1] = m22; |
| 869 | m_matrix[2][0] = m31; |
| 870 | m_matrix[2][1] = m32; |
| 871 | break; |
| 872 | } |
| 873 | case TxProject: |
| 874 | { |
| 875 | qreal m11 = m_matrix[0][0] * o.m_matrix[0][0] + m_matrix[0][1] * o.m_matrix[1][0] + m_matrix[0][2] * o.m_matrix[2][0]; |
| 876 | qreal m12 = m_matrix[0][0] * o.m_matrix[0][1] + m_matrix[0][1] * o.m_matrix[1][1] + m_matrix[0][2] * o.m_matrix[2][1]; |
| 877 | qreal m13 = m_matrix[0][0] * o.m_matrix[0][2] + m_matrix[0][1] * o.m_matrix[1][2] + m_matrix[0][2] * o.m_matrix[2][2]; |
| 878 | |
| 879 | qreal m21 = m_matrix[1][0] * o.m_matrix[0][0] + m_matrix[1][1] * o.m_matrix[1][0] + m_matrix[1][2] * o.m_matrix[2][0]; |
| 880 | qreal m22 = m_matrix[1][0] * o.m_matrix[0][1] + m_matrix[1][1] * o.m_matrix[1][1] + m_matrix[1][2] * o.m_matrix[2][1]; |
| 881 | qreal m23 = m_matrix[1][0] * o.m_matrix[0][2] + m_matrix[1][1] * o.m_matrix[1][2] + m_matrix[1][2] * o.m_matrix[2][2]; |
| 882 | |
| 883 | qreal m31 = m_matrix[2][0] * o.m_matrix[0][0] + m_matrix[2][1] * o.m_matrix[1][0] + m_matrix[2][2] * o.m_matrix[2][0]; |
| 884 | qreal m32 = m_matrix[2][0] * o.m_matrix[0][1] + m_matrix[2][1] * o.m_matrix[1][1] + m_matrix[2][2] * o.m_matrix[2][1]; |
| 885 | qreal m33 = m_matrix[2][0] * o.m_matrix[0][2] + m_matrix[2][1] * o.m_matrix[1][2] + m_matrix[2][2] * o.m_matrix[2][2]; |
| 886 | |
| 887 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
| 888 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
| 889 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | m_dirty = t; |
| 894 | m_type = t; |
| 895 | |
| 896 | return *this; |
| 897 | } |
| 898 | |
| 899 | /*! |
| 900 | \fn QTransform QTransform::operator*(const QTransform &matrix) const |
| 901 | Returns the result of multiplying this matrix by the given \a |
| 902 | matrix. |
| 903 | |
| 904 | Note that matrix multiplication is not commutative, i.e. a*b != |
| 905 | b*a. |
| 906 | */ |
| 907 | QTransform QTransform::operator*(const QTransform &m) const |
| 908 | { |
| 909 | const TransformationType otherType = m.inline_type(); |
| 910 | if (otherType == TxNone) |
| 911 | return *this; |
| 912 | |
| 913 | const TransformationType thisType = inline_type(); |
| 914 | if (thisType == TxNone) |
| 915 | return m; |
| 916 | |
| 917 | QTransform t; |
| 918 | TransformationType type = qMax(a: thisType, b: otherType); |
| 919 | switch(type) { |
| 920 | case TxNone: |
| 921 | break; |
| 922 | case TxTranslate: |
| 923 | t.m_matrix[2][0] = m_matrix[2][0] + m.m_matrix[2][0]; |
| 924 | t.m_matrix[2][1] = m_matrix[2][1] + m.m_matrix[2][1]; |
| 925 | break; |
| 926 | case TxScale: |
| 927 | { |
| 928 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0]; |
| 929 | qreal m22 = m_matrix[1][1] * m.m_matrix[1][1]; |
| 930 | |
| 931 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m.m_matrix[2][0]; |
| 932 | qreal m32 = m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
| 933 | |
| 934 | t.m_matrix[0][0] = m11; |
| 935 | t.m_matrix[1][1] = m22; |
| 936 | t.m_matrix[2][0] = m31; |
| 937 | t.m_matrix[2][1] = m32; |
| 938 | break; |
| 939 | } |
| 940 | case TxRotate: |
| 941 | case TxShear: |
| 942 | { |
| 943 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0]; |
| 944 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1]; |
| 945 | |
| 946 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0]; |
| 947 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1]; |
| 948 | |
| 949 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m.m_matrix[2][0]; |
| 950 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m.m_matrix[2][1]; |
| 951 | |
| 952 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; |
| 953 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; |
| 954 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; |
| 955 | break; |
| 956 | } |
| 957 | case TxProject: |
| 958 | { |
| 959 | qreal m11 = m_matrix[0][0] * m.m_matrix[0][0] + m_matrix[0][1] * m.m_matrix[1][0] + m_matrix[0][2] * m.m_matrix[2][0]; |
| 960 | qreal m12 = m_matrix[0][0] * m.m_matrix[0][1] + m_matrix[0][1] * m.m_matrix[1][1] + m_matrix[0][2] * m.m_matrix[2][1]; |
| 961 | qreal m13 = m_matrix[0][0] * m.m_matrix[0][2] + m_matrix[0][1] * m.m_matrix[1][2] + m_matrix[0][2] * m.m_matrix[2][2]; |
| 962 | |
| 963 | qreal m21 = m_matrix[1][0] * m.m_matrix[0][0] + m_matrix[1][1] * m.m_matrix[1][0] + m_matrix[1][2] * m.m_matrix[2][0]; |
| 964 | qreal m22 = m_matrix[1][0] * m.m_matrix[0][1] + m_matrix[1][1] * m.m_matrix[1][1] + m_matrix[1][2] * m.m_matrix[2][1]; |
| 965 | qreal m23 = m_matrix[1][0] * m.m_matrix[0][2] + m_matrix[1][1] * m.m_matrix[1][2] + m_matrix[1][2] * m.m_matrix[2][2]; |
| 966 | |
| 967 | qreal m31 = m_matrix[2][0] * m.m_matrix[0][0] + m_matrix[2][1] * m.m_matrix[1][0] + m_matrix[2][2] * m.m_matrix[2][0]; |
| 968 | qreal m32 = m_matrix[2][0] * m.m_matrix[0][1] + m_matrix[2][1] * m.m_matrix[1][1] + m_matrix[2][2] * m.m_matrix[2][1]; |
| 969 | qreal m33 = m_matrix[2][0] * m.m_matrix[0][2] + m_matrix[2][1] * m.m_matrix[1][2] + m_matrix[2][2] * m.m_matrix[2][2]; |
| 970 | |
| 971 | t.m_matrix[0][0] = m11; t.m_matrix[0][1] = m12; t.m_matrix[0][2] = m13; |
| 972 | t.m_matrix[1][0] = m21; t.m_matrix[1][1] = m22; t.m_matrix[1][2] = m23; |
| 973 | t.m_matrix[2][0] = m31; t.m_matrix[2][1] = m32; t.m_matrix[2][2] = m33; |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | t.m_dirty = type; |
| 978 | t.m_type = type; |
| 979 | |
| 980 | return t; |
| 981 | } |
| 982 | |
| 983 | /*! |
| 984 | \fn QTransform & QTransform::operator*=(qreal scalar) |
| 985 | \overload |
| 986 | |
| 987 | Returns the result of performing an element-wise multiplication of this |
| 988 | matrix with the given \a scalar. |
| 989 | */ |
| 990 | |
| 991 | /*! |
| 992 | \fn QTransform & QTransform::operator/=(qreal scalar) |
| 993 | \overload |
| 994 | |
| 995 | Returns the result of performing an element-wise division of this |
| 996 | matrix by the given \a scalar. |
| 997 | */ |
| 998 | |
| 999 | /*! |
| 1000 | \fn QTransform & QTransform::operator+=(qreal scalar) |
| 1001 | \overload |
| 1002 | |
| 1003 | Returns the matrix obtained by adding the given \a scalar to each |
| 1004 | element of this matrix. |
| 1005 | */ |
| 1006 | |
| 1007 | /*! |
| 1008 | \fn QTransform & QTransform::operator-=(qreal scalar) |
| 1009 | \overload |
| 1010 | |
| 1011 | Returns the matrix obtained by subtracting the given \a scalar from each |
| 1012 | element of this matrix. |
| 1013 | */ |
| 1014 | |
| 1015 | /*! |
| 1016 | \fn QTransform &QTransform::operator=(const QTransform &matrix) noexcept |
| 1017 | |
| 1018 | Assigns the given \a matrix's values to this matrix. |
| 1019 | */ |
| 1020 | |
| 1021 | /*! |
| 1022 | Resets the matrix to an identity matrix, i.e. all elements are set |
| 1023 | to zero, except \c m11 and \c m22 (specifying the scale) and \c m33 |
| 1024 | which are set to 1. |
| 1025 | |
| 1026 | \sa QTransform(), isIdentity(), {QTransform#Basic Matrix |
| 1027 | Operations}{Basic Matrix Operations} |
| 1028 | */ |
| 1029 | void QTransform::reset() |
| 1030 | { |
| 1031 | *this = QTransform(); |
| 1032 | } |
| 1033 | |
| 1034 | #ifndef QT_NO_DATASTREAM |
| 1035 | /*! |
| 1036 | \fn QDataStream &operator<<(QDataStream &stream, const QTransform &matrix) |
| 1037 | \since 4.3 |
| 1038 | \relates QTransform |
| 1039 | |
| 1040 | Writes the given \a matrix to the given \a stream and returns a |
| 1041 | reference to the stream. |
| 1042 | |
| 1043 | \sa {Serializing Qt Data Types} |
| 1044 | */ |
| 1045 | QDataStream & operator<<(QDataStream &s, const QTransform &m) |
| 1046 | { |
| 1047 | s << double(m.m11()) |
| 1048 | << double(m.m12()) |
| 1049 | << double(m.m13()) |
| 1050 | << double(m.m21()) |
| 1051 | << double(m.m22()) |
| 1052 | << double(m.m23()) |
| 1053 | << double(m.m31()) |
| 1054 | << double(m.m32()) |
| 1055 | << double(m.m33()); |
| 1056 | return s; |
| 1057 | } |
| 1058 | |
| 1059 | /*! |
| 1060 | \fn QDataStream &operator>>(QDataStream &stream, QTransform &matrix) |
| 1061 | \since 4.3 |
| 1062 | \relates QTransform |
| 1063 | |
| 1064 | Reads the given \a matrix from the given \a stream and returns a |
| 1065 | reference to the stream. |
| 1066 | |
| 1067 | \sa {Serializing Qt Data Types} |
| 1068 | */ |
| 1069 | QDataStream & operator>>(QDataStream &s, QTransform &t) |
| 1070 | { |
| 1071 | double m11, m12, m13, |
| 1072 | m21, m22, m23, |
| 1073 | m31, m32, m33; |
| 1074 | |
| 1075 | s >> m11; |
| 1076 | s >> m12; |
| 1077 | s >> m13; |
| 1078 | s >> m21; |
| 1079 | s >> m22; |
| 1080 | s >> m23; |
| 1081 | s >> m31; |
| 1082 | s >> m32; |
| 1083 | s >> m33; |
| 1084 | t.setMatrix(m11, m12, m13, |
| 1085 | m21, m22, m23, |
| 1086 | m31, m32, m33); |
| 1087 | return s; |
| 1088 | } |
| 1089 | |
| 1090 | #endif // QT_NO_DATASTREAM |
| 1091 | |
| 1092 | #ifndef QT_NO_DEBUG_STREAM |
| 1093 | QDebug operator<<(QDebug dbg, const QTransform &m) |
| 1094 | { |
| 1095 | static const char typeStr[][12] = |
| 1096 | { |
| 1097 | "TxNone" , |
| 1098 | "TxTranslate" , |
| 1099 | "TxScale" , |
| 1100 | "" , |
| 1101 | "TxRotate" , |
| 1102 | "" , "" , "" , |
| 1103 | "TxShear" , |
| 1104 | "" , "" , "" , "" , "" , "" , "" , |
| 1105 | "TxProject" |
| 1106 | }; |
| 1107 | |
| 1108 | QDebugStateSaver saver(dbg); |
| 1109 | dbg.nospace() << "QTransform(type=" << typeStr[m.type()] << ',' |
| 1110 | << " 11=" << m.m11() |
| 1111 | << " 12=" << m.m12() |
| 1112 | << " 13=" << m.m13() |
| 1113 | << " 21=" << m.m21() |
| 1114 | << " 22=" << m.m22() |
| 1115 | << " 23=" << m.m23() |
| 1116 | << " 31=" << m.m31() |
| 1117 | << " 32=" << m.m32() |
| 1118 | << " 33=" << m.m33() |
| 1119 | << ')'; |
| 1120 | |
| 1121 | return dbg; |
| 1122 | } |
| 1123 | #endif |
| 1124 | |
| 1125 | /*! |
| 1126 | \fn QPoint operator*(const QPoint &point, const QTransform &matrix) |
| 1127 | \relates QTransform |
| 1128 | |
| 1129 | This is the same as \a{matrix}.map(\a{point}). |
| 1130 | |
| 1131 | \sa QTransform::map() |
| 1132 | */ |
| 1133 | QPoint QTransform::map(const QPoint &p) const |
| 1134 | { |
| 1135 | qreal fx = p.x(); |
| 1136 | qreal fy = p.y(); |
| 1137 | |
| 1138 | qreal x = 0, y = 0; |
| 1139 | |
| 1140 | do_map(x: fx, y: fy, nx&: x, ny&: y); |
| 1141 | |
| 1142 | return QPoint(qRound(d: x), qRound(d: y)); |
| 1143 | } |
| 1144 | |
| 1145 | |
| 1146 | /*! |
| 1147 | \fn QPointF operator*(const QPointF &point, const QTransform &matrix) |
| 1148 | \relates QTransform |
| 1149 | |
| 1150 | Same as \a{matrix}.map(\a{point}). |
| 1151 | |
| 1152 | \sa QTransform::map() |
| 1153 | */ |
| 1154 | |
| 1155 | /*! |
| 1156 | \overload |
| 1157 | |
| 1158 | Creates and returns a QPointF object that is a copy of the given point, |
| 1159 | \a p, mapped into the coordinate system defined by this matrix. |
| 1160 | */ |
| 1161 | QPointF QTransform::map(const QPointF &p) const |
| 1162 | { |
| 1163 | qreal fx = p.x(); |
| 1164 | qreal fy = p.y(); |
| 1165 | |
| 1166 | qreal x = 0, y = 0; |
| 1167 | |
| 1168 | do_map(x: fx, y: fy, nx&: x, ny&: y); |
| 1169 | |
| 1170 | return QPointF(x, y); |
| 1171 | } |
| 1172 | |
| 1173 | /*! |
| 1174 | \fn QPoint QTransform::map(const QPoint &point) const |
| 1175 | \overload |
| 1176 | |
| 1177 | Creates and returns a QPoint object that is a copy of the given \a |
| 1178 | point, mapped into the coordinate system defined by this |
| 1179 | matrix. Note that the transformed coordinates are rounded to the |
| 1180 | nearest integer. |
| 1181 | */ |
| 1182 | |
| 1183 | /*! |
| 1184 | \fn QLineF operator*(const QLineF &line, const QTransform &matrix) |
| 1185 | \relates QTransform |
| 1186 | |
| 1187 | This is the same as \a{matrix}.map(\a{line}). |
| 1188 | |
| 1189 | \sa QTransform::map() |
| 1190 | */ |
| 1191 | |
| 1192 | /*! |
| 1193 | \fn QLine operator*(const QLine &line, const QTransform &matrix) |
| 1194 | \relates QTransform |
| 1195 | |
| 1196 | This is the same as \a{matrix}.map(\a{line}). |
| 1197 | |
| 1198 | \sa QTransform::map() |
| 1199 | */ |
| 1200 | |
| 1201 | /*! |
| 1202 | \overload |
| 1203 | |
| 1204 | Creates and returns a QLineF object that is a copy of the given line, |
| 1205 | \a l, mapped into the coordinate system defined by this matrix. |
| 1206 | */ |
| 1207 | QLine QTransform::map(const QLine &l) const |
| 1208 | { |
| 1209 | qreal fx1 = l.x1(); |
| 1210 | qreal fy1 = l.y1(); |
| 1211 | qreal fx2 = l.x2(); |
| 1212 | qreal fy2 = l.y2(); |
| 1213 | |
| 1214 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
| 1215 | |
| 1216 | do_map(x: fx1, y: fy1, nx&: x1, ny&: y1); |
| 1217 | do_map(x: fx2, y: fy2, nx&: x2, ny&: y2); |
| 1218 | |
| 1219 | return QLine(qRound(d: x1), qRound(d: y1), qRound(d: x2), qRound(d: y2)); |
| 1220 | } |
| 1221 | |
| 1222 | /*! |
| 1223 | \overload |
| 1224 | |
| 1225 | \fn QLineF QTransform::map(const QLineF &line) const |
| 1226 | |
| 1227 | Creates and returns a QLine object that is a copy of the given \a |
| 1228 | line, mapped into the coordinate system defined by this matrix. |
| 1229 | Note that the transformed coordinates are rounded to the nearest |
| 1230 | integer. |
| 1231 | */ |
| 1232 | |
| 1233 | QLineF QTransform::map(const QLineF &l) const |
| 1234 | { |
| 1235 | qreal fx1 = l.x1(); |
| 1236 | qreal fy1 = l.y1(); |
| 1237 | qreal fx2 = l.x2(); |
| 1238 | qreal fy2 = l.y2(); |
| 1239 | |
| 1240 | qreal x1 = 0, y1 = 0, x2 = 0, y2 = 0; |
| 1241 | |
| 1242 | do_map(x: fx1, y: fy1, nx&: x1, ny&: y1); |
| 1243 | do_map(x: fx2, y: fy2, nx&: x2, ny&: y2); |
| 1244 | |
| 1245 | return QLineF(x1, y1, x2, y2); |
| 1246 | } |
| 1247 | |
| 1248 | /*! |
| 1249 | \fn QPolygonF operator *(const QPolygonF &polygon, const QTransform &matrix) |
| 1250 | \since 4.3 |
| 1251 | \relates QTransform |
| 1252 | |
| 1253 | This is the same as \a{matrix}.map(\a{polygon}). |
| 1254 | |
| 1255 | \sa QTransform::map() |
| 1256 | */ |
| 1257 | |
| 1258 | /*! |
| 1259 | \fn QPolygon operator*(const QPolygon &polygon, const QTransform &matrix) |
| 1260 | \relates QTransform |
| 1261 | |
| 1262 | This is the same as \a{matrix}.map(\a{polygon}). |
| 1263 | |
| 1264 | \sa QTransform::map() |
| 1265 | */ |
| 1266 | |
| 1267 | /*! |
| 1268 | \fn QPolygonF QTransform::map(const QPolygonF &polygon) const |
| 1269 | \overload |
| 1270 | |
| 1271 | Creates and returns a QPolygonF object that is a copy of the given |
| 1272 | \a polygon, mapped into the coordinate system defined by this |
| 1273 | matrix. |
| 1274 | */ |
| 1275 | QPolygonF QTransform::map(const QPolygonF &a) const |
| 1276 | { |
| 1277 | TransformationType t = inline_type(); |
| 1278 | if (t <= TxTranslate) |
| 1279 | return a.translated(dx: m_matrix[2][0], dy: m_matrix[2][1]); |
| 1280 | |
| 1281 | int size = a.size(); |
| 1282 | int i; |
| 1283 | QPolygonF p(size); |
| 1284 | const QPointF *da = a.constData(); |
| 1285 | QPointF *dp = p.data(); |
| 1286 | |
| 1287 | for(i = 0; i < size; ++i) { |
| 1288 | do_map(x: da[i].xp, y: da[i].yp, nx&: dp[i].xp, ny&: dp[i].yp); |
| 1289 | } |
| 1290 | return p; |
| 1291 | } |
| 1292 | |
| 1293 | /*! |
| 1294 | \fn QPolygon QTransform::map(const QPolygon &polygon) const |
| 1295 | \overload |
| 1296 | |
| 1297 | Creates and returns a QPolygon object that is a copy of the given |
| 1298 | \a polygon, mapped into the coordinate system defined by this |
| 1299 | matrix. Note that the transformed coordinates are rounded to the |
| 1300 | nearest integer. |
| 1301 | */ |
| 1302 | QPolygon QTransform::map(const QPolygon &a) const |
| 1303 | { |
| 1304 | TransformationType t = inline_type(); |
| 1305 | if (t <= TxTranslate) |
| 1306 | return a.translated(dx: qRound(d: m_matrix[2][0]), dy: qRound(d: m_matrix[2][1])); |
| 1307 | |
| 1308 | int size = a.size(); |
| 1309 | int i; |
| 1310 | QPolygon p(size); |
| 1311 | const QPoint *da = a.constData(); |
| 1312 | QPoint *dp = p.data(); |
| 1313 | |
| 1314 | for(i = 0; i < size; ++i) { |
| 1315 | qreal nx = 0, ny = 0; |
| 1316 | do_map(x: da[i].xp, y: da[i].yp, nx, ny); |
| 1317 | dp[i].xp = qRound(d: nx); |
| 1318 | dp[i].yp = qRound(d: ny); |
| 1319 | } |
| 1320 | return p; |
| 1321 | } |
| 1322 | |
| 1323 | /*! |
| 1324 | \fn QRegion operator*(const QRegion ®ion, const QTransform &matrix) |
| 1325 | \relates QTransform |
| 1326 | |
| 1327 | This is the same as \a{matrix}.map(\a{region}). |
| 1328 | |
| 1329 | \sa QTransform::map() |
| 1330 | */ |
| 1331 | |
| 1332 | extern QPainterPath qt_regionToPath(const QRegion ®ion); |
| 1333 | |
| 1334 | /*! |
| 1335 | \fn QRegion QTransform::map(const QRegion ®ion) const |
| 1336 | \overload |
| 1337 | |
| 1338 | Creates and returns a QRegion object that is a copy of the given |
| 1339 | \a region, mapped into the coordinate system defined by this matrix. |
| 1340 | |
| 1341 | Calling this method can be rather expensive if rotations or |
| 1342 | shearing are used. |
| 1343 | */ |
| 1344 | QRegion QTransform::map(const QRegion &r) const |
| 1345 | { |
| 1346 | TransformationType t = inline_type(); |
| 1347 | if (t == TxNone) |
| 1348 | return r; |
| 1349 | |
| 1350 | if (t == TxTranslate) { |
| 1351 | QRegion copy(r); |
| 1352 | copy.translate(dx: qRound(d: m_matrix[2][0]), dy: qRound(d: m_matrix[2][1])); |
| 1353 | return copy; |
| 1354 | } |
| 1355 | |
| 1356 | if (t == TxScale) { |
| 1357 | QRegion res; |
| 1358 | if (m11() < 0 || m22() < 0) { |
| 1359 | for (const QRect &rect : r) |
| 1360 | res += qt_mapFillRect(rect: QRectF(rect), xf: *this); |
| 1361 | } else { |
| 1362 | QVarLengthArray<QRect, 32> rects; |
| 1363 | rects.reserve(sz: r.rectCount()); |
| 1364 | for (const QRect &rect : r) { |
| 1365 | QRect nr = qt_mapFillRect(rect: QRectF(rect), xf: *this); |
| 1366 | if (!nr.isEmpty()) |
| 1367 | rects.append(t: nr); |
| 1368 | } |
| 1369 | res.setRects(rect: rects.constData(), num: rects.size()); |
| 1370 | } |
| 1371 | return res; |
| 1372 | } |
| 1373 | |
| 1374 | QPainterPath p = map(p: qt_regionToPath(region: r)); |
| 1375 | return p.toFillPolygon().toPolygon(); |
| 1376 | } |
| 1377 | |
| 1378 | struct QHomogeneousCoordinate |
| 1379 | { |
| 1380 | qreal x; |
| 1381 | qreal y; |
| 1382 | qreal w; |
| 1383 | |
| 1384 | QHomogeneousCoordinate() {} |
| 1385 | QHomogeneousCoordinate(qreal x_, qreal y_, qreal w_) : x(x_), y(y_), w(w_) {} |
| 1386 | |
| 1387 | const QPointF toPoint() const { |
| 1388 | qreal iw = 1. / w; |
| 1389 | return QPointF(x * iw, y * iw); |
| 1390 | } |
| 1391 | }; |
| 1392 | |
| 1393 | static inline QHomogeneousCoordinate mapHomogeneous(const QTransform &transform, const QPointF &p) |
| 1394 | { |
| 1395 | QHomogeneousCoordinate c; |
| 1396 | c.x = transform.m11() * p.x() + transform.m21() * p.y() + transform.m31(); |
| 1397 | c.y = transform.m12() * p.x() + transform.m22() * p.y() + transform.m32(); |
| 1398 | c.w = transform.m13() * p.x() + transform.m23() * p.y() + transform.m33(); |
| 1399 | return c; |
| 1400 | } |
| 1401 | |
| 1402 | static inline bool lineTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, |
| 1403 | bool needsMoveTo, bool needsLineTo = true) |
| 1404 | { |
| 1405 | QHomogeneousCoordinate ha = mapHomogeneous(transform, p: a); |
| 1406 | QHomogeneousCoordinate hb = mapHomogeneous(transform, p: b); |
| 1407 | |
| 1408 | if (ha.w < Q_NEAR_CLIP && hb.w < Q_NEAR_CLIP) |
| 1409 | return false; |
| 1410 | |
| 1411 | if (hb.w < Q_NEAR_CLIP) { |
| 1412 | const qreal t = (Q_NEAR_CLIP - hb.w) / (ha.w - hb.w); |
| 1413 | |
| 1414 | hb.x += (ha.x - hb.x) * t; |
| 1415 | hb.y += (ha.y - hb.y) * t; |
| 1416 | hb.w = qreal(Q_NEAR_CLIP); |
| 1417 | } else if (ha.w < Q_NEAR_CLIP) { |
| 1418 | const qreal t = (Q_NEAR_CLIP - ha.w) / (hb.w - ha.w); |
| 1419 | |
| 1420 | ha.x += (hb.x - ha.x) * t; |
| 1421 | ha.y += (hb.y - ha.y) * t; |
| 1422 | ha.w = qreal(Q_NEAR_CLIP); |
| 1423 | |
| 1424 | const QPointF p = ha.toPoint(); |
| 1425 | if (needsMoveTo) { |
| 1426 | path.moveTo(p); |
| 1427 | needsMoveTo = false; |
| 1428 | } else { |
| 1429 | path.lineTo(p); |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | if (needsMoveTo) |
| 1434 | path.moveTo(p: ha.toPoint()); |
| 1435 | |
| 1436 | if (needsLineTo) |
| 1437 | path.lineTo(p: hb.toPoint()); |
| 1438 | |
| 1439 | return true; |
| 1440 | } |
| 1441 | Q_GUI_EXPORT bool qt_scaleForTransform(const QTransform &transform, qreal *scale); |
| 1442 | |
| 1443 | static inline bool cubicTo_clipped(QPainterPath &path, const QTransform &transform, const QPointF &a, const QPointF &b, const QPointF &c, const QPointF &d, bool needsMoveTo) |
| 1444 | { |
| 1445 | // Convert projective xformed curves to line |
| 1446 | // segments so they can be transformed more accurately |
| 1447 | |
| 1448 | qreal scale; |
| 1449 | qt_scaleForTransform(transform, scale: &scale); |
| 1450 | |
| 1451 | qreal curveThreshold = scale == 0 ? qreal(0.25) : (qreal(0.25) / scale); |
| 1452 | |
| 1453 | QPolygonF segment = QBezier::fromPoints(p1: a, p2: b, p3: c, p4: d).toPolygon(bezier_flattening_threshold: curveThreshold); |
| 1454 | |
| 1455 | for (int i = 0; i < segment.size() - 1; ++i) |
| 1456 | if (lineTo_clipped(path, transform, a: segment.at(i), b: segment.at(i: i+1), needsMoveTo)) |
| 1457 | needsMoveTo = false; |
| 1458 | |
| 1459 | return !needsMoveTo; |
| 1460 | } |
| 1461 | |
| 1462 | static QPainterPath mapProjective(const QTransform &transform, const QPainterPath &path) |
| 1463 | { |
| 1464 | QPainterPath result; |
| 1465 | |
| 1466 | QPointF last; |
| 1467 | QPointF lastMoveTo; |
| 1468 | bool needsMoveTo = true; |
| 1469 | for (int i = 0; i < path.elementCount(); ++i) { |
| 1470 | switch (path.elementAt(i).type) { |
| 1471 | case QPainterPath::MoveToElement: |
| 1472 | if (i > 0 && lastMoveTo != last) |
| 1473 | lineTo_clipped(path&: result, transform, a: last, b: lastMoveTo, needsMoveTo); |
| 1474 | |
| 1475 | lastMoveTo = path.elementAt(i); |
| 1476 | last = path.elementAt(i); |
| 1477 | needsMoveTo = true; |
| 1478 | break; |
| 1479 | case QPainterPath::LineToElement: |
| 1480 | if (lineTo_clipped(path&: result, transform, a: last, b: path.elementAt(i), needsMoveTo)) |
| 1481 | needsMoveTo = false; |
| 1482 | last = path.elementAt(i); |
| 1483 | break; |
| 1484 | case QPainterPath::CurveToElement: |
| 1485 | if (cubicTo_clipped(path&: result, transform, a: last, b: path.elementAt(i), c: path.elementAt(i: i+1), d: path.elementAt(i: i+2), needsMoveTo)) |
| 1486 | needsMoveTo = false; |
| 1487 | i += 2; |
| 1488 | last = path.elementAt(i); |
| 1489 | break; |
| 1490 | default: |
| 1491 | Q_ASSERT(false); |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | if (path.elementCount() > 0 && lastMoveTo != last) |
| 1496 | lineTo_clipped(path&: result, transform, a: last, b: lastMoveTo, needsMoveTo, needsLineTo: false); |
| 1497 | |
| 1498 | result.setFillRule(path.fillRule()); |
| 1499 | return result; |
| 1500 | } |
| 1501 | |
| 1502 | /*! |
| 1503 | \fn QPainterPath operator *(const QPainterPath &path, const QTransform &matrix) |
| 1504 | \since 4.3 |
| 1505 | \relates QTransform |
| 1506 | |
| 1507 | This is the same as \a{matrix}.map(\a{path}). |
| 1508 | |
| 1509 | \sa QTransform::map() |
| 1510 | */ |
| 1511 | |
| 1512 | /*! |
| 1513 | \overload |
| 1514 | |
| 1515 | Creates and returns a QPainterPath object that is a copy of the |
| 1516 | given \a path, mapped into the coordinate system defined by this |
| 1517 | matrix. |
| 1518 | */ |
| 1519 | QPainterPath QTransform::map(const QPainterPath &path) const |
| 1520 | { |
| 1521 | TransformationType t = inline_type(); |
| 1522 | if (t == TxNone || path.elementCount() == 0) |
| 1523 | return path; |
| 1524 | |
| 1525 | if (t >= TxProject) |
| 1526 | return mapProjective(transform: *this, path); |
| 1527 | |
| 1528 | QPainterPath copy = path; |
| 1529 | |
| 1530 | if (t == TxTranslate) { |
| 1531 | copy.translate(dx: m_matrix[2][0], dy: m_matrix[2][1]); |
| 1532 | } else { |
| 1533 | copy.detach(); |
| 1534 | // Full xform |
| 1535 | for (int i=0; i<path.elementCount(); ++i) { |
| 1536 | QPainterPath::Element &e = copy.d_ptr->elements[i]; |
| 1537 | do_map(x: e.x, y: e.y, nx&: e.x, ny&: e.y); |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | return copy; |
| 1542 | } |
| 1543 | |
| 1544 | /*! |
| 1545 | \fn QPolygon QTransform::mapToPolygon(const QRect &rectangle) const |
| 1546 | |
| 1547 | Creates and returns a QPolygon representation of the given \a |
| 1548 | rectangle, mapped into the coordinate system defined by this |
| 1549 | matrix. |
| 1550 | |
| 1551 | The rectangle's coordinates are transformed using the following |
| 1552 | formulas: |
| 1553 | |
| 1554 | \snippet code/src_gui_painting_qtransform.cpp 1 |
| 1555 | |
| 1556 | Polygons and rectangles behave slightly differently when |
| 1557 | transformed (due to integer rounding), so |
| 1558 | \c{matrix.map(QPolygon(rectangle))} is not always the same as |
| 1559 | \c{matrix.mapToPolygon(rectangle)}. |
| 1560 | |
| 1561 | \sa mapRect(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 1562 | Operations} |
| 1563 | */ |
| 1564 | QPolygon QTransform::mapToPolygon(const QRect &rect) const |
| 1565 | { |
| 1566 | TransformationType t = inline_type(); |
| 1567 | |
| 1568 | QPolygon a(4); |
| 1569 | qreal x[4] = { 0, 0, 0, 0 }, y[4] = { 0, 0, 0, 0 }; |
| 1570 | if (t <= TxScale) { |
| 1571 | x[0] = m_matrix[0][0]*rect.x() + m_matrix[2][0]; |
| 1572 | y[0] = m_matrix[1][1]*rect.y() + m_matrix[2][1]; |
| 1573 | qreal w = m_matrix[0][0]*rect.width(); |
| 1574 | qreal h = m_matrix[1][1]*rect.height(); |
| 1575 | if (w < 0) { |
| 1576 | w = -w; |
| 1577 | x[0] -= w; |
| 1578 | } |
| 1579 | if (h < 0) { |
| 1580 | h = -h; |
| 1581 | y[0] -= h; |
| 1582 | } |
| 1583 | x[1] = x[0]+w; |
| 1584 | x[2] = x[1]; |
| 1585 | x[3] = x[0]; |
| 1586 | y[1] = y[0]; |
| 1587 | y[2] = y[0]+h; |
| 1588 | y[3] = y[2]; |
| 1589 | } else { |
| 1590 | auto right = rect.x() + rect.width(); |
| 1591 | auto bottom = rect.y() + rect.height(); |
| 1592 | do_map(x: rect.x(), y: rect.y(), nx&: x[0], ny&: y[0]); |
| 1593 | do_map(x: right, y: rect.y(), nx&: x[1], ny&: y[1]); |
| 1594 | do_map(x: right, y: bottom, nx&: x[2], ny&: y[2]); |
| 1595 | do_map(x: rect.x(), y: bottom, nx&: x[3], ny&: y[3]); |
| 1596 | } |
| 1597 | |
| 1598 | // all coordinates are correctly, transform to a pointarray |
| 1599 | // (rounding to the next integer) |
| 1600 | a.setPoints(nPoints: 4, firstx: qRound(d: x[0]), firsty: qRound(d: y[0]), |
| 1601 | qRound(d: x[1]), qRound(d: y[1]), |
| 1602 | qRound(d: x[2]), qRound(d: y[2]), |
| 1603 | qRound(d: x[3]), qRound(d: y[3])); |
| 1604 | return a; |
| 1605 | } |
| 1606 | |
| 1607 | /*! |
| 1608 | Creates a transformation matrix, \a trans, that maps a unit square |
| 1609 | to a four-sided polygon, \a quad. Returns \c true if the transformation |
| 1610 | is constructed or false if such a transformation does not exist. |
| 1611 | |
| 1612 | \sa quadToSquare(), quadToQuad() |
| 1613 | */ |
| 1614 | bool QTransform::squareToQuad(const QPolygonF &quad, QTransform &trans) |
| 1615 | { |
| 1616 | if (quad.size() != (quad.isClosed() ? 5 : 4)) |
| 1617 | return false; |
| 1618 | |
| 1619 | qreal dx0 = quad[0].x(); |
| 1620 | qreal dx1 = quad[1].x(); |
| 1621 | qreal dx2 = quad[2].x(); |
| 1622 | qreal dx3 = quad[3].x(); |
| 1623 | |
| 1624 | qreal dy0 = quad[0].y(); |
| 1625 | qreal dy1 = quad[1].y(); |
| 1626 | qreal dy2 = quad[2].y(); |
| 1627 | qreal dy3 = quad[3].y(); |
| 1628 | |
| 1629 | double ax = dx0 - dx1 + dx2 - dx3; |
| 1630 | double ay = dy0 - dy1 + dy2 - dy3; |
| 1631 | |
| 1632 | if (!ax && !ay) { //afine transform |
| 1633 | trans.setMatrix(m11: dx1 - dx0, m12: dy1 - dy0, m13: 0, |
| 1634 | m21: dx2 - dx1, m22: dy2 - dy1, m23: 0, |
| 1635 | m31: dx0, m32: dy0, m33: 1); |
| 1636 | } else { |
| 1637 | double ax1 = dx1 - dx2; |
| 1638 | double ax2 = dx3 - dx2; |
| 1639 | double ay1 = dy1 - dy2; |
| 1640 | double ay2 = dy3 - dy2; |
| 1641 | |
| 1642 | /*determinants */ |
| 1643 | double gtop = ax * ay2 - ax2 * ay; |
| 1644 | double htop = ax1 * ay - ax * ay1; |
| 1645 | double bottom = ax1 * ay2 - ax2 * ay1; |
| 1646 | |
| 1647 | double a, b, c, d, e, f, g, h; /*i is always 1*/ |
| 1648 | |
| 1649 | if (!bottom) |
| 1650 | return false; |
| 1651 | |
| 1652 | g = gtop/bottom; |
| 1653 | h = htop/bottom; |
| 1654 | |
| 1655 | a = dx1 - dx0 + g * dx1; |
| 1656 | b = dx3 - dx0 + h * dx3; |
| 1657 | c = dx0; |
| 1658 | d = dy1 - dy0 + g * dy1; |
| 1659 | e = dy3 - dy0 + h * dy3; |
| 1660 | f = dy0; |
| 1661 | |
| 1662 | trans.setMatrix(m11: a, m12: d, m13: g, |
| 1663 | m21: b, m22: e, m23: h, |
| 1664 | m31: c, m32: f, m33: 1.0); |
| 1665 | } |
| 1666 | |
| 1667 | return true; |
| 1668 | } |
| 1669 | |
| 1670 | /*! |
| 1671 | \fn bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
| 1672 | |
| 1673 | Creates a transformation matrix, \a trans, that maps a four-sided polygon, |
| 1674 | \a quad, to a unit square. Returns \c true if the transformation is constructed |
| 1675 | or false if such a transformation does not exist. |
| 1676 | |
| 1677 | \sa squareToQuad(), quadToQuad() |
| 1678 | */ |
| 1679 | bool QTransform::quadToSquare(const QPolygonF &quad, QTransform &trans) |
| 1680 | { |
| 1681 | if (!squareToQuad(quad, trans)) |
| 1682 | return false; |
| 1683 | |
| 1684 | bool invertible = false; |
| 1685 | trans = trans.inverted(invertible: &invertible); |
| 1686 | |
| 1687 | return invertible; |
| 1688 | } |
| 1689 | |
| 1690 | /*! |
| 1691 | Creates a transformation matrix, \a trans, that maps a four-sided |
| 1692 | polygon, \a one, to another four-sided polygon, \a two. |
| 1693 | Returns \c true if the transformation is possible; otherwise returns |
| 1694 | false. |
| 1695 | |
| 1696 | This is a convenience method combining quadToSquare() and |
| 1697 | squareToQuad() methods. It allows the input quad to be |
| 1698 | transformed into any other quad. |
| 1699 | |
| 1700 | \sa squareToQuad(), quadToSquare() |
| 1701 | */ |
| 1702 | bool QTransform::quadToQuad(const QPolygonF &one, |
| 1703 | const QPolygonF &two, |
| 1704 | QTransform &trans) |
| 1705 | { |
| 1706 | QTransform stq; |
| 1707 | if (!quadToSquare(quad: one, trans)) |
| 1708 | return false; |
| 1709 | if (!squareToQuad(quad: two, trans&: stq)) |
| 1710 | return false; |
| 1711 | trans *= stq; |
| 1712 | //qDebug()<<"Final = "<<trans; |
| 1713 | return true; |
| 1714 | } |
| 1715 | |
| 1716 | /*! |
| 1717 | Sets the matrix elements to the specified values, \a m11, |
| 1718 | \a m12, \a m13 \a m21, \a m22, \a m23 \a m31, \a m32 and |
| 1719 | \a m33. Note that this function replaces the previous values. |
| 1720 | QTransform provides the translate(), rotate(), scale() and shear() |
| 1721 | convenience functions to manipulate the various matrix elements |
| 1722 | based on the currently defined coordinate system. |
| 1723 | |
| 1724 | \sa QTransform() |
| 1725 | */ |
| 1726 | |
| 1727 | void QTransform::setMatrix(qreal m11, qreal m12, qreal m13, |
| 1728 | qreal m21, qreal m22, qreal m23, |
| 1729 | qreal m31, qreal m32, qreal m33) |
| 1730 | { |
| 1731 | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; |
| 1732 | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; |
| 1733 | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; |
| 1734 | m_type = TxNone; |
| 1735 | m_dirty = TxProject; |
| 1736 | } |
| 1737 | |
| 1738 | QRect QTransform::mapRect(const QRect &rect) const |
| 1739 | { |
| 1740 | TransformationType t = inline_type(); |
| 1741 | if (t <= TxTranslate) |
| 1742 | return rect.translated(dx: qRound(d: m_matrix[2][0]), dy: qRound(d: m_matrix[2][1])); |
| 1743 | |
| 1744 | if (t <= TxScale) { |
| 1745 | int x = qRound(d: m_matrix[0][0] * rect.x() + m_matrix[2][0]); |
| 1746 | int y = qRound(d: m_matrix[1][1] * rect.y() + m_matrix[2][1]); |
| 1747 | int w = qRound(d: m_matrix[0][0] * rect.width()); |
| 1748 | int h = qRound(d: m_matrix[1][1] * rect.height()); |
| 1749 | if (w < 0) { |
| 1750 | w = -w; |
| 1751 | x -= w; |
| 1752 | } |
| 1753 | if (h < 0) { |
| 1754 | h = -h; |
| 1755 | y -= h; |
| 1756 | } |
| 1757 | return QRect(x, y, w, h); |
| 1758 | } else { |
| 1759 | qreal x = 0, y = 0; |
| 1760 | do_map(x: rect.left(), y: rect.top(), nx&: x, ny&: y); |
| 1761 | qreal xmin = x; |
| 1762 | qreal ymin = y; |
| 1763 | qreal xmax = x; |
| 1764 | qreal ymax = y; |
| 1765 | do_map(x: rect.right() + 1, y: rect.top(), nx&: x, ny&: y); |
| 1766 | xmin = qMin(a: xmin, b: x); |
| 1767 | ymin = qMin(a: ymin, b: y); |
| 1768 | xmax = qMax(a: xmax, b: x); |
| 1769 | ymax = qMax(a: ymax, b: y); |
| 1770 | do_map(x: rect.right() + 1, y: rect.bottom() + 1, nx&: x, ny&: y); |
| 1771 | xmin = qMin(a: xmin, b: x); |
| 1772 | ymin = qMin(a: ymin, b: y); |
| 1773 | xmax = qMax(a: xmax, b: x); |
| 1774 | ymax = qMax(a: ymax, b: y); |
| 1775 | do_map(x: rect.left(), y: rect.bottom() + 1, nx&: x, ny&: y); |
| 1776 | xmin = qMin(a: xmin, b: x); |
| 1777 | ymin = qMin(a: ymin, b: y); |
| 1778 | xmax = qMax(a: xmax, b: x); |
| 1779 | ymax = qMax(a: ymax, b: y); |
| 1780 | return QRectF(xmin, ymin, xmax-xmin, ymax-ymin).toRect(); |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | /*! |
| 1785 | \fn QRectF QTransform::mapRect(const QRectF &rectangle) const |
| 1786 | |
| 1787 | Creates and returns a QRectF object that is a copy of the given \a |
| 1788 | rectangle, mapped into the coordinate system defined by this |
| 1789 | matrix. |
| 1790 | |
| 1791 | The rectangle's coordinates are transformed using the following |
| 1792 | formulas: |
| 1793 | |
| 1794 | \snippet code/src_gui_painting_qtransform.cpp 2 |
| 1795 | |
| 1796 | If rotation or shearing has been specified, this function returns |
| 1797 | the \e bounding rectangle. To retrieve the exact region the given |
| 1798 | \a rectangle maps to, use the mapToPolygon() function instead. |
| 1799 | |
| 1800 | \sa mapToPolygon(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 1801 | Operations} |
| 1802 | */ |
| 1803 | QRectF QTransform::mapRect(const QRectF &rect) const |
| 1804 | { |
| 1805 | TransformationType t = inline_type(); |
| 1806 | if (t <= TxTranslate) |
| 1807 | return rect.translated(dx: m_matrix[2][0], dy: m_matrix[2][1]); |
| 1808 | |
| 1809 | if (t <= TxScale) { |
| 1810 | qreal x = m_matrix[0][0] * rect.x() + m_matrix[2][0]; |
| 1811 | qreal y = m_matrix[1][1] * rect.y() + m_matrix[2][1]; |
| 1812 | qreal w = m_matrix[0][0] * rect.width(); |
| 1813 | qreal h = m_matrix[1][1] * rect.height(); |
| 1814 | if (w < 0) { |
| 1815 | w = -w; |
| 1816 | x -= w; |
| 1817 | } |
| 1818 | if (h < 0) { |
| 1819 | h = -h; |
| 1820 | y -= h; |
| 1821 | } |
| 1822 | return QRectF(x, y, w, h); |
| 1823 | } else { |
| 1824 | qreal x = 0, y = 0; |
| 1825 | do_map(x: rect.x(), y: rect.y(), nx&: x, ny&: y); |
| 1826 | qreal xmin = x; |
| 1827 | qreal ymin = y; |
| 1828 | qreal xmax = x; |
| 1829 | qreal ymax = y; |
| 1830 | do_map(x: rect.x() + rect.width(), y: rect.y(), nx&: x, ny&: y); |
| 1831 | xmin = qMin(a: xmin, b: x); |
| 1832 | ymin = qMin(a: ymin, b: y); |
| 1833 | xmax = qMax(a: xmax, b: x); |
| 1834 | ymax = qMax(a: ymax, b: y); |
| 1835 | do_map(x: rect.x() + rect.width(), y: rect.y() + rect.height(), nx&: x, ny&: y); |
| 1836 | xmin = qMin(a: xmin, b: x); |
| 1837 | ymin = qMin(a: ymin, b: y); |
| 1838 | xmax = qMax(a: xmax, b: x); |
| 1839 | ymax = qMax(a: ymax, b: y); |
| 1840 | do_map(x: rect.x(), y: rect.y() + rect.height(), nx&: x, ny&: y); |
| 1841 | xmin = qMin(a: xmin, b: x); |
| 1842 | ymin = qMin(a: ymin, b: y); |
| 1843 | xmax = qMax(a: xmax, b: x); |
| 1844 | ymax = qMax(a: ymax, b: y); |
| 1845 | return QRectF(xmin, ymin, xmax-xmin, ymax - ymin); |
| 1846 | } |
| 1847 | } |
| 1848 | |
| 1849 | /*! |
| 1850 | \fn QRect QTransform::mapRect(const QRect &rectangle) const |
| 1851 | \overload |
| 1852 | |
| 1853 | Creates and returns a QRect object that is a copy of the given \a |
| 1854 | rectangle, mapped into the coordinate system defined by this |
| 1855 | matrix. Note that the transformed coordinates are rounded to the |
| 1856 | nearest integer. |
| 1857 | */ |
| 1858 | |
| 1859 | /*! |
| 1860 | Maps the given coordinates \a x and \a y into the coordinate |
| 1861 | system defined by this matrix. The resulting values are put in *\a |
| 1862 | tx and *\a ty, respectively. |
| 1863 | |
| 1864 | The coordinates are transformed using the following formulas: |
| 1865 | |
| 1866 | \snippet code/src_gui_painting_qtransform.cpp 3 |
| 1867 | |
| 1868 | The point (x, y) is the original point, and (x', y') is the |
| 1869 | transformed point. |
| 1870 | |
| 1871 | \sa {QTransform#Basic Matrix Operations}{Basic Matrix Operations} |
| 1872 | */ |
| 1873 | void QTransform::map(qreal x, qreal y, qreal *tx, qreal *ty) const |
| 1874 | { |
| 1875 | do_map(x, y, nx&: *tx, ny&: *ty); |
| 1876 | } |
| 1877 | |
| 1878 | /*! |
| 1879 | \overload |
| 1880 | |
| 1881 | Maps the given coordinates \a x and \a y into the coordinate |
| 1882 | system defined by this matrix. The resulting values are put in *\a |
| 1883 | tx and *\a ty, respectively. Note that the transformed coordinates |
| 1884 | are rounded to the nearest integer. |
| 1885 | */ |
| 1886 | void QTransform::map(int x, int y, int *tx, int *ty) const |
| 1887 | { |
| 1888 | qreal fx = 0, fy = 0; |
| 1889 | do_map(x, y, nx&: fx, ny&: fy); |
| 1890 | *tx = qRound(d: fx); |
| 1891 | *ty = qRound(d: fy); |
| 1892 | } |
| 1893 | |
| 1894 | /*! |
| 1895 | Returns the transformation type of this matrix. |
| 1896 | |
| 1897 | The transformation type is the highest enumeration value |
| 1898 | capturing all of the matrix's transformations. For example, |
| 1899 | if the matrix both scales and shears, the type would be \c TxShear, |
| 1900 | because \c TxShear has a higher enumeration value than \c TxScale. |
| 1901 | |
| 1902 | Knowing the transformation type of a matrix is useful for optimization: |
| 1903 | you can often handle specific types more optimally than handling |
| 1904 | the generic case. |
| 1905 | */ |
| 1906 | QTransform::TransformationType QTransform::type() const |
| 1907 | { |
| 1908 | if (m_dirty == TxNone || m_dirty < m_type) |
| 1909 | return static_cast<TransformationType>(m_type); |
| 1910 | |
| 1911 | switch (static_cast<TransformationType>(m_dirty)) { |
| 1912 | case TxProject: |
| 1913 | if (!qFuzzyIsNull(d: m_matrix[0][2]) || !qFuzzyIsNull(d: m_matrix[1][2]) || !qFuzzyIsNull(d: m_matrix[2][2] - 1)) { |
| 1914 | m_type = TxProject; |
| 1915 | break; |
| 1916 | } |
| 1917 | Q_FALLTHROUGH(); |
| 1918 | case TxShear: |
| 1919 | case TxRotate: |
| 1920 | if (!qFuzzyIsNull(d: m_matrix[0][1]) || !qFuzzyIsNull(d: m_matrix[1][0])) { |
| 1921 | const qreal dot = m_matrix[0][0] * m_matrix[1][0] + m_matrix[0][1] * m_matrix[1][1]; |
| 1922 | if (qFuzzyIsNull(d: dot)) |
| 1923 | m_type = TxRotate; |
| 1924 | else |
| 1925 | m_type = TxShear; |
| 1926 | break; |
| 1927 | } |
| 1928 | Q_FALLTHROUGH(); |
| 1929 | case TxScale: |
| 1930 | if (!qFuzzyIsNull(d: m_matrix[0][0] - 1) || !qFuzzyIsNull(d: m_matrix[1][1] - 1)) { |
| 1931 | m_type = TxScale; |
| 1932 | break; |
| 1933 | } |
| 1934 | Q_FALLTHROUGH(); |
| 1935 | case TxTranslate: |
| 1936 | if (!qFuzzyIsNull(d: m_matrix[2][0]) || !qFuzzyIsNull(d: m_matrix[2][1])) { |
| 1937 | m_type = TxTranslate; |
| 1938 | break; |
| 1939 | } |
| 1940 | Q_FALLTHROUGH(); |
| 1941 | case TxNone: |
| 1942 | m_type = TxNone; |
| 1943 | break; |
| 1944 | } |
| 1945 | |
| 1946 | m_dirty = TxNone; |
| 1947 | return static_cast<TransformationType>(m_type); |
| 1948 | } |
| 1949 | |
| 1950 | /*! |
| 1951 | |
| 1952 | Returns the transform as a QVariant. |
| 1953 | */ |
| 1954 | QTransform::operator QVariant() const |
| 1955 | { |
| 1956 | return QVariant::fromValue(value: *this); |
| 1957 | } |
| 1958 | |
| 1959 | |
| 1960 | /*! |
| 1961 | \fn bool QTransform::isInvertible() const |
| 1962 | |
| 1963 | Returns \c true if the matrix is invertible, otherwise returns \c false. |
| 1964 | |
| 1965 | \sa inverted() |
| 1966 | */ |
| 1967 | |
| 1968 | /*! |
| 1969 | \fn qreal QTransform::m11() const |
| 1970 | |
| 1971 | Returns the horizontal scaling factor. |
| 1972 | |
| 1973 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 1974 | Operations} |
| 1975 | */ |
| 1976 | |
| 1977 | /*! |
| 1978 | \fn qreal QTransform::m12() const |
| 1979 | |
| 1980 | Returns the vertical shearing factor. |
| 1981 | |
| 1982 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 1983 | Operations} |
| 1984 | */ |
| 1985 | |
| 1986 | /*! |
| 1987 | \fn qreal QTransform::m21() const |
| 1988 | |
| 1989 | Returns the horizontal shearing factor. |
| 1990 | |
| 1991 | \sa shear(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 1992 | Operations} |
| 1993 | */ |
| 1994 | |
| 1995 | /*! |
| 1996 | \fn qreal QTransform::m22() const |
| 1997 | |
| 1998 | Returns the vertical scaling factor. |
| 1999 | |
| 2000 | \sa scale(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2001 | Operations} |
| 2002 | */ |
| 2003 | |
| 2004 | /*! |
| 2005 | \fn qreal QTransform::dx() const |
| 2006 | |
| 2007 | Returns the horizontal translation factor. |
| 2008 | |
| 2009 | \sa m31(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2010 | Operations} |
| 2011 | */ |
| 2012 | |
| 2013 | /*! |
| 2014 | \fn qreal QTransform::dy() const |
| 2015 | |
| 2016 | Returns the vertical translation factor. |
| 2017 | |
| 2018 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2019 | Operations} |
| 2020 | */ |
| 2021 | |
| 2022 | |
| 2023 | /*! |
| 2024 | \fn qreal QTransform::m13() const |
| 2025 | |
| 2026 | Returns the horizontal projection factor. |
| 2027 | |
| 2028 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2029 | Operations} |
| 2030 | */ |
| 2031 | |
| 2032 | |
| 2033 | /*! |
| 2034 | \fn qreal QTransform::m23() const |
| 2035 | |
| 2036 | Returns the vertical projection factor. |
| 2037 | |
| 2038 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2039 | Operations} |
| 2040 | */ |
| 2041 | |
| 2042 | /*! |
| 2043 | \fn qreal QTransform::m31() const |
| 2044 | |
| 2045 | Returns the horizontal translation factor. |
| 2046 | |
| 2047 | \sa dx(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2048 | Operations} |
| 2049 | */ |
| 2050 | |
| 2051 | /*! |
| 2052 | \fn qreal QTransform::m32() const |
| 2053 | |
| 2054 | Returns the vertical translation factor. |
| 2055 | |
| 2056 | \sa dy(), translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2057 | Operations} |
| 2058 | */ |
| 2059 | |
| 2060 | /*! |
| 2061 | \fn qreal QTransform::m33() const |
| 2062 | |
| 2063 | Returns the division factor. |
| 2064 | |
| 2065 | \sa translate(), {QTransform#Basic Matrix Operations}{Basic Matrix |
| 2066 | Operations} |
| 2067 | */ |
| 2068 | |
| 2069 | /*! |
| 2070 | \fn qreal QTransform::determinant() const |
| 2071 | |
| 2072 | Returns the matrix's determinant. |
| 2073 | */ |
| 2074 | |
| 2075 | /*! |
| 2076 | \fn bool QTransform::isIdentity() const |
| 2077 | |
| 2078 | Returns \c true if the matrix is the identity matrix, otherwise |
| 2079 | returns \c false. |
| 2080 | |
| 2081 | \sa reset() |
| 2082 | */ |
| 2083 | |
| 2084 | /*! |
| 2085 | \fn bool QTransform::isAffine() const |
| 2086 | |
| 2087 | Returns \c true if the matrix represent an affine transformation, |
| 2088 | otherwise returns \c false. |
| 2089 | */ |
| 2090 | |
| 2091 | /*! |
| 2092 | \fn bool QTransform::isScaling() const |
| 2093 | |
| 2094 | Returns \c true if the matrix represents a scaling |
| 2095 | transformation, otherwise returns \c false. |
| 2096 | |
| 2097 | \sa reset() |
| 2098 | */ |
| 2099 | |
| 2100 | /*! |
| 2101 | \fn bool QTransform::isRotating() const |
| 2102 | |
| 2103 | Returns \c true if the matrix represents some kind of a |
| 2104 | rotating transformation, otherwise returns \c false. |
| 2105 | |
| 2106 | \note A rotation transformation of 180 degrees and/or 360 degrees is treated as a scaling transformation. |
| 2107 | |
| 2108 | \sa reset() |
| 2109 | */ |
| 2110 | |
| 2111 | /*! |
| 2112 | \fn bool QTransform::isTranslating() const |
| 2113 | |
| 2114 | Returns \c true if the matrix represents a translating |
| 2115 | transformation, otherwise returns \c false. |
| 2116 | |
| 2117 | \sa reset() |
| 2118 | */ |
| 2119 | |
| 2120 | /*! |
| 2121 | \fn bool qFuzzyCompare(const QTransform& t1, const QTransform& t2) |
| 2122 | |
| 2123 | \relates QTransform |
| 2124 | \since 4.6 |
| 2125 | |
| 2126 | Returns \c true if \a t1 and \a t2 are equal, allowing for a small |
| 2127 | fuzziness factor for floating-point comparisons; false otherwise. |
| 2128 | */ |
| 2129 | |
| 2130 | |
| 2131 | // returns true if the transform is uniformly scaling |
| 2132 | // (same scale in x and y direction) |
| 2133 | // scale is set to the max of x and y scaling factors |
| 2134 | Q_GUI_EXPORT |
| 2135 | bool qt_scaleForTransform(const QTransform &transform, qreal *scale) |
| 2136 | { |
| 2137 | const QTransform::TransformationType type = transform.type(); |
| 2138 | if (type <= QTransform::TxTranslate) { |
| 2139 | if (scale) |
| 2140 | *scale = 1; |
| 2141 | return true; |
| 2142 | } else if (type == QTransform::TxScale) { |
| 2143 | const qreal xScale = qAbs(t: transform.m11()); |
| 2144 | const qreal yScale = qAbs(t: transform.m22()); |
| 2145 | if (scale) |
| 2146 | *scale = qMax(a: xScale, b: yScale); |
| 2147 | return qFuzzyCompare(p1: xScale, p2: yScale); |
| 2148 | } |
| 2149 | |
| 2150 | // rotate then scale: compare columns |
| 2151 | const qreal xScale1 = transform.m11() * transform.m11() |
| 2152 | + transform.m21() * transform.m21(); |
| 2153 | const qreal yScale1 = transform.m12() * transform.m12() |
| 2154 | + transform.m22() * transform.m22(); |
| 2155 | |
| 2156 | // scale then rotate: compare rows |
| 2157 | const qreal xScale2 = transform.m11() * transform.m11() |
| 2158 | + transform.m12() * transform.m12(); |
| 2159 | const qreal yScale2 = transform.m21() * transform.m21() |
| 2160 | + transform.m22() * transform.m22(); |
| 2161 | |
| 2162 | // decide the order of rotate and scale operations |
| 2163 | if (qAbs(t: xScale1 - yScale1) > qAbs(t: xScale2 - yScale2)) { |
| 2164 | if (scale) |
| 2165 | *scale = qSqrt(v: qMax(a: xScale1, b: yScale1)); |
| 2166 | |
| 2167 | return type == QTransform::TxRotate && qFuzzyCompare(p1: xScale1, p2: yScale1); |
| 2168 | } else { |
| 2169 | if (scale) |
| 2170 | *scale = qSqrt(v: qMax(a: xScale2, b: yScale2)); |
| 2171 | |
| 2172 | return type == QTransform::TxRotate && qFuzzyCompare(p1: xScale2, p2: yScale2); |
| 2173 | } |
| 2174 | } |
| 2175 | |
| 2176 | QDataStream & operator>>(QDataStream &s, QTransform::Affine &m) |
| 2177 | { |
| 2178 | if (s.version() == 1) { |
| 2179 | float m11, m12, m21, m22, dx, dy; |
| 2180 | s >> m11; s >> m12; s >> m21; s >> m22; s >> dx; s >> dy; |
| 2181 | |
| 2182 | m.m_matrix[0][0] = m11; |
| 2183 | m.m_matrix[0][1] = m12; |
| 2184 | m.m_matrix[1][0] = m21; |
| 2185 | m.m_matrix[1][1] = m22; |
| 2186 | m.m_matrix[2][0] = dx; |
| 2187 | m.m_matrix[2][1] = dy; |
| 2188 | } else { |
| 2189 | s >> m.m_matrix[0][0]; |
| 2190 | s >> m.m_matrix[0][1]; |
| 2191 | s >> m.m_matrix[1][0]; |
| 2192 | s >> m.m_matrix[1][1]; |
| 2193 | s >> m.m_matrix[2][0]; |
| 2194 | s >> m.m_matrix[2][1]; |
| 2195 | } |
| 2196 | m.m_matrix[0][2] = 0; |
| 2197 | m.m_matrix[1][2] = 0; |
| 2198 | m.m_matrix[2][2] = 1; |
| 2199 | return s; |
| 2200 | } |
| 2201 | |
| 2202 | QDataStream &operator<<(QDataStream &s, const QTransform::Affine &m) |
| 2203 | { |
| 2204 | if (s.version() == 1) { |
| 2205 | s << (float)m.m_matrix[0][0] |
| 2206 | << (float)m.m_matrix[0][1] |
| 2207 | << (float)m.m_matrix[1][0] |
| 2208 | << (float)m.m_matrix[1][1] |
| 2209 | << (float)m.m_matrix[2][0] |
| 2210 | << (float)m.m_matrix[2][1]; |
| 2211 | } else { |
| 2212 | s << m.m_matrix[0][0] |
| 2213 | << m.m_matrix[0][1] |
| 2214 | << m.m_matrix[1][0] |
| 2215 | << m.m_matrix[1][1] |
| 2216 | << m.m_matrix[2][0] |
| 2217 | << m.m_matrix[2][1]; |
| 2218 | } |
| 2219 | return s; |
| 2220 | } |
| 2221 | |
| 2222 | QT_END_NAMESPACE |
| 2223 | |