| 1 | // Copyright (C) 2017 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "qvulkanwindow_p.h" |
| 5 | #include "qvulkanfunctions.h" |
| 6 | #include <QLoggingCategory> |
| 7 | #include <QTimer> |
| 8 | #include <QThread> |
| 9 | #include <QCoreApplication> |
| 10 | #include <qevent.h> |
| 11 | |
| 12 | QT_BEGIN_NAMESPACE |
| 13 | |
| 14 | Q_DECLARE_LOGGING_CATEGORY(lcGuiVk) |
| 15 | |
| 16 | /*! |
| 17 | \class QVulkanWindow |
| 18 | \inmodule QtGui |
| 19 | \since 5.10 |
| 20 | \brief The QVulkanWindow class is a convenience subclass of QWindow to perform Vulkan rendering. |
| 21 | |
| 22 | QVulkanWindow is a Vulkan-capable QWindow that manages a Vulkan device, a |
| 23 | graphics queue, a command pool and buffer, a depth-stencil image and a |
| 24 | double-buffered FIFO swapchain, while taking care of correct behavior when it |
| 25 | comes to events like resize, special situations like not having a device |
| 26 | queue supporting both graphics and presentation, device lost scenarios, and |
| 27 | additional functionality like reading the rendered content back. Conceptually |
| 28 | it is the counterpart of QOpenGLWindow in the Vulkan world. |
| 29 | |
| 30 | \note QVulkanWindow does not always eliminate the need to implement a fully |
| 31 | custom QWindow subclass as it will not necessarily be sufficient in advanced |
| 32 | use cases. |
| 33 | |
| 34 | QVulkanWindow can be embedded into QWidget-based user interfaces via |
| 35 | QWidget::createWindowContainer(). This approach has a number of limitations, |
| 36 | however. Make sure to study the |
| 37 | \l{QWidget::createWindowContainer()}{documentation} first. |
| 38 | |
| 39 | A typical application using QVulkanWindow may look like the following: |
| 40 | |
| 41 | \snippet code/src_gui_vulkan_qvulkanwindow.cpp 0 |
| 42 | |
| 43 | As it can be seen in the example, the main patterns in QVulkanWindow usage are: |
| 44 | |
| 45 | \list |
| 46 | |
| 47 | \li The QVulkanInstance is associated via QWindow::setVulkanInstance(). It is |
| 48 | then retrievable via QWindow::vulkanInstance() from everywhere, on any |
| 49 | thread. |
| 50 | |
| 51 | \li Similarly to QVulkanInstance, device extensions can be queried via |
| 52 | supportedDeviceExtensions() before the actual initialization. Requesting an |
| 53 | extension to be enabled is done via setDeviceExtensions(). Such calls must be |
| 54 | made before the window becomes visible, that is, before calling show() or |
| 55 | similar functions. Unsupported extension requests are gracefully ignored. |
| 56 | |
| 57 | \li The renderer is implemented in a QVulkanWindowRenderer subclass, an |
| 58 | instance of which is created in the createRenderer() factory function. |
| 59 | |
| 60 | \li The core Vulkan commands are exposed via the QVulkanFunctions object, |
| 61 | retrievable by calling QVulkanInstance::functions(). Device level functions |
| 62 | are available after creating a VkDevice by calling |
| 63 | QVulkanInstance::deviceFunctions(). |
| 64 | |
| 65 | \li The building of the draw calls for the next frame happens in |
| 66 | QVulkanWindowRenderer::startNextFrame(). The implementation is expected to |
| 67 | add commands to the command buffer returned from currentCommandBuffer(). |
| 68 | Returning from the function does not indicate that the commands are ready for |
| 69 | submission. Rather, an explicit call to frameReady() is required. This allows |
| 70 | asynchronous generation of commands, possibly on multiple threads. Simple |
| 71 | implementations will simply call frameReady() at the end of their |
| 72 | QVulkanWindowRenderer::startNextFrame(). |
| 73 | |
| 74 | \li The basic Vulkan resources (physical device, graphics queue, a command |
| 75 | pool, the window's main command buffer, image formats, etc.) are exposed on |
| 76 | the QVulkanWindow via lightweight getter functions. Some of these are for |
| 77 | convenience only, and applications are always free to query, create and |
| 78 | manage additional resources directly via the Vulkan API. |
| 79 | |
| 80 | \li The renderer lives in the gui/main thread, like the window itself. This |
| 81 | thread is then throttled to the presentation rate, similarly to how OpenGL |
| 82 | with a swap interval of 1 would behave. However, the renderer implementation |
| 83 | is free to utilize multiple threads in any way it sees fit. The accessors |
| 84 | like vulkanInstance(), currentCommandBuffer(), etc. can be called from any |
| 85 | thread. The submission of the main command buffer, the queueing of present, |
| 86 | and the building of the next frame do not start until frameReady() is |
| 87 | invoked on the gui/main thread. |
| 88 | |
| 89 | \li When the window is made visible, the content is updated automatically. |
| 90 | Further updates can be requested by calling QWindow::requestUpdate(). To |
| 91 | render continuously, call requestUpdate() after frameReady(). |
| 92 | |
| 93 | \endlist |
| 94 | |
| 95 | For troubleshooting, enable the logging category \c{qt.vulkan}. Critical |
| 96 | errors are printed via qWarning() automatically. |
| 97 | |
| 98 | \section1 Coordinate system differences between OpenGL and Vulkan |
| 99 | |
| 100 | There are two notable differences to be aware of: First, with Vulkan Y points |
| 101 | down the screen in clip space, while OpenGL uses an upwards pointing Y axis. |
| 102 | Second, the standard OpenGL projection matrix assume a near and far plane |
| 103 | values of -1 and 1, while Vulkan prefers 0 and 1. |
| 104 | |
| 105 | In order to help applications migrate from OpenGL-based code without having |
| 106 | to flip Y coordinates in the vertex data, and to allow using QMatrix4x4 |
| 107 | functions like QMatrix4x4::perspective() while keeping the Vulkan viewport's |
| 108 | minDepth and maxDepth set to 0 and 1, QVulkanWindow provides a correction |
| 109 | matrix retrievable by calling clipCorrectionMatrix(). |
| 110 | |
| 111 | \section1 Multisampling |
| 112 | |
| 113 | While disabled by default, multisample antialiasing is fully supported by |
| 114 | QVulkanWindow. Additional color buffers and resolving into the swapchain's |
| 115 | non-multisample buffers are all managed automatically. |
| 116 | |
| 117 | To query the supported sample counts, call supportedSampleCounts(). When the |
| 118 | returned set contains 4, 8, ..., passing one of those values to setSampleCount() |
| 119 | requests multisample rendering. |
| 120 | |
| 121 | \note unlike QSurfaceFormat::setSamples(), the list of supported sample |
| 122 | counts are exposed to the applications in advance and there is no automatic |
| 123 | falling back to lower sample counts in setSampleCount(). If the requested value |
| 124 | is not supported, a warning is shown and a no multisampling will be used. |
| 125 | |
| 126 | \section1 Reading images back |
| 127 | |
| 128 | When supportsGrab() returns true, QVulkanWindow can perform readbacks from |
| 129 | the color buffer into a QImage. grab() is a slow and inefficient operation, |
| 130 | so frequent usage should be avoided. It is nonetheless valuable since it |
| 131 | allows applications to take screenshots, or tools and tests to process and |
| 132 | verify the output of the GPU rendering. |
| 133 | |
| 134 | \section1 sRGB support |
| 135 | |
| 136 | While many applications will be fine with the default behavior of |
| 137 | QVulkanWindow when it comes to swapchain image formats, |
| 138 | setPreferredColorFormats() allows requesting a pre-defined format. This is |
| 139 | useful most notably when working in the sRGB color space. Passing a format |
| 140 | like \c{VK_FORMAT_B8G8R8A8_SRGB} results in choosing an sRGB format, when |
| 141 | available. |
| 142 | |
| 143 | \section1 Validation layers |
| 144 | |
| 145 | During application development it can be extremely valuable to have the |
| 146 | Vulkan validation layers enabled. As shown in the example code above, calling |
| 147 | QVulkanInstance::setLayers() on the QVulkanInstance before |
| 148 | QVulkanInstance::create() enables validation, assuming the Vulkan driver |
| 149 | stack in the system contains the necessary layers. |
| 150 | |
| 151 | \note Be aware of platform-specific differences. On desktop platforms |
| 152 | installing the \l{https://www.lunarg.com/vulkan-sdk/}{Vulkan SDK} is |
| 153 | typically sufficient. However, Android for example requires deploying |
| 154 | additional shared libraries together with the application, and also mandates |
| 155 | a different list of validation layer names. See |
| 156 | \l{https://developer.android.com/ndk/guides/graphics/validation-layer.html}{the |
| 157 | Android Vulkan development pages} for more information. |
| 158 | |
| 159 | \note QVulkanWindow does not expose device layers since this functionality |
| 160 | has been deprecated since version 1.0.13 of the Vulkan API. |
| 161 | |
| 162 | \section1 Layers, device features, and extensions |
| 163 | |
| 164 | To enable instance layers, call QVulkanInstance::setLayers() before creating |
| 165 | the QVulkanInstance. To query what instance layer are available, call |
| 166 | QVulkanInstance::supportedLayers(). |
| 167 | |
| 168 | To enable device extensions, call setDeviceExtensions() early on when setting |
| 169 | up the QVulkanWindow. To query what device extensions are available, call |
| 170 | supportedDeviceExtensions(). |
| 171 | |
| 172 | Specifying an unsupported layer or extension is handled gracefully: this will |
| 173 | not fail instance or device creation, but the layer or extension request is |
| 174 | rather ignored. |
| 175 | |
| 176 | When it comes to device features, QVulkanWindow enables all Vulkan 1.0 |
| 177 | features that are reported as supported from vkGetPhysicalDeviceFeatures(). |
| 178 | As an exception to this rule, \c robustBufferAccess is never enabled. Use the |
| 179 | callback mechanism described below, if enabling that feature is desired. |
| 180 | |
| 181 | This is not always desirable, and may be insufficient with Vulkan 1.1 and |
| 182 | higher. Therefore, full control over the VkPhysicalDeviceFeatures used for |
| 183 | device creation is possible too by registering a callback function with |
| 184 | setEnabledFeaturesModifier(). When set, the callback function is invoked, |
| 185 | letting it alter the VkPhysicalDeviceFeatures or VkPhysicalDeviceFeatures2. |
| 186 | |
| 187 | \sa QVulkanInstance, QWindow |
| 188 | */ |
| 189 | |
| 190 | /*! |
| 191 | \class QVulkanWindowRenderer |
| 192 | \inmodule QtGui |
| 193 | \since 5.10 |
| 194 | |
| 195 | \brief The QVulkanWindowRenderer class is used to implement the |
| 196 | application-specific rendering logic for a QVulkanWindow. |
| 197 | |
| 198 | Applications typically subclass both QVulkanWindow and QVulkanWindowRenderer. |
| 199 | The former allows handling events, for example, input, while the latter allows |
| 200 | implementing the Vulkan resource management and command buffer building that |
| 201 | make up the application's rendering. |
| 202 | |
| 203 | In addition to event handling, the QVulkanWindow subclass is responsible for |
| 204 | providing an implementation for QVulkanWindow::createRenderer() as well. This |
| 205 | is where the window and renderer get connected. A typical implementation will |
| 206 | simply create a new instance of a subclass of QVulkanWindowRenderer. |
| 207 | */ |
| 208 | |
| 209 | /*! |
| 210 | Constructs a new QVulkanWindow with the given \a parent. |
| 211 | |
| 212 | The surface type is set to QSurface::VulkanSurface. |
| 213 | */ |
| 214 | QVulkanWindow::QVulkanWindow(QWindow *parent) |
| 215 | : QWindow(*(new QVulkanWindowPrivate), parent) |
| 216 | { |
| 217 | setSurfaceType(QSurface::VulkanSurface); |
| 218 | } |
| 219 | |
| 220 | /*! |
| 221 | Destructor. |
| 222 | */ |
| 223 | QVulkanWindow::~QVulkanWindow() |
| 224 | { |
| 225 | } |
| 226 | |
| 227 | QVulkanWindowPrivate::~QVulkanWindowPrivate() |
| 228 | { |
| 229 | // graphics resource cleanup is already done at this point due to |
| 230 | // QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed |
| 231 | |
| 232 | delete renderer; |
| 233 | } |
| 234 | |
| 235 | /*! |
| 236 | \enum QVulkanWindow::Flag |
| 237 | |
| 238 | This enum describes the flags that can be passed to setFlags(). |
| 239 | |
| 240 | \value PersistentResources Ensures no graphics resources are released when |
| 241 | the window becomes unexposed. The default behavior is to release |
| 242 | everything, and reinitialize later when becoming visible again. |
| 243 | */ |
| 244 | |
| 245 | /*! |
| 246 | Configures the behavior based on the provided \a flags. |
| 247 | |
| 248 | \note This function must be called before the window is made visible or at |
| 249 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
| 250 | called afterwards. |
| 251 | */ |
| 252 | void QVulkanWindow::setFlags(Flags flags) |
| 253 | { |
| 254 | Q_D(QVulkanWindow); |
| 255 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
| 256 | qWarning(msg: "QVulkanWindow: Attempted to set flags when already initialized" ); |
| 257 | return; |
| 258 | } |
| 259 | d->flags = flags; |
| 260 | } |
| 261 | |
| 262 | /*! |
| 263 | Return the requested flags. |
| 264 | */ |
| 265 | QVulkanWindow::Flags QVulkanWindow::flags() const |
| 266 | { |
| 267 | Q_D(const QVulkanWindow); |
| 268 | return d->flags; |
| 269 | } |
| 270 | |
| 271 | /*! |
| 272 | Returns the list of properties for the supported physical devices in the system. |
| 273 | |
| 274 | \note This function can be called before making the window visible. |
| 275 | */ |
| 276 | QList<VkPhysicalDeviceProperties> QVulkanWindow::availablePhysicalDevices() |
| 277 | { |
| 278 | Q_D(QVulkanWindow); |
| 279 | if (!d->physDevs.isEmpty() && !d->physDevProps.isEmpty()) |
| 280 | return d->physDevProps; |
| 281 | |
| 282 | QVulkanInstance *inst = vulkanInstance(); |
| 283 | if (!inst) { |
| 284 | qWarning(msg: "QVulkanWindow: Attempted to call availablePhysicalDevices() without a QVulkanInstance" ); |
| 285 | return d->physDevProps; |
| 286 | } |
| 287 | |
| 288 | QVulkanFunctions *f = inst->functions(); |
| 289 | uint32_t count = 1; |
| 290 | VkResult err = f->vkEnumeratePhysicalDevices(inst->vkInstance(), &count, nullptr); |
| 291 | if (err != VK_SUCCESS) { |
| 292 | qWarning(msg: "QVulkanWindow: Failed to get physical device count: %d" , err); |
| 293 | return d->physDevProps; |
| 294 | } |
| 295 | |
| 296 | qCDebug(lcGuiVk, "%d physical devices" , count); |
| 297 | if (!count) |
| 298 | return d->physDevProps; |
| 299 | |
| 300 | QList<VkPhysicalDevice> devs(count); |
| 301 | err = f->vkEnumeratePhysicalDevices(inst->vkInstance(), &count, devs.data()); |
| 302 | if (err != VK_SUCCESS) { |
| 303 | qWarning(msg: "QVulkanWindow: Failed to enumerate physical devices: %d" , err); |
| 304 | return d->physDevProps; |
| 305 | } |
| 306 | |
| 307 | d->physDevs = devs; |
| 308 | d->physDevProps.resize(size: count); |
| 309 | for (uint32_t i = 0; i < count; ++i) { |
| 310 | VkPhysicalDeviceProperties *p = &d->physDevProps[i]; |
| 311 | f->vkGetPhysicalDeviceProperties(d->physDevs.at(i), p); |
| 312 | qCDebug(lcGuiVk, "Physical device [%d]: name '%s' version %d.%d.%d" , i, p->deviceName, |
| 313 | VK_VERSION_MAJOR(p->driverVersion), VK_VERSION_MINOR(p->driverVersion), |
| 314 | VK_VERSION_PATCH(p->driverVersion)); |
| 315 | } |
| 316 | |
| 317 | return d->physDevProps; |
| 318 | } |
| 319 | |
| 320 | /*! |
| 321 | Requests the usage of the physical device with index \a idx. The index |
| 322 | corresponds to the list returned from availablePhysicalDevices(). |
| 323 | |
| 324 | By default the first physical device is used. |
| 325 | |
| 326 | \note This function must be called before the window is made visible or at |
| 327 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
| 328 | called afterwards. |
| 329 | */ |
| 330 | void QVulkanWindow::setPhysicalDeviceIndex(int idx) |
| 331 | { |
| 332 | Q_D(QVulkanWindow); |
| 333 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
| 334 | qWarning(msg: "QVulkanWindow: Attempted to set physical device when already initialized" ); |
| 335 | return; |
| 336 | } |
| 337 | const int count = availablePhysicalDevices().size(); |
| 338 | if (idx < 0 || idx >= count) { |
| 339 | qWarning(msg: "QVulkanWindow: Invalid physical device index %d (total physical devices: %d)" , idx, count); |
| 340 | return; |
| 341 | } |
| 342 | d->physDevIndex = idx; |
| 343 | } |
| 344 | |
| 345 | /*! |
| 346 | Returns the list of the extensions that are supported by logical devices |
| 347 | created from the physical device selected by setPhysicalDeviceIndex(). |
| 348 | |
| 349 | \note This function can be called before making the window visible. |
| 350 | */ |
| 351 | QVulkanInfoVector<QVulkanExtension> QVulkanWindow::supportedDeviceExtensions() |
| 352 | { |
| 353 | Q_D(QVulkanWindow); |
| 354 | |
| 355 | availablePhysicalDevices(); |
| 356 | |
| 357 | if (d->physDevs.isEmpty()) { |
| 358 | qWarning(msg: "QVulkanWindow: No physical devices found" ); |
| 359 | return QVulkanInfoVector<QVulkanExtension>(); |
| 360 | } |
| 361 | |
| 362 | VkPhysicalDevice physDev = d->physDevs.at(i: d->physDevIndex); |
| 363 | if (d->supportedDevExtensions.contains(key: physDev)) |
| 364 | return d->supportedDevExtensions.value(key: physDev); |
| 365 | |
| 366 | QVulkanFunctions *f = vulkanInstance()->functions(); |
| 367 | uint32_t count = 0; |
| 368 | VkResult err = f->vkEnumerateDeviceExtensionProperties(physDev, nullptr, &count, nullptr); |
| 369 | if (err == VK_SUCCESS) { |
| 370 | QList<VkExtensionProperties> extProps(count); |
| 371 | err = f->vkEnumerateDeviceExtensionProperties(physDev, nullptr, &count, extProps.data()); |
| 372 | if (err == VK_SUCCESS) { |
| 373 | QVulkanInfoVector<QVulkanExtension> exts; |
| 374 | for (const VkExtensionProperties &prop : extProps) { |
| 375 | QVulkanExtension ext; |
| 376 | ext.name = prop.extensionName; |
| 377 | ext.version = prop.specVersion; |
| 378 | exts.append(t: ext); |
| 379 | } |
| 380 | d->supportedDevExtensions.insert(key: physDev, value: exts); |
| 381 | qCDebug(lcGuiVk) << "Supported device extensions:" << exts; |
| 382 | return exts; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | qWarning(msg: "QVulkanWindow: Failed to query device extension count: %d" , err); |
| 387 | return QVulkanInfoVector<QVulkanExtension>(); |
| 388 | } |
| 389 | |
| 390 | /*! |
| 391 | Sets the list of device \a extensions to be enabled. |
| 392 | |
| 393 | Unsupported extensions are ignored. |
| 394 | |
| 395 | The swapchain extension will always be added automatically, no need to |
| 396 | include it in this list. |
| 397 | |
| 398 | \note This function must be called before the window is made visible or at |
| 399 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
| 400 | called afterwards. |
| 401 | */ |
| 402 | void QVulkanWindow::setDeviceExtensions(const QByteArrayList &extensions) |
| 403 | { |
| 404 | Q_D(QVulkanWindow); |
| 405 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
| 406 | qWarning(msg: "QVulkanWindow: Attempted to set device extensions when already initialized" ); |
| 407 | return; |
| 408 | } |
| 409 | d->requestedDevExtensions = extensions; |
| 410 | } |
| 411 | |
| 412 | /*! |
| 413 | Sets the preferred \a formats of the swapchain. |
| 414 | |
| 415 | By default no application-preferred format is set. In this case the |
| 416 | surface's preferred format will be used or, in absence of that, |
| 417 | \c{VK_FORMAT_B8G8R8A8_UNORM}. |
| 418 | |
| 419 | The list in \a formats is ordered. If the first format is not supported, |
| 420 | the second will be considered, and so on. When no formats in the list are |
| 421 | supported, the behavior is the same as in the default case. |
| 422 | |
| 423 | To query the actual format after initialization, call colorFormat(). |
| 424 | |
| 425 | \note This function must be called before the window is made visible or at |
| 426 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
| 427 | called afterwards. |
| 428 | |
| 429 | \note Reimplementing QVulkanWindowRenderer::preInitResources() allows |
| 430 | dynamically examining the list of supported formats, should that be |
| 431 | desired. There the surface is retrievable via |
| 432 | QVulkanInstace::surfaceForWindow(), while this function can still safely be |
| 433 | called to affect the later stages of initialization. |
| 434 | |
| 435 | \sa colorFormat() |
| 436 | */ |
| 437 | void QVulkanWindow::setPreferredColorFormats(const QList<VkFormat> &formats) |
| 438 | { |
| 439 | Q_D(QVulkanWindow); |
| 440 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
| 441 | qWarning(msg: "QVulkanWindow: Attempted to set preferred color format when already initialized" ); |
| 442 | return; |
| 443 | } |
| 444 | d->requestedColorFormats = formats; |
| 445 | } |
| 446 | |
| 447 | static struct { |
| 448 | VkSampleCountFlagBits mask; |
| 449 | int count; |
| 450 | } q_vk_sampleCounts[] = { |
| 451 | // keep this sorted by 'count' |
| 452 | { .mask: VK_SAMPLE_COUNT_1_BIT, .count: 1 }, |
| 453 | { .mask: VK_SAMPLE_COUNT_2_BIT, .count: 2 }, |
| 454 | { .mask: VK_SAMPLE_COUNT_4_BIT, .count: 4 }, |
| 455 | { .mask: VK_SAMPLE_COUNT_8_BIT, .count: 8 }, |
| 456 | { .mask: VK_SAMPLE_COUNT_16_BIT, .count: 16 }, |
| 457 | { .mask: VK_SAMPLE_COUNT_32_BIT, .count: 32 }, |
| 458 | { .mask: VK_SAMPLE_COUNT_64_BIT, .count: 64 } |
| 459 | }; |
| 460 | |
| 461 | /*! |
| 462 | Returns the set of supported sample counts when using the physical device |
| 463 | selected by setPhysicalDeviceIndex(), as a sorted list. |
| 464 | |
| 465 | By default QVulkanWindow uses a sample count of 1. By calling setSampleCount() |
| 466 | with a different value (2, 4, 8, ...) from the set returned by this |
| 467 | function, multisample anti-aliasing can be requested. |
| 468 | |
| 469 | \note This function can be called before making the window visible. |
| 470 | |
| 471 | \sa setSampleCount() |
| 472 | */ |
| 473 | QList<int> QVulkanWindow::supportedSampleCounts() |
| 474 | { |
| 475 | Q_D(const QVulkanWindow); |
| 476 | QList<int> result; |
| 477 | |
| 478 | availablePhysicalDevices(); |
| 479 | |
| 480 | if (d->physDevs.isEmpty()) { |
| 481 | qWarning(msg: "QVulkanWindow: No physical devices found" ); |
| 482 | return result; |
| 483 | } |
| 484 | |
| 485 | const VkPhysicalDeviceLimits *limits = &d->physDevProps[d->physDevIndex].limits; |
| 486 | VkSampleCountFlags color = limits->framebufferColorSampleCounts; |
| 487 | VkSampleCountFlags depth = limits->framebufferDepthSampleCounts; |
| 488 | VkSampleCountFlags stencil = limits->framebufferStencilSampleCounts; |
| 489 | |
| 490 | for (const auto &qvk_sampleCount : q_vk_sampleCounts) { |
| 491 | if ((color & qvk_sampleCount.mask) |
| 492 | && (depth & qvk_sampleCount.mask) |
| 493 | && (stencil & qvk_sampleCount.mask)) |
| 494 | { |
| 495 | result.append(t: qvk_sampleCount.count); |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | return result; |
| 500 | } |
| 501 | |
| 502 | /*! |
| 503 | Requests multisample antialiasing with the given \a sampleCount. The valid |
| 504 | values are 1, 2, 4, 8, ... up until the maximum value supported by the |
| 505 | physical device. |
| 506 | |
| 507 | When the sample count is greater than 1, QVulkanWindow will create a |
| 508 | multisample color buffer instead of simply targeting the swapchain's |
| 509 | images. The rendering in the multisample buffer will get resolved into the |
| 510 | non-multisample buffers at the end of each frame. |
| 511 | |
| 512 | To examine the list of supported sample counts, call supportedSampleCounts(). |
| 513 | |
| 514 | When setting up the rendering pipeline, call sampleCountFlagBits() to query the |
| 515 | active sample count as a \c VkSampleCountFlagBits value. |
| 516 | |
| 517 | \note This function must be called before the window is made visible or at |
| 518 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
| 519 | called afterwards. |
| 520 | |
| 521 | \sa supportedSampleCounts(), sampleCountFlagBits() |
| 522 | */ |
| 523 | void QVulkanWindow::setSampleCount(int sampleCount) |
| 524 | { |
| 525 | Q_D(QVulkanWindow); |
| 526 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
| 527 | qWarning(msg: "QVulkanWindow: Attempted to set sample count when already initialized" ); |
| 528 | return; |
| 529 | } |
| 530 | |
| 531 | // Stay compatible with QSurfaceFormat and friends where samples == 0 means the same as 1. |
| 532 | sampleCount = qBound(min: 1, val: sampleCount, max: 64); |
| 533 | |
| 534 | if (!supportedSampleCounts().contains(t: sampleCount)) { |
| 535 | qWarning(msg: "QVulkanWindow: Attempted to set unsupported sample count %d" , sampleCount); |
| 536 | return; |
| 537 | } |
| 538 | |
| 539 | for (const auto &qvk_sampleCount : q_vk_sampleCounts) { |
| 540 | if (qvk_sampleCount.count == sampleCount) { |
| 541 | d->sampleCount = qvk_sampleCount.mask; |
| 542 | return; |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | Q_UNREACHABLE(); |
| 547 | } |
| 548 | |
| 549 | void QVulkanWindowPrivate::init() |
| 550 | { |
| 551 | Q_Q(QVulkanWindow); |
| 552 | Q_ASSERT(status == StatusUninitialized); |
| 553 | |
| 554 | qCDebug(lcGuiVk, "QVulkanWindow init" ); |
| 555 | |
| 556 | inst = q->vulkanInstance(); |
| 557 | if (!inst) { |
| 558 | qWarning(msg: "QVulkanWindow: Attempted to initialize without a QVulkanInstance" ); |
| 559 | // This is a simple user error, recheck on the next expose instead of |
| 560 | // going into the permanent failure state. |
| 561 | status = StatusFailRetry; |
| 562 | return; |
| 563 | } |
| 564 | |
| 565 | if (!renderer) |
| 566 | renderer = q->createRenderer(); |
| 567 | |
| 568 | surface = QVulkanInstance::surfaceForWindow(window: q); |
| 569 | if (surface == VK_NULL_HANDLE) { |
| 570 | qWarning(msg: "QVulkanWindow: Failed to retrieve Vulkan surface for window" ); |
| 571 | status = StatusFailRetry; |
| 572 | return; |
| 573 | } |
| 574 | |
| 575 | q->availablePhysicalDevices(); |
| 576 | |
| 577 | if (physDevs.isEmpty()) { |
| 578 | qWarning(msg: "QVulkanWindow: No physical devices found" ); |
| 579 | status = StatusFail; |
| 580 | return; |
| 581 | } |
| 582 | |
| 583 | if (physDevIndex < 0 || physDevIndex >= physDevs.size()) { |
| 584 | qWarning(msg: "QVulkanWindow: Invalid physical device index; defaulting to 0" ); |
| 585 | physDevIndex = 0; |
| 586 | } |
| 587 | qCDebug(lcGuiVk, "Using physical device [%d]" , physDevIndex); |
| 588 | |
| 589 | // Give a last chance to do decisions based on the physical device and the surface. |
| 590 | if (renderer) |
| 591 | renderer->preInitResources(); |
| 592 | |
| 593 | VkPhysicalDevice physDev = physDevs.at(i: physDevIndex); |
| 594 | QVulkanFunctions *f = inst->functions(); |
| 595 | |
| 596 | uint32_t queueCount = 0; |
| 597 | f->vkGetPhysicalDeviceQueueFamilyProperties(physDev, &queueCount, nullptr); |
| 598 | QList<VkQueueFamilyProperties> queueFamilyProps(queueCount); |
| 599 | f->vkGetPhysicalDeviceQueueFamilyProperties(physDev, &queueCount, queueFamilyProps.data()); |
| 600 | gfxQueueFamilyIdx = uint32_t(-1); |
| 601 | presQueueFamilyIdx = uint32_t(-1); |
| 602 | for (int i = 0; i < queueFamilyProps.size(); ++i) { |
| 603 | const bool supportsPresent = inst->supportsPresent(physicalDevice: physDev, queueFamilyIndex: i, window: q); |
| 604 | qCDebug(lcGuiVk, "queue family %d: flags=0x%x count=%d supportsPresent=%d" , i, |
| 605 | queueFamilyProps[i].queueFlags, queueFamilyProps[i].queueCount, supportsPresent); |
| 606 | if (gfxQueueFamilyIdx == uint32_t(-1) |
| 607 | && (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) |
| 608 | && supportsPresent) |
| 609 | gfxQueueFamilyIdx = i; |
| 610 | } |
| 611 | if (gfxQueueFamilyIdx != uint32_t(-1)) { |
| 612 | presQueueFamilyIdx = gfxQueueFamilyIdx; |
| 613 | } else { |
| 614 | qCDebug(lcGuiVk, "No queue with graphics+present; trying separate queues" ); |
| 615 | for (int i = 0; i < queueFamilyProps.size(); ++i) { |
| 616 | if (gfxQueueFamilyIdx == uint32_t(-1) && (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) |
| 617 | gfxQueueFamilyIdx = i; |
| 618 | if (presQueueFamilyIdx == uint32_t(-1) && inst->supportsPresent(physicalDevice: physDev, queueFamilyIndex: i, window: q)) |
| 619 | presQueueFamilyIdx = i; |
| 620 | } |
| 621 | } |
| 622 | if (gfxQueueFamilyIdx == uint32_t(-1)) { |
| 623 | qWarning(msg: "QVulkanWindow: No graphics queue family found" ); |
| 624 | status = StatusFail; |
| 625 | return; |
| 626 | } |
| 627 | if (presQueueFamilyIdx == uint32_t(-1)) { |
| 628 | qWarning(msg: "QVulkanWindow: No present queue family found" ); |
| 629 | status = StatusFail; |
| 630 | return; |
| 631 | } |
| 632 | #ifdef QT_DEBUG |
| 633 | // allow testing the separate present queue case in debug builds on AMD cards |
| 634 | if (qEnvironmentVariableIsSet(varName: "QT_VK_PRESENT_QUEUE_INDEX" )) |
| 635 | presQueueFamilyIdx = qEnvironmentVariableIntValue(varName: "QT_VK_PRESENT_QUEUE_INDEX" ); |
| 636 | #endif |
| 637 | qCDebug(lcGuiVk, "Using queue families: graphics = %u present = %u" , gfxQueueFamilyIdx, presQueueFamilyIdx); |
| 638 | |
| 639 | QList<VkDeviceQueueCreateInfo> queueInfo; |
| 640 | queueInfo.reserve(asize: 2); |
| 641 | const float prio[] = { 0 }; |
| 642 | VkDeviceQueueCreateInfo addQueueInfo; |
| 643 | memset(s: &addQueueInfo, c: 0, n: sizeof(addQueueInfo)); |
| 644 | addQueueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; |
| 645 | addQueueInfo.queueFamilyIndex = gfxQueueFamilyIdx; |
| 646 | addQueueInfo.queueCount = 1; |
| 647 | addQueueInfo.pQueuePriorities = prio; |
| 648 | queueInfo.append(t: addQueueInfo); |
| 649 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
| 650 | addQueueInfo.queueFamilyIndex = presQueueFamilyIdx; |
| 651 | addQueueInfo.queueCount = 1; |
| 652 | addQueueInfo.pQueuePriorities = prio; |
| 653 | queueInfo.append(t: addQueueInfo); |
| 654 | } |
| 655 | if (queueCreateInfoModifier) { |
| 656 | queueCreateInfoModifier(queueFamilyProps.constData(), queueCount, queueInfo); |
| 657 | bool foundGfxQueue = false; |
| 658 | bool foundPresQueue = false; |
| 659 | for (const VkDeviceQueueCreateInfo& createInfo : std::as_const(t&: queueInfo)) { |
| 660 | foundGfxQueue |= createInfo.queueFamilyIndex == gfxQueueFamilyIdx; |
| 661 | foundPresQueue |= createInfo.queueFamilyIndex == presQueueFamilyIdx; |
| 662 | } |
| 663 | if (!foundGfxQueue) { |
| 664 | qWarning(msg: "QVulkanWindow: Graphics queue missing after call to queueCreateInfoModifier" ); |
| 665 | status = StatusFail; |
| 666 | return; |
| 667 | } |
| 668 | if (!foundPresQueue) { |
| 669 | qWarning(msg: "QVulkanWindow: Present queue missing after call to queueCreateInfoModifier" ); |
| 670 | status = StatusFail; |
| 671 | return; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | // Filter out unsupported extensions in order to keep symmetry |
| 676 | // with how QVulkanInstance behaves. Add the swapchain extension. |
| 677 | QList<const char *> devExts; |
| 678 | QVulkanInfoVector<QVulkanExtension> supportedExtensions = q->supportedDeviceExtensions(); |
| 679 | QByteArrayList reqExts = requestedDevExtensions; |
| 680 | reqExts.append(t: "VK_KHR_swapchain" ); |
| 681 | |
| 682 | QByteArray envExts = qgetenv(varName: "QT_VULKAN_DEVICE_EXTENSIONS" ); |
| 683 | if (!envExts.isEmpty()) { |
| 684 | QByteArrayList envExtList = envExts.split(sep: ';'); |
| 685 | for (auto ext : reqExts) |
| 686 | envExtList.removeAll(t: ext); |
| 687 | reqExts.append(l: envExtList); |
| 688 | } |
| 689 | |
| 690 | for (const QByteArray &ext : reqExts) { |
| 691 | if (supportedExtensions.contains(name: ext)) |
| 692 | devExts.append(t: ext.constData()); |
| 693 | } |
| 694 | qCDebug(lcGuiVk) << "Enabling device extensions:" << devExts; |
| 695 | |
| 696 | VkDeviceCreateInfo devInfo; |
| 697 | memset(s: &devInfo, c: 0, n: sizeof(devInfo)); |
| 698 | devInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; |
| 699 | devInfo.queueCreateInfoCount = queueInfo.size(); |
| 700 | devInfo.pQueueCreateInfos = queueInfo.constData(); |
| 701 | devInfo.enabledExtensionCount = devExts.size(); |
| 702 | devInfo.ppEnabledExtensionNames = devExts.constData(); |
| 703 | |
| 704 | VkPhysicalDeviceFeatures features = {}; |
| 705 | VkPhysicalDeviceFeatures2 features2 = {}; |
| 706 | if (enabledFeatures2Modifier) { |
| 707 | features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; |
| 708 | enabledFeatures2Modifier(features2); |
| 709 | devInfo.pNext = &features2; |
| 710 | } else if (enabledFeaturesModifier) { |
| 711 | enabledFeaturesModifier(features); |
| 712 | devInfo.pEnabledFeatures = &features; |
| 713 | } else { |
| 714 | // Enable all supported 1.0 core features, except ones that likely |
| 715 | // involve a performance penalty. |
| 716 | f->vkGetPhysicalDeviceFeatures(physDev, &features); |
| 717 | features.robustBufferAccess = VK_FALSE; |
| 718 | devInfo.pEnabledFeatures = &features; |
| 719 | } |
| 720 | |
| 721 | // Device layers are not supported by QVulkanWindow since that's an already deprecated |
| 722 | // API. However, have a workaround for systems with older API and layers (f.ex. L4T |
| 723 | // 24.2 for the Jetson TX1 provides API 1.0.13 and crashes when the validation layer |
| 724 | // is enabled for the instance but not the device). |
| 725 | uint32_t apiVersion = physDevProps[physDevIndex].apiVersion; |
| 726 | if (VK_VERSION_MAJOR(apiVersion) == 1 |
| 727 | && VK_VERSION_MINOR(apiVersion) == 0 |
| 728 | && VK_VERSION_PATCH(apiVersion) <= 13) |
| 729 | { |
| 730 | // Make standard validation work at least. |
| 731 | const QByteArray stdValName = QByteArrayLiteral("VK_LAYER_KHRONOS_validation" ); |
| 732 | const char *stdValNamePtr = stdValName.constData(); |
| 733 | if (inst->layers().contains(t: stdValName)) { |
| 734 | uint32_t count = 0; |
| 735 | VkResult err = f->vkEnumerateDeviceLayerProperties(physDev, &count, nullptr); |
| 736 | if (err == VK_SUCCESS) { |
| 737 | QList<VkLayerProperties> layerProps(count); |
| 738 | err = f->vkEnumerateDeviceLayerProperties(physDev, &count, layerProps.data()); |
| 739 | if (err == VK_SUCCESS) { |
| 740 | for (const VkLayerProperties &prop : layerProps) { |
| 741 | if (!strncmp(s1: prop.layerName, s2: stdValNamePtr, n: stdValName.size())) { |
| 742 | devInfo.enabledLayerCount = 1; |
| 743 | devInfo.ppEnabledLayerNames = &stdValNamePtr; |
| 744 | break; |
| 745 | } |
| 746 | } |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | VkResult err = f->vkCreateDevice(physDev, &devInfo, nullptr, &dev); |
| 753 | if (err == VK_ERROR_DEVICE_LOST) { |
| 754 | qWarning(msg: "QVulkanWindow: Physical device lost" ); |
| 755 | if (renderer) |
| 756 | renderer->physicalDeviceLost(); |
| 757 | // clear the caches so the list of physical devices is re-queried |
| 758 | physDevs.clear(); |
| 759 | physDevProps.clear(); |
| 760 | status = StatusUninitialized; |
| 761 | qCDebug(lcGuiVk, "Attempting to restart in 2 seconds" ); |
| 762 | QTimer::singleShot(interval: 2000, receiver: q, slot: [this]() { ensureStarted(); }); |
| 763 | return; |
| 764 | } |
| 765 | if (err != VK_SUCCESS) { |
| 766 | qWarning(msg: "QVulkanWindow: Failed to create device: %d" , err); |
| 767 | status = StatusFail; |
| 768 | return; |
| 769 | } |
| 770 | |
| 771 | devFuncs = inst->deviceFunctions(device: dev); |
| 772 | Q_ASSERT(devFuncs); |
| 773 | |
| 774 | devFuncs->vkGetDeviceQueue(dev, gfxQueueFamilyIdx, 0, &gfxQueue); |
| 775 | if (gfxQueueFamilyIdx == presQueueFamilyIdx) |
| 776 | presQueue = gfxQueue; |
| 777 | else |
| 778 | devFuncs->vkGetDeviceQueue(dev, presQueueFamilyIdx, 0, &presQueue); |
| 779 | |
| 780 | VkCommandPoolCreateInfo poolInfo; |
| 781 | memset(s: &poolInfo, c: 0, n: sizeof(poolInfo)); |
| 782 | poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; |
| 783 | poolInfo.queueFamilyIndex = gfxQueueFamilyIdx; |
| 784 | err = devFuncs->vkCreateCommandPool(dev, &poolInfo, nullptr, &cmdPool); |
| 785 | if (err != VK_SUCCESS) { |
| 786 | qWarning(msg: "QVulkanWindow: Failed to create command pool: %d" , err); |
| 787 | status = StatusFail; |
| 788 | return; |
| 789 | } |
| 790 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
| 791 | poolInfo.queueFamilyIndex = presQueueFamilyIdx; |
| 792 | err = devFuncs->vkCreateCommandPool(dev, &poolInfo, nullptr, &presCmdPool); |
| 793 | if (err != VK_SUCCESS) { |
| 794 | qWarning(msg: "QVulkanWindow: Failed to create command pool for present queue: %d" , err); |
| 795 | status = StatusFail; |
| 796 | return; |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | hostVisibleMemIndex = 0; |
| 801 | VkPhysicalDeviceMemoryProperties physDevMemProps; |
| 802 | bool hostVisibleMemIndexSet = false; |
| 803 | f->vkGetPhysicalDeviceMemoryProperties(physDev, &physDevMemProps); |
| 804 | for (uint32_t i = 0; i < physDevMemProps.memoryTypeCount; ++i) { |
| 805 | const VkMemoryType *memType = physDevMemProps.memoryTypes; |
| 806 | qCDebug(lcGuiVk, "memtype %d: flags=0x%x" , i, memType[i].propertyFlags); |
| 807 | // Find a host visible, host coherent memtype. If there is one that is |
| 808 | // cached as well (in addition to being coherent), prefer that. |
| 809 | const int hostVisibleAndCoherent = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
| 810 | if ((memType[i].propertyFlags & hostVisibleAndCoherent) == hostVisibleAndCoherent) { |
| 811 | if (!hostVisibleMemIndexSet |
| 812 | || (memType[i].propertyFlags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)) { |
| 813 | hostVisibleMemIndexSet = true; |
| 814 | hostVisibleMemIndex = i; |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | qCDebug(lcGuiVk, "Picked memtype %d for host visible memory" , hostVisibleMemIndex); |
| 819 | deviceLocalMemIndex = 0; |
| 820 | for (uint32_t i = 0; i < physDevMemProps.memoryTypeCount; ++i) { |
| 821 | const VkMemoryType *memType = physDevMemProps.memoryTypes; |
| 822 | // Just pick the first device local memtype. |
| 823 | if (memType[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { |
| 824 | deviceLocalMemIndex = i; |
| 825 | break; |
| 826 | } |
| 827 | } |
| 828 | qCDebug(lcGuiVk, "Picked memtype %d for device local memory" , deviceLocalMemIndex); |
| 829 | |
| 830 | if (!vkGetPhysicalDeviceSurfaceCapabilitiesKHR || !vkGetPhysicalDeviceSurfaceFormatsKHR) { |
| 831 | vkGetPhysicalDeviceSurfaceCapabilitiesKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR>( |
| 832 | inst->getInstanceProcAddr(name: "vkGetPhysicalDeviceSurfaceCapabilitiesKHR" )); |
| 833 | vkGetPhysicalDeviceSurfaceFormatsKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormatsKHR>( |
| 834 | inst->getInstanceProcAddr(name: "vkGetPhysicalDeviceSurfaceFormatsKHR" )); |
| 835 | if (!vkGetPhysicalDeviceSurfaceCapabilitiesKHR || !vkGetPhysicalDeviceSurfaceFormatsKHR) { |
| 836 | qWarning(msg: "QVulkanWindow: Physical device surface queries not available" ); |
| 837 | status = StatusFail; |
| 838 | return; |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | // Figure out the color format here. Must not wait until recreateSwapChain() |
| 843 | // because the renderpass should be available already from initResources (so |
| 844 | // that apps do not have to defer pipeline creation to |
| 845 | // initSwapChainResources), but the renderpass needs the final color format. |
| 846 | |
| 847 | uint32_t formatCount = 0; |
| 848 | vkGetPhysicalDeviceSurfaceFormatsKHR(physDev, surface, &formatCount, nullptr); |
| 849 | QList<VkSurfaceFormatKHR> formats(formatCount); |
| 850 | if (formatCount) |
| 851 | vkGetPhysicalDeviceSurfaceFormatsKHR(physDev, surface, &formatCount, formats.data()); |
| 852 | |
| 853 | colorFormat = VK_FORMAT_B8G8R8A8_UNORM; // our documented default if all else fails |
| 854 | colorSpace = VkColorSpaceKHR(0); // this is in fact VK_COLOR_SPACE_SRGB_NONLINEAR_KHR |
| 855 | |
| 856 | // Pick the preferred format, if there is one. |
| 857 | if (!formats.isEmpty() && formats[0].format != VK_FORMAT_UNDEFINED) { |
| 858 | colorFormat = formats[0].format; |
| 859 | colorSpace = formats[0].colorSpace; |
| 860 | } |
| 861 | |
| 862 | // Try to honor the user request. |
| 863 | if (!formats.isEmpty() && !requestedColorFormats.isEmpty()) { |
| 864 | for (VkFormat reqFmt : std::as_const(t&: requestedColorFormats)) { |
| 865 | auto r = std::find_if(first: formats.cbegin(), last: formats.cend(), |
| 866 | pred: [reqFmt](const VkSurfaceFormatKHR &sfmt) { return sfmt.format == reqFmt; }); |
| 867 | if (r != formats.cend()) { |
| 868 | colorFormat = r->format; |
| 869 | colorSpace = r->colorSpace; |
| 870 | break; |
| 871 | } |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | const VkFormat dsFormatCandidates[] = { |
| 876 | VK_FORMAT_D24_UNORM_S8_UINT, |
| 877 | VK_FORMAT_D32_SFLOAT_S8_UINT, |
| 878 | VK_FORMAT_D16_UNORM_S8_UINT |
| 879 | }; |
| 880 | const int dsFormatCandidateCount = sizeof(dsFormatCandidates) / sizeof(VkFormat); |
| 881 | int dsFormatIdx = 0; |
| 882 | while (dsFormatIdx < dsFormatCandidateCount) { |
| 883 | dsFormat = dsFormatCandidates[dsFormatIdx]; |
| 884 | VkFormatProperties fmtProp; |
| 885 | f->vkGetPhysicalDeviceFormatProperties(physDev, dsFormat, &fmtProp); |
| 886 | if (fmtProp.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) |
| 887 | break; |
| 888 | ++dsFormatIdx; |
| 889 | } |
| 890 | if (dsFormatIdx == dsFormatCandidateCount) |
| 891 | qWarning(msg: "QVulkanWindow: Failed to find an optimal depth-stencil format" ); |
| 892 | |
| 893 | qCDebug(lcGuiVk, "Color format: %d Depth-stencil format: %d" , colorFormat, dsFormat); |
| 894 | |
| 895 | if (!createDefaultRenderPass()) |
| 896 | return; |
| 897 | |
| 898 | if (renderer) |
| 899 | renderer->initResources(); |
| 900 | |
| 901 | status = StatusDeviceReady; |
| 902 | } |
| 903 | |
| 904 | void QVulkanWindowPrivate::reset() |
| 905 | { |
| 906 | if (!dev) // do not rely on 'status', a half done init must be cleaned properly too |
| 907 | return; |
| 908 | |
| 909 | qCDebug(lcGuiVk, "QVulkanWindow reset" ); |
| 910 | |
| 911 | devFuncs->vkDeviceWaitIdle(dev); |
| 912 | |
| 913 | if (renderer) { |
| 914 | renderer->releaseResources(); |
| 915 | devFuncs->vkDeviceWaitIdle(dev); |
| 916 | } |
| 917 | |
| 918 | if (defaultRenderPass) { |
| 919 | devFuncs->vkDestroyRenderPass(dev, defaultRenderPass, nullptr); |
| 920 | defaultRenderPass = VK_NULL_HANDLE; |
| 921 | } |
| 922 | |
| 923 | if (cmdPool) { |
| 924 | devFuncs->vkDestroyCommandPool(dev, cmdPool, nullptr); |
| 925 | cmdPool = VK_NULL_HANDLE; |
| 926 | } |
| 927 | |
| 928 | if (presCmdPool) { |
| 929 | devFuncs->vkDestroyCommandPool(dev, presCmdPool, nullptr); |
| 930 | presCmdPool = VK_NULL_HANDLE; |
| 931 | } |
| 932 | |
| 933 | if (frameGrabImage) { |
| 934 | devFuncs->vkDestroyImage(dev, frameGrabImage, nullptr); |
| 935 | frameGrabImage = VK_NULL_HANDLE; |
| 936 | } |
| 937 | |
| 938 | if (frameGrabImageMem) { |
| 939 | devFuncs->vkFreeMemory(dev, frameGrabImageMem, nullptr); |
| 940 | frameGrabImageMem = VK_NULL_HANDLE; |
| 941 | } |
| 942 | |
| 943 | if (dev) { |
| 944 | devFuncs->vkDestroyDevice(dev, nullptr); |
| 945 | inst->resetDeviceFunctions(device: dev); |
| 946 | dev = VK_NULL_HANDLE; |
| 947 | vkCreateSwapchainKHR = nullptr; // re-resolve swapchain funcs later on since some come via the device |
| 948 | } |
| 949 | |
| 950 | surface = VK_NULL_HANDLE; |
| 951 | |
| 952 | status = StatusUninitialized; |
| 953 | } |
| 954 | |
| 955 | bool QVulkanWindowPrivate::createDefaultRenderPass() |
| 956 | { |
| 957 | VkAttachmentDescription attDesc[3]; |
| 958 | memset(s: attDesc, c: 0, n: sizeof(attDesc)); |
| 959 | |
| 960 | const bool msaa = sampleCount > VK_SAMPLE_COUNT_1_BIT; |
| 961 | |
| 962 | // This is either the non-msaa render target or the resolve target. |
| 963 | attDesc[0].format = colorFormat; |
| 964 | attDesc[0].samples = VK_SAMPLE_COUNT_1_BIT; |
| 965 | attDesc[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // ignored when msaa |
| 966 | attDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
| 967 | attDesc[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
| 968 | attDesc[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| 969 | attDesc[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 970 | attDesc[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
| 971 | |
| 972 | attDesc[1].format = dsFormat; |
| 973 | attDesc[1].samples = sampleCount; |
| 974 | attDesc[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
| 975 | attDesc[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| 976 | attDesc[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
| 977 | attDesc[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| 978 | attDesc[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 979 | attDesc[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
| 980 | |
| 981 | if (msaa) { |
| 982 | // msaa render target |
| 983 | attDesc[2].format = colorFormat; |
| 984 | attDesc[2].samples = sampleCount; |
| 985 | attDesc[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
| 986 | attDesc[2].storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
| 987 | attDesc[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
| 988 | attDesc[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
| 989 | attDesc[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
| 990 | attDesc[2].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; |
| 991 | } |
| 992 | |
| 993 | VkAttachmentReference colorRef = { .attachment: 0, .layout: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; |
| 994 | VkAttachmentReference resolveRef = { .attachment: 0, .layout: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; |
| 995 | VkAttachmentReference dsRef = { .attachment: 1, .layout: VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL }; |
| 996 | |
| 997 | VkSubpassDescription subPassDesc; |
| 998 | memset(s: &subPassDesc, c: 0, n: sizeof(subPassDesc)); |
| 999 | subPassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; |
| 1000 | subPassDesc.colorAttachmentCount = 1; |
| 1001 | subPassDesc.pColorAttachments = &colorRef; |
| 1002 | subPassDesc.pDepthStencilAttachment = &dsRef; |
| 1003 | |
| 1004 | VkRenderPassCreateInfo rpInfo; |
| 1005 | memset(s: &rpInfo, c: 0, n: sizeof(rpInfo)); |
| 1006 | rpInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; |
| 1007 | rpInfo.attachmentCount = 2; |
| 1008 | rpInfo.pAttachments = attDesc; |
| 1009 | rpInfo.subpassCount = 1; |
| 1010 | rpInfo.pSubpasses = &subPassDesc; |
| 1011 | |
| 1012 | if (msaa) { |
| 1013 | colorRef.attachment = 2; |
| 1014 | subPassDesc.pResolveAttachments = &resolveRef; |
| 1015 | rpInfo.attachmentCount = 3; |
| 1016 | } |
| 1017 | |
| 1018 | VkResult err = devFuncs->vkCreateRenderPass(dev, &rpInfo, nullptr, &defaultRenderPass); |
| 1019 | if (err != VK_SUCCESS) { |
| 1020 | qWarning(msg: "QVulkanWindow: Failed to create renderpass: %d" , err); |
| 1021 | return false; |
| 1022 | } |
| 1023 | |
| 1024 | return true; |
| 1025 | } |
| 1026 | |
| 1027 | void QVulkanWindowPrivate::recreateSwapChain() |
| 1028 | { |
| 1029 | Q_Q(QVulkanWindow); |
| 1030 | Q_ASSERT(status >= StatusDeviceReady); |
| 1031 | |
| 1032 | swapChainImageSize = q->size() * q->devicePixelRatio(); // note: may change below due to surfaceCaps |
| 1033 | |
| 1034 | if (swapChainImageSize.isEmpty()) // handle null window size gracefully |
| 1035 | return; |
| 1036 | |
| 1037 | QVulkanInstance *inst = q->vulkanInstance(); |
| 1038 | QVulkanFunctions *f = inst->functions(); |
| 1039 | devFuncs->vkDeviceWaitIdle(dev); |
| 1040 | |
| 1041 | if (!vkCreateSwapchainKHR) { |
| 1042 | vkCreateSwapchainKHR = reinterpret_cast<PFN_vkCreateSwapchainKHR>(f->vkGetDeviceProcAddr(dev, "vkCreateSwapchainKHR" )); |
| 1043 | vkDestroySwapchainKHR = reinterpret_cast<PFN_vkDestroySwapchainKHR>(f->vkGetDeviceProcAddr(dev, "vkDestroySwapchainKHR" )); |
| 1044 | vkGetSwapchainImagesKHR = reinterpret_cast<PFN_vkGetSwapchainImagesKHR>(f->vkGetDeviceProcAddr(dev, "vkGetSwapchainImagesKHR" )); |
| 1045 | vkAcquireNextImageKHR = reinterpret_cast<PFN_vkAcquireNextImageKHR>(f->vkGetDeviceProcAddr(dev, "vkAcquireNextImageKHR" )); |
| 1046 | vkQueuePresentKHR = reinterpret_cast<PFN_vkQueuePresentKHR>(f->vkGetDeviceProcAddr(dev, "vkQueuePresentKHR" )); |
| 1047 | } |
| 1048 | |
| 1049 | VkPhysicalDevice physDev = physDevs.at(i: physDevIndex); |
| 1050 | VkSurfaceCapabilitiesKHR surfaceCaps; |
| 1051 | vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physDev, surface, &surfaceCaps); |
| 1052 | uint32_t reqBufferCount; |
| 1053 | if (surfaceCaps.maxImageCount == 0) |
| 1054 | reqBufferCount = qMax<uint32_t>(a: 2, b: surfaceCaps.minImageCount); |
| 1055 | else |
| 1056 | reqBufferCount = qMax(a: qMin<uint32_t>(a: surfaceCaps.maxImageCount, b: 3), b: surfaceCaps.minImageCount); |
| 1057 | |
| 1058 | VkExtent2D bufferSize = surfaceCaps.currentExtent; |
| 1059 | if (bufferSize.width == uint32_t(-1)) { |
| 1060 | Q_ASSERT(bufferSize.height == uint32_t(-1)); |
| 1061 | bufferSize.width = swapChainImageSize.width(); |
| 1062 | bufferSize.height = swapChainImageSize.height(); |
| 1063 | } else { |
| 1064 | swapChainImageSize = QSize(bufferSize.width, bufferSize.height); |
| 1065 | } |
| 1066 | |
| 1067 | VkSurfaceTransformFlagBitsKHR preTransform = |
| 1068 | (surfaceCaps.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) |
| 1069 | ? VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
| 1070 | : surfaceCaps.currentTransform; |
| 1071 | |
| 1072 | VkCompositeAlphaFlagBitsKHR compositeAlpha = |
| 1073 | (surfaceCaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) |
| 1074 | ? VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR |
| 1075 | : VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
| 1076 | |
| 1077 | if (q->requestedFormat().hasAlpha()) { |
| 1078 | if (surfaceCaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR) |
| 1079 | compositeAlpha = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR; |
| 1080 | else if (surfaceCaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR) |
| 1081 | compositeAlpha = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR; |
| 1082 | } |
| 1083 | |
| 1084 | VkImageUsageFlags usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
| 1085 | swapChainSupportsReadBack = (surfaceCaps.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT); |
| 1086 | if (swapChainSupportsReadBack) |
| 1087 | usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; |
| 1088 | |
| 1089 | VkSwapchainKHR oldSwapChain = swapChain; |
| 1090 | VkSwapchainCreateInfoKHR swapChainInfo; |
| 1091 | memset(s: &swapChainInfo, c: 0, n: sizeof(swapChainInfo)); |
| 1092 | swapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; |
| 1093 | swapChainInfo.surface = surface; |
| 1094 | swapChainInfo.minImageCount = reqBufferCount; |
| 1095 | swapChainInfo.imageFormat = colorFormat; |
| 1096 | swapChainInfo.imageColorSpace = colorSpace; |
| 1097 | swapChainInfo.imageExtent = bufferSize; |
| 1098 | swapChainInfo.imageArrayLayers = 1; |
| 1099 | swapChainInfo.imageUsage = usage; |
| 1100 | swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; |
| 1101 | swapChainInfo.preTransform = preTransform; |
| 1102 | swapChainInfo.compositeAlpha = compositeAlpha; |
| 1103 | swapChainInfo.presentMode = presentMode; |
| 1104 | swapChainInfo.clipped = true; |
| 1105 | swapChainInfo.oldSwapchain = oldSwapChain; |
| 1106 | |
| 1107 | qCDebug(lcGuiVk, "Creating new swap chain of %d buffers, size %dx%d" , reqBufferCount, bufferSize.width, bufferSize.height); |
| 1108 | |
| 1109 | VkSwapchainKHR newSwapChain; |
| 1110 | VkResult err = vkCreateSwapchainKHR(dev, &swapChainInfo, nullptr, &newSwapChain); |
| 1111 | if (err != VK_SUCCESS) { |
| 1112 | qWarning(msg: "QVulkanWindow: Failed to create swap chain: %d" , err); |
| 1113 | return; |
| 1114 | } |
| 1115 | |
| 1116 | if (oldSwapChain) |
| 1117 | releaseSwapChain(); |
| 1118 | |
| 1119 | swapChain = newSwapChain; |
| 1120 | |
| 1121 | uint32_t actualSwapChainBufferCount = 0; |
| 1122 | err = vkGetSwapchainImagesKHR(dev, swapChain, &actualSwapChainBufferCount, nullptr); |
| 1123 | if (err != VK_SUCCESS || actualSwapChainBufferCount < 2) { |
| 1124 | qWarning(msg: "QVulkanWindow: Failed to get swapchain images: %d (count=%d)" , err, actualSwapChainBufferCount); |
| 1125 | return; |
| 1126 | } |
| 1127 | |
| 1128 | qCDebug(lcGuiVk, "Actual swap chain buffer count: %d (supportsReadback=%d)" , |
| 1129 | actualSwapChainBufferCount, swapChainSupportsReadBack); |
| 1130 | if (actualSwapChainBufferCount > MAX_SWAPCHAIN_BUFFER_COUNT) { |
| 1131 | qWarning(msg: "QVulkanWindow: Too many swapchain buffers (%d)" , actualSwapChainBufferCount); |
| 1132 | return; |
| 1133 | } |
| 1134 | swapChainBufferCount = actualSwapChainBufferCount; |
| 1135 | |
| 1136 | VkImage swapChainImages[MAX_SWAPCHAIN_BUFFER_COUNT]; |
| 1137 | err = vkGetSwapchainImagesKHR(dev, swapChain, &actualSwapChainBufferCount, swapChainImages); |
| 1138 | if (err != VK_SUCCESS) { |
| 1139 | qWarning(msg: "QVulkanWindow: Failed to get swapchain images: %d" , err); |
| 1140 | return; |
| 1141 | } |
| 1142 | |
| 1143 | if (!createTransientImage(format: dsFormat, |
| 1144 | usage: VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, |
| 1145 | aspectMask: VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, |
| 1146 | images: &dsImage, |
| 1147 | mem: &dsMem, |
| 1148 | views: &dsView, |
| 1149 | count: 1)) |
| 1150 | { |
| 1151 | return; |
| 1152 | } |
| 1153 | |
| 1154 | const bool msaa = sampleCount > VK_SAMPLE_COUNT_1_BIT; |
| 1155 | VkImage msaaImages[MAX_SWAPCHAIN_BUFFER_COUNT]; |
| 1156 | VkImageView msaaViews[MAX_SWAPCHAIN_BUFFER_COUNT]; |
| 1157 | |
| 1158 | if (msaa) { |
| 1159 | if (!createTransientImage(format: colorFormat, |
| 1160 | usage: VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, |
| 1161 | aspectMask: VK_IMAGE_ASPECT_COLOR_BIT, |
| 1162 | images: msaaImages, |
| 1163 | mem: &msaaImageMem, |
| 1164 | views: msaaViews, |
| 1165 | count: swapChainBufferCount)) |
| 1166 | { |
| 1167 | return; |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | VkFenceCreateInfo fenceInfo = { .sType: VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext: nullptr, .flags: VK_FENCE_CREATE_SIGNALED_BIT }; |
| 1172 | |
| 1173 | for (int i = 0; i < swapChainBufferCount; ++i) { |
| 1174 | ImageResources &image(imageRes[i]); |
| 1175 | image.image = swapChainImages[i]; |
| 1176 | |
| 1177 | if (msaa) { |
| 1178 | image.msaaImage = msaaImages[i]; |
| 1179 | image.msaaImageView = msaaViews[i]; |
| 1180 | } |
| 1181 | |
| 1182 | VkImageViewCreateInfo imgViewInfo; |
| 1183 | memset(s: &imgViewInfo, c: 0, n: sizeof(imgViewInfo)); |
| 1184 | imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
| 1185 | imgViewInfo.image = swapChainImages[i]; |
| 1186 | imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
| 1187 | imgViewInfo.format = colorFormat; |
| 1188 | imgViewInfo.components.r = VK_COMPONENT_SWIZZLE_R; |
| 1189 | imgViewInfo.components.g = VK_COMPONENT_SWIZZLE_G; |
| 1190 | imgViewInfo.components.b = VK_COMPONENT_SWIZZLE_B; |
| 1191 | imgViewInfo.components.a = VK_COMPONENT_SWIZZLE_A; |
| 1192 | imgViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 1193 | imgViewInfo.subresourceRange.levelCount = imgViewInfo.subresourceRange.layerCount = 1; |
| 1194 | err = devFuncs->vkCreateImageView(dev, &imgViewInfo, nullptr, &image.imageView); |
| 1195 | if (err != VK_SUCCESS) { |
| 1196 | qWarning(msg: "QVulkanWindow: Failed to create swapchain image view %d: %d" , i, err); |
| 1197 | return; |
| 1198 | } |
| 1199 | |
| 1200 | err = devFuncs->vkCreateFence(dev, &fenceInfo, nullptr, &image.cmdFence); |
| 1201 | if (err != VK_SUCCESS) { |
| 1202 | qWarning(msg: "QVulkanWindow: Failed to create command buffer fence: %d" , err); |
| 1203 | return; |
| 1204 | } |
| 1205 | image.cmdFenceWaitable = true; // fence was created in signaled state |
| 1206 | |
| 1207 | VkImageView views[3] = { image.imageView, |
| 1208 | dsView, |
| 1209 | msaa ? image.msaaImageView : VK_NULL_HANDLE }; |
| 1210 | VkFramebufferCreateInfo fbInfo; |
| 1211 | memset(s: &fbInfo, c: 0, n: sizeof(fbInfo)); |
| 1212 | fbInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; |
| 1213 | fbInfo.renderPass = defaultRenderPass; |
| 1214 | fbInfo.attachmentCount = msaa ? 3 : 2; |
| 1215 | fbInfo.pAttachments = views; |
| 1216 | fbInfo.width = swapChainImageSize.width(); |
| 1217 | fbInfo.height = swapChainImageSize.height(); |
| 1218 | fbInfo.layers = 1; |
| 1219 | VkResult err = devFuncs->vkCreateFramebuffer(dev, &fbInfo, nullptr, &image.fb); |
| 1220 | if (err != VK_SUCCESS) { |
| 1221 | qWarning(msg: "QVulkanWindow: Failed to create framebuffer: %d" , err); |
| 1222 | return; |
| 1223 | } |
| 1224 | |
| 1225 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
| 1226 | // pre-build the static image-acquire-on-present-queue command buffer |
| 1227 | VkCommandBufferAllocateInfo cmdBufInfo = { |
| 1228 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext: nullptr, .commandPool: presCmdPool, .level: VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount: 1 }; |
| 1229 | err = devFuncs->vkAllocateCommandBuffers(dev, &cmdBufInfo, &image.presTransCmdBuf); |
| 1230 | if (err != VK_SUCCESS) { |
| 1231 | qWarning(msg: "QVulkanWindow: Failed to allocate acquire-on-present-queue command buffer: %d" , err); |
| 1232 | return; |
| 1233 | } |
| 1234 | VkCommandBufferBeginInfo cmdBufBeginInfo = { |
| 1235 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext: nullptr, |
| 1236 | .flags: VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, .pInheritanceInfo: nullptr }; |
| 1237 | err = devFuncs->vkBeginCommandBuffer(image.presTransCmdBuf, &cmdBufBeginInfo); |
| 1238 | if (err != VK_SUCCESS) { |
| 1239 | qWarning(msg: "QVulkanWindow: Failed to begin acquire-on-present-queue command buffer: %d" , err); |
| 1240 | return; |
| 1241 | } |
| 1242 | VkImageMemoryBarrier presTrans; |
| 1243 | memset(s: &presTrans, c: 0, n: sizeof(presTrans)); |
| 1244 | presTrans.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| 1245 | presTrans.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| 1246 | presTrans.oldLayout = presTrans.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
| 1247 | presTrans.srcQueueFamilyIndex = gfxQueueFamilyIdx; |
| 1248 | presTrans.dstQueueFamilyIndex = presQueueFamilyIdx; |
| 1249 | presTrans.image = image.image; |
| 1250 | presTrans.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 1251 | presTrans.subresourceRange.levelCount = presTrans.subresourceRange.layerCount = 1; |
| 1252 | devFuncs->vkCmdPipelineBarrier(image.presTransCmdBuf, |
| 1253 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| 1254 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| 1255 | 0, 0, nullptr, 0, nullptr, |
| 1256 | 1, &presTrans); |
| 1257 | err = devFuncs->vkEndCommandBuffer(image.presTransCmdBuf); |
| 1258 | if (err != VK_SUCCESS) { |
| 1259 | qWarning(msg: "QVulkanWindow: Failed to end acquire-on-present-queue command buffer: %d" , err); |
| 1260 | return; |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | currentImage = 0; |
| 1266 | |
| 1267 | VkSemaphoreCreateInfo semInfo = { .sType: VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext: nullptr, .flags: 0 }; |
| 1268 | for (int i = 0; i < frameLag; ++i) { |
| 1269 | FrameResources &frame(frameRes[i]); |
| 1270 | |
| 1271 | frame.imageAcquired = false; |
| 1272 | frame.imageSemWaitable = false; |
| 1273 | |
| 1274 | devFuncs->vkCreateFence(dev, &fenceInfo, nullptr, &frame.fence); |
| 1275 | frame.fenceWaitable = true; // fence was created in signaled state |
| 1276 | |
| 1277 | devFuncs->vkCreateSemaphore(dev, &semInfo, nullptr, &frame.imageSem); |
| 1278 | devFuncs->vkCreateSemaphore(dev, &semInfo, nullptr, &frame.drawSem); |
| 1279 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) |
| 1280 | devFuncs->vkCreateSemaphore(dev, &semInfo, nullptr, &frame.presTransSem); |
| 1281 | } |
| 1282 | |
| 1283 | currentFrame = 0; |
| 1284 | |
| 1285 | if (renderer) |
| 1286 | renderer->initSwapChainResources(); |
| 1287 | |
| 1288 | status = StatusReady; |
| 1289 | } |
| 1290 | |
| 1291 | uint32_t QVulkanWindowPrivate::chooseTransientImageMemType(VkImage img, uint32_t startIndex) |
| 1292 | { |
| 1293 | VkPhysicalDeviceMemoryProperties physDevMemProps; |
| 1294 | inst->functions()->vkGetPhysicalDeviceMemoryProperties(physDevs[physDevIndex], &physDevMemProps); |
| 1295 | |
| 1296 | VkMemoryRequirements memReq; |
| 1297 | devFuncs->vkGetImageMemoryRequirements(dev, img, &memReq); |
| 1298 | uint32_t memTypeIndex = uint32_t(-1); |
| 1299 | |
| 1300 | if (memReq.memoryTypeBits) { |
| 1301 | // Find a device local + lazily allocated, or at least device local memtype. |
| 1302 | const VkMemoryType *memType = physDevMemProps.memoryTypes; |
| 1303 | bool foundDevLocal = false; |
| 1304 | for (uint32_t i = startIndex; i < physDevMemProps.memoryTypeCount; ++i) { |
| 1305 | if (memReq.memoryTypeBits & (1 << i)) { |
| 1306 | if (memType[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { |
| 1307 | if (!foundDevLocal) { |
| 1308 | foundDevLocal = true; |
| 1309 | memTypeIndex = i; |
| 1310 | } |
| 1311 | if (memType[i].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) { |
| 1312 | memTypeIndex = i; |
| 1313 | break; |
| 1314 | } |
| 1315 | } |
| 1316 | } |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | return memTypeIndex; |
| 1321 | } |
| 1322 | |
| 1323 | static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign) |
| 1324 | { |
| 1325 | return (v + byteAlign - 1) & ~(byteAlign - 1); |
| 1326 | } |
| 1327 | |
| 1328 | bool QVulkanWindowPrivate::createTransientImage(VkFormat format, |
| 1329 | VkImageUsageFlags usage, |
| 1330 | VkImageAspectFlags aspectMask, |
| 1331 | VkImage *images, |
| 1332 | VkDeviceMemory *mem, |
| 1333 | VkImageView *views, |
| 1334 | int count) |
| 1335 | { |
| 1336 | VkMemoryRequirements memReq; |
| 1337 | VkResult err; |
| 1338 | |
| 1339 | Q_ASSERT(count > 0); |
| 1340 | for (int i = 0; i < count; ++i) { |
| 1341 | VkImageCreateInfo imgInfo; |
| 1342 | memset(s: &imgInfo, c: 0, n: sizeof(imgInfo)); |
| 1343 | imgInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
| 1344 | imgInfo.imageType = VK_IMAGE_TYPE_2D; |
| 1345 | imgInfo.format = format; |
| 1346 | imgInfo.extent.width = swapChainImageSize.width(); |
| 1347 | imgInfo.extent.height = swapChainImageSize.height(); |
| 1348 | imgInfo.extent.depth = 1; |
| 1349 | imgInfo.mipLevels = imgInfo.arrayLayers = 1; |
| 1350 | imgInfo.samples = sampleCount; |
| 1351 | imgInfo.tiling = VK_IMAGE_TILING_OPTIMAL; |
| 1352 | imgInfo.usage = usage | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT; |
| 1353 | |
| 1354 | err = devFuncs->vkCreateImage(dev, &imgInfo, nullptr, images + i); |
| 1355 | if (err != VK_SUCCESS) { |
| 1356 | qWarning(msg: "QVulkanWindow: Failed to create image: %d" , err); |
| 1357 | return false; |
| 1358 | } |
| 1359 | |
| 1360 | // Assume the reqs are the same since the images are same in every way. |
| 1361 | // Still, call GetImageMemReq for every image, in order to prevent the |
| 1362 | // validation layer from complaining. |
| 1363 | devFuncs->vkGetImageMemoryRequirements(dev, images[i], &memReq); |
| 1364 | } |
| 1365 | |
| 1366 | VkMemoryAllocateInfo memInfo; |
| 1367 | memset(s: &memInfo, c: 0, n: sizeof(memInfo)); |
| 1368 | memInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
| 1369 | memInfo.allocationSize = aligned(v: memReq.size, byteAlign: memReq.alignment) * count; |
| 1370 | |
| 1371 | uint32_t startIndex = 0; |
| 1372 | do { |
| 1373 | memInfo.memoryTypeIndex = chooseTransientImageMemType(img: images[0], startIndex); |
| 1374 | if (memInfo.memoryTypeIndex == uint32_t(-1)) { |
| 1375 | qWarning(msg: "QVulkanWindow: No suitable memory type found" ); |
| 1376 | return false; |
| 1377 | } |
| 1378 | startIndex = memInfo.memoryTypeIndex + 1; |
| 1379 | qCDebug(lcGuiVk, "Allocating %u bytes for transient image (memtype %u)" , |
| 1380 | uint32_t(memInfo.allocationSize), memInfo.memoryTypeIndex); |
| 1381 | err = devFuncs->vkAllocateMemory(dev, &memInfo, nullptr, mem); |
| 1382 | if (err != VK_SUCCESS && err != VK_ERROR_OUT_OF_DEVICE_MEMORY) { |
| 1383 | qWarning(msg: "QVulkanWindow: Failed to allocate image memory: %d" , err); |
| 1384 | return false; |
| 1385 | } |
| 1386 | } while (err != VK_SUCCESS); |
| 1387 | |
| 1388 | VkDeviceSize ofs = 0; |
| 1389 | for (int i = 0; i < count; ++i) { |
| 1390 | err = devFuncs->vkBindImageMemory(dev, images[i], *mem, ofs); |
| 1391 | if (err != VK_SUCCESS) { |
| 1392 | qWarning(msg: "QVulkanWindow: Failed to bind image memory: %d" , err); |
| 1393 | return false; |
| 1394 | } |
| 1395 | ofs += aligned(v: memReq.size, byteAlign: memReq.alignment); |
| 1396 | |
| 1397 | VkImageViewCreateInfo imgViewInfo; |
| 1398 | memset(s: &imgViewInfo, c: 0, n: sizeof(imgViewInfo)); |
| 1399 | imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
| 1400 | imgViewInfo.image = images[i]; |
| 1401 | imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
| 1402 | imgViewInfo.format = format; |
| 1403 | imgViewInfo.components.r = VK_COMPONENT_SWIZZLE_R; |
| 1404 | imgViewInfo.components.g = VK_COMPONENT_SWIZZLE_G; |
| 1405 | imgViewInfo.components.b = VK_COMPONENT_SWIZZLE_B; |
| 1406 | imgViewInfo.components.a = VK_COMPONENT_SWIZZLE_A; |
| 1407 | imgViewInfo.subresourceRange.aspectMask = aspectMask; |
| 1408 | imgViewInfo.subresourceRange.levelCount = imgViewInfo.subresourceRange.layerCount = 1; |
| 1409 | |
| 1410 | err = devFuncs->vkCreateImageView(dev, &imgViewInfo, nullptr, views + i); |
| 1411 | if (err != VK_SUCCESS) { |
| 1412 | qWarning(msg: "QVulkanWindow: Failed to create image view: %d" , err); |
| 1413 | return false; |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | return true; |
| 1418 | } |
| 1419 | |
| 1420 | void QVulkanWindowPrivate::releaseSwapChain() |
| 1421 | { |
| 1422 | if (!dev || !swapChain) // do not rely on 'status', a half done init must be cleaned properly too |
| 1423 | return; |
| 1424 | |
| 1425 | qCDebug(lcGuiVk, "Releasing swapchain" ); |
| 1426 | |
| 1427 | devFuncs->vkDeviceWaitIdle(dev); |
| 1428 | |
| 1429 | if (renderer) { |
| 1430 | renderer->releaseSwapChainResources(); |
| 1431 | devFuncs->vkDeviceWaitIdle(dev); |
| 1432 | } |
| 1433 | |
| 1434 | for (int i = 0; i < frameLag; ++i) { |
| 1435 | FrameResources &frame(frameRes[i]); |
| 1436 | if (frame.fence) { |
| 1437 | if (frame.fenceWaitable) |
| 1438 | devFuncs->vkWaitForFences(dev, 1, &frame.fence, VK_TRUE, UINT64_MAX); |
| 1439 | devFuncs->vkDestroyFence(dev, frame.fence, nullptr); |
| 1440 | frame.fence = VK_NULL_HANDLE; |
| 1441 | frame.fenceWaitable = false; |
| 1442 | } |
| 1443 | if (frame.imageSem) { |
| 1444 | devFuncs->vkDestroySemaphore(dev, frame.imageSem, nullptr); |
| 1445 | frame.imageSem = VK_NULL_HANDLE; |
| 1446 | } |
| 1447 | if (frame.drawSem) { |
| 1448 | devFuncs->vkDestroySemaphore(dev, frame.drawSem, nullptr); |
| 1449 | frame.drawSem = VK_NULL_HANDLE; |
| 1450 | } |
| 1451 | if (frame.presTransSem) { |
| 1452 | devFuncs->vkDestroySemaphore(dev, frame.presTransSem, nullptr); |
| 1453 | frame.presTransSem = VK_NULL_HANDLE; |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | for (int i = 0; i < swapChainBufferCount; ++i) { |
| 1458 | ImageResources &image(imageRes[i]); |
| 1459 | if (image.cmdFence) { |
| 1460 | if (image.cmdFenceWaitable) |
| 1461 | devFuncs->vkWaitForFences(dev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX); |
| 1462 | devFuncs->vkDestroyFence(dev, image.cmdFence, nullptr); |
| 1463 | image.cmdFence = VK_NULL_HANDLE; |
| 1464 | image.cmdFenceWaitable = false; |
| 1465 | } |
| 1466 | if (image.fb) { |
| 1467 | devFuncs->vkDestroyFramebuffer(dev, image.fb, nullptr); |
| 1468 | image.fb = VK_NULL_HANDLE; |
| 1469 | } |
| 1470 | if (image.imageView) { |
| 1471 | devFuncs->vkDestroyImageView(dev, image.imageView, nullptr); |
| 1472 | image.imageView = VK_NULL_HANDLE; |
| 1473 | } |
| 1474 | if (image.cmdBuf) { |
| 1475 | devFuncs->vkFreeCommandBuffers(dev, cmdPool, 1, &image.cmdBuf); |
| 1476 | image.cmdBuf = VK_NULL_HANDLE; |
| 1477 | } |
| 1478 | if (image.presTransCmdBuf) { |
| 1479 | devFuncs->vkFreeCommandBuffers(dev, presCmdPool, 1, &image.presTransCmdBuf); |
| 1480 | image.presTransCmdBuf = VK_NULL_HANDLE; |
| 1481 | } |
| 1482 | if (image.msaaImageView) { |
| 1483 | devFuncs->vkDestroyImageView(dev, image.msaaImageView, nullptr); |
| 1484 | image.msaaImageView = VK_NULL_HANDLE; |
| 1485 | } |
| 1486 | if (image.msaaImage) { |
| 1487 | devFuncs->vkDestroyImage(dev, image.msaaImage, nullptr); |
| 1488 | image.msaaImage = VK_NULL_HANDLE; |
| 1489 | } |
| 1490 | } |
| 1491 | |
| 1492 | if (msaaImageMem) { |
| 1493 | devFuncs->vkFreeMemory(dev, msaaImageMem, nullptr); |
| 1494 | msaaImageMem = VK_NULL_HANDLE; |
| 1495 | } |
| 1496 | |
| 1497 | if (dsView) { |
| 1498 | devFuncs->vkDestroyImageView(dev, dsView, nullptr); |
| 1499 | dsView = VK_NULL_HANDLE; |
| 1500 | } |
| 1501 | if (dsImage) { |
| 1502 | devFuncs->vkDestroyImage(dev, dsImage, nullptr); |
| 1503 | dsImage = VK_NULL_HANDLE; |
| 1504 | } |
| 1505 | if (dsMem) { |
| 1506 | devFuncs->vkFreeMemory(dev, dsMem, nullptr); |
| 1507 | dsMem = VK_NULL_HANDLE; |
| 1508 | } |
| 1509 | |
| 1510 | if (swapChain) { |
| 1511 | vkDestroySwapchainKHR(dev, swapChain, nullptr); |
| 1512 | swapChain = VK_NULL_HANDLE; |
| 1513 | } |
| 1514 | |
| 1515 | if (status == StatusReady) |
| 1516 | status = StatusDeviceReady; |
| 1517 | } |
| 1518 | |
| 1519 | /*! |
| 1520 | \internal |
| 1521 | */ |
| 1522 | void QVulkanWindow::exposeEvent(QExposeEvent *) |
| 1523 | { |
| 1524 | Q_D(QVulkanWindow); |
| 1525 | |
| 1526 | if (isExposed()) { |
| 1527 | d->ensureStarted(); |
| 1528 | } else { |
| 1529 | if (!d->flags.testFlag(flag: PersistentResources)) { |
| 1530 | d->releaseSwapChain(); |
| 1531 | d->reset(); |
| 1532 | } |
| 1533 | } |
| 1534 | } |
| 1535 | |
| 1536 | void QVulkanWindowPrivate::ensureStarted() |
| 1537 | { |
| 1538 | Q_Q(QVulkanWindow); |
| 1539 | if (status == QVulkanWindowPrivate::StatusFailRetry) |
| 1540 | status = QVulkanWindowPrivate::StatusUninitialized; |
| 1541 | if (status == QVulkanWindowPrivate::StatusUninitialized) { |
| 1542 | init(); |
| 1543 | if (status == QVulkanWindowPrivate::StatusDeviceReady) |
| 1544 | recreateSwapChain(); |
| 1545 | } |
| 1546 | if (status == QVulkanWindowPrivate::StatusReady) |
| 1547 | q->requestUpdate(); |
| 1548 | } |
| 1549 | |
| 1550 | /*! |
| 1551 | \internal |
| 1552 | */ |
| 1553 | void QVulkanWindow::resizeEvent(QResizeEvent *) |
| 1554 | { |
| 1555 | // Nothing to do here - recreating the swapchain is handled when building the next frame. |
| 1556 | } |
| 1557 | |
| 1558 | /*! |
| 1559 | \internal |
| 1560 | */ |
| 1561 | bool QVulkanWindow::event(QEvent *e) |
| 1562 | { |
| 1563 | Q_D(QVulkanWindow); |
| 1564 | |
| 1565 | switch (e->type()) { |
| 1566 | case QEvent::UpdateRequest: |
| 1567 | d->beginFrame(); |
| 1568 | break; |
| 1569 | |
| 1570 | // The swapchain must be destroyed before the surface as per spec. This is |
| 1571 | // not ideal for us because the surface is managed by the QPlatformWindow |
| 1572 | // which may be gone already when the unexpose comes, making the validation |
| 1573 | // layer scream. The solution is to listen to the PlatformSurface events. |
| 1574 | case QEvent::PlatformSurface: |
| 1575 | if (static_cast<QPlatformSurfaceEvent *>(e)->surfaceEventType() == QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed) { |
| 1576 | d->releaseSwapChain(); |
| 1577 | d->reset(); |
| 1578 | } |
| 1579 | break; |
| 1580 | |
| 1581 | default: |
| 1582 | break; |
| 1583 | } |
| 1584 | |
| 1585 | return QWindow::event(e); |
| 1586 | } |
| 1587 | |
| 1588 | /*! |
| 1589 | \typedef QVulkanWindow::QueueCreateInfoModifier |
| 1590 | |
| 1591 | A function that is called during graphics initialization to add |
| 1592 | additional queues that should be created. |
| 1593 | |
| 1594 | Set if the renderer needs additional queues besides the default graphics |
| 1595 | queue (e.g. a transfer queue). |
| 1596 | The provided queue family properties can be used to select the indices for |
| 1597 | the additional queues. |
| 1598 | The renderer can subsequently request the actual queue in initResources(). |
| 1599 | |
| 1600 | \note When requesting additional graphics queues, Qt itself always requests |
| 1601 | a graphics queue. You'll need to search queueCreateInfo for the appropriate |
| 1602 | entry and manipulate it to obtain the additional queue. |
| 1603 | |
| 1604 | \sa setQueueCreateInfoModifier() |
| 1605 | */ |
| 1606 | |
| 1607 | /*! |
| 1608 | Sets the queue create info modification function \a modifier. |
| 1609 | |
| 1610 | \sa QueueCreateInfoModifier |
| 1611 | |
| 1612 | \since 5.15 |
| 1613 | */ |
| 1614 | void QVulkanWindow::setQueueCreateInfoModifier(const QueueCreateInfoModifier &modifier) |
| 1615 | { |
| 1616 | Q_D(QVulkanWindow); |
| 1617 | d->queueCreateInfoModifier = modifier; |
| 1618 | } |
| 1619 | |
| 1620 | /*! |
| 1621 | \typedef QVulkanWindow::EnabledFeaturesModifier |
| 1622 | |
| 1623 | A function that is called during graphics initialization to alter the |
| 1624 | VkPhysicalDeviceFeatures that is passed in when creating a Vulkan device |
| 1625 | object. |
| 1626 | |
| 1627 | By default QVulkanWindow enables all Vulkan 1.0 core features that the |
| 1628 | physical device reports as supported, with certain exceptions. In |
| 1629 | praticular, \c robustBufferAccess is always disabled in order to avoid |
| 1630 | unexpected performance hits. |
| 1631 | |
| 1632 | The VkPhysicalDeviceFeatures reference passed in is all zeroed out at the |
| 1633 | point when the function is invoked. It is up to the function to change |
| 1634 | members as it sees fit. |
| 1635 | |
| 1636 | \note To control Vulkan 1.1, 1.2, or 1.3 features, use |
| 1637 | EnabledFeatures2Modifier instead. |
| 1638 | |
| 1639 | \sa setEnabledFeaturesModifier() |
| 1640 | */ |
| 1641 | |
| 1642 | /*! |
| 1643 | Sets the enabled device features modification function \a modifier. |
| 1644 | |
| 1645 | \note To control Vulkan 1.1, 1.2, or 1.3 features, use |
| 1646 | the overload taking a EnabledFeatures2Modifier instead. |
| 1647 | |
| 1648 | \note \a modifier is passed to the callback function with all members set |
| 1649 | to false. It is up to the function to change members as it sees fit. |
| 1650 | |
| 1651 | \since 6.7 |
| 1652 | \sa EnabledFeaturesModifier |
| 1653 | */ |
| 1654 | void QVulkanWindow::setEnabledFeaturesModifier(const EnabledFeaturesModifier &modifier) |
| 1655 | { |
| 1656 | Q_D(QVulkanWindow); |
| 1657 | d->enabledFeaturesModifier = modifier; |
| 1658 | } |
| 1659 | |
| 1660 | /*! |
| 1661 | \typedef QVulkanWindow::EnabledFeatures2Modifier |
| 1662 | |
| 1663 | A function that is called during graphics initialization to alter the |
| 1664 | VkPhysicalDeviceFeatures2 that is changed to the VkDeviceCreateInfo. |
| 1665 | |
| 1666 | By default QVulkanWindow enables all Vulkan 1.0 core features that the |
| 1667 | physical device reports as supported, with certain exceptions. In |
| 1668 | praticular, \c robustBufferAccess is always disabled in order to avoid |
| 1669 | unexpected performance hits. |
| 1670 | |
| 1671 | This however is not always sufficient when working with Vulkan 1.1, 1.2, or |
| 1672 | 1.3 features and extensions. Hence this callback mechanism. If only Vulkan |
| 1673 | 1.0 is relevant at run time, use setEnabledFeaturesModifier() instead. |
| 1674 | |
| 1675 | The VkPhysicalDeviceFeatures2 reference passed to the callback function |
| 1676 | with \c sType set, but the rest zeroed out. It is up to the function to |
| 1677 | change members to true, or set up \c pNext chains as it sees fit. |
| 1678 | |
| 1679 | \note When setting up \c pNext chains, make sure the referenced objects |
| 1680 | have a long enough lifetime, for example by storing them as member |
| 1681 | variables in the QVulkanWindow subclass. |
| 1682 | |
| 1683 | \since 6.7 |
| 1684 | \sa setEnabledFeaturesModifier() |
| 1685 | */ |
| 1686 | |
| 1687 | /*! |
| 1688 | Sets the enabled device features modification function \a modifier. |
| 1689 | \overload |
| 1690 | \since 6.7 |
| 1691 | \sa EnabledFeatures2Modifier |
| 1692 | */ |
| 1693 | void QVulkanWindow::setEnabledFeaturesModifier(EnabledFeatures2Modifier modifier) |
| 1694 | { |
| 1695 | Q_D(QVulkanWindow); |
| 1696 | d->enabledFeatures2Modifier = std::move(modifier); |
| 1697 | } |
| 1698 | |
| 1699 | /*! |
| 1700 | Returns true if this window has successfully initialized all Vulkan |
| 1701 | resources, including the swapchain. |
| 1702 | |
| 1703 | \note Initialization happens on the first expose event after the window is |
| 1704 | made visible. |
| 1705 | */ |
| 1706 | bool QVulkanWindow::isValid() const |
| 1707 | { |
| 1708 | Q_D(const QVulkanWindow); |
| 1709 | return d->status == QVulkanWindowPrivate::StatusReady; |
| 1710 | } |
| 1711 | |
| 1712 | /*! |
| 1713 | Returns a new instance of QVulkanWindowRenderer. |
| 1714 | |
| 1715 | This virtual function is called once during the lifetime of the window, at |
| 1716 | some point after making it visible for the first time. |
| 1717 | |
| 1718 | The default implementation returns null and so no rendering will be |
| 1719 | performed apart from clearing the buffers. |
| 1720 | |
| 1721 | The window takes ownership of the returned renderer object. |
| 1722 | */ |
| 1723 | QVulkanWindowRenderer *QVulkanWindow::createRenderer() |
| 1724 | { |
| 1725 | return nullptr; |
| 1726 | } |
| 1727 | |
| 1728 | /*! |
| 1729 | Virtual destructor. |
| 1730 | */ |
| 1731 | QVulkanWindowRenderer::~QVulkanWindowRenderer() |
| 1732 | { |
| 1733 | } |
| 1734 | |
| 1735 | /*! |
| 1736 | This virtual function is called right before graphics initialization, that |
| 1737 | ends up in calling initResources(), is about to begin. |
| 1738 | |
| 1739 | Normally there is no need to reimplement this function. However, there are |
| 1740 | cases that involve decisions based on both the physical device and the |
| 1741 | surface. These cannot normally be performed before making the QVulkanWindow |
| 1742 | visible since the Vulkan surface is not retrievable at that stage. |
| 1743 | |
| 1744 | Instead, applications can reimplement this function. Here both |
| 1745 | QVulkanWindow::physicalDevice() and QVulkanInstance::surfaceForWindow() are |
| 1746 | functional, but no further logical device initialization has taken place |
| 1747 | yet. |
| 1748 | |
| 1749 | The default implementation is empty. |
| 1750 | */ |
| 1751 | void QVulkanWindowRenderer::preInitResources() |
| 1752 | { |
| 1753 | } |
| 1754 | |
| 1755 | /*! |
| 1756 | This virtual function is called when it is time to create the renderer's |
| 1757 | graphics resources. |
| 1758 | |
| 1759 | Depending on the QVulkanWindow::PersistentResources flag, device lost |
| 1760 | situations, etc. this function may be called more than once during the |
| 1761 | lifetime of a QVulkanWindow. However, subsequent invocations are always |
| 1762 | preceded by a call to releaseResources(). |
| 1763 | |
| 1764 | Accessors like device(), graphicsQueue() and graphicsCommandPool() are only |
| 1765 | guaranteed to return valid values inside this function and afterwards, up |
| 1766 | until releaseResources() is called. |
| 1767 | |
| 1768 | The default implementation is empty. |
| 1769 | */ |
| 1770 | void QVulkanWindowRenderer::initResources() |
| 1771 | { |
| 1772 | } |
| 1773 | |
| 1774 | /*! |
| 1775 | This virtual function is called when swapchain, framebuffer or renderpass |
| 1776 | related initialization can be performed. Swapchain and related resources |
| 1777 | are reset and then recreated in response to window resize events, and |
| 1778 | therefore a pair of calls to initResources() and releaseResources() can |
| 1779 | have multiple calls to initSwapChainResources() and |
| 1780 | releaseSwapChainResources() calls in-between. |
| 1781 | |
| 1782 | Accessors like QVulkanWindow::swapChainImageSize() are only guaranteed to |
| 1783 | return valid values inside this function and afterwards, up until |
| 1784 | releaseSwapChainResources() is called. |
| 1785 | |
| 1786 | This is also the place where size-dependent calculations (for example, the |
| 1787 | projection matrix) should be made since this function is called effectively |
| 1788 | on every resize. |
| 1789 | |
| 1790 | The default implementation is empty. |
| 1791 | */ |
| 1792 | void QVulkanWindowRenderer::initSwapChainResources() |
| 1793 | { |
| 1794 | } |
| 1795 | |
| 1796 | /*! |
| 1797 | This virtual function is called when swapchain, framebuffer or renderpass |
| 1798 | related resources must be released. |
| 1799 | |
| 1800 | The implementation must be prepared that a call to this function may be |
| 1801 | followed by a new call to initSwapChainResources() at a later point. |
| 1802 | |
| 1803 | QVulkanWindow takes care of waiting for the device to become idle before |
| 1804 | and after invoking this function. |
| 1805 | |
| 1806 | The default implementation is empty. |
| 1807 | |
| 1808 | \note This is the last place to act with all graphics resources intact |
| 1809 | before QVulkanWindow starts releasing them. It is therefore essential that |
| 1810 | implementations with an asynchronous, potentially multi-threaded |
| 1811 | startNextFrame() perform a blocking wait and call |
| 1812 | QVulkanWindow::frameReady() before returning from this function in case |
| 1813 | there is a pending frame submission. |
| 1814 | */ |
| 1815 | void QVulkanWindowRenderer::releaseSwapChainResources() |
| 1816 | { |
| 1817 | } |
| 1818 | |
| 1819 | /*! |
| 1820 | This virtual function is called when the renderer's graphics resources must be |
| 1821 | released. |
| 1822 | |
| 1823 | The implementation must be prepared that a call to this function may be |
| 1824 | followed by an initResources() at a later point. |
| 1825 | |
| 1826 | QVulkanWindow takes care of waiting for the device to become idle before |
| 1827 | and after invoking this function. |
| 1828 | |
| 1829 | The default implementation is empty. |
| 1830 | */ |
| 1831 | void QVulkanWindowRenderer::releaseResources() |
| 1832 | { |
| 1833 | } |
| 1834 | |
| 1835 | /*! |
| 1836 | \fn void QVulkanWindowRenderer::startNextFrame() |
| 1837 | |
| 1838 | This virtual function is called when the draw calls for the next frame are |
| 1839 | to be added to the command buffer. |
| 1840 | |
| 1841 | Each call to this function must be followed by a call to |
| 1842 | QVulkanWindow::frameReady(). Failing to do so will stall the rendering |
| 1843 | loop. The call can also be made at a later time, after returning from this |
| 1844 | function. This means that it is possible to kick off asynchronous work, and |
| 1845 | only update the command buffer and notify QVulkanWindow when that work has |
| 1846 | finished. |
| 1847 | |
| 1848 | All Vulkan resources are initialized and ready when this function is |
| 1849 | invoked. The current framebuffer and main command buffer can be retrieved |
| 1850 | via QVulkanWindow::currentFramebuffer() and |
| 1851 | QVulkanWindow::currentCommandBuffer(). The logical device and the active |
| 1852 | graphics queue are available via QVulkanWindow::device() and |
| 1853 | QVulkanWindow::graphicsQueue(). Implementations can create additional |
| 1854 | command buffers from the pool returned by |
| 1855 | QVulkanWindow::graphicsCommandPool(). For convenience, the index of a host |
| 1856 | visible and device local memory type index are exposed via |
| 1857 | QVulkanWindow::hostVisibleMemoryIndex() and |
| 1858 | QVulkanWindow::deviceLocalMemoryIndex(). All these accessors are safe to be |
| 1859 | called from any thread. |
| 1860 | |
| 1861 | \sa QVulkanWindow::frameReady(), QVulkanWindow |
| 1862 | */ |
| 1863 | |
| 1864 | /*! |
| 1865 | This virtual function is called when the physical device is lost, meaning |
| 1866 | the creation of the logical device fails with \c{VK_ERROR_DEVICE_LOST}. |
| 1867 | |
| 1868 | The default implementation is empty. |
| 1869 | |
| 1870 | There is typically no need to perform anything special in this function |
| 1871 | because QVulkanWindow will automatically retry to initialize itself after a |
| 1872 | certain amount of time. |
| 1873 | |
| 1874 | \sa logicalDeviceLost() |
| 1875 | */ |
| 1876 | void QVulkanWindowRenderer::physicalDeviceLost() |
| 1877 | { |
| 1878 | } |
| 1879 | |
| 1880 | /*! |
| 1881 | This virtual function is called when the logical device (VkDevice) is lost, |
| 1882 | meaning some operation failed with \c{VK_ERROR_DEVICE_LOST}. |
| 1883 | |
| 1884 | The default implementation is empty. |
| 1885 | |
| 1886 | There is typically no need to perform anything special in this function. |
| 1887 | QVulkanWindow will automatically release all resources (invoking |
| 1888 | releaseSwapChainResources() and releaseResources() as necessary) and will |
| 1889 | attempt to reinitialize, acquiring a new device. When the physical device |
| 1890 | was also lost, this reinitialization attempt may then result in |
| 1891 | physicalDeviceLost(). |
| 1892 | |
| 1893 | \sa physicalDeviceLost() |
| 1894 | */ |
| 1895 | void QVulkanWindowRenderer::logicalDeviceLost() |
| 1896 | { |
| 1897 | } |
| 1898 | |
| 1899 | QSize QVulkanWindowPrivate::surfacePixelSize() const |
| 1900 | { |
| 1901 | Q_Q(const QVulkanWindow); |
| 1902 | VkSurfaceCapabilitiesKHR surfaceCaps = {}; |
| 1903 | vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physDevs.at(i: physDevIndex), surface, &surfaceCaps); |
| 1904 | VkExtent2D bufferSize = surfaceCaps.currentExtent; |
| 1905 | if (bufferSize.width == uint32_t(-1)) { |
| 1906 | Q_ASSERT(bufferSize.height == uint32_t(-1)); |
| 1907 | return q->size() * q->devicePixelRatio(); |
| 1908 | } |
| 1909 | return QSize(int(bufferSize.width), int(bufferSize.height)); |
| 1910 | } |
| 1911 | |
| 1912 | void QVulkanWindowPrivate::beginFrame() |
| 1913 | { |
| 1914 | if (!swapChain || framePending) |
| 1915 | return; |
| 1916 | |
| 1917 | Q_Q(QVulkanWindow); |
| 1918 | if (swapChainImageSize != surfacePixelSize()) { |
| 1919 | recreateSwapChain(); |
| 1920 | if (!swapChain) |
| 1921 | return; |
| 1922 | } |
| 1923 | |
| 1924 | FrameResources &frame(frameRes[currentFrame]); |
| 1925 | |
| 1926 | if (!frame.imageAcquired) { |
| 1927 | // Wait if we are too far ahead, i.e. the thread gets throttled based on the presentation rate |
| 1928 | // (note that we are using FIFO mode -> vsync) |
| 1929 | if (frame.fenceWaitable) { |
| 1930 | devFuncs->vkWaitForFences(dev, 1, &frame.fence, VK_TRUE, UINT64_MAX); |
| 1931 | devFuncs->vkResetFences(dev, 1, &frame.fence); |
| 1932 | frame.fenceWaitable = false; |
| 1933 | } |
| 1934 | |
| 1935 | // move on to next swapchain image |
| 1936 | VkResult err = vkAcquireNextImageKHR(dev, swapChain, UINT64_MAX, |
| 1937 | frame.imageSem, frame.fence, ¤tImage); |
| 1938 | if (err == VK_SUCCESS || err == VK_SUBOPTIMAL_KHR) { |
| 1939 | frame.imageSemWaitable = true; |
| 1940 | frame.imageAcquired = true; |
| 1941 | frame.fenceWaitable = true; |
| 1942 | } else if (err == VK_ERROR_OUT_OF_DATE_KHR) { |
| 1943 | recreateSwapChain(); |
| 1944 | q->requestUpdate(); |
| 1945 | return; |
| 1946 | } else { |
| 1947 | if (!checkDeviceLost(err)) |
| 1948 | qWarning(msg: "QVulkanWindow: Failed to acquire next swapchain image: %d" , err); |
| 1949 | q->requestUpdate(); |
| 1950 | return; |
| 1951 | } |
| 1952 | } |
| 1953 | |
| 1954 | // make sure the previous draw for the same image has finished |
| 1955 | ImageResources &image(imageRes[currentImage]); |
| 1956 | if (image.cmdFenceWaitable) { |
| 1957 | devFuncs->vkWaitForFences(dev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX); |
| 1958 | devFuncs->vkResetFences(dev, 1, &image.cmdFence); |
| 1959 | image.cmdFenceWaitable = false; |
| 1960 | } |
| 1961 | |
| 1962 | // build new draw command buffer |
| 1963 | if (image.cmdBuf) { |
| 1964 | devFuncs->vkFreeCommandBuffers(dev, cmdPool, 1, &image.cmdBuf); |
| 1965 | image.cmdBuf = nullptr; |
| 1966 | } |
| 1967 | |
| 1968 | VkCommandBufferAllocateInfo cmdBufInfo = { |
| 1969 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext: nullptr, .commandPool: cmdPool, .level: VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount: 1 }; |
| 1970 | VkResult err = devFuncs->vkAllocateCommandBuffers(dev, &cmdBufInfo, &image.cmdBuf); |
| 1971 | if (err != VK_SUCCESS) { |
| 1972 | if (!checkDeviceLost(err)) |
| 1973 | qWarning(msg: "QVulkanWindow: Failed to allocate frame command buffer: %d" , err); |
| 1974 | return; |
| 1975 | } |
| 1976 | |
| 1977 | VkCommandBufferBeginInfo cmdBufBeginInfo = { |
| 1978 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext: nullptr, .flags: 0, .pInheritanceInfo: nullptr }; |
| 1979 | err = devFuncs->vkBeginCommandBuffer(image.cmdBuf, &cmdBufBeginInfo); |
| 1980 | if (err != VK_SUCCESS) { |
| 1981 | if (!checkDeviceLost(err)) |
| 1982 | qWarning(msg: "QVulkanWindow: Failed to begin frame command buffer: %d" , err); |
| 1983 | return; |
| 1984 | } |
| 1985 | |
| 1986 | if (frameGrabbing) |
| 1987 | frameGrabTargetImage = QImage(swapChainImageSize, QImage::Format_RGBA8888); // the format is as documented |
| 1988 | |
| 1989 | if (renderer) { |
| 1990 | framePending = true; |
| 1991 | renderer->startNextFrame(); |
| 1992 | // done for now - endFrame() will get invoked when frameReady() is called back |
| 1993 | } else { |
| 1994 | VkClearColorValue clearColor = { .float32: { 0.0f, 0.0f, 0.0f, 1.0f } }; |
| 1995 | VkClearDepthStencilValue clearDS = { .depth: 1.0f, .stencil: 0 }; |
| 1996 | VkClearValue clearValues[3]; |
| 1997 | memset(s: clearValues, c: 0, n: sizeof(clearValues)); |
| 1998 | clearValues[0].color = clearValues[2].color = clearColor; |
| 1999 | clearValues[1].depthStencil = clearDS; |
| 2000 | |
| 2001 | VkRenderPassBeginInfo rpBeginInfo; |
| 2002 | memset(s: &rpBeginInfo, c: 0, n: sizeof(rpBeginInfo)); |
| 2003 | rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; |
| 2004 | rpBeginInfo.renderPass = defaultRenderPass; |
| 2005 | rpBeginInfo.framebuffer = image.fb; |
| 2006 | rpBeginInfo.renderArea.extent.width = swapChainImageSize.width(); |
| 2007 | rpBeginInfo.renderArea.extent.height = swapChainImageSize.height(); |
| 2008 | rpBeginInfo.clearValueCount = sampleCount > VK_SAMPLE_COUNT_1_BIT ? 3 : 2; |
| 2009 | rpBeginInfo.pClearValues = clearValues; |
| 2010 | devFuncs->vkCmdBeginRenderPass(image.cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE); |
| 2011 | devFuncs->vkCmdEndRenderPass(image.cmdBuf); |
| 2012 | |
| 2013 | endFrame(); |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | void QVulkanWindowPrivate::endFrame() |
| 2018 | { |
| 2019 | Q_Q(QVulkanWindow); |
| 2020 | |
| 2021 | FrameResources &frame(frameRes[currentFrame]); |
| 2022 | ImageResources &image(imageRes[currentImage]); |
| 2023 | |
| 2024 | if (gfxQueueFamilyIdx != presQueueFamilyIdx && !frameGrabbing) { |
| 2025 | // Add the swapchain image release to the command buffer that will be |
| 2026 | // submitted to the graphics queue. |
| 2027 | VkImageMemoryBarrier presTrans; |
| 2028 | memset(s: &presTrans, c: 0, n: sizeof(presTrans)); |
| 2029 | presTrans.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| 2030 | presTrans.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
| 2031 | presTrans.oldLayout = presTrans.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
| 2032 | presTrans.srcQueueFamilyIndex = gfxQueueFamilyIdx; |
| 2033 | presTrans.dstQueueFamilyIndex = presQueueFamilyIdx; |
| 2034 | presTrans.image = image.image; |
| 2035 | presTrans.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 2036 | presTrans.subresourceRange.levelCount = presTrans.subresourceRange.layerCount = 1; |
| 2037 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
| 2038 | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, |
| 2039 | VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, |
| 2040 | 0, 0, nullptr, 0, nullptr, |
| 2041 | 1, &presTrans); |
| 2042 | } |
| 2043 | |
| 2044 | // When grabbing a frame, add a readback at the end and skip presenting. |
| 2045 | if (frameGrabbing) |
| 2046 | addReadback(); |
| 2047 | |
| 2048 | VkResult err = devFuncs->vkEndCommandBuffer(image.cmdBuf); |
| 2049 | if (err != VK_SUCCESS) { |
| 2050 | if (!checkDeviceLost(err)) |
| 2051 | qWarning(msg: "QVulkanWindow: Failed to end frame command buffer: %d" , err); |
| 2052 | return; |
| 2053 | } |
| 2054 | |
| 2055 | // submit draw calls |
| 2056 | VkSubmitInfo submitInfo; |
| 2057 | memset(s: &submitInfo, c: 0, n: sizeof(submitInfo)); |
| 2058 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
| 2059 | submitInfo.commandBufferCount = 1; |
| 2060 | submitInfo.pCommandBuffers = &image.cmdBuf; |
| 2061 | if (frame.imageSemWaitable) { |
| 2062 | submitInfo.waitSemaphoreCount = 1; |
| 2063 | submitInfo.pWaitSemaphores = &frame.imageSem; |
| 2064 | } |
| 2065 | if (!frameGrabbing) { |
| 2066 | submitInfo.signalSemaphoreCount = 1; |
| 2067 | submitInfo.pSignalSemaphores = &frame.drawSem; |
| 2068 | } |
| 2069 | VkPipelineStageFlags psf = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
| 2070 | submitInfo.pWaitDstStageMask = &psf; |
| 2071 | |
| 2072 | Q_ASSERT(!image.cmdFenceWaitable); |
| 2073 | |
| 2074 | err = devFuncs->vkQueueSubmit(gfxQueue, 1, &submitInfo, image.cmdFence); |
| 2075 | if (err == VK_SUCCESS) { |
| 2076 | frame.imageSemWaitable = false; |
| 2077 | image.cmdFenceWaitable = true; |
| 2078 | } else { |
| 2079 | if (!checkDeviceLost(err)) |
| 2080 | qWarning(msg: "QVulkanWindow: Failed to submit to graphics queue: %d" , err); |
| 2081 | return; |
| 2082 | } |
| 2083 | |
| 2084 | // block and then bail out when grabbing |
| 2085 | if (frameGrabbing) { |
| 2086 | finishBlockingReadback(); |
| 2087 | frameGrabbing = false; |
| 2088 | // Leave frame.imageAcquired set to true. |
| 2089 | // Do not change currentFrame. |
| 2090 | emit q->frameGrabbed(image: frameGrabTargetImage); |
| 2091 | return; |
| 2092 | } |
| 2093 | |
| 2094 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
| 2095 | // Submit the swapchain image acquire to the present queue. |
| 2096 | submitInfo.pWaitSemaphores = &frame.drawSem; |
| 2097 | submitInfo.pSignalSemaphores = &frame.presTransSem; |
| 2098 | submitInfo.pCommandBuffers = &image.presTransCmdBuf; // must be USAGE_SIMULTANEOUS |
| 2099 | err = devFuncs->vkQueueSubmit(presQueue, 1, &submitInfo, VK_NULL_HANDLE); |
| 2100 | if (err != VK_SUCCESS) { |
| 2101 | if (!checkDeviceLost(err)) |
| 2102 | qWarning(msg: "QVulkanWindow: Failed to submit to present queue: %d" , err); |
| 2103 | return; |
| 2104 | } |
| 2105 | } |
| 2106 | |
| 2107 | // queue present |
| 2108 | VkPresentInfoKHR presInfo; |
| 2109 | memset(s: &presInfo, c: 0, n: sizeof(presInfo)); |
| 2110 | presInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; |
| 2111 | presInfo.swapchainCount = 1; |
| 2112 | presInfo.pSwapchains = &swapChain; |
| 2113 | presInfo.pImageIndices = ¤tImage; |
| 2114 | presInfo.waitSemaphoreCount = 1; |
| 2115 | presInfo.pWaitSemaphores = gfxQueueFamilyIdx == presQueueFamilyIdx ? &frame.drawSem : &frame.presTransSem; |
| 2116 | |
| 2117 | // Do platform-specific WM notification. F.ex. essential on Wayland in |
| 2118 | // order to circumvent driver frame callbacks |
| 2119 | inst->presentAboutToBeQueued(window: q); |
| 2120 | |
| 2121 | err = vkQueuePresentKHR(presQueue, &presInfo); |
| 2122 | if (err != VK_SUCCESS) { |
| 2123 | if (err == VK_ERROR_OUT_OF_DATE_KHR) { |
| 2124 | recreateSwapChain(); |
| 2125 | q->requestUpdate(); |
| 2126 | return; |
| 2127 | } else if (err != VK_SUBOPTIMAL_KHR) { |
| 2128 | if (!checkDeviceLost(err)) |
| 2129 | qWarning(msg: "QVulkanWindow: Failed to present: %d" , err); |
| 2130 | return; |
| 2131 | } |
| 2132 | } |
| 2133 | |
| 2134 | frame.imageAcquired = false; |
| 2135 | |
| 2136 | inst->presentQueued(window: q); |
| 2137 | |
| 2138 | currentFrame = (currentFrame + 1) % frameLag; |
| 2139 | } |
| 2140 | |
| 2141 | /*! |
| 2142 | This function must be called exactly once in response to each invocation of |
| 2143 | the QVulkanWindowRenderer::startNextFrame() implementation. At the time of |
| 2144 | this call, the main command buffer, exposed via currentCommandBuffer(), |
| 2145 | must have all necessary rendering commands added to it since this function |
| 2146 | will trigger submitting the commands and queuing the present command. |
| 2147 | |
| 2148 | \note This function must only be called from the gui/main thread, which is |
| 2149 | where QVulkanWindowRenderer's functions are invoked and where the |
| 2150 | QVulkanWindow instance lives. |
| 2151 | |
| 2152 | \sa QVulkanWindowRenderer::startNextFrame() |
| 2153 | */ |
| 2154 | void QVulkanWindow::frameReady() |
| 2155 | { |
| 2156 | Q_ASSERT_X(QThread::isMainThread(), |
| 2157 | "QVulkanWindow" , "frameReady() can only be called from the GUI (main) thread" ); |
| 2158 | |
| 2159 | Q_D(QVulkanWindow); |
| 2160 | |
| 2161 | if (!d->framePending) { |
| 2162 | qWarning(msg: "QVulkanWindow: frameReady() called without a corresponding startNextFrame()" ); |
| 2163 | return; |
| 2164 | } |
| 2165 | |
| 2166 | d->framePending = false; |
| 2167 | |
| 2168 | d->endFrame(); |
| 2169 | } |
| 2170 | |
| 2171 | bool QVulkanWindowPrivate::checkDeviceLost(VkResult err) |
| 2172 | { |
| 2173 | if (err == VK_ERROR_DEVICE_LOST) { |
| 2174 | qWarning(msg: "QVulkanWindow: Device lost" ); |
| 2175 | if (renderer) |
| 2176 | renderer->logicalDeviceLost(); |
| 2177 | qCDebug(lcGuiVk, "Releasing all resources due to device lost" ); |
| 2178 | releaseSwapChain(); |
| 2179 | reset(); |
| 2180 | qCDebug(lcGuiVk, "Restarting" ); |
| 2181 | ensureStarted(); |
| 2182 | return true; |
| 2183 | } |
| 2184 | return false; |
| 2185 | } |
| 2186 | |
| 2187 | void QVulkanWindowPrivate::addReadback() |
| 2188 | { |
| 2189 | VkImageCreateInfo imageInfo; |
| 2190 | memset(s: &imageInfo, c: 0, n: sizeof(imageInfo)); |
| 2191 | imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
| 2192 | imageInfo.imageType = VK_IMAGE_TYPE_2D; |
| 2193 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM; |
| 2194 | imageInfo.extent.width = frameGrabTargetImage.width(); |
| 2195 | imageInfo.extent.height = frameGrabTargetImage.height(); |
| 2196 | imageInfo.extent.depth = 1; |
| 2197 | imageInfo.mipLevels = 1; |
| 2198 | imageInfo.arrayLayers = 1; |
| 2199 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; |
| 2200 | imageInfo.tiling = VK_IMAGE_TILING_LINEAR; |
| 2201 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
| 2202 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
| 2203 | |
| 2204 | VkResult err = devFuncs->vkCreateImage(dev, &imageInfo, nullptr, &frameGrabImage); |
| 2205 | if (err != VK_SUCCESS) { |
| 2206 | qWarning(msg: "QVulkanWindow: Failed to create image for readback: %d" , err); |
| 2207 | return; |
| 2208 | } |
| 2209 | |
| 2210 | VkMemoryRequirements memReq; |
| 2211 | devFuncs->vkGetImageMemoryRequirements(dev, frameGrabImage, &memReq); |
| 2212 | |
| 2213 | VkMemoryAllocateInfo allocInfo = { |
| 2214 | .sType: VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, |
| 2215 | .pNext: nullptr, |
| 2216 | .allocationSize: memReq.size, |
| 2217 | .memoryTypeIndex: hostVisibleMemIndex |
| 2218 | }; |
| 2219 | |
| 2220 | err = devFuncs->vkAllocateMemory(dev, &allocInfo, nullptr, &frameGrabImageMem); |
| 2221 | if (err != VK_SUCCESS) { |
| 2222 | qWarning(msg: "QVulkanWindow: Failed to allocate memory for readback image: %d" , err); |
| 2223 | return; |
| 2224 | } |
| 2225 | |
| 2226 | err = devFuncs->vkBindImageMemory(dev, frameGrabImage, frameGrabImageMem, 0); |
| 2227 | if (err != VK_SUCCESS) { |
| 2228 | qWarning(msg: "QVulkanWindow: Failed to bind readback image memory: %d" , err); |
| 2229 | return; |
| 2230 | } |
| 2231 | |
| 2232 | ImageResources &image(imageRes[currentImage]); |
| 2233 | |
| 2234 | VkImageMemoryBarrier barrier; |
| 2235 | memset(s: &barrier, c: 0, n: sizeof(barrier)); |
| 2236 | barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
| 2237 | barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 2238 | barrier.subresourceRange.levelCount = barrier.subresourceRange.layerCount = 1; |
| 2239 | |
| 2240 | barrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
| 2241 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; |
| 2242 | barrier.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; |
| 2243 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; |
| 2244 | barrier.image = image.image; |
| 2245 | |
| 2246 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
| 2247 | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, |
| 2248 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
| 2249 | 0, 0, nullptr, 0, nullptr, |
| 2250 | 1, &barrier); |
| 2251 | |
| 2252 | barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
| 2253 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| 2254 | barrier.srcAccessMask = 0; |
| 2255 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| 2256 | barrier.image = frameGrabImage; |
| 2257 | |
| 2258 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
| 2259 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
| 2260 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
| 2261 | 0, 0, nullptr, 0, nullptr, |
| 2262 | 1, &barrier); |
| 2263 | |
| 2264 | VkImageCopy copyInfo; |
| 2265 | memset(s: ©Info, c: 0, n: sizeof(copyInfo)); |
| 2266 | copyInfo.srcSubresource.aspectMask = copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
| 2267 | copyInfo.srcSubresource.layerCount = copyInfo.dstSubresource.layerCount = 1; |
| 2268 | copyInfo.extent.width = frameGrabTargetImage.width(); |
| 2269 | copyInfo.extent.height = frameGrabTargetImage.height(); |
| 2270 | copyInfo.extent.depth = 1; |
| 2271 | |
| 2272 | devFuncs->vkCmdCopyImage(image.cmdBuf, image.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
| 2273 | frameGrabImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Info); |
| 2274 | |
| 2275 | barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
| 2276 | barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL; |
| 2277 | barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
| 2278 | barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT; |
| 2279 | barrier.image = frameGrabImage; |
| 2280 | |
| 2281 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
| 2282 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
| 2283 | VK_PIPELINE_STAGE_HOST_BIT, |
| 2284 | 0, 0, nullptr, 0, nullptr, |
| 2285 | 1, &barrier); |
| 2286 | } |
| 2287 | |
| 2288 | void QVulkanWindowPrivate::finishBlockingReadback() |
| 2289 | { |
| 2290 | ImageResources &image(imageRes[currentImage]); |
| 2291 | |
| 2292 | // Block until the current frame is done. Normally this wait would only be |
| 2293 | // done in current + concurrentFrameCount(). |
| 2294 | devFuncs->vkWaitForFences(dev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX); |
| 2295 | devFuncs->vkResetFences(dev, 1, &image.cmdFence); |
| 2296 | // will reuse the same image for the next "real" frame, do not wait then |
| 2297 | image.cmdFenceWaitable = false; |
| 2298 | |
| 2299 | VkImageSubresource subres = { .aspectMask: VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel: 0, .arrayLayer: 0 }; |
| 2300 | VkSubresourceLayout layout; |
| 2301 | devFuncs->vkGetImageSubresourceLayout(dev, frameGrabImage, &subres, &layout); |
| 2302 | |
| 2303 | uchar *p; |
| 2304 | VkResult err = devFuncs->vkMapMemory(dev, frameGrabImageMem, layout.offset, layout.size, 0, reinterpret_cast<void **>(&p)); |
| 2305 | if (err != VK_SUCCESS) { |
| 2306 | qWarning(msg: "QVulkanWindow: Failed to map readback image memory after transfer: %d" , err); |
| 2307 | return; |
| 2308 | } |
| 2309 | |
| 2310 | for (int y = 0; y < frameGrabTargetImage.height(); ++y) { |
| 2311 | memcpy(dest: frameGrabTargetImage.scanLine(y), src: p, n: frameGrabTargetImage.width() * 4); |
| 2312 | p += layout.rowPitch; |
| 2313 | } |
| 2314 | |
| 2315 | devFuncs->vkUnmapMemory(dev, frameGrabImageMem); |
| 2316 | |
| 2317 | devFuncs->vkDestroyImage(dev, frameGrabImage, nullptr); |
| 2318 | frameGrabImage = VK_NULL_HANDLE; |
| 2319 | devFuncs->vkFreeMemory(dev, frameGrabImageMem, nullptr); |
| 2320 | frameGrabImageMem = VK_NULL_HANDLE; |
| 2321 | } |
| 2322 | |
| 2323 | /*! |
| 2324 | Returns the active physical device. |
| 2325 | |
| 2326 | \note Calling this function is only valid from the invocation of |
| 2327 | QVulkanWindowRenderer::preInitResources() up until |
| 2328 | QVulkanWindowRenderer::releaseResources(). |
| 2329 | */ |
| 2330 | VkPhysicalDevice QVulkanWindow::physicalDevice() const |
| 2331 | { |
| 2332 | Q_D(const QVulkanWindow); |
| 2333 | if (d->physDevIndex < d->physDevs.size()) |
| 2334 | return d->physDevs[d->physDevIndex]; |
| 2335 | qWarning(msg: "QVulkanWindow: Physical device not available" ); |
| 2336 | return VK_NULL_HANDLE; |
| 2337 | } |
| 2338 | |
| 2339 | /*! |
| 2340 | Returns a pointer to the properties for the active physical device. |
| 2341 | |
| 2342 | \note Calling this function is only valid from the invocation of |
| 2343 | QVulkanWindowRenderer::preInitResources() up until |
| 2344 | QVulkanWindowRenderer::releaseResources(). |
| 2345 | */ |
| 2346 | const VkPhysicalDeviceProperties *QVulkanWindow::physicalDeviceProperties() const |
| 2347 | { |
| 2348 | Q_D(const QVulkanWindow); |
| 2349 | if (d->physDevIndex < d->physDevProps.size()) |
| 2350 | return &d->physDevProps[d->physDevIndex]; |
| 2351 | qWarning(msg: "QVulkanWindow: Physical device properties not available" ); |
| 2352 | return nullptr; |
| 2353 | } |
| 2354 | |
| 2355 | /*! |
| 2356 | Returns the active logical device. |
| 2357 | |
| 2358 | \note Calling this function is only valid from the invocation of |
| 2359 | QVulkanWindowRenderer::initResources() up until |
| 2360 | QVulkanWindowRenderer::releaseResources(). |
| 2361 | */ |
| 2362 | VkDevice QVulkanWindow::device() const |
| 2363 | { |
| 2364 | Q_D(const QVulkanWindow); |
| 2365 | return d->dev; |
| 2366 | } |
| 2367 | |
| 2368 | /*! |
| 2369 | Returns the active graphics queue. |
| 2370 | |
| 2371 | \note Calling this function is only valid from the invocation of |
| 2372 | QVulkanWindowRenderer::initResources() up until |
| 2373 | QVulkanWindowRenderer::releaseResources(). |
| 2374 | */ |
| 2375 | VkQueue QVulkanWindow::graphicsQueue() const |
| 2376 | { |
| 2377 | Q_D(const QVulkanWindow); |
| 2378 | return d->gfxQueue; |
| 2379 | } |
| 2380 | |
| 2381 | /*! |
| 2382 | Returns the family index of the active graphics queue. |
| 2383 | |
| 2384 | \note Calling this function is only valid from the invocation of |
| 2385 | QVulkanWindowRenderer::initResources() up until |
| 2386 | QVulkanWindowRenderer::releaseResources(). Implementations of |
| 2387 | QVulkanWindowRenderer::updateQueueCreateInfo() can also call this |
| 2388 | function. |
| 2389 | |
| 2390 | \since 5.15 |
| 2391 | */ |
| 2392 | uint32_t QVulkanWindow::graphicsQueueFamilyIndex() const |
| 2393 | { |
| 2394 | Q_D(const QVulkanWindow); |
| 2395 | return d->gfxQueueFamilyIdx; |
| 2396 | } |
| 2397 | |
| 2398 | /*! |
| 2399 | Returns the active graphics command pool. |
| 2400 | |
| 2401 | \note Calling this function is only valid from the invocation of |
| 2402 | QVulkanWindowRenderer::initResources() up until |
| 2403 | QVulkanWindowRenderer::releaseResources(). |
| 2404 | */ |
| 2405 | VkCommandPool QVulkanWindow::graphicsCommandPool() const |
| 2406 | { |
| 2407 | Q_D(const QVulkanWindow); |
| 2408 | return d->cmdPool; |
| 2409 | } |
| 2410 | |
| 2411 | /*! |
| 2412 | Returns a host visible memory type index suitable for general use. |
| 2413 | |
| 2414 | The returned memory type will be both host visible and coherent. In |
| 2415 | addition, it will also be cached, if possible. |
| 2416 | |
| 2417 | \note Calling this function is only valid from the invocation of |
| 2418 | QVulkanWindowRenderer::initResources() up until |
| 2419 | QVulkanWindowRenderer::releaseResources(). |
| 2420 | */ |
| 2421 | uint32_t QVulkanWindow::hostVisibleMemoryIndex() const |
| 2422 | { |
| 2423 | Q_D(const QVulkanWindow); |
| 2424 | return d->hostVisibleMemIndex; |
| 2425 | } |
| 2426 | |
| 2427 | /*! |
| 2428 | Returns a device local memory type index suitable for general use. |
| 2429 | |
| 2430 | \note Calling this function is only valid from the invocation of |
| 2431 | QVulkanWindowRenderer::initResources() up until |
| 2432 | QVulkanWindowRenderer::releaseResources(). |
| 2433 | |
| 2434 | \note It is not guaranteed that this memory type is always suitable. The |
| 2435 | correct, cross-implementation solution - especially for device local images |
| 2436 | - is to manually pick a memory type after checking the mask returned from |
| 2437 | \c{vkGetImageMemoryRequirements}. |
| 2438 | */ |
| 2439 | uint32_t QVulkanWindow::deviceLocalMemoryIndex() const |
| 2440 | { |
| 2441 | Q_D(const QVulkanWindow); |
| 2442 | return d->deviceLocalMemIndex; |
| 2443 | } |
| 2444 | |
| 2445 | /*! |
| 2446 | Returns a typical render pass with one sub-pass. |
| 2447 | |
| 2448 | \note Applications are not required to use this render pass. However, they |
| 2449 | are then responsible for ensuring the current swap chain and depth-stencil |
| 2450 | images get transitioned from \c{VK_IMAGE_LAYOUT_UNDEFINED} to |
| 2451 | \c{VK_IMAGE_LAYOUT_PRESENT_SRC_KHR} and |
| 2452 | \c{VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL} either via the |
| 2453 | application's custom render pass or by other means. |
| 2454 | |
| 2455 | \note Stencil read/write is not enabled in this render pass. |
| 2456 | |
| 2457 | \note Calling this function is only valid from the invocation of |
| 2458 | QVulkanWindowRenderer::initResources() up until |
| 2459 | QVulkanWindowRenderer::releaseResources(). |
| 2460 | |
| 2461 | \sa currentFramebuffer() |
| 2462 | */ |
| 2463 | VkRenderPass QVulkanWindow::defaultRenderPass() const |
| 2464 | { |
| 2465 | Q_D(const QVulkanWindow); |
| 2466 | return d->defaultRenderPass; |
| 2467 | } |
| 2468 | |
| 2469 | /*! |
| 2470 | Returns the color buffer format used by the swapchain. |
| 2471 | |
| 2472 | \note Calling this function is only valid from the invocation of |
| 2473 | QVulkanWindowRenderer::initResources() up until |
| 2474 | QVulkanWindowRenderer::releaseResources(). |
| 2475 | |
| 2476 | \sa setPreferredColorFormats() |
| 2477 | */ |
| 2478 | VkFormat QVulkanWindow::colorFormat() const |
| 2479 | { |
| 2480 | Q_D(const QVulkanWindow); |
| 2481 | return d->colorFormat; |
| 2482 | } |
| 2483 | |
| 2484 | /*! |
| 2485 | Returns the format used by the depth-stencil buffer(s). |
| 2486 | |
| 2487 | \note Calling this function is only valid from the invocation of |
| 2488 | QVulkanWindowRenderer::initResources() up until |
| 2489 | QVulkanWindowRenderer::releaseResources(). |
| 2490 | */ |
| 2491 | VkFormat QVulkanWindow::depthStencilFormat() const |
| 2492 | { |
| 2493 | Q_D(const QVulkanWindow); |
| 2494 | return d->dsFormat; |
| 2495 | } |
| 2496 | |
| 2497 | /*! |
| 2498 | Returns the image size of the swapchain. |
| 2499 | |
| 2500 | This usually matches the size of the window, but may also differ in case |
| 2501 | \c vkGetPhysicalDeviceSurfaceCapabilitiesKHR reports a fixed size. |
| 2502 | |
| 2503 | In addition, it has been observed on some platforms that the |
| 2504 | Vulkan-reported surface size is different with high DPI scaling active, |
| 2505 | meaning the QWindow-reported |
| 2506 | \l{QWindow::}{size()} multiplied with the \l{QWindow::}{devicePixelRatio()} |
| 2507 | was 1 pixel less or more when compared to the value returned from here, |
| 2508 | presumably due to differences in rounding. Rendering code should be aware |
| 2509 | of this, and any related rendering logic must be based in the value returned |
| 2510 | from here, never on the QWindow-reported size. Regardless of which pixel size |
| 2511 | is correct in theory, Vulkan rendering must only ever rely on the Vulkan |
| 2512 | API-reported surface size. Otherwise validation errors may occur, e.g. when |
| 2513 | setting the viewport, because the application-provided values may become |
| 2514 | out-of-bounds from Vulkan's perspective. |
| 2515 | |
| 2516 | \note Calling this function is only valid from the invocation of |
| 2517 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2518 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2519 | */ |
| 2520 | QSize QVulkanWindow::swapChainImageSize() const |
| 2521 | { |
| 2522 | Q_D(const QVulkanWindow); |
| 2523 | return d->swapChainImageSize; |
| 2524 | } |
| 2525 | |
| 2526 | /*! |
| 2527 | Returns The active command buffer for the current swap chain image. |
| 2528 | Implementations of QVulkanWindowRenderer::startNextFrame() are expected to |
| 2529 | add commands to this command buffer. |
| 2530 | |
| 2531 | \note This function must only be called from within startNextFrame() and, in |
| 2532 | case of asynchronous command generation, up until the call to frameReady(). |
| 2533 | */ |
| 2534 | VkCommandBuffer QVulkanWindow::currentCommandBuffer() const |
| 2535 | { |
| 2536 | Q_D(const QVulkanWindow); |
| 2537 | if (!d->framePending) { |
| 2538 | qWarning(msg: "QVulkanWindow: Attempted to call currentCommandBuffer() without an active frame" ); |
| 2539 | return VK_NULL_HANDLE; |
| 2540 | } |
| 2541 | return d->imageRes[d->currentImage].cmdBuf; |
| 2542 | } |
| 2543 | |
| 2544 | /*! |
| 2545 | Returns a VkFramebuffer for the current swapchain image using the default |
| 2546 | render pass. |
| 2547 | |
| 2548 | The framebuffer has two attachments (color, depth-stencil) when |
| 2549 | multisampling is not in use, and three (color resolve, depth-stencil, |
| 2550 | multisample color) when sampleCountFlagBits() is greater than |
| 2551 | \c{VK_SAMPLE_COUNT_1_BIT}. Renderers must take this into account, for |
| 2552 | example when providing clear values. |
| 2553 | |
| 2554 | \note Applications are not required to use this framebuffer in case they |
| 2555 | provide their own render pass instead of using the one returned from |
| 2556 | defaultRenderPass(). |
| 2557 | |
| 2558 | \note This function must only be called from within startNextFrame() and, in |
| 2559 | case of asynchronous command generation, up until the call to frameReady(). |
| 2560 | |
| 2561 | \sa defaultRenderPass() |
| 2562 | */ |
| 2563 | VkFramebuffer QVulkanWindow::currentFramebuffer() const |
| 2564 | { |
| 2565 | Q_D(const QVulkanWindow); |
| 2566 | if (!d->framePending) { |
| 2567 | qWarning(msg: "QVulkanWindow: Attempted to call currentFramebuffer() without an active frame" ); |
| 2568 | return VK_NULL_HANDLE; |
| 2569 | } |
| 2570 | return d->imageRes[d->currentImage].fb; |
| 2571 | } |
| 2572 | |
| 2573 | /*! |
| 2574 | Returns the current frame index in the range [0, concurrentFrameCount() - 1]. |
| 2575 | |
| 2576 | Renderer implementations will have to ensure that uniform data and other |
| 2577 | dynamic resources exist in multiple copies, in order to prevent frame N |
| 2578 | altering the data used by the still-active frames N - 1, N - 2, ... N - |
| 2579 | concurrentFrameCount() + 1. |
| 2580 | |
| 2581 | To avoid relying on dynamic array sizes, applications can use |
| 2582 | MAX_CONCURRENT_FRAME_COUNT when declaring arrays. This is guaranteed to be |
| 2583 | always equal to or greater than the value returned from |
| 2584 | concurrentFrameCount(). Such arrays can then be indexed by the value |
| 2585 | returned from this function. |
| 2586 | |
| 2587 | \snippet code/src_gui_vulkan_qvulkanwindow.cpp 1 |
| 2588 | |
| 2589 | \note This function must only be called from within startNextFrame() and, in |
| 2590 | case of asynchronous command generation, up until the call to frameReady(). |
| 2591 | |
| 2592 | \sa concurrentFrameCount() |
| 2593 | */ |
| 2594 | int QVulkanWindow::currentFrame() const |
| 2595 | { |
| 2596 | Q_D(const QVulkanWindow); |
| 2597 | if (!d->framePending) |
| 2598 | qWarning(msg: "QVulkanWindow: Attempted to call currentFrame() without an active frame" ); |
| 2599 | return d->currentFrame; |
| 2600 | } |
| 2601 | |
| 2602 | /*! |
| 2603 | \variable QVulkanWindow::MAX_CONCURRENT_FRAME_COUNT |
| 2604 | |
| 2605 | \brief A constant value that is always equal to or greater than the maximum value |
| 2606 | of concurrentFrameCount(). |
| 2607 | */ |
| 2608 | |
| 2609 | /*! |
| 2610 | Returns the number of frames that can be potentially active at the same time. |
| 2611 | |
| 2612 | \note The value is constant for the entire lifetime of the QVulkanWindow. |
| 2613 | |
| 2614 | \snippet code/src_gui_vulkan_qvulkanwindow.cpp 2 |
| 2615 | |
| 2616 | \sa currentFrame() |
| 2617 | */ |
| 2618 | int QVulkanWindow::concurrentFrameCount() const |
| 2619 | { |
| 2620 | Q_D(const QVulkanWindow); |
| 2621 | return d->frameLag; |
| 2622 | } |
| 2623 | |
| 2624 | /*! |
| 2625 | Returns the number of images in the swap chain. |
| 2626 | |
| 2627 | \note Accessing this is necessary when providing a custom render pass and |
| 2628 | framebuffer. The framebuffer is specific to the current swapchain image and |
| 2629 | hence the application must provide multiple framebuffers. |
| 2630 | |
| 2631 | \note Calling this function is only valid from the invocation of |
| 2632 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2633 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2634 | */ |
| 2635 | int QVulkanWindow::swapChainImageCount() const |
| 2636 | { |
| 2637 | Q_D(const QVulkanWindow); |
| 2638 | return d->swapChainBufferCount; |
| 2639 | } |
| 2640 | |
| 2641 | /*! |
| 2642 | Returns the current swap chain image index in the range [0, swapChainImageCount() - 1]. |
| 2643 | |
| 2644 | \note This function must only be called from within startNextFrame() and, in |
| 2645 | case of asynchronous command generation, up until the call to frameReady(). |
| 2646 | */ |
| 2647 | int QVulkanWindow::currentSwapChainImageIndex() const |
| 2648 | { |
| 2649 | Q_D(const QVulkanWindow); |
| 2650 | if (!d->framePending) |
| 2651 | qWarning(msg: "QVulkanWindow: Attempted to call currentSwapChainImageIndex() without an active frame" ); |
| 2652 | return d->currentImage; |
| 2653 | } |
| 2654 | |
| 2655 | /*! |
| 2656 | Returns the specified swap chain image. |
| 2657 | |
| 2658 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
| 2659 | |
| 2660 | \note Calling this function is only valid from the invocation of |
| 2661 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2662 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2663 | */ |
| 2664 | VkImage QVulkanWindow::swapChainImage(int idx) const |
| 2665 | { |
| 2666 | Q_D(const QVulkanWindow); |
| 2667 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].image : VK_NULL_HANDLE; |
| 2668 | } |
| 2669 | |
| 2670 | /*! |
| 2671 | Returns the specified swap chain image view. |
| 2672 | |
| 2673 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
| 2674 | |
| 2675 | \note Calling this function is only valid from the invocation of |
| 2676 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2677 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2678 | */ |
| 2679 | VkImageView QVulkanWindow::swapChainImageView(int idx) const |
| 2680 | { |
| 2681 | Q_D(const QVulkanWindow); |
| 2682 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].imageView : VK_NULL_HANDLE; |
| 2683 | } |
| 2684 | |
| 2685 | /*! |
| 2686 | Returns the depth-stencil image. |
| 2687 | |
| 2688 | \note Calling this function is only valid from the invocation of |
| 2689 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2690 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2691 | */ |
| 2692 | VkImage QVulkanWindow::depthStencilImage() const |
| 2693 | { |
| 2694 | Q_D(const QVulkanWindow); |
| 2695 | return d->dsImage; |
| 2696 | } |
| 2697 | |
| 2698 | /*! |
| 2699 | Returns the depth-stencil image view. |
| 2700 | |
| 2701 | \note Calling this function is only valid from the invocation of |
| 2702 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2703 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2704 | */ |
| 2705 | VkImageView QVulkanWindow::depthStencilImageView() const |
| 2706 | { |
| 2707 | Q_D(const QVulkanWindow); |
| 2708 | return d->dsView; |
| 2709 | } |
| 2710 | |
| 2711 | /*! |
| 2712 | Returns the current sample count as a \c VkSampleCountFlagBits value. |
| 2713 | |
| 2714 | When targeting the default render target, the \c rasterizationSamples field |
| 2715 | of \c VkPipelineMultisampleStateCreateInfo must be set to this value. |
| 2716 | |
| 2717 | \sa setSampleCount(), supportedSampleCounts() |
| 2718 | */ |
| 2719 | VkSampleCountFlagBits QVulkanWindow::sampleCountFlagBits() const |
| 2720 | { |
| 2721 | Q_D(const QVulkanWindow); |
| 2722 | return d->sampleCount; |
| 2723 | } |
| 2724 | |
| 2725 | /*! |
| 2726 | Returns the specified multisample color image, or \c{VK_NULL_HANDLE} if |
| 2727 | multisampling is not in use. |
| 2728 | |
| 2729 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
| 2730 | |
| 2731 | \note Calling this function is only valid from the invocation of |
| 2732 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2733 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2734 | */ |
| 2735 | VkImage QVulkanWindow::msaaColorImage(int idx) const |
| 2736 | { |
| 2737 | Q_D(const QVulkanWindow); |
| 2738 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].msaaImage : VK_NULL_HANDLE; |
| 2739 | } |
| 2740 | |
| 2741 | /*! |
| 2742 | Returns the specified multisample color image view, or \c{VK_NULL_HANDLE} if |
| 2743 | multisampling is not in use. |
| 2744 | |
| 2745 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
| 2746 | |
| 2747 | \note Calling this function is only valid from the invocation of |
| 2748 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2749 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2750 | */ |
| 2751 | VkImageView QVulkanWindow::msaaColorImageView(int idx) const |
| 2752 | { |
| 2753 | Q_D(const QVulkanWindow); |
| 2754 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].msaaImageView : VK_NULL_HANDLE; |
| 2755 | } |
| 2756 | |
| 2757 | /*! |
| 2758 | Returns true if the swapchain supports usage as transfer source, meaning |
| 2759 | grab() is functional. |
| 2760 | |
| 2761 | \note Calling this function is only valid from the invocation of |
| 2762 | QVulkanWindowRenderer::initSwapChainResources() up until |
| 2763 | QVulkanWindowRenderer::releaseSwapChainResources(). |
| 2764 | */ |
| 2765 | bool QVulkanWindow::supportsGrab() const |
| 2766 | { |
| 2767 | Q_D(const QVulkanWindow); |
| 2768 | return d->swapChainSupportsReadBack; |
| 2769 | } |
| 2770 | |
| 2771 | /*! |
| 2772 | \fn void QVulkanWindow::frameGrabbed(const QImage &image) |
| 2773 | |
| 2774 | This signal is emitted when the \a image is ready. |
| 2775 | */ |
| 2776 | |
| 2777 | /*! |
| 2778 | Builds and renders the next frame without presenting it, then performs a |
| 2779 | blocking readback of the image content. |
| 2780 | |
| 2781 | Returns the image if the renderer's |
| 2782 | \l{QVulkanWindowRenderer::startNextFrame()}{startNextFrame()} |
| 2783 | implementation calls back frameReady() directly. Otherwise, returns an |
| 2784 | incomplete image, that has the correct size but not the content yet. The |
| 2785 | content will be delivered via the frameGrabbed() signal in the latter case. |
| 2786 | |
| 2787 | The returned QImage always has a format of QImage::Format_RGBA8888. If the |
| 2788 | colorFormat() is \c VK_FORMAT_B8G8R8A8_UNORM, the red and blue channels are |
| 2789 | swapped automatically since this format is commonly used as the default |
| 2790 | choice for swapchain color buffers. With any other color buffer format, |
| 2791 | there is no conversion performed by this function. |
| 2792 | |
| 2793 | \note This function should not be called when a frame is in progress |
| 2794 | (that is, frameReady() has not yet been called back by the application). |
| 2795 | |
| 2796 | \note This function is potentially expensive due to the additional, |
| 2797 | blocking readback. |
| 2798 | |
| 2799 | \note This function currently requires that the swapchain supports usage as |
| 2800 | a transfer source (\c{VK_IMAGE_USAGE_TRANSFER_SRC_BIT}), and will fail otherwise. |
| 2801 | */ |
| 2802 | QImage QVulkanWindow::grab() |
| 2803 | { |
| 2804 | Q_D(QVulkanWindow); |
| 2805 | if (!d->swapChain) { |
| 2806 | qWarning(msg: "QVulkanWindow: Attempted to call grab() without a swapchain" ); |
| 2807 | return QImage(); |
| 2808 | } |
| 2809 | if (d->framePending) { |
| 2810 | qWarning(msg: "QVulkanWindow: Attempted to call grab() while a frame is still pending" ); |
| 2811 | return QImage(); |
| 2812 | } |
| 2813 | if (!d->swapChainSupportsReadBack) { |
| 2814 | qWarning(msg: "QVulkanWindow: Attempted to call grab() with a swapchain that does not support usage as transfer source" ); |
| 2815 | return QImage(); |
| 2816 | } |
| 2817 | |
| 2818 | d->frameGrabbing = true; |
| 2819 | d->beginFrame(); |
| 2820 | |
| 2821 | if (d->colorFormat == VK_FORMAT_B8G8R8A8_UNORM) |
| 2822 | d->frameGrabTargetImage = std::move(d->frameGrabTargetImage).rgbSwapped(); |
| 2823 | |
| 2824 | return d->frameGrabTargetImage; |
| 2825 | } |
| 2826 | |
| 2827 | /*! |
| 2828 | Returns a QMatrix4x4 that can be used to correct for coordinate |
| 2829 | system differences between OpenGL and Vulkan. |
| 2830 | |
| 2831 | By pre-multiplying the projection matrix with this matrix, applications can |
| 2832 | continue to assume that Y is pointing upwards, and can set minDepth and |
| 2833 | maxDepth in the viewport to 0 and 1, respectively, without having to do any |
| 2834 | further corrections to the vertex Z positions. Geometry from OpenGL |
| 2835 | applications can then be used as-is, assuming a rasterization state matching |
| 2836 | the OpenGL culling and front face settings. |
| 2837 | */ |
| 2838 | QMatrix4x4 QVulkanWindow::clipCorrectionMatrix() |
| 2839 | { |
| 2840 | Q_D(QVulkanWindow); |
| 2841 | if (d->m_clipCorrect.isIdentity()) { |
| 2842 | // NB the ctor takes row-major |
| 2843 | d->m_clipCorrect = QMatrix4x4(1.0f, 0.0f, 0.0f, 0.0f, |
| 2844 | 0.0f, -1.0f, 0.0f, 0.0f, |
| 2845 | 0.0f, 0.0f, 0.5f, 0.5f, |
| 2846 | 0.0f, 0.0f, 0.0f, 1.0f); |
| 2847 | } |
| 2848 | return d->m_clipCorrect; |
| 2849 | } |
| 2850 | |
| 2851 | QT_END_NAMESPACE |
| 2852 | |
| 2853 | #include "moc_qvulkanwindow.cpp" |
| 2854 | |