1 | // Copyright (C) 2016 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "bitstreams_p.h" |
5 | #include "huffman_p.h" |
6 | |
7 | #include <QtCore/qbytearray.h> |
8 | |
9 | #include <limits> |
10 | |
11 | QT_BEGIN_NAMESPACE |
12 | |
13 | static_assert(std::numeric_limits<uchar>::digits == 8, "octets expected" ); |
14 | |
15 | namespace HPack |
16 | { |
17 | |
18 | BitOStream::BitOStream(std::vector<uchar> &b) |
19 | : buffer(b), |
20 | // All data 'packed' before: |
21 | bitsSet(8 * quint64(b.size())) |
22 | { |
23 | } |
24 | |
25 | void BitOStream::writeBits(uchar bits, quint8 bitLength) |
26 | { |
27 | Q_ASSERT(bitLength <= 8); |
28 | |
29 | quint8 count = bitsSet % 8; // bits used in buffer.back(), but 0 means 8 |
30 | bits <<= 8 - bitLength; // at top of byte, lower bits clear |
31 | if (count) { // we have a part-used byte; fill it some more: |
32 | buffer.back() |= bits >> count; |
33 | count = 8 - count; |
34 | } // count bits have been consumed (and 0 now means 0) |
35 | if (bitLength > count) |
36 | buffer.push_back(x: bits << count); |
37 | |
38 | bitsSet += bitLength; |
39 | } |
40 | |
41 | void BitOStream::write(quint32 src) |
42 | { |
43 | const quint8 prefixLen = 8 - bitsSet % 8; |
44 | const quint32 fullPrefix = (1 << prefixLen) - 1; |
45 | |
46 | // https://http2.github.io/http2-spec/compression.html#low-level.representation, |
47 | // 5.1 |
48 | if (src < fullPrefix) { |
49 | writeBits(bits: uchar(src), bitLength: prefixLen); |
50 | } else { |
51 | writeBits(bits: uchar(fullPrefix), bitLength: prefixLen); |
52 | // We're on the byte boundary now, |
53 | // so we can just 'push_back'. |
54 | Q_ASSERT(!(bitsSet % 8)); |
55 | src -= fullPrefix; |
56 | while (src >= 128) { |
57 | buffer.push_back(x: uchar(src % 128 + 128)); |
58 | src /= 128; |
59 | bitsSet += 8; |
60 | } |
61 | buffer.push_back(x: src); |
62 | bitsSet += 8; |
63 | } |
64 | } |
65 | |
66 | void BitOStream::write(QByteArrayView src, bool compressed) |
67 | { |
68 | quint32 byteLen = src.size(); |
69 | if (compressed && byteLen) { |
70 | const auto bitLen = huffman_encoded_bit_length(inputData: src); |
71 | Q_ASSERT(bitLen && std::numeric_limits<quint32>::max() >= (bitLen + 7) / 8); |
72 | byteLen = (bitLen + 7) / 8; |
73 | writeBits(bits: uchar(1), bitLength: 1); // bit set - compressed |
74 | } else { |
75 | writeBits(bits: uchar(0), bitLength: 1); // no compression. |
76 | } |
77 | |
78 | write(src: byteLen); |
79 | |
80 | if (compressed) { |
81 | huffman_encode_string(inputData: src, outputStream&: *this); |
82 | } else { |
83 | bitsSet += quint64(src.size()) * 8; |
84 | buffer.insert(position: buffer.end(), first: src.begin(), last: src.end()); |
85 | } |
86 | } |
87 | |
88 | quint64 BitOStream::bitLength() const |
89 | { |
90 | return bitsSet; |
91 | } |
92 | |
93 | quint64 BitOStream::byteLength() const |
94 | { |
95 | return buffer.size(); |
96 | } |
97 | |
98 | const uchar *BitOStream::begin() const |
99 | { |
100 | return &buffer[0]; |
101 | } |
102 | |
103 | const uchar *BitOStream::end() const |
104 | { |
105 | return &buffer[0] + buffer.size(); |
106 | } |
107 | |
108 | void BitOStream::clear() |
109 | { |
110 | buffer.clear(); |
111 | bitsSet = 0; |
112 | } |
113 | |
114 | BitIStream::BitIStream() |
115 | : first(), |
116 | last(), |
117 | offset(), |
118 | streamError(Error::NoError) |
119 | { |
120 | } |
121 | |
122 | BitIStream::BitIStream(const uchar *begin, const uchar *end) |
123 | : first(begin), |
124 | last(end), |
125 | offset(), |
126 | streamError(Error::NoError) |
127 | { |
128 | } |
129 | |
130 | quint64 BitIStream::bitLength() const |
131 | { |
132 | return quint64(last - first) * 8; |
133 | } |
134 | |
135 | bool BitIStream::hasMoreBits() const |
136 | { |
137 | return offset < bitLength(); |
138 | } |
139 | |
140 | bool BitIStream::skipBits(quint64 nBits) |
141 | { |
142 | if (nBits > bitLength() || bitLength() - nBits < offset) |
143 | return false; |
144 | |
145 | offset += nBits; |
146 | return true; |
147 | } |
148 | |
149 | bool BitIStream::rewindOffset(quint64 nBits) |
150 | { |
151 | if (nBits > offset) |
152 | return false; |
153 | |
154 | offset -= nBits; |
155 | return true; |
156 | } |
157 | |
158 | bool BitIStream::read(quint32 *dstPtr) |
159 | { |
160 | Q_ASSERT(dstPtr); |
161 | quint32 &dst = *dstPtr; |
162 | |
163 | // 5.1 Integer Representation |
164 | // |
165 | // Integers are used to represent name indexes, header field indexes, or string lengths. |
166 | // An integer representation can start anywhere within an octet. |
167 | // To allow for optimized processing, an integer representation always finishes at the end of an octet. |
168 | // An integer is represented in two parts: a prefix that fills the current octet and an optional |
169 | // list of octets that are used if the integer value does not fit within the prefix. |
170 | // The number of bits of the prefix (called N) is a parameter of the integer representation. |
171 | // If the integer value is small enough, i.e., strictly less than 2N-1, it is compressed within the N-bit prefix. |
172 | // ... |
173 | // The prefix size, N, is always between 1 and 8 bits. An integer |
174 | // starting at an octet boundary will have an 8-bit prefix. |
175 | |
176 | // Technically, such integers can be of any size, but as we do not have arbitrary-long integers, |
177 | // everything that does not fit into 'dst' we consider as an error (after all, try to allocate a string |
178 | // of such size and ... hehehe - send it as a part of a header! |
179 | |
180 | // This function updates the offset _only_ if the read was successful. |
181 | if (offset >= bitLength()) { |
182 | setError(Error::NotEnoughData); |
183 | return false; |
184 | } |
185 | |
186 | setError(Error::NoError); |
187 | |
188 | const quint32 prefixLen = 8 - offset % 8; |
189 | const quint32 fullPrefix = (1 << prefixLen) - 1; |
190 | |
191 | const uchar prefix = uchar(first[offset / 8] & fullPrefix); |
192 | if (prefix < fullPrefix) { |
193 | // The number fitted into the prefix bits. |
194 | dst = prefix; |
195 | offset += prefixLen; |
196 | return true; |
197 | } |
198 | |
199 | quint32 newOffset = offset + prefixLen; |
200 | // We have a list of bytes representing an integer ... |
201 | quint64 val = prefix; |
202 | quint32 octetPower = 0; |
203 | |
204 | while (true) { |
205 | if (newOffset >= bitLength()) { |
206 | setError(Error::NotEnoughData); |
207 | return false; |
208 | } |
209 | |
210 | const uchar octet = first[newOffset / 8]; |
211 | |
212 | if (octetPower == 28 && octet > 15) { |
213 | qCritical(msg: "integer is too big" ); |
214 | setError(Error::InvalidInteger); |
215 | return false; |
216 | } |
217 | |
218 | val += quint32(octet & 0x7f) << octetPower; |
219 | newOffset += 8; |
220 | |
221 | if (!(octet & 0x80)) { |
222 | // The most significant bit of each octet is used |
223 | // as a continuation flag: its value is set to 1 |
224 | // except for the last octet in the list. |
225 | break; |
226 | } |
227 | |
228 | octetPower += 7; |
229 | } |
230 | |
231 | dst = val; |
232 | offset = newOffset; |
233 | Q_ASSERT(!(offset % 8)); |
234 | |
235 | return true; |
236 | } |
237 | |
238 | bool BitIStream::read(QByteArray *dstPtr) |
239 | { |
240 | Q_ASSERT(dstPtr); |
241 | QByteArray &dst = *dstPtr; |
242 | //5.2 String Literal Representation |
243 | // |
244 | // Header field names and header field values can be represented as string literals. |
245 | // A string literal is compressed as a sequence of octets, either by directly encoding |
246 | // the string literal's octets or by using a Huffman code. |
247 | |
248 | // We update the offset _only_ if the read was successful. |
249 | |
250 | const quint64 oldOffset = offset; |
251 | uchar compressed = 0; |
252 | if (peekBits(from: offset, length: 1, dstPtr: &compressed) != 1 || !skipBits(nBits: 1)) { |
253 | setError(Error::NotEnoughData); |
254 | return false; |
255 | } |
256 | |
257 | setError(Error::NoError); |
258 | |
259 | quint32 len = 0; |
260 | if (read(dstPtr: &len)) { |
261 | Q_ASSERT(!(offset % 8)); |
262 | if (len <= (bitLength() - offset) / 8) { // We have enough data to read a string ... |
263 | if (!compressed) { |
264 | // Now good news, integer always ends on a byte boundary. |
265 | // We can read 'len' bytes without any bit magic. |
266 | const char *src = reinterpret_cast<const char *>(first + offset / 8); |
267 | dst = QByteArray(src, len); |
268 | offset += quint64(len) * 8; |
269 | return true; |
270 | } |
271 | |
272 | BitIStream slice(first + offset / 8, first + offset / 8 + len); |
273 | if (huffman_decode_string(inputStream&: slice, outputBuffer: &dst)) { |
274 | offset += quint64(len) * 8; |
275 | return true; |
276 | } |
277 | |
278 | setError(Error::CompressionError); |
279 | } else { |
280 | setError(Error::NotEnoughData); |
281 | } |
282 | } // else the exact reason was set by read(quint32). |
283 | |
284 | offset = oldOffset; |
285 | return false; |
286 | } |
287 | |
288 | BitIStream::Error BitIStream::error() const |
289 | { |
290 | return streamError; |
291 | } |
292 | |
293 | void BitIStream::setError(Error newState) |
294 | { |
295 | streamError = newState; |
296 | } |
297 | |
298 | } // namespace HPack |
299 | |
300 | QT_END_NAMESPACE |
301 | |