1 | // Copyright (C) 2017 The Qt Company Ltd. |
---|---|
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qvulkanwindow_p.h" |
5 | #include "qvulkanfunctions.h" |
6 | #include <QLoggingCategory> |
7 | #include <QTimer> |
8 | #include <QThread> |
9 | #include <QCoreApplication> |
10 | #include <qevent.h> |
11 | |
12 | QT_BEGIN_NAMESPACE |
13 | |
14 | Q_DECLARE_LOGGING_CATEGORY(lcGuiVk) |
15 | |
16 | /*! |
17 | \class QVulkanWindow |
18 | \inmodule QtGui |
19 | \since 5.10 |
20 | \brief The QVulkanWindow class is a convenience subclass of QWindow to perform Vulkan rendering. |
21 | |
22 | QVulkanWindow is a Vulkan-capable QWindow that manages a Vulkan device, a |
23 | graphics queue, a command pool and buffer, a depth-stencil image and a |
24 | double-buffered FIFO swapchain, while taking care of correct behavior when it |
25 | comes to events like resize, special situations like not having a device |
26 | queue supporting both graphics and presentation, device lost scenarios, and |
27 | additional functionality like reading the rendered content back. Conceptually |
28 | it is the counterpart of QOpenGLWindow in the Vulkan world. |
29 | |
30 | \note QVulkanWindow does not always eliminate the need to implement a fully |
31 | custom QWindow subclass as it will not necessarily be sufficient in advanced |
32 | use cases. |
33 | |
34 | QVulkanWindow can be embedded into QWidget-based user interfaces via |
35 | QWidget::createWindowContainer(). This approach has a number of limitations, |
36 | however. Make sure to study the |
37 | \l{QWidget::createWindowContainer()}{documentation} first. |
38 | |
39 | A typical application using QVulkanWindow may look like the following: |
40 | |
41 | \snippet code/src_gui_vulkan_qvulkanwindow.cpp 0 |
42 | |
43 | As it can be seen in the example, the main patterns in QVulkanWindow usage are: |
44 | |
45 | \list |
46 | |
47 | \li The QVulkanInstance is associated via QWindow::setVulkanInstance(). It is |
48 | then retrievable via QWindow::vulkanInstance() from everywhere, on any |
49 | thread. |
50 | |
51 | \li Similarly to QVulkanInstance, device extensions can be queried via |
52 | supportedDeviceExtensions() before the actual initialization. Requesting an |
53 | extension to be enabled is done via setDeviceExtensions(). Such calls must be |
54 | made before the window becomes visible, that is, before calling show() or |
55 | similar functions. Unsupported extension requests are gracefully ignored. |
56 | |
57 | \li The renderer is implemented in a QVulkanWindowRenderer subclass, an |
58 | instance of which is created in the createRenderer() factory function. |
59 | |
60 | \li The core Vulkan commands are exposed via the QVulkanFunctions object, |
61 | retrievable by calling QVulkanInstance::functions(). Device level functions |
62 | are available after creating a VkDevice by calling |
63 | QVulkanInstance::deviceFunctions(). |
64 | |
65 | \li The building of the draw calls for the next frame happens in |
66 | QVulkanWindowRenderer::startNextFrame(). The implementation is expected to |
67 | add commands to the command buffer returned from currentCommandBuffer(). |
68 | Returning from the function does not indicate that the commands are ready for |
69 | submission. Rather, an explicit call to frameReady() is required. This allows |
70 | asynchronous generation of commands, possibly on multiple threads. Simple |
71 | implementations will simply call frameReady() at the end of their |
72 | QVulkanWindowRenderer::startNextFrame(). |
73 | |
74 | \li The basic Vulkan resources (physical device, graphics queue, a command |
75 | pool, the window's main command buffer, image formats, etc.) are exposed on |
76 | the QVulkanWindow via lightweight getter functions. Some of these are for |
77 | convenience only, and applications are always free to query, create and |
78 | manage additional resources directly via the Vulkan API. |
79 | |
80 | \li The renderer lives in the gui/main thread, like the window itself. This |
81 | thread is then throttled to the presentation rate, similarly to how OpenGL |
82 | with a swap interval of 1 would behave. However, the renderer implementation |
83 | is free to utilize multiple threads in any way it sees fit. The accessors |
84 | like vulkanInstance(), currentCommandBuffer(), etc. can be called from any |
85 | thread. The submission of the main command buffer, the queueing of present, |
86 | and the building of the next frame do not start until frameReady() is |
87 | invoked on the gui/main thread. |
88 | |
89 | \li When the window is made visible, the content is updated automatically. |
90 | Further updates can be requested by calling QWindow::requestUpdate(). To |
91 | render continuously, call requestUpdate() after frameReady(). |
92 | |
93 | \endlist |
94 | |
95 | For troubleshooting, enable the logging category \c{qt.vulkan}. Critical |
96 | errors are printed via qWarning() automatically. |
97 | |
98 | \section1 Coordinate system differences between OpenGL and Vulkan |
99 | |
100 | There are two notable differences to be aware of: First, with Vulkan Y points |
101 | down the screen in clip space, while OpenGL uses an upwards pointing Y axis. |
102 | Second, the standard OpenGL projection matrix assume a near and far plane |
103 | values of -1 and 1, while Vulkan prefers 0 and 1. |
104 | |
105 | In order to help applications migrate from OpenGL-based code without having |
106 | to flip Y coordinates in the vertex data, and to allow using QMatrix4x4 |
107 | functions like QMatrix4x4::perspective() while keeping the Vulkan viewport's |
108 | minDepth and maxDepth set to 0 and 1, QVulkanWindow provides a correction |
109 | matrix retrievable by calling clipCorrectionMatrix(). |
110 | |
111 | \section1 Multisampling |
112 | |
113 | While disabled by default, multisample antialiasing is fully supported by |
114 | QVulkanWindow. Additional color buffers and resolving into the swapchain's |
115 | non-multisample buffers are all managed automatically. |
116 | |
117 | To query the supported sample counts, call supportedSampleCounts(). When the |
118 | returned set contains 4, 8, ..., passing one of those values to setSampleCount() |
119 | requests multisample rendering. |
120 | |
121 | \note unlike QSurfaceFormat::setSamples(), the list of supported sample |
122 | counts are exposed to the applications in advance and there is no automatic |
123 | falling back to lower sample counts in setSampleCount(). If the requested value |
124 | is not supported, a warning is shown and a no multisampling will be used. |
125 | |
126 | \section1 Reading images back |
127 | |
128 | When supportsGrab() returns true, QVulkanWindow can perform readbacks from |
129 | the color buffer into a QImage. grab() is a slow and inefficient operation, |
130 | so frequent usage should be avoided. It is nonetheless valuable since it |
131 | allows applications to take screenshots, or tools and tests to process and |
132 | verify the output of the GPU rendering. |
133 | |
134 | \section1 sRGB support |
135 | |
136 | While many applications will be fine with the default behavior of |
137 | QVulkanWindow when it comes to swapchain image formats, |
138 | setPreferredColorFormats() allows requesting a pre-defined format. This is |
139 | useful most notably when working in the sRGB color space. Passing a format |
140 | like \c{VK_FORMAT_B8G8R8A8_SRGB} results in choosing an sRGB format, when |
141 | available. |
142 | |
143 | \section1 Validation layers |
144 | |
145 | During application development it can be extremely valuable to have the |
146 | Vulkan validation layers enabled. As shown in the example code above, calling |
147 | QVulkanInstance::setLayers() on the QVulkanInstance before |
148 | QVulkanInstance::create() enables validation, assuming the Vulkan driver |
149 | stack in the system contains the necessary layers. |
150 | |
151 | \note Be aware of platform-specific differences. On desktop platforms |
152 | installing the \l{https://www.lunarg.com/vulkan-sdk/}{Vulkan SDK} is |
153 | typically sufficient. However, Android for example requires deploying |
154 | additional shared libraries together with the application, and also mandates |
155 | a different list of validation layer names. See |
156 | \l{https://developer.android.com/ndk/guides/graphics/validation-layer.html}{the |
157 | Android Vulkan development pages} for more information. |
158 | |
159 | \note QVulkanWindow does not expose device layers since this functionality |
160 | has been deprecated since version 1.0.13 of the Vulkan API. |
161 | |
162 | \section1 Layers, device features, and extensions |
163 | |
164 | To enable instance layers, call QVulkanInstance::setLayers() before creating |
165 | the QVulkanInstance. To query what instance layer are available, call |
166 | QVulkanInstance::supportedLayers(). |
167 | |
168 | To enable device extensions, call setDeviceExtensions() early on when setting |
169 | up the QVulkanWindow. To query what device extensions are available, call |
170 | supportedDeviceExtensions(). |
171 | |
172 | Specifying an unsupported layer or extension is handled gracefully: this will |
173 | not fail instance or device creation, but the layer or extension request is |
174 | rather ignored. |
175 | |
176 | When it comes to device features, QVulkanWindow enables all Vulkan 1.0 |
177 | features that are reported as supported from vkGetPhysicalDeviceFeatures(). |
178 | As an exception to this rule, \c robustBufferAccess is never enabled. Use the |
179 | callback mechanism described below, if enabling that feature is desired. |
180 | |
181 | This is not always desirable, and may be insufficient with Vulkan 1.1 and |
182 | higher. Therefore, full control over the VkPhysicalDeviceFeatures used for |
183 | device creation is possible too by registering a callback function with |
184 | setEnabledFeaturesModifier(). When set, the callback function is invoked, |
185 | letting it alter the VkPhysicalDeviceFeatures or VkPhysicalDeviceFeatures2. |
186 | |
187 | \sa QVulkanInstance, QWindow |
188 | */ |
189 | |
190 | /*! |
191 | \class QVulkanWindowRenderer |
192 | \inmodule QtGui |
193 | \since 5.10 |
194 | |
195 | \brief The QVulkanWindowRenderer class is used to implement the |
196 | application-specific rendering logic for a QVulkanWindow. |
197 | |
198 | Applications typically subclass both QVulkanWindow and QVulkanWindowRenderer. |
199 | The former allows handling events, for example, input, while the latter allows |
200 | implementing the Vulkan resource management and command buffer building that |
201 | make up the application's rendering. |
202 | |
203 | In addition to event handling, the QVulkanWindow subclass is responsible for |
204 | providing an implementation for QVulkanWindow::createRenderer() as well. This |
205 | is where the window and renderer get connected. A typical implementation will |
206 | simply create a new instance of a subclass of QVulkanWindowRenderer. |
207 | */ |
208 | |
209 | /*! |
210 | Constructs a new QVulkanWindow with the given \a parent. |
211 | |
212 | The surface type is set to QSurface::VulkanSurface. |
213 | */ |
214 | QVulkanWindow::QVulkanWindow(QWindow *parent) |
215 | : QWindow(*(new QVulkanWindowPrivate), parent) |
216 | { |
217 | setSurfaceType(QSurface::VulkanSurface); |
218 | } |
219 | |
220 | /*! |
221 | Destructor. |
222 | */ |
223 | QVulkanWindow::~QVulkanWindow() |
224 | { |
225 | } |
226 | |
227 | QVulkanWindowPrivate::~QVulkanWindowPrivate() |
228 | { |
229 | // graphics resource cleanup is already done at this point due to |
230 | // QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed |
231 | |
232 | delete renderer; |
233 | } |
234 | |
235 | /*! |
236 | \enum QVulkanWindow::Flag |
237 | |
238 | This enum describes the flags that can be passed to setFlags(). |
239 | |
240 | \value PersistentResources Ensures no graphics resources are released when |
241 | the window becomes unexposed. The default behavior is to release |
242 | everything, and reinitialize later when becoming visible again. |
243 | */ |
244 | |
245 | /*! |
246 | Configures the behavior based on the provided \a flags. |
247 | |
248 | \note This function must be called before the window is made visible or at |
249 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
250 | called afterwards. |
251 | */ |
252 | void QVulkanWindow::setFlags(Flags flags) |
253 | { |
254 | Q_D(QVulkanWindow); |
255 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
256 | qWarning(msg: "QVulkanWindow: Attempted to set flags when already initialized"); |
257 | return; |
258 | } |
259 | d->flags = flags; |
260 | } |
261 | |
262 | /*! |
263 | Return the requested flags. |
264 | */ |
265 | QVulkanWindow::Flags QVulkanWindow::flags() const |
266 | { |
267 | Q_D(const QVulkanWindow); |
268 | return d->flags; |
269 | } |
270 | |
271 | /*! |
272 | Returns the list of properties for the supported physical devices in the system. |
273 | |
274 | \note This function can be called before making the window visible. |
275 | */ |
276 | QList<VkPhysicalDeviceProperties> QVulkanWindow::availablePhysicalDevices() |
277 | { |
278 | Q_D(QVulkanWindow); |
279 | if (!d->physDevs.isEmpty() && !d->physDevProps.isEmpty()) |
280 | return d->physDevProps; |
281 | |
282 | QVulkanInstance *inst = vulkanInstance(); |
283 | if (!inst) { |
284 | qWarning(msg: "QVulkanWindow: Attempted to call availablePhysicalDevices() without a QVulkanInstance"); |
285 | return d->physDevProps; |
286 | } |
287 | |
288 | QVulkanFunctions *f = inst->functions(); |
289 | uint32_t count = 1; |
290 | VkResult err = f->vkEnumeratePhysicalDevices(inst->vkInstance(), &count, nullptr); |
291 | if (err != VK_SUCCESS) { |
292 | qWarning(msg: "QVulkanWindow: Failed to get physical device count: %d", err); |
293 | return d->physDevProps; |
294 | } |
295 | |
296 | qCDebug(lcGuiVk, "%d physical devices", count); |
297 | if (!count) |
298 | return d->physDevProps; |
299 | |
300 | QList<VkPhysicalDevice> devs(count); |
301 | err = f->vkEnumeratePhysicalDevices(inst->vkInstance(), &count, devs.data()); |
302 | if (err != VK_SUCCESS) { |
303 | qWarning(msg: "QVulkanWindow: Failed to enumerate physical devices: %d", err); |
304 | return d->physDevProps; |
305 | } |
306 | |
307 | d->physDevs = devs; |
308 | d->physDevProps.resize(size: count); |
309 | for (uint32_t i = 0; i < count; ++i) { |
310 | VkPhysicalDeviceProperties *p = &d->physDevProps[i]; |
311 | f->vkGetPhysicalDeviceProperties(d->physDevs.at(i), p); |
312 | qCDebug(lcGuiVk, "Physical device [%d]: name '%s' version %d.%d.%d", i, p->deviceName, |
313 | VK_VERSION_MAJOR(p->driverVersion), VK_VERSION_MINOR(p->driverVersion), |
314 | VK_VERSION_PATCH(p->driverVersion)); |
315 | } |
316 | |
317 | return d->physDevProps; |
318 | } |
319 | |
320 | /*! |
321 | Requests the usage of the physical device with index \a idx. The index |
322 | corresponds to the list returned from availablePhysicalDevices(). |
323 | |
324 | By default the first physical device is used. |
325 | |
326 | \note This function must be called before the window is made visible or at |
327 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
328 | called afterwards. |
329 | */ |
330 | void QVulkanWindow::setPhysicalDeviceIndex(int idx) |
331 | { |
332 | Q_D(QVulkanWindow); |
333 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
334 | qWarning(msg: "QVulkanWindow: Attempted to set physical device when already initialized"); |
335 | return; |
336 | } |
337 | const int count = availablePhysicalDevices().size(); |
338 | if (idx < 0 || idx >= count) { |
339 | qWarning(msg: "QVulkanWindow: Invalid physical device index %d (total physical devices: %d)", idx, count); |
340 | return; |
341 | } |
342 | d->physDevIndex = idx; |
343 | } |
344 | |
345 | /*! |
346 | Returns the list of the extensions that are supported by logical devices |
347 | created from the physical device selected by setPhysicalDeviceIndex(). |
348 | |
349 | \note This function can be called before making the window visible. |
350 | */ |
351 | QVulkanInfoVector<QVulkanExtension> QVulkanWindow::supportedDeviceExtensions() |
352 | { |
353 | Q_D(QVulkanWindow); |
354 | |
355 | availablePhysicalDevices(); |
356 | |
357 | if (d->physDevs.isEmpty()) { |
358 | qWarning(msg: "QVulkanWindow: No physical devices found"); |
359 | return QVulkanInfoVector<QVulkanExtension>(); |
360 | } |
361 | |
362 | VkPhysicalDevice physDev = d->physDevs.at(i: d->physDevIndex); |
363 | if (d->supportedDevExtensions.contains(key: physDev)) |
364 | return d->supportedDevExtensions.value(key: physDev); |
365 | |
366 | QVulkanFunctions *f = vulkanInstance()->functions(); |
367 | uint32_t count = 0; |
368 | VkResult err = f->vkEnumerateDeviceExtensionProperties(physDev, nullptr, &count, nullptr); |
369 | if (err == VK_SUCCESS) { |
370 | QList<VkExtensionProperties> extProps(count); |
371 | err = f->vkEnumerateDeviceExtensionProperties(physDev, nullptr, &count, extProps.data()); |
372 | if (err == VK_SUCCESS) { |
373 | QVulkanInfoVector<QVulkanExtension> exts; |
374 | for (const VkExtensionProperties &prop : extProps) { |
375 | QVulkanExtension ext; |
376 | ext.name = prop.extensionName; |
377 | ext.version = prop.specVersion; |
378 | exts.append(t: ext); |
379 | } |
380 | d->supportedDevExtensions.insert(key: physDev, value: exts); |
381 | qCDebug(lcGuiVk) << "Supported device extensions:"<< exts; |
382 | return exts; |
383 | } |
384 | } |
385 | |
386 | qWarning(msg: "QVulkanWindow: Failed to query device extension count: %d", err); |
387 | return QVulkanInfoVector<QVulkanExtension>(); |
388 | } |
389 | |
390 | /*! |
391 | Sets the list of device \a extensions to be enabled. |
392 | |
393 | Unsupported extensions are ignored. |
394 | |
395 | The swapchain extension will always be added automatically, no need to |
396 | include it in this list. |
397 | |
398 | \note This function must be called before the window is made visible or at |
399 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
400 | called afterwards. |
401 | */ |
402 | void QVulkanWindow::setDeviceExtensions(const QByteArrayList &extensions) |
403 | { |
404 | Q_D(QVulkanWindow); |
405 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
406 | qWarning(msg: "QVulkanWindow: Attempted to set device extensions when already initialized"); |
407 | return; |
408 | } |
409 | d->requestedDevExtensions = extensions; |
410 | } |
411 | |
412 | /*! |
413 | Sets the preferred \a formats of the swapchain. |
414 | |
415 | By default no application-preferred format is set. In this case the |
416 | surface's preferred format will be used or, in absence of that, |
417 | \c{VK_FORMAT_B8G8R8A8_UNORM}. |
418 | |
419 | The list in \a formats is ordered. If the first format is not supported, |
420 | the second will be considered, and so on. When no formats in the list are |
421 | supported, the behavior is the same as in the default case. |
422 | |
423 | To query the actual format after initialization, call colorFormat(). |
424 | |
425 | \note This function must be called before the window is made visible or at |
426 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
427 | called afterwards. |
428 | |
429 | \note Reimplementing QVulkanWindowRenderer::preInitResources() allows |
430 | dynamically examining the list of supported formats, should that be |
431 | desired. There the surface is retrievable via |
432 | QVulkanInstace::surfaceForWindow(), while this function can still safely be |
433 | called to affect the later stages of initialization. |
434 | |
435 | \sa colorFormat() |
436 | */ |
437 | void QVulkanWindow::setPreferredColorFormats(const QList<VkFormat> &formats) |
438 | { |
439 | Q_D(QVulkanWindow); |
440 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
441 | qWarning(msg: "QVulkanWindow: Attempted to set preferred color format when already initialized"); |
442 | return; |
443 | } |
444 | d->requestedColorFormats = formats; |
445 | } |
446 | |
447 | static struct { |
448 | VkSampleCountFlagBits mask; |
449 | int count; |
450 | } q_vk_sampleCounts[] = { |
451 | // keep this sorted by 'count' |
452 | { .mask: VK_SAMPLE_COUNT_1_BIT, .count: 1 }, |
453 | { .mask: VK_SAMPLE_COUNT_2_BIT, .count: 2 }, |
454 | { .mask: VK_SAMPLE_COUNT_4_BIT, .count: 4 }, |
455 | { .mask: VK_SAMPLE_COUNT_8_BIT, .count: 8 }, |
456 | { .mask: VK_SAMPLE_COUNT_16_BIT, .count: 16 }, |
457 | { .mask: VK_SAMPLE_COUNT_32_BIT, .count: 32 }, |
458 | { .mask: VK_SAMPLE_COUNT_64_BIT, .count: 64 } |
459 | }; |
460 | |
461 | /*! |
462 | Returns the set of supported sample counts when using the physical device |
463 | selected by setPhysicalDeviceIndex(), as a sorted list. |
464 | |
465 | By default QVulkanWindow uses a sample count of 1. By calling setSampleCount() |
466 | with a different value (2, 4, 8, ...) from the set returned by this |
467 | function, multisample anti-aliasing can be requested. |
468 | |
469 | \note This function can be called before making the window visible. |
470 | |
471 | \sa setSampleCount() |
472 | */ |
473 | QList<int> QVulkanWindow::supportedSampleCounts() |
474 | { |
475 | Q_D(const QVulkanWindow); |
476 | QList<int> result; |
477 | |
478 | availablePhysicalDevices(); |
479 | |
480 | if (d->physDevs.isEmpty()) { |
481 | qWarning(msg: "QVulkanWindow: No physical devices found"); |
482 | return result; |
483 | } |
484 | |
485 | const VkPhysicalDeviceLimits *limits = &d->physDevProps[d->physDevIndex].limits; |
486 | VkSampleCountFlags color = limits->framebufferColorSampleCounts; |
487 | VkSampleCountFlags depth = limits->framebufferDepthSampleCounts; |
488 | VkSampleCountFlags stencil = limits->framebufferStencilSampleCounts; |
489 | |
490 | for (const auto &qvk_sampleCount : q_vk_sampleCounts) { |
491 | if ((color & qvk_sampleCount.mask) |
492 | && (depth & qvk_sampleCount.mask) |
493 | && (stencil & qvk_sampleCount.mask)) |
494 | { |
495 | result.append(t: qvk_sampleCount.count); |
496 | } |
497 | } |
498 | |
499 | return result; |
500 | } |
501 | |
502 | /*! |
503 | Requests multisample antialiasing with the given \a sampleCount. The valid |
504 | values are 1, 2, 4, 8, ... up until the maximum value supported by the |
505 | physical device. |
506 | |
507 | When the sample count is greater than 1, QVulkanWindow will create a |
508 | multisample color buffer instead of simply targeting the swapchain's |
509 | images. The rendering in the multisample buffer will get resolved into the |
510 | non-multisample buffers at the end of each frame. |
511 | |
512 | To examine the list of supported sample counts, call supportedSampleCounts(). |
513 | |
514 | When setting up the rendering pipeline, call sampleCountFlagBits() to query the |
515 | active sample count as a \c VkSampleCountFlagBits value. |
516 | |
517 | \note This function must be called before the window is made visible or at |
518 | latest in QVulkanWindowRenderer::preInitResources(), and has no effect if |
519 | called afterwards. |
520 | |
521 | \sa supportedSampleCounts(), sampleCountFlagBits() |
522 | */ |
523 | void QVulkanWindow::setSampleCount(int sampleCount) |
524 | { |
525 | Q_D(QVulkanWindow); |
526 | if (d->status != QVulkanWindowPrivate::StatusUninitialized) { |
527 | qWarning(msg: "QVulkanWindow: Attempted to set sample count when already initialized"); |
528 | return; |
529 | } |
530 | |
531 | // Stay compatible with QSurfaceFormat and friends where samples == 0 means the same as 1. |
532 | sampleCount = qBound(min: 1, val: sampleCount, max: 64); |
533 | |
534 | if (!supportedSampleCounts().contains(t: sampleCount)) { |
535 | qWarning(msg: "QVulkanWindow: Attempted to set unsupported sample count %d", sampleCount); |
536 | return; |
537 | } |
538 | |
539 | for (const auto &qvk_sampleCount : q_vk_sampleCounts) { |
540 | if (qvk_sampleCount.count == sampleCount) { |
541 | d->sampleCount = qvk_sampleCount.mask; |
542 | return; |
543 | } |
544 | } |
545 | |
546 | Q_UNREACHABLE(); |
547 | } |
548 | |
549 | void QVulkanWindowPrivate::init() |
550 | { |
551 | Q_Q(QVulkanWindow); |
552 | Q_ASSERT(status == StatusUninitialized); |
553 | |
554 | qCDebug(lcGuiVk, "QVulkanWindow init"); |
555 | |
556 | inst = q->vulkanInstance(); |
557 | if (!inst) { |
558 | qWarning(msg: "QVulkanWindow: Attempted to initialize without a QVulkanInstance"); |
559 | // This is a simple user error, recheck on the next expose instead of |
560 | // going into the permanent failure state. |
561 | status = StatusFailRetry; |
562 | return; |
563 | } |
564 | |
565 | if (!renderer) |
566 | renderer = q->createRenderer(); |
567 | |
568 | surface = QVulkanInstance::surfaceForWindow(window: q); |
569 | if (surface == VK_NULL_HANDLE) { |
570 | qWarning(msg: "QVulkanWindow: Failed to retrieve Vulkan surface for window"); |
571 | status = StatusFailRetry; |
572 | return; |
573 | } |
574 | |
575 | q->availablePhysicalDevices(); |
576 | |
577 | if (physDevs.isEmpty()) { |
578 | qWarning(msg: "QVulkanWindow: No physical devices found"); |
579 | status = StatusFail; |
580 | return; |
581 | } |
582 | |
583 | if (physDevIndex < 0 || physDevIndex >= physDevs.size()) { |
584 | qWarning(msg: "QVulkanWindow: Invalid physical device index; defaulting to 0"); |
585 | physDevIndex = 0; |
586 | } |
587 | qCDebug(lcGuiVk, "Using physical device [%d]", physDevIndex); |
588 | |
589 | // Give a last chance to do decisions based on the physical device and the surface. |
590 | if (renderer) |
591 | renderer->preInitResources(); |
592 | |
593 | VkPhysicalDevice physDev = physDevs.at(i: physDevIndex); |
594 | QVulkanFunctions *f = inst->functions(); |
595 | |
596 | uint32_t queueCount = 0; |
597 | f->vkGetPhysicalDeviceQueueFamilyProperties(physDev, &queueCount, nullptr); |
598 | QList<VkQueueFamilyProperties> queueFamilyProps(queueCount); |
599 | f->vkGetPhysicalDeviceQueueFamilyProperties(physDev, &queueCount, queueFamilyProps.data()); |
600 | gfxQueueFamilyIdx = uint32_t(-1); |
601 | presQueueFamilyIdx = uint32_t(-1); |
602 | for (int i = 0; i < queueFamilyProps.size(); ++i) { |
603 | const bool supportsPresent = inst->supportsPresent(physicalDevice: physDev, queueFamilyIndex: i, window: q); |
604 | qCDebug(lcGuiVk, "queue family %d: flags=0x%x count=%d supportsPresent=%d", i, |
605 | queueFamilyProps[i].queueFlags, queueFamilyProps[i].queueCount, supportsPresent); |
606 | if (gfxQueueFamilyIdx == uint32_t(-1) |
607 | && (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) |
608 | && supportsPresent) |
609 | gfxQueueFamilyIdx = i; |
610 | } |
611 | if (gfxQueueFamilyIdx != uint32_t(-1)) { |
612 | presQueueFamilyIdx = gfxQueueFamilyIdx; |
613 | } else { |
614 | qCDebug(lcGuiVk, "No queue with graphics+present; trying separate queues"); |
615 | for (int i = 0; i < queueFamilyProps.size(); ++i) { |
616 | if (gfxQueueFamilyIdx == uint32_t(-1) && (queueFamilyProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) |
617 | gfxQueueFamilyIdx = i; |
618 | if (presQueueFamilyIdx == uint32_t(-1) && inst->supportsPresent(physicalDevice: physDev, queueFamilyIndex: i, window: q)) |
619 | presQueueFamilyIdx = i; |
620 | } |
621 | } |
622 | if (gfxQueueFamilyIdx == uint32_t(-1)) { |
623 | qWarning(msg: "QVulkanWindow: No graphics queue family found"); |
624 | status = StatusFail; |
625 | return; |
626 | } |
627 | if (presQueueFamilyIdx == uint32_t(-1)) { |
628 | qWarning(msg: "QVulkanWindow: No present queue family found"); |
629 | status = StatusFail; |
630 | return; |
631 | } |
632 | #ifdef QT_DEBUG |
633 | // allow testing the separate present queue case in debug builds on AMD cards |
634 | if (qEnvironmentVariableIsSet(varName: "QT_VK_PRESENT_QUEUE_INDEX")) |
635 | presQueueFamilyIdx = qEnvironmentVariableIntValue(varName: "QT_VK_PRESENT_QUEUE_INDEX"); |
636 | #endif |
637 | qCDebug(lcGuiVk, "Using queue families: graphics = %u present = %u", gfxQueueFamilyIdx, presQueueFamilyIdx); |
638 | |
639 | QList<VkDeviceQueueCreateInfo> queueInfo; |
640 | queueInfo.reserve(asize: 2); |
641 | const float prio[] = { 0 }; |
642 | VkDeviceQueueCreateInfo addQueueInfo; |
643 | memset(s: &addQueueInfo, c: 0, n: sizeof(addQueueInfo)); |
644 | addQueueInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; |
645 | addQueueInfo.queueFamilyIndex = gfxQueueFamilyIdx; |
646 | addQueueInfo.queueCount = 1; |
647 | addQueueInfo.pQueuePriorities = prio; |
648 | queueInfo.append(t: addQueueInfo); |
649 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
650 | addQueueInfo.queueFamilyIndex = presQueueFamilyIdx; |
651 | addQueueInfo.queueCount = 1; |
652 | addQueueInfo.pQueuePriorities = prio; |
653 | queueInfo.append(t: addQueueInfo); |
654 | } |
655 | if (queueCreateInfoModifier) { |
656 | queueCreateInfoModifier(queueFamilyProps.constData(), queueCount, queueInfo); |
657 | bool foundGfxQueue = false; |
658 | bool foundPresQueue = false; |
659 | for (const VkDeviceQueueCreateInfo& createInfo : std::as_const(t&: queueInfo)) { |
660 | foundGfxQueue |= createInfo.queueFamilyIndex == gfxQueueFamilyIdx; |
661 | foundPresQueue |= createInfo.queueFamilyIndex == presQueueFamilyIdx; |
662 | } |
663 | if (!foundGfxQueue) { |
664 | qWarning(msg: "QVulkanWindow: Graphics queue missing after call to queueCreateInfoModifier"); |
665 | status = StatusFail; |
666 | return; |
667 | } |
668 | if (!foundPresQueue) { |
669 | qWarning(msg: "QVulkanWindow: Present queue missing after call to queueCreateInfoModifier"); |
670 | status = StatusFail; |
671 | return; |
672 | } |
673 | } |
674 | |
675 | // Filter out unsupported extensions in order to keep symmetry |
676 | // with how QVulkanInstance behaves. Add the swapchain extension. |
677 | QList<const char *> devExts; |
678 | QVulkanInfoVector<QVulkanExtension> supportedExtensions = q->supportedDeviceExtensions(); |
679 | QByteArrayList reqExts = requestedDevExtensions; |
680 | reqExts.append(t: "VK_KHR_swapchain"); |
681 | |
682 | QByteArray envExts = qgetenv(varName: "QT_VULKAN_DEVICE_EXTENSIONS"); |
683 | if (!envExts.isEmpty()) { |
684 | QByteArrayList envExtList = envExts.split(sep: ';'); |
685 | for (auto ext : reqExts) |
686 | envExtList.removeAll(t: ext); |
687 | reqExts.append(l: envExtList); |
688 | } |
689 | |
690 | for (const QByteArray &ext : reqExts) { |
691 | if (supportedExtensions.contains(name: ext)) |
692 | devExts.append(t: ext.constData()); |
693 | } |
694 | qCDebug(lcGuiVk) << "Enabling device extensions:"<< devExts; |
695 | |
696 | VkDeviceCreateInfo devInfo; |
697 | memset(s: &devInfo, c: 0, n: sizeof(devInfo)); |
698 | devInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; |
699 | devInfo.queueCreateInfoCount = queueInfo.size(); |
700 | devInfo.pQueueCreateInfos = queueInfo.constData(); |
701 | devInfo.enabledExtensionCount = devExts.size(); |
702 | devInfo.ppEnabledExtensionNames = devExts.constData(); |
703 | |
704 | VkPhysicalDeviceFeatures features = {}; |
705 | VkPhysicalDeviceFeatures2 features2 = {}; |
706 | if (enabledFeatures2Modifier) { |
707 | features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; |
708 | enabledFeatures2Modifier(features2); |
709 | devInfo.pNext = &features2; |
710 | } else if (enabledFeaturesModifier) { |
711 | enabledFeaturesModifier(features); |
712 | devInfo.pEnabledFeatures = &features; |
713 | } else { |
714 | // Enable all supported 1.0 core features, except ones that likely |
715 | // involve a performance penalty. |
716 | f->vkGetPhysicalDeviceFeatures(physDev, &features); |
717 | features.robustBufferAccess = VK_FALSE; |
718 | devInfo.pEnabledFeatures = &features; |
719 | } |
720 | |
721 | // Device layers are not supported by QVulkanWindow since that's an already deprecated |
722 | // API. However, have a workaround for systems with older API and layers (f.ex. L4T |
723 | // 24.2 for the Jetson TX1 provides API 1.0.13 and crashes when the validation layer |
724 | // is enabled for the instance but not the device). |
725 | uint32_t apiVersion = physDevProps[physDevIndex].apiVersion; |
726 | if (VK_VERSION_MAJOR(apiVersion) == 1 |
727 | && VK_VERSION_MINOR(apiVersion) == 0 |
728 | && VK_VERSION_PATCH(apiVersion) <= 13) |
729 | { |
730 | // Make standard validation work at least. |
731 | const QByteArray stdValName = QByteArrayLiteral("VK_LAYER_KHRONOS_validation"); |
732 | const char *stdValNamePtr = stdValName.constData(); |
733 | if (inst->layers().contains(t: stdValName)) { |
734 | uint32_t count = 0; |
735 | VkResult err = f->vkEnumerateDeviceLayerProperties(physDev, &count, nullptr); |
736 | if (err == VK_SUCCESS) { |
737 | QList<VkLayerProperties> layerProps(count); |
738 | err = f->vkEnumerateDeviceLayerProperties(physDev, &count, layerProps.data()); |
739 | if (err == VK_SUCCESS) { |
740 | for (const VkLayerProperties &prop : layerProps) { |
741 | if (!strncmp(s1: prop.layerName, s2: stdValNamePtr, n: stdValName.size())) { |
742 | devInfo.enabledLayerCount = 1; |
743 | devInfo.ppEnabledLayerNames = &stdValNamePtr; |
744 | break; |
745 | } |
746 | } |
747 | } |
748 | } |
749 | } |
750 | } |
751 | |
752 | VkResult err = f->vkCreateDevice(physDev, &devInfo, nullptr, &dev); |
753 | if (err == VK_ERROR_DEVICE_LOST) { |
754 | qWarning(msg: "QVulkanWindow: Physical device lost"); |
755 | if (renderer) |
756 | renderer->physicalDeviceLost(); |
757 | // clear the caches so the list of physical devices is re-queried |
758 | physDevs.clear(); |
759 | physDevProps.clear(); |
760 | status = StatusUninitialized; |
761 | qCDebug(lcGuiVk, "Attempting to restart in 2 seconds"); |
762 | QTimer::singleShot(interval: 2000, receiver: q, slot: [this]() { ensureStarted(); }); |
763 | return; |
764 | } |
765 | if (err != VK_SUCCESS) { |
766 | qWarning(msg: "QVulkanWindow: Failed to create device: %d", err); |
767 | status = StatusFail; |
768 | return; |
769 | } |
770 | |
771 | devFuncs = inst->deviceFunctions(device: dev); |
772 | Q_ASSERT(devFuncs); |
773 | |
774 | devFuncs->vkGetDeviceQueue(dev, gfxQueueFamilyIdx, 0, &gfxQueue); |
775 | if (gfxQueueFamilyIdx == presQueueFamilyIdx) |
776 | presQueue = gfxQueue; |
777 | else |
778 | devFuncs->vkGetDeviceQueue(dev, presQueueFamilyIdx, 0, &presQueue); |
779 | |
780 | VkCommandPoolCreateInfo poolInfo; |
781 | memset(s: &poolInfo, c: 0, n: sizeof(poolInfo)); |
782 | poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; |
783 | poolInfo.queueFamilyIndex = gfxQueueFamilyIdx; |
784 | err = devFuncs->vkCreateCommandPool(dev, &poolInfo, nullptr, &cmdPool); |
785 | if (err != VK_SUCCESS) { |
786 | qWarning(msg: "QVulkanWindow: Failed to create command pool: %d", err); |
787 | status = StatusFail; |
788 | return; |
789 | } |
790 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
791 | poolInfo.queueFamilyIndex = presQueueFamilyIdx; |
792 | err = devFuncs->vkCreateCommandPool(dev, &poolInfo, nullptr, &presCmdPool); |
793 | if (err != VK_SUCCESS) { |
794 | qWarning(msg: "QVulkanWindow: Failed to create command pool for present queue: %d", err); |
795 | status = StatusFail; |
796 | return; |
797 | } |
798 | } |
799 | |
800 | hostVisibleMemIndex = 0; |
801 | VkPhysicalDeviceMemoryProperties physDevMemProps; |
802 | bool hostVisibleMemIndexSet = false; |
803 | f->vkGetPhysicalDeviceMemoryProperties(physDev, &physDevMemProps); |
804 | for (uint32_t i = 0; i < physDevMemProps.memoryTypeCount; ++i) { |
805 | const VkMemoryType *memType = physDevMemProps.memoryTypes; |
806 | qCDebug(lcGuiVk, "memtype %d: flags=0x%x", i, memType[i].propertyFlags); |
807 | // Find a host visible, host coherent memtype. If there is one that is |
808 | // cached as well (in addition to being coherent), prefer that. |
809 | const int hostVisibleAndCoherent = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; |
810 | if ((memType[i].propertyFlags & hostVisibleAndCoherent) == hostVisibleAndCoherent) { |
811 | if (!hostVisibleMemIndexSet |
812 | || (memType[i].propertyFlags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)) { |
813 | hostVisibleMemIndexSet = true; |
814 | hostVisibleMemIndex = i; |
815 | } |
816 | } |
817 | } |
818 | qCDebug(lcGuiVk, "Picked memtype %d for host visible memory", hostVisibleMemIndex); |
819 | deviceLocalMemIndex = 0; |
820 | for (uint32_t i = 0; i < physDevMemProps.memoryTypeCount; ++i) { |
821 | const VkMemoryType *memType = physDevMemProps.memoryTypes; |
822 | // Just pick the first device local memtype. |
823 | if (memType[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { |
824 | deviceLocalMemIndex = i; |
825 | break; |
826 | } |
827 | } |
828 | qCDebug(lcGuiVk, "Picked memtype %d for device local memory", deviceLocalMemIndex); |
829 | |
830 | if (!vkGetPhysicalDeviceSurfaceCapabilitiesKHR || !vkGetPhysicalDeviceSurfaceFormatsKHR) { |
831 | vkGetPhysicalDeviceSurfaceCapabilitiesKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR>( |
832 | inst->getInstanceProcAddr(name: "vkGetPhysicalDeviceSurfaceCapabilitiesKHR")); |
833 | vkGetPhysicalDeviceSurfaceFormatsKHR = reinterpret_cast<PFN_vkGetPhysicalDeviceSurfaceFormatsKHR>( |
834 | inst->getInstanceProcAddr(name: "vkGetPhysicalDeviceSurfaceFormatsKHR")); |
835 | if (!vkGetPhysicalDeviceSurfaceCapabilitiesKHR || !vkGetPhysicalDeviceSurfaceFormatsKHR) { |
836 | qWarning(msg: "QVulkanWindow: Physical device surface queries not available"); |
837 | status = StatusFail; |
838 | return; |
839 | } |
840 | } |
841 | |
842 | // Figure out the color format here. Must not wait until recreateSwapChain() |
843 | // because the renderpass should be available already from initResources (so |
844 | // that apps do not have to defer pipeline creation to |
845 | // initSwapChainResources), but the renderpass needs the final color format. |
846 | |
847 | uint32_t formatCount = 0; |
848 | vkGetPhysicalDeviceSurfaceFormatsKHR(physDev, surface, &formatCount, nullptr); |
849 | QList<VkSurfaceFormatKHR> formats(formatCount); |
850 | if (formatCount) |
851 | vkGetPhysicalDeviceSurfaceFormatsKHR(physDev, surface, &formatCount, formats.data()); |
852 | |
853 | colorFormat = VK_FORMAT_B8G8R8A8_UNORM; // our documented default if all else fails |
854 | colorSpace = VkColorSpaceKHR(0); // this is in fact VK_COLOR_SPACE_SRGB_NONLINEAR_KHR |
855 | |
856 | // Pick the preferred format, if there is one. |
857 | if (!formats.isEmpty() && formats[0].format != VK_FORMAT_UNDEFINED) { |
858 | colorFormat = formats[0].format; |
859 | colorSpace = formats[0].colorSpace; |
860 | } |
861 | |
862 | // Try to honor the user request. |
863 | if (!formats.isEmpty() && !requestedColorFormats.isEmpty()) { |
864 | for (VkFormat reqFmt : std::as_const(t&: requestedColorFormats)) { |
865 | auto r = std::find_if(first: formats.cbegin(), last: formats.cend(), |
866 | pred: [reqFmt](const VkSurfaceFormatKHR &sfmt) { return sfmt.format == reqFmt; }); |
867 | if (r != formats.cend()) { |
868 | colorFormat = r->format; |
869 | colorSpace = r->colorSpace; |
870 | break; |
871 | } |
872 | } |
873 | } |
874 | |
875 | const VkFormat dsFormatCandidates[] = { |
876 | VK_FORMAT_D24_UNORM_S8_UINT, |
877 | VK_FORMAT_D32_SFLOAT_S8_UINT, |
878 | VK_FORMAT_D16_UNORM_S8_UINT |
879 | }; |
880 | const int dsFormatCandidateCount = sizeof(dsFormatCandidates) / sizeof(VkFormat); |
881 | int dsFormatIdx = 0; |
882 | while (dsFormatIdx < dsFormatCandidateCount) { |
883 | dsFormat = dsFormatCandidates[dsFormatIdx]; |
884 | VkFormatProperties fmtProp; |
885 | f->vkGetPhysicalDeviceFormatProperties(physDev, dsFormat, &fmtProp); |
886 | if (fmtProp.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) |
887 | break; |
888 | ++dsFormatIdx; |
889 | } |
890 | if (dsFormatIdx == dsFormatCandidateCount) |
891 | qWarning(msg: "QVulkanWindow: Failed to find an optimal depth-stencil format"); |
892 | |
893 | qCDebug(lcGuiVk, "Color format: %d Depth-stencil format: %d", colorFormat, dsFormat); |
894 | |
895 | if (!createDefaultRenderPass()) |
896 | return; |
897 | |
898 | if (renderer) |
899 | renderer->initResources(); |
900 | |
901 | status = StatusDeviceReady; |
902 | } |
903 | |
904 | void QVulkanWindowPrivate::reset() |
905 | { |
906 | if (!dev) // do not rely on 'status', a half done init must be cleaned properly too |
907 | return; |
908 | |
909 | qCDebug(lcGuiVk, "QVulkanWindow reset"); |
910 | |
911 | devFuncs->vkDeviceWaitIdle(dev); |
912 | |
913 | if (renderer) { |
914 | renderer->releaseResources(); |
915 | devFuncs->vkDeviceWaitIdle(dev); |
916 | } |
917 | |
918 | if (defaultRenderPass) { |
919 | devFuncs->vkDestroyRenderPass(dev, defaultRenderPass, nullptr); |
920 | defaultRenderPass = VK_NULL_HANDLE; |
921 | } |
922 | |
923 | if (cmdPool) { |
924 | devFuncs->vkDestroyCommandPool(dev, cmdPool, nullptr); |
925 | cmdPool = VK_NULL_HANDLE; |
926 | } |
927 | |
928 | if (presCmdPool) { |
929 | devFuncs->vkDestroyCommandPool(dev, presCmdPool, nullptr); |
930 | presCmdPool = VK_NULL_HANDLE; |
931 | } |
932 | |
933 | if (frameGrabImage) { |
934 | devFuncs->vkDestroyImage(dev, frameGrabImage, nullptr); |
935 | frameGrabImage = VK_NULL_HANDLE; |
936 | } |
937 | |
938 | if (frameGrabImageMem) { |
939 | devFuncs->vkFreeMemory(dev, frameGrabImageMem, nullptr); |
940 | frameGrabImageMem = VK_NULL_HANDLE; |
941 | } |
942 | |
943 | if (dev) { |
944 | devFuncs->vkDestroyDevice(dev, nullptr); |
945 | inst->resetDeviceFunctions(device: dev); |
946 | dev = VK_NULL_HANDLE; |
947 | vkCreateSwapchainKHR = nullptr; // re-resolve swapchain funcs later on since some come via the device |
948 | } |
949 | |
950 | surface = VK_NULL_HANDLE; |
951 | |
952 | status = StatusUninitialized; |
953 | } |
954 | |
955 | bool QVulkanWindowPrivate::createDefaultRenderPass() |
956 | { |
957 | VkAttachmentDescription attDesc[3]; |
958 | memset(s: attDesc, c: 0, n: sizeof(attDesc)); |
959 | |
960 | const bool msaa = sampleCount > VK_SAMPLE_COUNT_1_BIT; |
961 | |
962 | // This is either the non-msaa render target or the resolve target. |
963 | attDesc[0].format = colorFormat; |
964 | attDesc[0].samples = VK_SAMPLE_COUNT_1_BIT; |
965 | attDesc[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // ignored when msaa |
966 | attDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
967 | attDesc[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
968 | attDesc[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
969 | attDesc[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
970 | attDesc[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
971 | |
972 | attDesc[1].format = dsFormat; |
973 | attDesc[1].samples = sampleCount; |
974 | attDesc[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
975 | attDesc[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
976 | attDesc[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
977 | attDesc[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
978 | attDesc[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
979 | attDesc[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; |
980 | |
981 | if (msaa) { |
982 | // msaa render target |
983 | attDesc[2].format = colorFormat; |
984 | attDesc[2].samples = sampleCount; |
985 | attDesc[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; |
986 | attDesc[2].storeOp = VK_ATTACHMENT_STORE_OP_STORE; |
987 | attDesc[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; |
988 | attDesc[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; |
989 | attDesc[2].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; |
990 | attDesc[2].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; |
991 | } |
992 | |
993 | VkAttachmentReference colorRef = { .attachment: 0, .layout: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; |
994 | VkAttachmentReference resolveRef = { .attachment: 0, .layout: VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; |
995 | VkAttachmentReference dsRef = { .attachment: 1, .layout: VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL }; |
996 | |
997 | VkSubpassDescription subPassDesc; |
998 | memset(s: &subPassDesc, c: 0, n: sizeof(subPassDesc)); |
999 | subPassDesc.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; |
1000 | subPassDesc.colorAttachmentCount = 1; |
1001 | subPassDesc.pColorAttachments = &colorRef; |
1002 | subPassDesc.pDepthStencilAttachment = &dsRef; |
1003 | |
1004 | VkRenderPassCreateInfo rpInfo; |
1005 | memset(s: &rpInfo, c: 0, n: sizeof(rpInfo)); |
1006 | rpInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; |
1007 | rpInfo.attachmentCount = 2; |
1008 | rpInfo.pAttachments = attDesc; |
1009 | rpInfo.subpassCount = 1; |
1010 | rpInfo.pSubpasses = &subPassDesc; |
1011 | |
1012 | if (msaa) { |
1013 | colorRef.attachment = 2; |
1014 | subPassDesc.pResolveAttachments = &resolveRef; |
1015 | rpInfo.attachmentCount = 3; |
1016 | } |
1017 | |
1018 | VkResult err = devFuncs->vkCreateRenderPass(dev, &rpInfo, nullptr, &defaultRenderPass); |
1019 | if (err != VK_SUCCESS) { |
1020 | qWarning(msg: "QVulkanWindow: Failed to create renderpass: %d", err); |
1021 | return false; |
1022 | } |
1023 | |
1024 | return true; |
1025 | } |
1026 | |
1027 | void QVulkanWindowPrivate::recreateSwapChain() |
1028 | { |
1029 | Q_Q(QVulkanWindow); |
1030 | Q_ASSERT(status >= StatusDeviceReady); |
1031 | |
1032 | swapChainImageSize = q->size() * q->devicePixelRatio(); // note: may change below due to surfaceCaps |
1033 | |
1034 | if (swapChainImageSize.isEmpty()) // handle null window size gracefully |
1035 | return; |
1036 | |
1037 | QVulkanInstance *inst = q->vulkanInstance(); |
1038 | QVulkanFunctions *f = inst->functions(); |
1039 | devFuncs->vkDeviceWaitIdle(dev); |
1040 | |
1041 | if (!vkCreateSwapchainKHR) { |
1042 | vkCreateSwapchainKHR = reinterpret_cast<PFN_vkCreateSwapchainKHR>(f->vkGetDeviceProcAddr(dev, "vkCreateSwapchainKHR")); |
1043 | vkDestroySwapchainKHR = reinterpret_cast<PFN_vkDestroySwapchainKHR>(f->vkGetDeviceProcAddr(dev, "vkDestroySwapchainKHR")); |
1044 | vkGetSwapchainImagesKHR = reinterpret_cast<PFN_vkGetSwapchainImagesKHR>(f->vkGetDeviceProcAddr(dev, "vkGetSwapchainImagesKHR")); |
1045 | vkAcquireNextImageKHR = reinterpret_cast<PFN_vkAcquireNextImageKHR>(f->vkGetDeviceProcAddr(dev, "vkAcquireNextImageKHR")); |
1046 | vkQueuePresentKHR = reinterpret_cast<PFN_vkQueuePresentKHR>(f->vkGetDeviceProcAddr(dev, "vkQueuePresentKHR")); |
1047 | } |
1048 | |
1049 | VkPhysicalDevice physDev = physDevs.at(i: physDevIndex); |
1050 | VkSurfaceCapabilitiesKHR surfaceCaps; |
1051 | vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physDev, surface, &surfaceCaps); |
1052 | uint32_t reqBufferCount; |
1053 | if (surfaceCaps.maxImageCount == 0) |
1054 | reqBufferCount = qMax<uint32_t>(a: 2, b: surfaceCaps.minImageCount); |
1055 | else |
1056 | reqBufferCount = qMax(a: qMin<uint32_t>(a: surfaceCaps.maxImageCount, b: 3), b: surfaceCaps.minImageCount); |
1057 | |
1058 | VkExtent2D bufferSize = surfaceCaps.currentExtent; |
1059 | if (bufferSize.width == uint32_t(-1)) { |
1060 | Q_ASSERT(bufferSize.height == uint32_t(-1)); |
1061 | bufferSize.width = swapChainImageSize.width(); |
1062 | bufferSize.height = swapChainImageSize.height(); |
1063 | } else { |
1064 | swapChainImageSize = QSize(bufferSize.width, bufferSize.height); |
1065 | } |
1066 | |
1067 | VkSurfaceTransformFlagBitsKHR preTransform = |
1068 | (surfaceCaps.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) |
1069 | ? VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
1070 | : surfaceCaps.currentTransform; |
1071 | |
1072 | VkCompositeAlphaFlagBitsKHR compositeAlpha = |
1073 | (surfaceCaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) |
1074 | ? VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR |
1075 | : VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; |
1076 | |
1077 | if (q->requestedFormat().hasAlpha()) { |
1078 | if (surfaceCaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR) |
1079 | compositeAlpha = VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR; |
1080 | else if (surfaceCaps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR) |
1081 | compositeAlpha = VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR; |
1082 | } |
1083 | |
1084 | VkImageUsageFlags usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; |
1085 | swapChainSupportsReadBack = (surfaceCaps.supportedUsageFlags & VK_IMAGE_USAGE_TRANSFER_SRC_BIT); |
1086 | if (swapChainSupportsReadBack) |
1087 | usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT; |
1088 | |
1089 | VkSwapchainKHR oldSwapChain = swapChain; |
1090 | VkSwapchainCreateInfoKHR swapChainInfo; |
1091 | memset(s: &swapChainInfo, c: 0, n: sizeof(swapChainInfo)); |
1092 | swapChainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; |
1093 | swapChainInfo.surface = surface; |
1094 | swapChainInfo.minImageCount = reqBufferCount; |
1095 | swapChainInfo.imageFormat = colorFormat; |
1096 | swapChainInfo.imageColorSpace = colorSpace; |
1097 | swapChainInfo.imageExtent = bufferSize; |
1098 | swapChainInfo.imageArrayLayers = 1; |
1099 | swapChainInfo.imageUsage = usage; |
1100 | swapChainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; |
1101 | swapChainInfo.preTransform = preTransform; |
1102 | swapChainInfo.compositeAlpha = compositeAlpha; |
1103 | swapChainInfo.presentMode = presentMode; |
1104 | swapChainInfo.clipped = true; |
1105 | swapChainInfo.oldSwapchain = oldSwapChain; |
1106 | |
1107 | qCDebug(lcGuiVk, "Creating new swap chain of %d buffers, size %dx%d", reqBufferCount, bufferSize.width, bufferSize.height); |
1108 | |
1109 | VkSwapchainKHR newSwapChain; |
1110 | VkResult err = vkCreateSwapchainKHR(dev, &swapChainInfo, nullptr, &newSwapChain); |
1111 | if (err != VK_SUCCESS) { |
1112 | qWarning(msg: "QVulkanWindow: Failed to create swap chain: %d", err); |
1113 | return; |
1114 | } |
1115 | |
1116 | if (oldSwapChain) |
1117 | releaseSwapChain(); |
1118 | |
1119 | swapChain = newSwapChain; |
1120 | |
1121 | uint32_t actualSwapChainBufferCount = 0; |
1122 | err = vkGetSwapchainImagesKHR(dev, swapChain, &actualSwapChainBufferCount, nullptr); |
1123 | if (err != VK_SUCCESS || actualSwapChainBufferCount < 2) { |
1124 | qWarning(msg: "QVulkanWindow: Failed to get swapchain images: %d (count=%d)", err, actualSwapChainBufferCount); |
1125 | return; |
1126 | } |
1127 | |
1128 | qCDebug(lcGuiVk, "Actual swap chain buffer count: %d (supportsReadback=%d)", |
1129 | actualSwapChainBufferCount, swapChainSupportsReadBack); |
1130 | if (actualSwapChainBufferCount > MAX_SWAPCHAIN_BUFFER_COUNT) { |
1131 | qWarning(msg: "QVulkanWindow: Too many swapchain buffers (%d)", actualSwapChainBufferCount); |
1132 | return; |
1133 | } |
1134 | swapChainBufferCount = actualSwapChainBufferCount; |
1135 | |
1136 | VkImage swapChainImages[MAX_SWAPCHAIN_BUFFER_COUNT]; |
1137 | err = vkGetSwapchainImagesKHR(dev, swapChain, &actualSwapChainBufferCount, swapChainImages); |
1138 | if (err != VK_SUCCESS) { |
1139 | qWarning(msg: "QVulkanWindow: Failed to get swapchain images: %d", err); |
1140 | return; |
1141 | } |
1142 | |
1143 | if (!createTransientImage(format: dsFormat, |
1144 | usage: VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, |
1145 | aspectMask: VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, |
1146 | images: &dsImage, |
1147 | mem: &dsMem, |
1148 | views: &dsView, |
1149 | count: 1)) |
1150 | { |
1151 | return; |
1152 | } |
1153 | |
1154 | const bool msaa = sampleCount > VK_SAMPLE_COUNT_1_BIT; |
1155 | VkImage msaaImages[MAX_SWAPCHAIN_BUFFER_COUNT]; |
1156 | VkImageView msaaViews[MAX_SWAPCHAIN_BUFFER_COUNT]; |
1157 | |
1158 | if (msaa) { |
1159 | if (!createTransientImage(format: colorFormat, |
1160 | usage: VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, |
1161 | aspectMask: VK_IMAGE_ASPECT_COLOR_BIT, |
1162 | images: msaaImages, |
1163 | mem: &msaaImageMem, |
1164 | views: msaaViews, |
1165 | count: swapChainBufferCount)) |
1166 | { |
1167 | return; |
1168 | } |
1169 | } |
1170 | |
1171 | VkFenceCreateInfo fenceInfo = { .sType: VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext: nullptr, .flags: VK_FENCE_CREATE_SIGNALED_BIT }; |
1172 | |
1173 | for (int i = 0; i < swapChainBufferCount; ++i) { |
1174 | ImageResources &image(imageRes[i]); |
1175 | image.image = swapChainImages[i]; |
1176 | |
1177 | if (msaa) { |
1178 | image.msaaImage = msaaImages[i]; |
1179 | image.msaaImageView = msaaViews[i]; |
1180 | } |
1181 | |
1182 | VkImageViewCreateInfo imgViewInfo; |
1183 | memset(s: &imgViewInfo, c: 0, n: sizeof(imgViewInfo)); |
1184 | imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
1185 | imgViewInfo.image = swapChainImages[i]; |
1186 | imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
1187 | imgViewInfo.format = colorFormat; |
1188 | imgViewInfo.components.r = VK_COMPONENT_SWIZZLE_R; |
1189 | imgViewInfo.components.g = VK_COMPONENT_SWIZZLE_G; |
1190 | imgViewInfo.components.b = VK_COMPONENT_SWIZZLE_B; |
1191 | imgViewInfo.components.a = VK_COMPONENT_SWIZZLE_A; |
1192 | imgViewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
1193 | imgViewInfo.subresourceRange.levelCount = imgViewInfo.subresourceRange.layerCount = 1; |
1194 | err = devFuncs->vkCreateImageView(dev, &imgViewInfo, nullptr, &image.imageView); |
1195 | if (err != VK_SUCCESS) { |
1196 | qWarning(msg: "QVulkanWindow: Failed to create swapchain image view %d: %d", i, err); |
1197 | return; |
1198 | } |
1199 | |
1200 | err = devFuncs->vkCreateFence(dev, &fenceInfo, nullptr, &image.cmdFence); |
1201 | if (err != VK_SUCCESS) { |
1202 | qWarning(msg: "QVulkanWindow: Failed to create command buffer fence: %d", err); |
1203 | return; |
1204 | } |
1205 | image.cmdFenceWaitable = true; // fence was created in signaled state |
1206 | |
1207 | VkImageView views[3] = { image.imageView, |
1208 | dsView, |
1209 | msaa ? image.msaaImageView : VK_NULL_HANDLE }; |
1210 | VkFramebufferCreateInfo fbInfo; |
1211 | memset(s: &fbInfo, c: 0, n: sizeof(fbInfo)); |
1212 | fbInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; |
1213 | fbInfo.renderPass = defaultRenderPass; |
1214 | fbInfo.attachmentCount = msaa ? 3 : 2; |
1215 | fbInfo.pAttachments = views; |
1216 | fbInfo.width = swapChainImageSize.width(); |
1217 | fbInfo.height = swapChainImageSize.height(); |
1218 | fbInfo.layers = 1; |
1219 | VkResult err = devFuncs->vkCreateFramebuffer(dev, &fbInfo, nullptr, &image.fb); |
1220 | if (err != VK_SUCCESS) { |
1221 | qWarning(msg: "QVulkanWindow: Failed to create framebuffer: %d", err); |
1222 | return; |
1223 | } |
1224 | |
1225 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
1226 | // pre-build the static image-acquire-on-present-queue command buffer |
1227 | VkCommandBufferAllocateInfo cmdBufInfo = { |
1228 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext: nullptr, .commandPool: presCmdPool, .level: VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount: 1 }; |
1229 | err = devFuncs->vkAllocateCommandBuffers(dev, &cmdBufInfo, &image.presTransCmdBuf); |
1230 | if (err != VK_SUCCESS) { |
1231 | qWarning(msg: "QVulkanWindow: Failed to allocate acquire-on-present-queue command buffer: %d", err); |
1232 | return; |
1233 | } |
1234 | VkCommandBufferBeginInfo cmdBufBeginInfo = { |
1235 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext: nullptr, |
1236 | .flags: VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, .pInheritanceInfo: nullptr }; |
1237 | err = devFuncs->vkBeginCommandBuffer(image.presTransCmdBuf, &cmdBufBeginInfo); |
1238 | if (err != VK_SUCCESS) { |
1239 | qWarning(msg: "QVulkanWindow: Failed to begin acquire-on-present-queue command buffer: %d", err); |
1240 | return; |
1241 | } |
1242 | VkImageMemoryBarrier presTrans; |
1243 | memset(s: &presTrans, c: 0, n: sizeof(presTrans)); |
1244 | presTrans.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
1245 | presTrans.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
1246 | presTrans.oldLayout = presTrans.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
1247 | presTrans.srcQueueFamilyIndex = gfxQueueFamilyIdx; |
1248 | presTrans.dstQueueFamilyIndex = presQueueFamilyIdx; |
1249 | presTrans.image = image.image; |
1250 | presTrans.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
1251 | presTrans.subresourceRange.levelCount = presTrans.subresourceRange.layerCount = 1; |
1252 | devFuncs->vkCmdPipelineBarrier(image.presTransCmdBuf, |
1253 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
1254 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
1255 | 0, 0, nullptr, 0, nullptr, |
1256 | 1, &presTrans); |
1257 | err = devFuncs->vkEndCommandBuffer(image.presTransCmdBuf); |
1258 | if (err != VK_SUCCESS) { |
1259 | qWarning(msg: "QVulkanWindow: Failed to end acquire-on-present-queue command buffer: %d", err); |
1260 | return; |
1261 | } |
1262 | } |
1263 | } |
1264 | |
1265 | currentImage = 0; |
1266 | |
1267 | VkSemaphoreCreateInfo semInfo = { .sType: VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext: nullptr, .flags: 0 }; |
1268 | for (int i = 0; i < frameLag; ++i) { |
1269 | FrameResources &frame(frameRes[i]); |
1270 | |
1271 | frame.imageAcquired = false; |
1272 | frame.imageSemWaitable = false; |
1273 | |
1274 | devFuncs->vkCreateFence(dev, &fenceInfo, nullptr, &frame.fence); |
1275 | frame.fenceWaitable = true; // fence was created in signaled state |
1276 | |
1277 | devFuncs->vkCreateSemaphore(dev, &semInfo, nullptr, &frame.imageSem); |
1278 | devFuncs->vkCreateSemaphore(dev, &semInfo, nullptr, &frame.drawSem); |
1279 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) |
1280 | devFuncs->vkCreateSemaphore(dev, &semInfo, nullptr, &frame.presTransSem); |
1281 | } |
1282 | |
1283 | currentFrame = 0; |
1284 | |
1285 | if (renderer) |
1286 | renderer->initSwapChainResources(); |
1287 | |
1288 | status = StatusReady; |
1289 | } |
1290 | |
1291 | uint32_t QVulkanWindowPrivate::chooseTransientImageMemType(VkImage img, uint32_t startIndex) |
1292 | { |
1293 | VkPhysicalDeviceMemoryProperties physDevMemProps; |
1294 | inst->functions()->vkGetPhysicalDeviceMemoryProperties(physDevs[physDevIndex], &physDevMemProps); |
1295 | |
1296 | VkMemoryRequirements memReq; |
1297 | devFuncs->vkGetImageMemoryRequirements(dev, img, &memReq); |
1298 | uint32_t memTypeIndex = uint32_t(-1); |
1299 | |
1300 | if (memReq.memoryTypeBits) { |
1301 | // Find a device local + lazily allocated, or at least device local memtype. |
1302 | const VkMemoryType *memType = physDevMemProps.memoryTypes; |
1303 | bool foundDevLocal = false; |
1304 | for (uint32_t i = startIndex; i < physDevMemProps.memoryTypeCount; ++i) { |
1305 | if (memReq.memoryTypeBits & (1 << i)) { |
1306 | if (memType[i].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { |
1307 | if (!foundDevLocal) { |
1308 | foundDevLocal = true; |
1309 | memTypeIndex = i; |
1310 | } |
1311 | if (memType[i].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) { |
1312 | memTypeIndex = i; |
1313 | break; |
1314 | } |
1315 | } |
1316 | } |
1317 | } |
1318 | } |
1319 | |
1320 | return memTypeIndex; |
1321 | } |
1322 | |
1323 | static inline VkDeviceSize aligned(VkDeviceSize v, VkDeviceSize byteAlign) |
1324 | { |
1325 | return (v + byteAlign - 1) & ~(byteAlign - 1); |
1326 | } |
1327 | |
1328 | bool QVulkanWindowPrivate::createTransientImage(VkFormat format, |
1329 | VkImageUsageFlags usage, |
1330 | VkImageAspectFlags aspectMask, |
1331 | VkImage *images, |
1332 | VkDeviceMemory *mem, |
1333 | VkImageView *views, |
1334 | int count) |
1335 | { |
1336 | VkMemoryRequirements memReq; |
1337 | VkResult err; |
1338 | |
1339 | Q_ASSERT(count > 0); |
1340 | for (int i = 0; i < count; ++i) { |
1341 | VkImageCreateInfo imgInfo; |
1342 | memset(s: &imgInfo, c: 0, n: sizeof(imgInfo)); |
1343 | imgInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
1344 | imgInfo.imageType = VK_IMAGE_TYPE_2D; |
1345 | imgInfo.format = format; |
1346 | imgInfo.extent.width = swapChainImageSize.width(); |
1347 | imgInfo.extent.height = swapChainImageSize.height(); |
1348 | imgInfo.extent.depth = 1; |
1349 | imgInfo.mipLevels = imgInfo.arrayLayers = 1; |
1350 | imgInfo.samples = sampleCount; |
1351 | imgInfo.tiling = VK_IMAGE_TILING_OPTIMAL; |
1352 | imgInfo.usage = usage | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT; |
1353 | |
1354 | err = devFuncs->vkCreateImage(dev, &imgInfo, nullptr, images + i); |
1355 | if (err != VK_SUCCESS) { |
1356 | qWarning(msg: "QVulkanWindow: Failed to create image: %d", err); |
1357 | return false; |
1358 | } |
1359 | |
1360 | // Assume the reqs are the same since the images are same in every way. |
1361 | // Still, call GetImageMemReq for every image, in order to prevent the |
1362 | // validation layer from complaining. |
1363 | devFuncs->vkGetImageMemoryRequirements(dev, images[i], &memReq); |
1364 | } |
1365 | |
1366 | VkMemoryAllocateInfo memInfo; |
1367 | memset(s: &memInfo, c: 0, n: sizeof(memInfo)); |
1368 | memInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; |
1369 | memInfo.allocationSize = aligned(v: memReq.size, byteAlign: memReq.alignment) * count; |
1370 | |
1371 | uint32_t startIndex = 0; |
1372 | do { |
1373 | memInfo.memoryTypeIndex = chooseTransientImageMemType(img: images[0], startIndex); |
1374 | if (memInfo.memoryTypeIndex == uint32_t(-1)) { |
1375 | qWarning(msg: "QVulkanWindow: No suitable memory type found"); |
1376 | return false; |
1377 | } |
1378 | startIndex = memInfo.memoryTypeIndex + 1; |
1379 | qCDebug(lcGuiVk, "Allocating %u bytes for transient image (memtype %u)", |
1380 | uint32_t(memInfo.allocationSize), memInfo.memoryTypeIndex); |
1381 | err = devFuncs->vkAllocateMemory(dev, &memInfo, nullptr, mem); |
1382 | if (err != VK_SUCCESS && err != VK_ERROR_OUT_OF_DEVICE_MEMORY) { |
1383 | qWarning(msg: "QVulkanWindow: Failed to allocate image memory: %d", err); |
1384 | return false; |
1385 | } |
1386 | } while (err != VK_SUCCESS); |
1387 | |
1388 | VkDeviceSize ofs = 0; |
1389 | for (int i = 0; i < count; ++i) { |
1390 | err = devFuncs->vkBindImageMemory(dev, images[i], *mem, ofs); |
1391 | if (err != VK_SUCCESS) { |
1392 | qWarning(msg: "QVulkanWindow: Failed to bind image memory: %d", err); |
1393 | return false; |
1394 | } |
1395 | ofs += aligned(v: memReq.size, byteAlign: memReq.alignment); |
1396 | |
1397 | VkImageViewCreateInfo imgViewInfo; |
1398 | memset(s: &imgViewInfo, c: 0, n: sizeof(imgViewInfo)); |
1399 | imgViewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; |
1400 | imgViewInfo.image = images[i]; |
1401 | imgViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; |
1402 | imgViewInfo.format = format; |
1403 | imgViewInfo.components.r = VK_COMPONENT_SWIZZLE_R; |
1404 | imgViewInfo.components.g = VK_COMPONENT_SWIZZLE_G; |
1405 | imgViewInfo.components.b = VK_COMPONENT_SWIZZLE_B; |
1406 | imgViewInfo.components.a = VK_COMPONENT_SWIZZLE_A; |
1407 | imgViewInfo.subresourceRange.aspectMask = aspectMask; |
1408 | imgViewInfo.subresourceRange.levelCount = imgViewInfo.subresourceRange.layerCount = 1; |
1409 | |
1410 | err = devFuncs->vkCreateImageView(dev, &imgViewInfo, nullptr, views + i); |
1411 | if (err != VK_SUCCESS) { |
1412 | qWarning(msg: "QVulkanWindow: Failed to create image view: %d", err); |
1413 | return false; |
1414 | } |
1415 | } |
1416 | |
1417 | return true; |
1418 | } |
1419 | |
1420 | void QVulkanWindowPrivate::releaseSwapChain() |
1421 | { |
1422 | if (!dev || !swapChain) // do not rely on 'status', a half done init must be cleaned properly too |
1423 | return; |
1424 | |
1425 | qCDebug(lcGuiVk, "Releasing swapchain"); |
1426 | |
1427 | devFuncs->vkDeviceWaitIdle(dev); |
1428 | |
1429 | if (renderer) { |
1430 | renderer->releaseSwapChainResources(); |
1431 | devFuncs->vkDeviceWaitIdle(dev); |
1432 | } |
1433 | |
1434 | for (int i = 0; i < frameLag; ++i) { |
1435 | FrameResources &frame(frameRes[i]); |
1436 | if (frame.fence) { |
1437 | if (frame.fenceWaitable) |
1438 | devFuncs->vkWaitForFences(dev, 1, &frame.fence, VK_TRUE, UINT64_MAX); |
1439 | devFuncs->vkDestroyFence(dev, frame.fence, nullptr); |
1440 | frame.fence = VK_NULL_HANDLE; |
1441 | frame.fenceWaitable = false; |
1442 | } |
1443 | if (frame.imageSem) { |
1444 | devFuncs->vkDestroySemaphore(dev, frame.imageSem, nullptr); |
1445 | frame.imageSem = VK_NULL_HANDLE; |
1446 | } |
1447 | if (frame.drawSem) { |
1448 | devFuncs->vkDestroySemaphore(dev, frame.drawSem, nullptr); |
1449 | frame.drawSem = VK_NULL_HANDLE; |
1450 | } |
1451 | if (frame.presTransSem) { |
1452 | devFuncs->vkDestroySemaphore(dev, frame.presTransSem, nullptr); |
1453 | frame.presTransSem = VK_NULL_HANDLE; |
1454 | } |
1455 | } |
1456 | |
1457 | for (int i = 0; i < swapChainBufferCount; ++i) { |
1458 | ImageResources &image(imageRes[i]); |
1459 | if (image.cmdFence) { |
1460 | if (image.cmdFenceWaitable) |
1461 | devFuncs->vkWaitForFences(dev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX); |
1462 | devFuncs->vkDestroyFence(dev, image.cmdFence, nullptr); |
1463 | image.cmdFence = VK_NULL_HANDLE; |
1464 | image.cmdFenceWaitable = false; |
1465 | } |
1466 | if (image.fb) { |
1467 | devFuncs->vkDestroyFramebuffer(dev, image.fb, nullptr); |
1468 | image.fb = VK_NULL_HANDLE; |
1469 | } |
1470 | if (image.imageView) { |
1471 | devFuncs->vkDestroyImageView(dev, image.imageView, nullptr); |
1472 | image.imageView = VK_NULL_HANDLE; |
1473 | } |
1474 | if (image.cmdBuf) { |
1475 | devFuncs->vkFreeCommandBuffers(dev, cmdPool, 1, &image.cmdBuf); |
1476 | image.cmdBuf = VK_NULL_HANDLE; |
1477 | } |
1478 | if (image.presTransCmdBuf) { |
1479 | devFuncs->vkFreeCommandBuffers(dev, presCmdPool, 1, &image.presTransCmdBuf); |
1480 | image.presTransCmdBuf = VK_NULL_HANDLE; |
1481 | } |
1482 | if (image.msaaImageView) { |
1483 | devFuncs->vkDestroyImageView(dev, image.msaaImageView, nullptr); |
1484 | image.msaaImageView = VK_NULL_HANDLE; |
1485 | } |
1486 | if (image.msaaImage) { |
1487 | devFuncs->vkDestroyImage(dev, image.msaaImage, nullptr); |
1488 | image.msaaImage = VK_NULL_HANDLE; |
1489 | } |
1490 | } |
1491 | |
1492 | if (msaaImageMem) { |
1493 | devFuncs->vkFreeMemory(dev, msaaImageMem, nullptr); |
1494 | msaaImageMem = VK_NULL_HANDLE; |
1495 | } |
1496 | |
1497 | if (dsView) { |
1498 | devFuncs->vkDestroyImageView(dev, dsView, nullptr); |
1499 | dsView = VK_NULL_HANDLE; |
1500 | } |
1501 | if (dsImage) { |
1502 | devFuncs->vkDestroyImage(dev, dsImage, nullptr); |
1503 | dsImage = VK_NULL_HANDLE; |
1504 | } |
1505 | if (dsMem) { |
1506 | devFuncs->vkFreeMemory(dev, dsMem, nullptr); |
1507 | dsMem = VK_NULL_HANDLE; |
1508 | } |
1509 | |
1510 | if (swapChain) { |
1511 | vkDestroySwapchainKHR(dev, swapChain, nullptr); |
1512 | swapChain = VK_NULL_HANDLE; |
1513 | } |
1514 | |
1515 | if (status == StatusReady) |
1516 | status = StatusDeviceReady; |
1517 | } |
1518 | |
1519 | /*! |
1520 | \internal |
1521 | */ |
1522 | void QVulkanWindow::exposeEvent(QExposeEvent *) |
1523 | { |
1524 | Q_D(QVulkanWindow); |
1525 | |
1526 | if (isExposed()) { |
1527 | d->ensureStarted(); |
1528 | } else { |
1529 | if (!d->flags.testFlag(flag: PersistentResources)) { |
1530 | d->releaseSwapChain(); |
1531 | d->reset(); |
1532 | } |
1533 | } |
1534 | } |
1535 | |
1536 | void QVulkanWindowPrivate::ensureStarted() |
1537 | { |
1538 | Q_Q(QVulkanWindow); |
1539 | if (status == QVulkanWindowPrivate::StatusFailRetry) |
1540 | status = QVulkanWindowPrivate::StatusUninitialized; |
1541 | if (status == QVulkanWindowPrivate::StatusUninitialized) { |
1542 | init(); |
1543 | if (status == QVulkanWindowPrivate::StatusDeviceReady) |
1544 | recreateSwapChain(); |
1545 | } |
1546 | if (status == QVulkanWindowPrivate::StatusReady) |
1547 | q->requestUpdate(); |
1548 | } |
1549 | |
1550 | /*! |
1551 | \internal |
1552 | */ |
1553 | void QVulkanWindow::resizeEvent(QResizeEvent *) |
1554 | { |
1555 | // Nothing to do here - recreating the swapchain is handled when building the next frame. |
1556 | } |
1557 | |
1558 | /*! |
1559 | \internal |
1560 | */ |
1561 | bool QVulkanWindow::event(QEvent *e) |
1562 | { |
1563 | Q_D(QVulkanWindow); |
1564 | |
1565 | switch (e->type()) { |
1566 | case QEvent::UpdateRequest: |
1567 | d->beginFrame(); |
1568 | break; |
1569 | |
1570 | // The swapchain must be destroyed before the surface as per spec. This is |
1571 | // not ideal for us because the surface is managed by the QPlatformWindow |
1572 | // which may be gone already when the unexpose comes, making the validation |
1573 | // layer scream. The solution is to listen to the PlatformSurface events. |
1574 | case QEvent::PlatformSurface: |
1575 | if (static_cast<QPlatformSurfaceEvent *>(e)->surfaceEventType() == QPlatformSurfaceEvent::SurfaceAboutToBeDestroyed) { |
1576 | d->releaseSwapChain(); |
1577 | d->reset(); |
1578 | } |
1579 | break; |
1580 | |
1581 | default: |
1582 | break; |
1583 | } |
1584 | |
1585 | return QWindow::event(e); |
1586 | } |
1587 | |
1588 | /*! |
1589 | \typedef QVulkanWindow::QueueCreateInfoModifier |
1590 | |
1591 | A function that is called during graphics initialization to add |
1592 | additional queues that should be created. |
1593 | |
1594 | Set if the renderer needs additional queues besides the default graphics |
1595 | queue (e.g. a transfer queue). |
1596 | The provided queue family properties can be used to select the indices for |
1597 | the additional queues. |
1598 | The renderer can subsequently request the actual queue in initResources(). |
1599 | |
1600 | \note When requesting additional graphics queues, Qt itself always requests |
1601 | a graphics queue. You'll need to search queueCreateInfo for the appropriate |
1602 | entry and manipulate it to obtain the additional queue. |
1603 | |
1604 | \sa setQueueCreateInfoModifier() |
1605 | */ |
1606 | |
1607 | /*! |
1608 | Sets the queue create info modification function \a modifier. |
1609 | |
1610 | \sa QueueCreateInfoModifier |
1611 | |
1612 | \since 5.15 |
1613 | */ |
1614 | void QVulkanWindow::setQueueCreateInfoModifier(const QueueCreateInfoModifier &modifier) |
1615 | { |
1616 | Q_D(QVulkanWindow); |
1617 | d->queueCreateInfoModifier = modifier; |
1618 | } |
1619 | |
1620 | /*! |
1621 | \typedef QVulkanWindow::EnabledFeaturesModifier |
1622 | |
1623 | A function that is called during graphics initialization to alter the |
1624 | VkPhysicalDeviceFeatures that is passed in when creating a Vulkan device |
1625 | object. |
1626 | |
1627 | By default QVulkanWindow enables all Vulkan 1.0 core features that the |
1628 | physical device reports as supported, with certain exceptions. In |
1629 | praticular, \c robustBufferAccess is always disabled in order to avoid |
1630 | unexpected performance hits. |
1631 | |
1632 | The VkPhysicalDeviceFeatures reference passed in is all zeroed out at the |
1633 | point when the function is invoked. It is up to the function to change |
1634 | members as it sees fit. |
1635 | |
1636 | \note To control Vulkan 1.1, 1.2, or 1.3 features, use |
1637 | EnabledFeatures2Modifier instead. |
1638 | |
1639 | \sa setEnabledFeaturesModifier() |
1640 | */ |
1641 | |
1642 | /*! |
1643 | Sets the enabled device features modification function \a modifier. |
1644 | |
1645 | \note To control Vulkan 1.1, 1.2, or 1.3 features, use |
1646 | the overload taking a EnabledFeatures2Modifier instead. |
1647 | |
1648 | \note \a modifier is passed to the callback function with all members set |
1649 | to false. It is up to the function to change members as it sees fit. |
1650 | |
1651 | \since 6.7 |
1652 | \sa EnabledFeaturesModifier |
1653 | */ |
1654 | void QVulkanWindow::setEnabledFeaturesModifier(const EnabledFeaturesModifier &modifier) |
1655 | { |
1656 | Q_D(QVulkanWindow); |
1657 | d->enabledFeaturesModifier = modifier; |
1658 | } |
1659 | |
1660 | /*! |
1661 | \typedef QVulkanWindow::EnabledFeatures2Modifier |
1662 | |
1663 | A function that is called during graphics initialization to alter the |
1664 | VkPhysicalDeviceFeatures2 that is changed to the VkDeviceCreateInfo. |
1665 | |
1666 | By default QVulkanWindow enables all Vulkan 1.0 core features that the |
1667 | physical device reports as supported, with certain exceptions. In |
1668 | praticular, \c robustBufferAccess is always disabled in order to avoid |
1669 | unexpected performance hits. |
1670 | |
1671 | This however is not always sufficient when working with Vulkan 1.1, 1.2, or |
1672 | 1.3 features and extensions. Hence this callback mechanism. If only Vulkan |
1673 | 1.0 is relevant at run time, use setEnabledFeaturesModifier() instead. |
1674 | |
1675 | The VkPhysicalDeviceFeatures2 reference passed to the callback function |
1676 | with \c sType set, but the rest zeroed out. It is up to the function to |
1677 | change members to true, or set up \c pNext chains as it sees fit. |
1678 | |
1679 | \note When setting up \c pNext chains, make sure the referenced objects |
1680 | have a long enough lifetime, for example by storing them as member |
1681 | variables in the QVulkanWindow subclass. |
1682 | |
1683 | \since 6.7 |
1684 | \sa setEnabledFeaturesModifier() |
1685 | */ |
1686 | |
1687 | /*! |
1688 | Sets the enabled device features modification function \a modifier. |
1689 | \overload |
1690 | \since 6.7 |
1691 | \sa EnabledFeatures2Modifier |
1692 | */ |
1693 | void QVulkanWindow::setEnabledFeaturesModifier(EnabledFeatures2Modifier modifier) |
1694 | { |
1695 | Q_D(QVulkanWindow); |
1696 | d->enabledFeatures2Modifier = std::move(modifier); |
1697 | } |
1698 | |
1699 | /*! |
1700 | Returns true if this window has successfully initialized all Vulkan |
1701 | resources, including the swapchain. |
1702 | |
1703 | \note Initialization happens on the first expose event after the window is |
1704 | made visible. |
1705 | */ |
1706 | bool QVulkanWindow::isValid() const |
1707 | { |
1708 | Q_D(const QVulkanWindow); |
1709 | return d->status == QVulkanWindowPrivate::StatusReady; |
1710 | } |
1711 | |
1712 | /*! |
1713 | Returns a new instance of QVulkanWindowRenderer. |
1714 | |
1715 | This virtual function is called once during the lifetime of the window, at |
1716 | some point after making it visible for the first time. |
1717 | |
1718 | The default implementation returns null and so no rendering will be |
1719 | performed apart from clearing the buffers. |
1720 | |
1721 | The window takes ownership of the returned renderer object. |
1722 | */ |
1723 | QVulkanWindowRenderer *QVulkanWindow::createRenderer() |
1724 | { |
1725 | return nullptr; |
1726 | } |
1727 | |
1728 | /*! |
1729 | Virtual destructor. |
1730 | */ |
1731 | QVulkanWindowRenderer::~QVulkanWindowRenderer() |
1732 | { |
1733 | } |
1734 | |
1735 | /*! |
1736 | This virtual function is called right before graphics initialization, that |
1737 | ends up in calling initResources(), is about to begin. |
1738 | |
1739 | Normally there is no need to reimplement this function. However, there are |
1740 | cases that involve decisions based on both the physical device and the |
1741 | surface. These cannot normally be performed before making the QVulkanWindow |
1742 | visible since the Vulkan surface is not retrievable at that stage. |
1743 | |
1744 | Instead, applications can reimplement this function. Here both |
1745 | QVulkanWindow::physicalDevice() and QVulkanInstance::surfaceForWindow() are |
1746 | functional, but no further logical device initialization has taken place |
1747 | yet. |
1748 | |
1749 | The default implementation is empty. |
1750 | */ |
1751 | void QVulkanWindowRenderer::preInitResources() |
1752 | { |
1753 | } |
1754 | |
1755 | /*! |
1756 | This virtual function is called when it is time to create the renderer's |
1757 | graphics resources. |
1758 | |
1759 | Depending on the QVulkanWindow::PersistentResources flag, device lost |
1760 | situations, etc. this function may be called more than once during the |
1761 | lifetime of a QVulkanWindow. However, subsequent invocations are always |
1762 | preceded by a call to releaseResources(). |
1763 | |
1764 | Accessors like device(), graphicsQueue() and graphicsCommandPool() are only |
1765 | guaranteed to return valid values inside this function and afterwards, up |
1766 | until releaseResources() is called. |
1767 | |
1768 | The default implementation is empty. |
1769 | */ |
1770 | void QVulkanWindowRenderer::initResources() |
1771 | { |
1772 | } |
1773 | |
1774 | /*! |
1775 | This virtual function is called when swapchain, framebuffer or renderpass |
1776 | related initialization can be performed. Swapchain and related resources |
1777 | are reset and then recreated in response to window resize events, and |
1778 | therefore a pair of calls to initResources() and releaseResources() can |
1779 | have multiple calls to initSwapChainResources() and |
1780 | releaseSwapChainResources() calls in-between. |
1781 | |
1782 | Accessors like QVulkanWindow::swapChainImageSize() are only guaranteed to |
1783 | return valid values inside this function and afterwards, up until |
1784 | releaseSwapChainResources() is called. |
1785 | |
1786 | This is also the place where size-dependent calculations (for example, the |
1787 | projection matrix) should be made since this function is called effectively |
1788 | on every resize. |
1789 | |
1790 | The default implementation is empty. |
1791 | */ |
1792 | void QVulkanWindowRenderer::initSwapChainResources() |
1793 | { |
1794 | } |
1795 | |
1796 | /*! |
1797 | This virtual function is called when swapchain, framebuffer or renderpass |
1798 | related resources must be released. |
1799 | |
1800 | The implementation must be prepared that a call to this function may be |
1801 | followed by a new call to initSwapChainResources() at a later point. |
1802 | |
1803 | QVulkanWindow takes care of waiting for the device to become idle before |
1804 | and after invoking this function. |
1805 | |
1806 | The default implementation is empty. |
1807 | |
1808 | \note This is the last place to act with all graphics resources intact |
1809 | before QVulkanWindow starts releasing them. It is therefore essential that |
1810 | implementations with an asynchronous, potentially multi-threaded |
1811 | startNextFrame() perform a blocking wait and call |
1812 | QVulkanWindow::frameReady() before returning from this function in case |
1813 | there is a pending frame submission. |
1814 | */ |
1815 | void QVulkanWindowRenderer::releaseSwapChainResources() |
1816 | { |
1817 | } |
1818 | |
1819 | /*! |
1820 | This virtual function is called when the renderer's graphics resources must be |
1821 | released. |
1822 | |
1823 | The implementation must be prepared that a call to this function may be |
1824 | followed by an initResources() at a later point. |
1825 | |
1826 | QVulkanWindow takes care of waiting for the device to become idle before |
1827 | and after invoking this function. |
1828 | |
1829 | The default implementation is empty. |
1830 | */ |
1831 | void QVulkanWindowRenderer::releaseResources() |
1832 | { |
1833 | } |
1834 | |
1835 | /*! |
1836 | \fn void QVulkanWindowRenderer::startNextFrame() |
1837 | |
1838 | This virtual function is called when the draw calls for the next frame are |
1839 | to be added to the command buffer. |
1840 | |
1841 | Each call to this function must be followed by a call to |
1842 | QVulkanWindow::frameReady(). Failing to do so will stall the rendering |
1843 | loop. The call can also be made at a later time, after returning from this |
1844 | function. This means that it is possible to kick off asynchronous work, and |
1845 | only update the command buffer and notify QVulkanWindow when that work has |
1846 | finished. |
1847 | |
1848 | All Vulkan resources are initialized and ready when this function is |
1849 | invoked. The current framebuffer and main command buffer can be retrieved |
1850 | via QVulkanWindow::currentFramebuffer() and |
1851 | QVulkanWindow::currentCommandBuffer(). The logical device and the active |
1852 | graphics queue are available via QVulkanWindow::device() and |
1853 | QVulkanWindow::graphicsQueue(). Implementations can create additional |
1854 | command buffers from the pool returned by |
1855 | QVulkanWindow::graphicsCommandPool(). For convenience, the index of a host |
1856 | visible and device local memory type index are exposed via |
1857 | QVulkanWindow::hostVisibleMemoryIndex() and |
1858 | QVulkanWindow::deviceLocalMemoryIndex(). All these accessors are safe to be |
1859 | called from any thread. |
1860 | |
1861 | \sa QVulkanWindow::frameReady(), QVulkanWindow |
1862 | */ |
1863 | |
1864 | /*! |
1865 | This virtual function is called when the physical device is lost, meaning |
1866 | the creation of the logical device fails with \c{VK_ERROR_DEVICE_LOST}. |
1867 | |
1868 | The default implementation is empty. |
1869 | |
1870 | There is typically no need to perform anything special in this function |
1871 | because QVulkanWindow will automatically retry to initialize itself after a |
1872 | certain amount of time. |
1873 | |
1874 | \sa logicalDeviceLost() |
1875 | */ |
1876 | void QVulkanWindowRenderer::physicalDeviceLost() |
1877 | { |
1878 | } |
1879 | |
1880 | /*! |
1881 | This virtual function is called when the logical device (VkDevice) is lost, |
1882 | meaning some operation failed with \c{VK_ERROR_DEVICE_LOST}. |
1883 | |
1884 | The default implementation is empty. |
1885 | |
1886 | There is typically no need to perform anything special in this function. |
1887 | QVulkanWindow will automatically release all resources (invoking |
1888 | releaseSwapChainResources() and releaseResources() as necessary) and will |
1889 | attempt to reinitialize, acquiring a new device. When the physical device |
1890 | was also lost, this reinitialization attempt may then result in |
1891 | physicalDeviceLost(). |
1892 | |
1893 | \sa physicalDeviceLost() |
1894 | */ |
1895 | void QVulkanWindowRenderer::logicalDeviceLost() |
1896 | { |
1897 | } |
1898 | |
1899 | QSize QVulkanWindowPrivate::surfacePixelSize() const |
1900 | { |
1901 | Q_Q(const QVulkanWindow); |
1902 | VkSurfaceCapabilitiesKHR surfaceCaps = {}; |
1903 | vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physDevs.at(i: physDevIndex), surface, &surfaceCaps); |
1904 | VkExtent2D bufferSize = surfaceCaps.currentExtent; |
1905 | if (bufferSize.width == uint32_t(-1)) { |
1906 | Q_ASSERT(bufferSize.height == uint32_t(-1)); |
1907 | return q->size() * q->devicePixelRatio(); |
1908 | } |
1909 | return QSize(int(bufferSize.width), int(bufferSize.height)); |
1910 | } |
1911 | |
1912 | void QVulkanWindowPrivate::beginFrame() |
1913 | { |
1914 | if (!swapChain || framePending) |
1915 | return; |
1916 | |
1917 | Q_Q(QVulkanWindow); |
1918 | if (swapChainImageSize != surfacePixelSize()) { |
1919 | recreateSwapChain(); |
1920 | if (!swapChain) |
1921 | return; |
1922 | } |
1923 | |
1924 | FrameResources &frame(frameRes[currentFrame]); |
1925 | |
1926 | if (!frame.imageAcquired) { |
1927 | // Wait if we are too far ahead, i.e. the thread gets throttled based on the presentation rate |
1928 | // (note that we are using FIFO mode -> vsync) |
1929 | if (frame.fenceWaitable) { |
1930 | devFuncs->vkWaitForFences(dev, 1, &frame.fence, VK_TRUE, UINT64_MAX); |
1931 | devFuncs->vkResetFences(dev, 1, &frame.fence); |
1932 | frame.fenceWaitable = false; |
1933 | } |
1934 | |
1935 | // move on to next swapchain image |
1936 | VkResult err = vkAcquireNextImageKHR(dev, swapChain, UINT64_MAX, |
1937 | frame.imageSem, frame.fence, ¤tImage); |
1938 | if (err == VK_SUCCESS || err == VK_SUBOPTIMAL_KHR) { |
1939 | frame.imageSemWaitable = true; |
1940 | frame.imageAcquired = true; |
1941 | frame.fenceWaitable = true; |
1942 | } else if (err == VK_ERROR_OUT_OF_DATE_KHR) { |
1943 | recreateSwapChain(); |
1944 | q->requestUpdate(); |
1945 | return; |
1946 | } else { |
1947 | if (!checkDeviceLost(err)) |
1948 | qWarning(msg: "QVulkanWindow: Failed to acquire next swapchain image: %d", err); |
1949 | q->requestUpdate(); |
1950 | return; |
1951 | } |
1952 | } |
1953 | |
1954 | // make sure the previous draw for the same image has finished |
1955 | ImageResources &image(imageRes[currentImage]); |
1956 | if (image.cmdFenceWaitable) { |
1957 | devFuncs->vkWaitForFences(dev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX); |
1958 | devFuncs->vkResetFences(dev, 1, &image.cmdFence); |
1959 | image.cmdFenceWaitable = false; |
1960 | } |
1961 | |
1962 | // build new draw command buffer |
1963 | if (image.cmdBuf) { |
1964 | devFuncs->vkFreeCommandBuffers(dev, cmdPool, 1, &image.cmdBuf); |
1965 | image.cmdBuf = nullptr; |
1966 | } |
1967 | |
1968 | VkCommandBufferAllocateInfo cmdBufInfo = { |
1969 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext: nullptr, .commandPool: cmdPool, .level: VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount: 1 }; |
1970 | VkResult err = devFuncs->vkAllocateCommandBuffers(dev, &cmdBufInfo, &image.cmdBuf); |
1971 | if (err != VK_SUCCESS) { |
1972 | if (!checkDeviceLost(err)) |
1973 | qWarning(msg: "QVulkanWindow: Failed to allocate frame command buffer: %d", err); |
1974 | return; |
1975 | } |
1976 | |
1977 | VkCommandBufferBeginInfo cmdBufBeginInfo = { |
1978 | .sType: VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext: nullptr, .flags: 0, .pInheritanceInfo: nullptr }; |
1979 | err = devFuncs->vkBeginCommandBuffer(image.cmdBuf, &cmdBufBeginInfo); |
1980 | if (err != VK_SUCCESS) { |
1981 | if (!checkDeviceLost(err)) |
1982 | qWarning(msg: "QVulkanWindow: Failed to begin frame command buffer: %d", err); |
1983 | return; |
1984 | } |
1985 | |
1986 | if (frameGrabbing) |
1987 | frameGrabTargetImage = QImage(swapChainImageSize, QImage::Format_RGBA8888); // the format is as documented |
1988 | |
1989 | if (renderer) { |
1990 | framePending = true; |
1991 | renderer->startNextFrame(); |
1992 | // done for now - endFrame() will get invoked when frameReady() is called back |
1993 | } else { |
1994 | VkClearColorValue clearColor = { .float32: { 0.0f, 0.0f, 0.0f, 1.0f } }; |
1995 | VkClearDepthStencilValue clearDS = { .depth: 1.0f, .stencil: 0 }; |
1996 | VkClearValue clearValues[3]; |
1997 | memset(s: clearValues, c: 0, n: sizeof(clearValues)); |
1998 | clearValues[0].color = clearValues[2].color = clearColor; |
1999 | clearValues[1].depthStencil = clearDS; |
2000 | |
2001 | VkRenderPassBeginInfo rpBeginInfo; |
2002 | memset(s: &rpBeginInfo, c: 0, n: sizeof(rpBeginInfo)); |
2003 | rpBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; |
2004 | rpBeginInfo.renderPass = defaultRenderPass; |
2005 | rpBeginInfo.framebuffer = image.fb; |
2006 | rpBeginInfo.renderArea.extent.width = swapChainImageSize.width(); |
2007 | rpBeginInfo.renderArea.extent.height = swapChainImageSize.height(); |
2008 | rpBeginInfo.clearValueCount = sampleCount > VK_SAMPLE_COUNT_1_BIT ? 3 : 2; |
2009 | rpBeginInfo.pClearValues = clearValues; |
2010 | devFuncs->vkCmdBeginRenderPass(image.cmdBuf, &rpBeginInfo, VK_SUBPASS_CONTENTS_INLINE); |
2011 | devFuncs->vkCmdEndRenderPass(image.cmdBuf); |
2012 | |
2013 | endFrame(); |
2014 | } |
2015 | } |
2016 | |
2017 | void QVulkanWindowPrivate::endFrame() |
2018 | { |
2019 | Q_Q(QVulkanWindow); |
2020 | |
2021 | FrameResources &frame(frameRes[currentFrame]); |
2022 | ImageResources &image(imageRes[currentImage]); |
2023 | |
2024 | if (gfxQueueFamilyIdx != presQueueFamilyIdx && !frameGrabbing) { |
2025 | // Add the swapchain image release to the command buffer that will be |
2026 | // submitted to the graphics queue. |
2027 | VkImageMemoryBarrier presTrans; |
2028 | memset(s: &presTrans, c: 0, n: sizeof(presTrans)); |
2029 | presTrans.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
2030 | presTrans.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; |
2031 | presTrans.oldLayout = presTrans.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
2032 | presTrans.srcQueueFamilyIndex = gfxQueueFamilyIdx; |
2033 | presTrans.dstQueueFamilyIndex = presQueueFamilyIdx; |
2034 | presTrans.image = image.image; |
2035 | presTrans.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
2036 | presTrans.subresourceRange.levelCount = presTrans.subresourceRange.layerCount = 1; |
2037 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
2038 | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, |
2039 | VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, |
2040 | 0, 0, nullptr, 0, nullptr, |
2041 | 1, &presTrans); |
2042 | } |
2043 | |
2044 | // When grabbing a frame, add a readback at the end and skip presenting. |
2045 | if (frameGrabbing) |
2046 | addReadback(); |
2047 | |
2048 | VkResult err = devFuncs->vkEndCommandBuffer(image.cmdBuf); |
2049 | if (err != VK_SUCCESS) { |
2050 | if (!checkDeviceLost(err)) |
2051 | qWarning(msg: "QVulkanWindow: Failed to end frame command buffer: %d", err); |
2052 | return; |
2053 | } |
2054 | |
2055 | // submit draw calls |
2056 | VkSubmitInfo submitInfo; |
2057 | memset(s: &submitInfo, c: 0, n: sizeof(submitInfo)); |
2058 | submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; |
2059 | submitInfo.commandBufferCount = 1; |
2060 | submitInfo.pCommandBuffers = &image.cmdBuf; |
2061 | if (frame.imageSemWaitable) { |
2062 | submitInfo.waitSemaphoreCount = 1; |
2063 | submitInfo.pWaitSemaphores = &frame.imageSem; |
2064 | } |
2065 | if (!frameGrabbing) { |
2066 | submitInfo.signalSemaphoreCount = 1; |
2067 | submitInfo.pSignalSemaphores = &frame.drawSem; |
2068 | } |
2069 | VkPipelineStageFlags psf = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; |
2070 | submitInfo.pWaitDstStageMask = &psf; |
2071 | |
2072 | Q_ASSERT(!image.cmdFenceWaitable); |
2073 | |
2074 | err = devFuncs->vkQueueSubmit(gfxQueue, 1, &submitInfo, image.cmdFence); |
2075 | if (err == VK_SUCCESS) { |
2076 | frame.imageSemWaitable = false; |
2077 | image.cmdFenceWaitable = true; |
2078 | } else { |
2079 | if (!checkDeviceLost(err)) |
2080 | qWarning(msg: "QVulkanWindow: Failed to submit to graphics queue: %d", err); |
2081 | return; |
2082 | } |
2083 | |
2084 | // block and then bail out when grabbing |
2085 | if (frameGrabbing) { |
2086 | finishBlockingReadback(); |
2087 | frameGrabbing = false; |
2088 | // Leave frame.imageAcquired set to true. |
2089 | // Do not change currentFrame. |
2090 | emit q->frameGrabbed(image: frameGrabTargetImage); |
2091 | return; |
2092 | } |
2093 | |
2094 | if (gfxQueueFamilyIdx != presQueueFamilyIdx) { |
2095 | // Submit the swapchain image acquire to the present queue. |
2096 | submitInfo.pWaitSemaphores = &frame.drawSem; |
2097 | submitInfo.pSignalSemaphores = &frame.presTransSem; |
2098 | submitInfo.pCommandBuffers = &image.presTransCmdBuf; // must be USAGE_SIMULTANEOUS |
2099 | err = devFuncs->vkQueueSubmit(presQueue, 1, &submitInfo, VK_NULL_HANDLE); |
2100 | if (err != VK_SUCCESS) { |
2101 | if (!checkDeviceLost(err)) |
2102 | qWarning(msg: "QVulkanWindow: Failed to submit to present queue: %d", err); |
2103 | return; |
2104 | } |
2105 | } |
2106 | |
2107 | // queue present |
2108 | VkPresentInfoKHR presInfo; |
2109 | memset(s: &presInfo, c: 0, n: sizeof(presInfo)); |
2110 | presInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; |
2111 | presInfo.swapchainCount = 1; |
2112 | presInfo.pSwapchains = &swapChain; |
2113 | presInfo.pImageIndices = ¤tImage; |
2114 | presInfo.waitSemaphoreCount = 1; |
2115 | presInfo.pWaitSemaphores = gfxQueueFamilyIdx == presQueueFamilyIdx ? &frame.drawSem : &frame.presTransSem; |
2116 | |
2117 | // Do platform-specific WM notification. F.ex. essential on Wayland in |
2118 | // order to circumvent driver frame callbacks |
2119 | inst->presentAboutToBeQueued(window: q); |
2120 | |
2121 | err = vkQueuePresentKHR(presQueue, &presInfo); |
2122 | if (err != VK_SUCCESS) { |
2123 | if (err == VK_ERROR_OUT_OF_DATE_KHR) { |
2124 | recreateSwapChain(); |
2125 | q->requestUpdate(); |
2126 | return; |
2127 | } else if (err != VK_SUBOPTIMAL_KHR) { |
2128 | if (!checkDeviceLost(err)) |
2129 | qWarning(msg: "QVulkanWindow: Failed to present: %d", err); |
2130 | return; |
2131 | } |
2132 | } |
2133 | |
2134 | frame.imageAcquired = false; |
2135 | |
2136 | inst->presentQueued(window: q); |
2137 | |
2138 | currentFrame = (currentFrame + 1) % frameLag; |
2139 | } |
2140 | |
2141 | /*! |
2142 | This function must be called exactly once in response to each invocation of |
2143 | the QVulkanWindowRenderer::startNextFrame() implementation. At the time of |
2144 | this call, the main command buffer, exposed via currentCommandBuffer(), |
2145 | must have all necessary rendering commands added to it since this function |
2146 | will trigger submitting the commands and queuing the present command. |
2147 | |
2148 | \note This function must only be called from the gui/main thread, which is |
2149 | where QVulkanWindowRenderer's functions are invoked and where the |
2150 | QVulkanWindow instance lives. |
2151 | |
2152 | \sa QVulkanWindowRenderer::startNextFrame() |
2153 | */ |
2154 | void QVulkanWindow::frameReady() |
2155 | { |
2156 | Q_ASSERT_X(QThread::currentThread() == QCoreApplication::instance()->thread(), |
2157 | "QVulkanWindow", "frameReady() can only be called from the GUI (main) thread"); |
2158 | |
2159 | Q_D(QVulkanWindow); |
2160 | |
2161 | if (!d->framePending) { |
2162 | qWarning(msg: "QVulkanWindow: frameReady() called without a corresponding startNextFrame()"); |
2163 | return; |
2164 | } |
2165 | |
2166 | d->framePending = false; |
2167 | |
2168 | d->endFrame(); |
2169 | } |
2170 | |
2171 | bool QVulkanWindowPrivate::checkDeviceLost(VkResult err) |
2172 | { |
2173 | if (err == VK_ERROR_DEVICE_LOST) { |
2174 | qWarning(msg: "QVulkanWindow: Device lost"); |
2175 | if (renderer) |
2176 | renderer->logicalDeviceLost(); |
2177 | qCDebug(lcGuiVk, "Releasing all resources due to device lost"); |
2178 | releaseSwapChain(); |
2179 | reset(); |
2180 | qCDebug(lcGuiVk, "Restarting"); |
2181 | ensureStarted(); |
2182 | return true; |
2183 | } |
2184 | return false; |
2185 | } |
2186 | |
2187 | void QVulkanWindowPrivate::addReadback() |
2188 | { |
2189 | VkImageCreateInfo imageInfo; |
2190 | memset(s: &imageInfo, c: 0, n: sizeof(imageInfo)); |
2191 | imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; |
2192 | imageInfo.imageType = VK_IMAGE_TYPE_2D; |
2193 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM; |
2194 | imageInfo.extent.width = frameGrabTargetImage.width(); |
2195 | imageInfo.extent.height = frameGrabTargetImage.height(); |
2196 | imageInfo.extent.depth = 1; |
2197 | imageInfo.mipLevels = 1; |
2198 | imageInfo.arrayLayers = 1; |
2199 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; |
2200 | imageInfo.tiling = VK_IMAGE_TILING_LINEAR; |
2201 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT; |
2202 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
2203 | |
2204 | VkResult err = devFuncs->vkCreateImage(dev, &imageInfo, nullptr, &frameGrabImage); |
2205 | if (err != VK_SUCCESS) { |
2206 | qWarning(msg: "QVulkanWindow: Failed to create image for readback: %d", err); |
2207 | return; |
2208 | } |
2209 | |
2210 | VkMemoryRequirements memReq; |
2211 | devFuncs->vkGetImageMemoryRequirements(dev, frameGrabImage, &memReq); |
2212 | |
2213 | VkMemoryAllocateInfo allocInfo = { |
2214 | .sType: VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, |
2215 | .pNext: nullptr, |
2216 | .allocationSize: memReq.size, |
2217 | .memoryTypeIndex: hostVisibleMemIndex |
2218 | }; |
2219 | |
2220 | err = devFuncs->vkAllocateMemory(dev, &allocInfo, nullptr, &frameGrabImageMem); |
2221 | if (err != VK_SUCCESS) { |
2222 | qWarning(msg: "QVulkanWindow: Failed to allocate memory for readback image: %d", err); |
2223 | return; |
2224 | } |
2225 | |
2226 | err = devFuncs->vkBindImageMemory(dev, frameGrabImage, frameGrabImageMem, 0); |
2227 | if (err != VK_SUCCESS) { |
2228 | qWarning(msg: "QVulkanWindow: Failed to bind readback image memory: %d", err); |
2229 | return; |
2230 | } |
2231 | |
2232 | ImageResources &image(imageRes[currentImage]); |
2233 | |
2234 | VkImageMemoryBarrier barrier; |
2235 | memset(s: &barrier, c: 0, n: sizeof(barrier)); |
2236 | barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; |
2237 | barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
2238 | barrier.subresourceRange.levelCount = barrier.subresourceRange.layerCount = 1; |
2239 | |
2240 | barrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; |
2241 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; |
2242 | barrier.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; |
2243 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; |
2244 | barrier.image = image.image; |
2245 | |
2246 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
2247 | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, |
2248 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
2249 | 0, 0, nullptr, 0, nullptr, |
2250 | 1, &barrier); |
2251 | |
2252 | barrier.oldLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; |
2253 | barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
2254 | barrier.srcAccessMask = 0; |
2255 | barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
2256 | barrier.image = frameGrabImage; |
2257 | |
2258 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
2259 | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, |
2260 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
2261 | 0, 0, nullptr, 0, nullptr, |
2262 | 1, &barrier); |
2263 | |
2264 | VkImageCopy copyInfo; |
2265 | memset(s: ©Info, c: 0, n: sizeof(copyInfo)); |
2266 | copyInfo.srcSubresource.aspectMask = copyInfo.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; |
2267 | copyInfo.srcSubresource.layerCount = copyInfo.dstSubresource.layerCount = 1; |
2268 | copyInfo.extent.width = frameGrabTargetImage.width(); |
2269 | copyInfo.extent.height = frameGrabTargetImage.height(); |
2270 | copyInfo.extent.depth = 1; |
2271 | |
2272 | devFuncs->vkCmdCopyImage(image.cmdBuf, image.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, |
2273 | frameGrabImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Info); |
2274 | |
2275 | barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; |
2276 | barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL; |
2277 | barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; |
2278 | barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT; |
2279 | barrier.image = frameGrabImage; |
2280 | |
2281 | devFuncs->vkCmdPipelineBarrier(image.cmdBuf, |
2282 | VK_PIPELINE_STAGE_TRANSFER_BIT, |
2283 | VK_PIPELINE_STAGE_HOST_BIT, |
2284 | 0, 0, nullptr, 0, nullptr, |
2285 | 1, &barrier); |
2286 | } |
2287 | |
2288 | void QVulkanWindowPrivate::finishBlockingReadback() |
2289 | { |
2290 | ImageResources &image(imageRes[currentImage]); |
2291 | |
2292 | // Block until the current frame is done. Normally this wait would only be |
2293 | // done in current + concurrentFrameCount(). |
2294 | devFuncs->vkWaitForFences(dev, 1, &image.cmdFence, VK_TRUE, UINT64_MAX); |
2295 | devFuncs->vkResetFences(dev, 1, &image.cmdFence); |
2296 | // will reuse the same image for the next "real" frame, do not wait then |
2297 | image.cmdFenceWaitable = false; |
2298 | |
2299 | VkImageSubresource subres = { .aspectMask: VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel: 0, .arrayLayer: 0 }; |
2300 | VkSubresourceLayout layout; |
2301 | devFuncs->vkGetImageSubresourceLayout(dev, frameGrabImage, &subres, &layout); |
2302 | |
2303 | uchar *p; |
2304 | VkResult err = devFuncs->vkMapMemory(dev, frameGrabImageMem, layout.offset, layout.size, 0, reinterpret_cast<void **>(&p)); |
2305 | if (err != VK_SUCCESS) { |
2306 | qWarning(msg: "QVulkanWindow: Failed to map readback image memory after transfer: %d", err); |
2307 | return; |
2308 | } |
2309 | |
2310 | for (int y = 0; y < frameGrabTargetImage.height(); ++y) { |
2311 | memcpy(dest: frameGrabTargetImage.scanLine(y), src: p, n: frameGrabTargetImage.width() * 4); |
2312 | p += layout.rowPitch; |
2313 | } |
2314 | |
2315 | devFuncs->vkUnmapMemory(dev, frameGrabImageMem); |
2316 | |
2317 | devFuncs->vkDestroyImage(dev, frameGrabImage, nullptr); |
2318 | frameGrabImage = VK_NULL_HANDLE; |
2319 | devFuncs->vkFreeMemory(dev, frameGrabImageMem, nullptr); |
2320 | frameGrabImageMem = VK_NULL_HANDLE; |
2321 | } |
2322 | |
2323 | /*! |
2324 | Returns the active physical device. |
2325 | |
2326 | \note Calling this function is only valid from the invocation of |
2327 | QVulkanWindowRenderer::preInitResources() up until |
2328 | QVulkanWindowRenderer::releaseResources(). |
2329 | */ |
2330 | VkPhysicalDevice QVulkanWindow::physicalDevice() const |
2331 | { |
2332 | Q_D(const QVulkanWindow); |
2333 | if (d->physDevIndex < d->physDevs.size()) |
2334 | return d->physDevs[d->physDevIndex]; |
2335 | qWarning(msg: "QVulkanWindow: Physical device not available"); |
2336 | return VK_NULL_HANDLE; |
2337 | } |
2338 | |
2339 | /*! |
2340 | Returns a pointer to the properties for the active physical device. |
2341 | |
2342 | \note Calling this function is only valid from the invocation of |
2343 | QVulkanWindowRenderer::preInitResources() up until |
2344 | QVulkanWindowRenderer::releaseResources(). |
2345 | */ |
2346 | const VkPhysicalDeviceProperties *QVulkanWindow::physicalDeviceProperties() const |
2347 | { |
2348 | Q_D(const QVulkanWindow); |
2349 | if (d->physDevIndex < d->physDevProps.size()) |
2350 | return &d->physDevProps[d->physDevIndex]; |
2351 | qWarning(msg: "QVulkanWindow: Physical device properties not available"); |
2352 | return nullptr; |
2353 | } |
2354 | |
2355 | /*! |
2356 | Returns the active logical device. |
2357 | |
2358 | \note Calling this function is only valid from the invocation of |
2359 | QVulkanWindowRenderer::initResources() up until |
2360 | QVulkanWindowRenderer::releaseResources(). |
2361 | */ |
2362 | VkDevice QVulkanWindow::device() const |
2363 | { |
2364 | Q_D(const QVulkanWindow); |
2365 | return d->dev; |
2366 | } |
2367 | |
2368 | /*! |
2369 | Returns the active graphics queue. |
2370 | |
2371 | \note Calling this function is only valid from the invocation of |
2372 | QVulkanWindowRenderer::initResources() up until |
2373 | QVulkanWindowRenderer::releaseResources(). |
2374 | */ |
2375 | VkQueue QVulkanWindow::graphicsQueue() const |
2376 | { |
2377 | Q_D(const QVulkanWindow); |
2378 | return d->gfxQueue; |
2379 | } |
2380 | |
2381 | /*! |
2382 | Returns the family index of the active graphics queue. |
2383 | |
2384 | \note Calling this function is only valid from the invocation of |
2385 | QVulkanWindowRenderer::initResources() up until |
2386 | QVulkanWindowRenderer::releaseResources(). Implementations of |
2387 | QVulkanWindowRenderer::updateQueueCreateInfo() can also call this |
2388 | function. |
2389 | |
2390 | \since 5.15 |
2391 | */ |
2392 | uint32_t QVulkanWindow::graphicsQueueFamilyIndex() const |
2393 | { |
2394 | Q_D(const QVulkanWindow); |
2395 | return d->gfxQueueFamilyIdx; |
2396 | } |
2397 | |
2398 | /*! |
2399 | Returns the active graphics command pool. |
2400 | |
2401 | \note Calling this function is only valid from the invocation of |
2402 | QVulkanWindowRenderer::initResources() up until |
2403 | QVulkanWindowRenderer::releaseResources(). |
2404 | */ |
2405 | VkCommandPool QVulkanWindow::graphicsCommandPool() const |
2406 | { |
2407 | Q_D(const QVulkanWindow); |
2408 | return d->cmdPool; |
2409 | } |
2410 | |
2411 | /*! |
2412 | Returns a host visible memory type index suitable for general use. |
2413 | |
2414 | The returned memory type will be both host visible and coherent. In |
2415 | addition, it will also be cached, if possible. |
2416 | |
2417 | \note Calling this function is only valid from the invocation of |
2418 | QVulkanWindowRenderer::initResources() up until |
2419 | QVulkanWindowRenderer::releaseResources(). |
2420 | */ |
2421 | uint32_t QVulkanWindow::hostVisibleMemoryIndex() const |
2422 | { |
2423 | Q_D(const QVulkanWindow); |
2424 | return d->hostVisibleMemIndex; |
2425 | } |
2426 | |
2427 | /*! |
2428 | Returns a device local memory type index suitable for general use. |
2429 | |
2430 | \note Calling this function is only valid from the invocation of |
2431 | QVulkanWindowRenderer::initResources() up until |
2432 | QVulkanWindowRenderer::releaseResources(). |
2433 | |
2434 | \note It is not guaranteed that this memory type is always suitable. The |
2435 | correct, cross-implementation solution - especially for device local images |
2436 | - is to manually pick a memory type after checking the mask returned from |
2437 | \c{vkGetImageMemoryRequirements}. |
2438 | */ |
2439 | uint32_t QVulkanWindow::deviceLocalMemoryIndex() const |
2440 | { |
2441 | Q_D(const QVulkanWindow); |
2442 | return d->deviceLocalMemIndex; |
2443 | } |
2444 | |
2445 | /*! |
2446 | Returns a typical render pass with one sub-pass. |
2447 | |
2448 | \note Applications are not required to use this render pass. However, they |
2449 | are then responsible for ensuring the current swap chain and depth-stencil |
2450 | images get transitioned from \c{VK_IMAGE_LAYOUT_UNDEFINED} to |
2451 | \c{VK_IMAGE_LAYOUT_PRESENT_SRC_KHR} and |
2452 | \c{VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL} either via the |
2453 | application's custom render pass or by other means. |
2454 | |
2455 | \note Stencil read/write is not enabled in this render pass. |
2456 | |
2457 | \note Calling this function is only valid from the invocation of |
2458 | QVulkanWindowRenderer::initResources() up until |
2459 | QVulkanWindowRenderer::releaseResources(). |
2460 | |
2461 | \sa currentFramebuffer() |
2462 | */ |
2463 | VkRenderPass QVulkanWindow::defaultRenderPass() const |
2464 | { |
2465 | Q_D(const QVulkanWindow); |
2466 | return d->defaultRenderPass; |
2467 | } |
2468 | |
2469 | /*! |
2470 | Returns the color buffer format used by the swapchain. |
2471 | |
2472 | \note Calling this function is only valid from the invocation of |
2473 | QVulkanWindowRenderer::initResources() up until |
2474 | QVulkanWindowRenderer::releaseResources(). |
2475 | |
2476 | \sa setPreferredColorFormats() |
2477 | */ |
2478 | VkFormat QVulkanWindow::colorFormat() const |
2479 | { |
2480 | Q_D(const QVulkanWindow); |
2481 | return d->colorFormat; |
2482 | } |
2483 | |
2484 | /*! |
2485 | Returns the format used by the depth-stencil buffer(s). |
2486 | |
2487 | \note Calling this function is only valid from the invocation of |
2488 | QVulkanWindowRenderer::initResources() up until |
2489 | QVulkanWindowRenderer::releaseResources(). |
2490 | */ |
2491 | VkFormat QVulkanWindow::depthStencilFormat() const |
2492 | { |
2493 | Q_D(const QVulkanWindow); |
2494 | return d->dsFormat; |
2495 | } |
2496 | |
2497 | /*! |
2498 | Returns the image size of the swapchain. |
2499 | |
2500 | This usually matches the size of the window, but may also differ in case |
2501 | \c vkGetPhysicalDeviceSurfaceCapabilitiesKHR reports a fixed size. |
2502 | |
2503 | In addition, it has been observed on some platforms that the |
2504 | Vulkan-reported surface size is different with high DPI scaling active, |
2505 | meaning the QWindow-reported |
2506 | \l{QWindow::}{size()} multiplied with the \l{QWindow::}{devicePixelRatio()} |
2507 | was 1 pixel less or more when compared to the value returned from here, |
2508 | presumably due to differences in rounding. Rendering code should be aware |
2509 | of this, and any related rendering logic must be based in the value returned |
2510 | from here, never on the QWindow-reported size. Regardless of which pixel size |
2511 | is correct in theory, Vulkan rendering must only ever rely on the Vulkan |
2512 | API-reported surface size. Otherwise validation errors may occur, e.g. when |
2513 | setting the viewport, because the application-provided values may become |
2514 | out-of-bounds from Vulkan's perspective. |
2515 | |
2516 | \note Calling this function is only valid from the invocation of |
2517 | QVulkanWindowRenderer::initSwapChainResources() up until |
2518 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2519 | */ |
2520 | QSize QVulkanWindow::swapChainImageSize() const |
2521 | { |
2522 | Q_D(const QVulkanWindow); |
2523 | return d->swapChainImageSize; |
2524 | } |
2525 | |
2526 | /*! |
2527 | Returns The active command buffer for the current swap chain image. |
2528 | Implementations of QVulkanWindowRenderer::startNextFrame() are expected to |
2529 | add commands to this command buffer. |
2530 | |
2531 | \note This function must only be called from within startNextFrame() and, in |
2532 | case of asynchronous command generation, up until the call to frameReady(). |
2533 | */ |
2534 | VkCommandBuffer QVulkanWindow::currentCommandBuffer() const |
2535 | { |
2536 | Q_D(const QVulkanWindow); |
2537 | if (!d->framePending) { |
2538 | qWarning(msg: "QVulkanWindow: Attempted to call currentCommandBuffer() without an active frame"); |
2539 | return VK_NULL_HANDLE; |
2540 | } |
2541 | return d->imageRes[d->currentImage].cmdBuf; |
2542 | } |
2543 | |
2544 | /*! |
2545 | Returns a VkFramebuffer for the current swapchain image using the default |
2546 | render pass. |
2547 | |
2548 | The framebuffer has two attachments (color, depth-stencil) when |
2549 | multisampling is not in use, and three (color resolve, depth-stencil, |
2550 | multisample color) when sampleCountFlagBits() is greater than |
2551 | \c{VK_SAMPLE_COUNT_1_BIT}. Renderers must take this into account, for |
2552 | example when providing clear values. |
2553 | |
2554 | \note Applications are not required to use this framebuffer in case they |
2555 | provide their own render pass instead of using the one returned from |
2556 | defaultRenderPass(). |
2557 | |
2558 | \note This function must only be called from within startNextFrame() and, in |
2559 | case of asynchronous command generation, up until the call to frameReady(). |
2560 | |
2561 | \sa defaultRenderPass() |
2562 | */ |
2563 | VkFramebuffer QVulkanWindow::currentFramebuffer() const |
2564 | { |
2565 | Q_D(const QVulkanWindow); |
2566 | if (!d->framePending) { |
2567 | qWarning(msg: "QVulkanWindow: Attempted to call currentFramebuffer() without an active frame"); |
2568 | return VK_NULL_HANDLE; |
2569 | } |
2570 | return d->imageRes[d->currentImage].fb; |
2571 | } |
2572 | |
2573 | /*! |
2574 | Returns the current frame index in the range [0, concurrentFrameCount() - 1]. |
2575 | |
2576 | Renderer implementations will have to ensure that uniform data and other |
2577 | dynamic resources exist in multiple copies, in order to prevent frame N |
2578 | altering the data used by the still-active frames N - 1, N - 2, ... N - |
2579 | concurrentFrameCount() + 1. |
2580 | |
2581 | To avoid relying on dynamic array sizes, applications can use |
2582 | MAX_CONCURRENT_FRAME_COUNT when declaring arrays. This is guaranteed to be |
2583 | always equal to or greater than the value returned from |
2584 | concurrentFrameCount(). Such arrays can then be indexed by the value |
2585 | returned from this function. |
2586 | |
2587 | \snippet code/src_gui_vulkan_qvulkanwindow.cpp 1 |
2588 | |
2589 | \note This function must only be called from within startNextFrame() and, in |
2590 | case of asynchronous command generation, up until the call to frameReady(). |
2591 | |
2592 | \sa concurrentFrameCount() |
2593 | */ |
2594 | int QVulkanWindow::currentFrame() const |
2595 | { |
2596 | Q_D(const QVulkanWindow); |
2597 | if (!d->framePending) |
2598 | qWarning(msg: "QVulkanWindow: Attempted to call currentFrame() without an active frame"); |
2599 | return d->currentFrame; |
2600 | } |
2601 | |
2602 | /*! |
2603 | \variable QVulkanWindow::MAX_CONCURRENT_FRAME_COUNT |
2604 | |
2605 | \brief A constant value that is always equal to or greater than the maximum value |
2606 | of concurrentFrameCount(). |
2607 | */ |
2608 | |
2609 | /*! |
2610 | Returns the number of frames that can be potentially active at the same time. |
2611 | |
2612 | \note The value is constant for the entire lifetime of the QVulkanWindow. |
2613 | |
2614 | \snippet code/src_gui_vulkan_qvulkanwindow.cpp 2 |
2615 | |
2616 | \sa currentFrame() |
2617 | */ |
2618 | int QVulkanWindow::concurrentFrameCount() const |
2619 | { |
2620 | Q_D(const QVulkanWindow); |
2621 | return d->frameLag; |
2622 | } |
2623 | |
2624 | /*! |
2625 | Returns the number of images in the swap chain. |
2626 | |
2627 | \note Accessing this is necessary when providing a custom render pass and |
2628 | framebuffer. The framebuffer is specific to the current swapchain image and |
2629 | hence the application must provide multiple framebuffers. |
2630 | |
2631 | \note Calling this function is only valid from the invocation of |
2632 | QVulkanWindowRenderer::initSwapChainResources() up until |
2633 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2634 | */ |
2635 | int QVulkanWindow::swapChainImageCount() const |
2636 | { |
2637 | Q_D(const QVulkanWindow); |
2638 | return d->swapChainBufferCount; |
2639 | } |
2640 | |
2641 | /*! |
2642 | Returns the current swap chain image index in the range [0, swapChainImageCount() - 1]. |
2643 | |
2644 | \note This function must only be called from within startNextFrame() and, in |
2645 | case of asynchronous command generation, up until the call to frameReady(). |
2646 | */ |
2647 | int QVulkanWindow::currentSwapChainImageIndex() const |
2648 | { |
2649 | Q_D(const QVulkanWindow); |
2650 | if (!d->framePending) |
2651 | qWarning(msg: "QVulkanWindow: Attempted to call currentSwapChainImageIndex() without an active frame"); |
2652 | return d->currentImage; |
2653 | } |
2654 | |
2655 | /*! |
2656 | Returns the specified swap chain image. |
2657 | |
2658 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
2659 | |
2660 | \note Calling this function is only valid from the invocation of |
2661 | QVulkanWindowRenderer::initSwapChainResources() up until |
2662 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2663 | */ |
2664 | VkImage QVulkanWindow::swapChainImage(int idx) const |
2665 | { |
2666 | Q_D(const QVulkanWindow); |
2667 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].image : VK_NULL_HANDLE; |
2668 | } |
2669 | |
2670 | /*! |
2671 | Returns the specified swap chain image view. |
2672 | |
2673 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
2674 | |
2675 | \note Calling this function is only valid from the invocation of |
2676 | QVulkanWindowRenderer::initSwapChainResources() up until |
2677 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2678 | */ |
2679 | VkImageView QVulkanWindow::swapChainImageView(int idx) const |
2680 | { |
2681 | Q_D(const QVulkanWindow); |
2682 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].imageView : VK_NULL_HANDLE; |
2683 | } |
2684 | |
2685 | /*! |
2686 | Returns the depth-stencil image. |
2687 | |
2688 | \note Calling this function is only valid from the invocation of |
2689 | QVulkanWindowRenderer::initSwapChainResources() up until |
2690 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2691 | */ |
2692 | VkImage QVulkanWindow::depthStencilImage() const |
2693 | { |
2694 | Q_D(const QVulkanWindow); |
2695 | return d->dsImage; |
2696 | } |
2697 | |
2698 | /*! |
2699 | Returns the depth-stencil image view. |
2700 | |
2701 | \note Calling this function is only valid from the invocation of |
2702 | QVulkanWindowRenderer::initSwapChainResources() up until |
2703 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2704 | */ |
2705 | VkImageView QVulkanWindow::depthStencilImageView() const |
2706 | { |
2707 | Q_D(const QVulkanWindow); |
2708 | return d->dsView; |
2709 | } |
2710 | |
2711 | /*! |
2712 | Returns the current sample count as a \c VkSampleCountFlagBits value. |
2713 | |
2714 | When targeting the default render target, the \c rasterizationSamples field |
2715 | of \c VkPipelineMultisampleStateCreateInfo must be set to this value. |
2716 | |
2717 | \sa setSampleCount(), supportedSampleCounts() |
2718 | */ |
2719 | VkSampleCountFlagBits QVulkanWindow::sampleCountFlagBits() const |
2720 | { |
2721 | Q_D(const QVulkanWindow); |
2722 | return d->sampleCount; |
2723 | } |
2724 | |
2725 | /*! |
2726 | Returns the specified multisample color image, or \c{VK_NULL_HANDLE} if |
2727 | multisampling is not in use. |
2728 | |
2729 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
2730 | |
2731 | \note Calling this function is only valid from the invocation of |
2732 | QVulkanWindowRenderer::initSwapChainResources() up until |
2733 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2734 | */ |
2735 | VkImage QVulkanWindow::msaaColorImage(int idx) const |
2736 | { |
2737 | Q_D(const QVulkanWindow); |
2738 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].msaaImage : VK_NULL_HANDLE; |
2739 | } |
2740 | |
2741 | /*! |
2742 | Returns the specified multisample color image view, or \c{VK_NULL_HANDLE} if |
2743 | multisampling is not in use. |
2744 | |
2745 | \a idx must be in the range [0, swapChainImageCount() - 1]. |
2746 | |
2747 | \note Calling this function is only valid from the invocation of |
2748 | QVulkanWindowRenderer::initSwapChainResources() up until |
2749 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2750 | */ |
2751 | VkImageView QVulkanWindow::msaaColorImageView(int idx) const |
2752 | { |
2753 | Q_D(const QVulkanWindow); |
2754 | return idx >= 0 && idx < d->swapChainBufferCount ? d->imageRes[idx].msaaImageView : VK_NULL_HANDLE; |
2755 | } |
2756 | |
2757 | /*! |
2758 | Returns true if the swapchain supports usage as transfer source, meaning |
2759 | grab() is functional. |
2760 | |
2761 | \note Calling this function is only valid from the invocation of |
2762 | QVulkanWindowRenderer::initSwapChainResources() up until |
2763 | QVulkanWindowRenderer::releaseSwapChainResources(). |
2764 | */ |
2765 | bool QVulkanWindow::supportsGrab() const |
2766 | { |
2767 | Q_D(const QVulkanWindow); |
2768 | return d->swapChainSupportsReadBack; |
2769 | } |
2770 | |
2771 | /*! |
2772 | \fn void QVulkanWindow::frameGrabbed(const QImage &image) |
2773 | |
2774 | This signal is emitted when the \a image is ready. |
2775 | */ |
2776 | |
2777 | /*! |
2778 | Builds and renders the next frame without presenting it, then performs a |
2779 | blocking readback of the image content. |
2780 | |
2781 | Returns the image if the renderer's |
2782 | \l{QVulkanWindowRenderer::startNextFrame()}{startNextFrame()} |
2783 | implementation calls back frameReady() directly. Otherwise, returns an |
2784 | incomplete image, that has the correct size but not the content yet. The |
2785 | content will be delivered via the frameGrabbed() signal in the latter case. |
2786 | |
2787 | The returned QImage always has a format of QImage::Format_RGBA8888. If the |
2788 | colorFormat() is \c VK_FORMAT_B8G8R8A8_UNORM, the red and blue channels are |
2789 | swapped automatically since this format is commonly used as the default |
2790 | choice for swapchain color buffers. With any other color buffer format, |
2791 | there is no conversion performed by this function. |
2792 | |
2793 | \note This function should not be called when a frame is in progress |
2794 | (that is, frameReady() has not yet been called back by the application). |
2795 | |
2796 | \note This function is potentially expensive due to the additional, |
2797 | blocking readback. |
2798 | |
2799 | \note This function currently requires that the swapchain supports usage as |
2800 | a transfer source (\c{VK_IMAGE_USAGE_TRANSFER_SRC_BIT}), and will fail otherwise. |
2801 | */ |
2802 | QImage QVulkanWindow::grab() |
2803 | { |
2804 | Q_D(QVulkanWindow); |
2805 | if (!d->swapChain) { |
2806 | qWarning(msg: "QVulkanWindow: Attempted to call grab() without a swapchain"); |
2807 | return QImage(); |
2808 | } |
2809 | if (d->framePending) { |
2810 | qWarning(msg: "QVulkanWindow: Attempted to call grab() while a frame is still pending"); |
2811 | return QImage(); |
2812 | } |
2813 | if (!d->swapChainSupportsReadBack) { |
2814 | qWarning(msg: "QVulkanWindow: Attempted to call grab() with a swapchain that does not support usage as transfer source"); |
2815 | return QImage(); |
2816 | } |
2817 | |
2818 | d->frameGrabbing = true; |
2819 | d->beginFrame(); |
2820 | |
2821 | if (d->colorFormat == VK_FORMAT_B8G8R8A8_UNORM) |
2822 | d->frameGrabTargetImage = std::move(d->frameGrabTargetImage).rgbSwapped(); |
2823 | |
2824 | return d->frameGrabTargetImage; |
2825 | } |
2826 | |
2827 | /*! |
2828 | Returns a QMatrix4x4 that can be used to correct for coordinate |
2829 | system differences between OpenGL and Vulkan. |
2830 | |
2831 | By pre-multiplying the projection matrix with this matrix, applications can |
2832 | continue to assume that Y is pointing upwards, and can set minDepth and |
2833 | maxDepth in the viewport to 0 and 1, respectively, without having to do any |
2834 | further corrections to the vertex Z positions. Geometry from OpenGL |
2835 | applications can then be used as-is, assuming a rasterization state matching |
2836 | the OpenGL culling and front face settings. |
2837 | */ |
2838 | QMatrix4x4 QVulkanWindow::clipCorrectionMatrix() |
2839 | { |
2840 | Q_D(QVulkanWindow); |
2841 | if (d->m_clipCorrect.isIdentity()) { |
2842 | // NB the ctor takes row-major |
2843 | d->m_clipCorrect = QMatrix4x4(1.0f, 0.0f, 0.0f, 0.0f, |
2844 | 0.0f, -1.0f, 0.0f, 0.0f, |
2845 | 0.0f, 0.0f, 0.5f, 0.5f, |
2846 | 0.0f, 0.0f, 0.0f, 1.0f); |
2847 | } |
2848 | return d->m_clipCorrect; |
2849 | } |
2850 | |
2851 | QT_END_NAMESPACE |
2852 | |
2853 | #include "moc_qvulkanwindow.cpp" |
2854 |
Definitions
- QVulkanWindow
- ~QVulkanWindow
- ~QVulkanWindowPrivate
- setFlags
- flags
- availablePhysicalDevices
- setPhysicalDeviceIndex
- supportedDeviceExtensions
- setDeviceExtensions
- setPreferredColorFormats
- q_vk_sampleCounts
- supportedSampleCounts
- setSampleCount
- init
- reset
- createDefaultRenderPass
- recreateSwapChain
- chooseTransientImageMemType
- aligned
- createTransientImage
- releaseSwapChain
- exposeEvent
- ensureStarted
- resizeEvent
- event
- setQueueCreateInfoModifier
- setEnabledFeaturesModifier
- setEnabledFeaturesModifier
- isValid
- createRenderer
- ~QVulkanWindowRenderer
- preInitResources
- initResources
- initSwapChainResources
- releaseSwapChainResources
- releaseResources
- physicalDeviceLost
- logicalDeviceLost
- surfacePixelSize
- beginFrame
- endFrame
- frameReady
- checkDeviceLost
- addReadback
- finishBlockingReadback
- physicalDevice
- physicalDeviceProperties
- device
- graphicsQueue
- graphicsQueueFamilyIndex
- graphicsCommandPool
- hostVisibleMemoryIndex
- deviceLocalMemoryIndex
- defaultRenderPass
- colorFormat
- depthStencilFormat
- swapChainImageSize
- currentCommandBuffer
- currentFramebuffer
- currentFrame
- concurrentFrameCount
- swapChainImageCount
- currentSwapChainImageIndex
- swapChainImage
- swapChainImageView
- depthStencilImage
- depthStencilImageView
- sampleCountFlagBits
- msaaColorImage
- msaaColorImageView
- supportsGrab
- grab
Learn Advanced QML with KDAB
Find out more