| 1 | // Copyright (C) 2016 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "bitstreams_p.h" |
| 5 | #include "huffman_p.h" |
| 6 | |
| 7 | #include <QtCore/qbytearray.h> |
| 8 | |
| 9 | #include <limits> |
| 10 | |
| 11 | QT_BEGIN_NAMESPACE |
| 12 | |
| 13 | static_assert(std::numeric_limits<uchar>::digits == 8, "octets expected" ); |
| 14 | |
| 15 | namespace HPack |
| 16 | { |
| 17 | |
| 18 | BitOStream::BitOStream(std::vector<uchar> &b) |
| 19 | : buffer(b), |
| 20 | // All data 'packed' before: |
| 21 | bitsSet(8 * quint64(b.size())) |
| 22 | { |
| 23 | } |
| 24 | |
| 25 | void BitOStream::writeBits(uchar bits, quint8 bitLength) |
| 26 | { |
| 27 | Q_ASSERT(bitLength <= 8); |
| 28 | |
| 29 | quint8 count = bitsSet % 8; // bits used in buffer.back(), but 0 means 8 |
| 30 | bits <<= 8 - bitLength; // at top of byte, lower bits clear |
| 31 | if (count) { // we have a part-used byte; fill it some more: |
| 32 | buffer.back() |= bits >> count; |
| 33 | count = 8 - count; |
| 34 | } // count bits have been consumed (and 0 now means 0) |
| 35 | if (bitLength > count) |
| 36 | buffer.push_back(x: bits << count); |
| 37 | |
| 38 | bitsSet += bitLength; |
| 39 | } |
| 40 | |
| 41 | void BitOStream::write(quint32 src) |
| 42 | { |
| 43 | const quint8 prefixLen = 8 - bitsSet % 8; |
| 44 | const quint32 fullPrefix = (1 << prefixLen) - 1; |
| 45 | |
| 46 | // https://http2.github.io/http2-spec/compression.html#low-level.representation, |
| 47 | // 5.1 |
| 48 | if (src < fullPrefix) { |
| 49 | writeBits(bits: uchar(src), bitLength: prefixLen); |
| 50 | } else { |
| 51 | writeBits(bits: uchar(fullPrefix), bitLength: prefixLen); |
| 52 | // We're on the byte boundary now, |
| 53 | // so we can just 'push_back'. |
| 54 | Q_ASSERT(!(bitsSet % 8)); |
| 55 | src -= fullPrefix; |
| 56 | while (src >= 128) { |
| 57 | buffer.push_back(x: uchar(src % 128 + 128)); |
| 58 | src /= 128; |
| 59 | bitsSet += 8; |
| 60 | } |
| 61 | buffer.push_back(x: src); |
| 62 | bitsSet += 8; |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | void BitOStream::write(QByteArrayView src, bool compressed) |
| 67 | { |
| 68 | quint32 byteLen = src.size(); |
| 69 | if (compressed && byteLen) { |
| 70 | const auto bitLen = huffman_encoded_bit_length(inputData: src); |
| 71 | Q_ASSERT(bitLen && std::numeric_limits<quint32>::max() >= (bitLen + 7) / 8); |
| 72 | byteLen = (bitLen + 7) / 8; |
| 73 | writeBits(bits: uchar(1), bitLength: 1); // bit set - compressed |
| 74 | } else { |
| 75 | writeBits(bits: uchar(0), bitLength: 1); // no compression. |
| 76 | } |
| 77 | |
| 78 | write(src: byteLen); |
| 79 | |
| 80 | if (compressed) { |
| 81 | huffman_encode_string(inputData: src, outputStream&: *this); |
| 82 | } else { |
| 83 | bitsSet += quint64(src.size()) * 8; |
| 84 | buffer.insert(position: buffer.end(), first: src.begin(), last: src.end()); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | quint64 BitOStream::bitLength() const |
| 89 | { |
| 90 | return bitsSet; |
| 91 | } |
| 92 | |
| 93 | quint64 BitOStream::byteLength() const |
| 94 | { |
| 95 | return buffer.size(); |
| 96 | } |
| 97 | |
| 98 | const uchar *BitOStream::begin() const |
| 99 | { |
| 100 | return &buffer[0]; |
| 101 | } |
| 102 | |
| 103 | const uchar *BitOStream::end() const |
| 104 | { |
| 105 | return &buffer[0] + buffer.size(); |
| 106 | } |
| 107 | |
| 108 | void BitOStream::clear() |
| 109 | { |
| 110 | buffer.clear(); |
| 111 | bitsSet = 0; |
| 112 | } |
| 113 | |
| 114 | BitIStream::BitIStream() |
| 115 | : first(), |
| 116 | last(), |
| 117 | offset(), |
| 118 | streamError(Error::NoError) |
| 119 | { |
| 120 | } |
| 121 | |
| 122 | BitIStream::BitIStream(const uchar *begin, const uchar *end) |
| 123 | : first(begin), |
| 124 | last(end), |
| 125 | offset(), |
| 126 | streamError(Error::NoError) |
| 127 | { |
| 128 | } |
| 129 | |
| 130 | quint64 BitIStream::bitLength() const |
| 131 | { |
| 132 | return quint64(last - first) * 8; |
| 133 | } |
| 134 | |
| 135 | bool BitIStream::hasMoreBits() const |
| 136 | { |
| 137 | return offset < bitLength(); |
| 138 | } |
| 139 | |
| 140 | bool BitIStream::skipBits(quint64 nBits) |
| 141 | { |
| 142 | if (nBits > bitLength() || bitLength() - nBits < offset) |
| 143 | return false; |
| 144 | |
| 145 | offset += nBits; |
| 146 | return true; |
| 147 | } |
| 148 | |
| 149 | bool BitIStream::rewindOffset(quint64 nBits) |
| 150 | { |
| 151 | if (nBits > offset) |
| 152 | return false; |
| 153 | |
| 154 | offset -= nBits; |
| 155 | return true; |
| 156 | } |
| 157 | |
| 158 | bool BitIStream::read(quint32 *dstPtr) |
| 159 | { |
| 160 | Q_ASSERT(dstPtr); |
| 161 | quint32 &dst = *dstPtr; |
| 162 | |
| 163 | // 5.1 Integer Representation |
| 164 | // |
| 165 | // Integers are used to represent name indexes, header field indexes, or string lengths. |
| 166 | // An integer representation can start anywhere within an octet. |
| 167 | // To allow for optimized processing, an integer representation always finishes at the end of an octet. |
| 168 | // An integer is represented in two parts: a prefix that fills the current octet and an optional |
| 169 | // list of octets that are used if the integer value does not fit within the prefix. |
| 170 | // The number of bits of the prefix (called N) is a parameter of the integer representation. |
| 171 | // If the integer value is small enough, i.e., strictly less than 2N-1, it is compressed within the N-bit prefix. |
| 172 | // ... |
| 173 | // The prefix size, N, is always between 1 and 8 bits. An integer |
| 174 | // starting at an octet boundary will have an 8-bit prefix. |
| 175 | |
| 176 | // Technically, such integers can be of any size, but as we do not have arbitrary-long integers, |
| 177 | // everything that does not fit into 'dst' we consider as an error (after all, try to allocate a string |
| 178 | // of such size and ... hehehe - send it as a part of a header! |
| 179 | |
| 180 | // This function updates the offset _only_ if the read was successful. |
| 181 | if (offset >= bitLength()) { |
| 182 | setError(Error::NotEnoughData); |
| 183 | return false; |
| 184 | } |
| 185 | |
| 186 | setError(Error::NoError); |
| 187 | |
| 188 | const quint32 prefixLen = 8 - offset % 8; |
| 189 | const quint32 fullPrefix = (1 << prefixLen) - 1; |
| 190 | |
| 191 | const uchar prefix = uchar(first[offset / 8] & fullPrefix); |
| 192 | if (prefix < fullPrefix) { |
| 193 | // The number fitted into the prefix bits. |
| 194 | dst = prefix; |
| 195 | offset += prefixLen; |
| 196 | return true; |
| 197 | } |
| 198 | |
| 199 | quint32 newOffset = offset + prefixLen; |
| 200 | // We have a list of bytes representing an integer ... |
| 201 | quint64 val = prefix; |
| 202 | quint32 octetPower = 0; |
| 203 | |
| 204 | while (true) { |
| 205 | if (newOffset >= bitLength()) { |
| 206 | setError(Error::NotEnoughData); |
| 207 | return false; |
| 208 | } |
| 209 | |
| 210 | const uchar octet = first[newOffset / 8]; |
| 211 | |
| 212 | if (octetPower == 28 && octet > 15) { |
| 213 | qCritical(msg: "integer is too big" ); |
| 214 | setError(Error::InvalidInteger); |
| 215 | return false; |
| 216 | } |
| 217 | |
| 218 | val += quint32(octet & 0x7f) << octetPower; |
| 219 | newOffset += 8; |
| 220 | |
| 221 | if (!(octet & 0x80)) { |
| 222 | // The most significant bit of each octet is used |
| 223 | // as a continuation flag: its value is set to 1 |
| 224 | // except for the last octet in the list. |
| 225 | break; |
| 226 | } |
| 227 | |
| 228 | octetPower += 7; |
| 229 | } |
| 230 | |
| 231 | dst = val; |
| 232 | offset = newOffset; |
| 233 | Q_ASSERT(!(offset % 8)); |
| 234 | |
| 235 | return true; |
| 236 | } |
| 237 | |
| 238 | bool BitIStream::read(QByteArray *dstPtr) |
| 239 | { |
| 240 | Q_ASSERT(dstPtr); |
| 241 | QByteArray &dst = *dstPtr; |
| 242 | //5.2 String Literal Representation |
| 243 | // |
| 244 | // Header field names and header field values can be represented as string literals. |
| 245 | // A string literal is compressed as a sequence of octets, either by directly encoding |
| 246 | // the string literal's octets or by using a Huffman code. |
| 247 | |
| 248 | // We update the offset _only_ if the read was successful. |
| 249 | |
| 250 | const quint64 oldOffset = offset; |
| 251 | uchar compressed = 0; |
| 252 | if (peekBits(from: offset, length: 1, dstPtr: &compressed) != 1 || !skipBits(nBits: 1)) { |
| 253 | setError(Error::NotEnoughData); |
| 254 | return false; |
| 255 | } |
| 256 | |
| 257 | setError(Error::NoError); |
| 258 | |
| 259 | quint32 len = 0; |
| 260 | if (read(dstPtr: &len)) { |
| 261 | Q_ASSERT(!(offset % 8)); |
| 262 | if (len <= (bitLength() - offset) / 8) { // We have enough data to read a string ... |
| 263 | if (!compressed) { |
| 264 | // Now good news, integer always ends on a byte boundary. |
| 265 | // We can read 'len' bytes without any bit magic. |
| 266 | const char *src = reinterpret_cast<const char *>(first + offset / 8); |
| 267 | dst = QByteArray(src, len); |
| 268 | offset += quint64(len) * 8; |
| 269 | return true; |
| 270 | } |
| 271 | |
| 272 | BitIStream slice(first + offset / 8, first + offset / 8 + len); |
| 273 | if (huffman_decode_string(inputStream&: slice, outputBuffer: &dst)) { |
| 274 | offset += quint64(len) * 8; |
| 275 | return true; |
| 276 | } |
| 277 | |
| 278 | setError(Error::CompressionError); |
| 279 | } else { |
| 280 | setError(Error::NotEnoughData); |
| 281 | } |
| 282 | } // else the exact reason was set by read(quint32). |
| 283 | |
| 284 | offset = oldOffset; |
| 285 | return false; |
| 286 | } |
| 287 | |
| 288 | BitIStream::Error BitIStream::error() const |
| 289 | { |
| 290 | return streamError; |
| 291 | } |
| 292 | |
| 293 | void BitIStream::setError(Error newState) |
| 294 | { |
| 295 | streamError = newState; |
| 296 | } |
| 297 | |
| 298 | } // namespace HPack |
| 299 | |
| 300 | QT_END_NAMESPACE |
| 301 | |