1 | // Copyright (C) 2018 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
3 | |
4 | #include "qsslconfiguration.h" |
5 | #include "qsslsocket_p.h" |
6 | #include "qudpsocket.h" |
7 | #include "qsslcipher.h" |
8 | #include "qdtls_p.h" |
9 | #include "qssl_p.h" |
10 | #include "qdtls.h" |
11 | |
12 | #include "qglobal.h" |
13 | |
14 | /*! |
15 | \class QDtlsClientVerifier |
16 | \brief This class implements server-side DTLS cookie generation and verification. |
17 | \since 5.12 |
18 | |
19 | \ingroup network |
20 | \ingroup ssl |
21 | \inmodule QtNetwork |
22 | |
23 | The QDtlsClientVerifier class implements server-side DTLS cookie generation |
24 | and verification. Datagram security protocols are highly susceptible to a |
25 | variety of Denial-of-Service attacks. According to \l {RFC 6347, section 4.2.1}, |
26 | these are two of the more common types of attack: |
27 | |
28 | \list |
29 | \li An attacker transmits a series of handshake initiation requests, causing |
30 | a server to allocate excessive resources and potentially perform expensive |
31 | cryptographic operations. |
32 | \li An attacker transmits a series of handshake initiation requests with |
33 | a forged source of the victim, making the server act as an amplifier. |
34 | Normally, the server would reply to the victim machine with a Certificate message, |
35 | which can be quite large, thus flooding the victim machine with datagrams. |
36 | \endlist |
37 | |
38 | As a countermeasure to these attacks, \l {RFC 6347, section 4.2.1} |
39 | proposes a stateless cookie technique that a server may deploy: |
40 | |
41 | \list |
42 | \li In response to the initial ClientHello message, the server sends a HelloVerifyRequest, |
43 | which contains a cookie. This cookie is a cryptographic hash and is generated using the |
44 | client's address, port number, and the server's secret (which is a cryptographically strong |
45 | pseudo-random sequence of bytes). |
46 | \li A reachable DTLS client is expected to reply with a new ClientHello message |
47 | containing this cookie. |
48 | \li When the server receives the ClientHello message with a cookie, it |
49 | generates a new cookie as described above. This new cookie is compared to the |
50 | one found in the ClientHello message. |
51 | \li In the cookies are equal, the client is considered to be real, and the |
52 | server can continue with a TLS handshake procedure. |
53 | \endlist |
54 | |
55 | \note A DTLS server is not required to use DTLS cookies. |
56 | |
57 | QDtlsClientVerifier is designed to work in pair with QUdpSocket, as shown in |
58 | the following code-excerpt: |
59 | |
60 | \snippet code/src_network_ssl_qdtlscookie.cpp 0 |
61 | |
62 | QDtlsClientVerifier does not impose any restrictions on how the application uses |
63 | QUdpSocket. For example, it is possible to have a server with a single QUdpSocket |
64 | in state QAbstractSocket::BoundState, handling multiple DTLS clients |
65 | simultaneously: |
66 | |
67 | \list |
68 | \li Testing if new clients are real DTLS-capable clients. |
69 | \li Completing TLS handshakes with the verified clients (see QDtls). |
70 | \li Decrypting datagrams coming from the connected clients (see QDtls). |
71 | \li Sending encrypted datagrams to the connected clients (see QDtls). |
72 | \endlist |
73 | |
74 | This implies that QDtlsClientVerifier does not read directly from a socket, |
75 | instead it expects the application to read an incoming datagram, extract the |
76 | sender's address, and port, and then pass this data to verifyClient(). |
77 | To send a HelloVerifyRequest message, verifyClient() can write to the QUdpSocket. |
78 | |
79 | \note QDtlsClientVerifier does not take ownership of the QUdpSocket object. |
80 | |
81 | By default QDtlsClientVerifier obtains its secret from a cryptographically |
82 | strong pseudorandom number generator. |
83 | |
84 | \note The default secret is shared by all objects of the classes QDtlsClientVerifier |
85 | and QDtls. Since this can impose security risks, RFC 6347 recommends to change |
86 | the server's secret frequently. Please see \l {RFC 6347, section 4.2.1} |
87 | for hints about possible server implementations. Cookie generator parameters |
88 | can be set using the class QDtlsClientVerifier::GeneratorParameters and |
89 | setCookieGeneratorParameters(): |
90 | |
91 | \snippet code/src_network_ssl_qdtlscookie.cpp 1 |
92 | |
93 | The \l{secureudpserver}{DTLS server} example illustrates how to use |
94 | QDtlsClientVerifier in a server application. |
95 | |
96 | \sa QUdpSocket, QAbstractSocket::BoundState, QDtls, verifyClient(), |
97 | GeneratorParameters, setCookieGeneratorParameters(), cookieGeneratorParameters(), |
98 | QDtls::setCookieGeneratorParameters(), |
99 | QDtls::cookieGeneratorParameters(), |
100 | QCryptographicHash::Algorithm, |
101 | QDtlsError, dtlsError(), dtlsErrorString() |
102 | */ |
103 | |
104 | /*! |
105 | \class QDtlsClientVerifier::GeneratorParameters |
106 | \brief This class defines parameters for DTLS cookie generator. |
107 | \since 5.12 |
108 | |
109 | \ingroup network |
110 | \ingroup ssl |
111 | \inmodule QtNetwork |
112 | |
113 | An object of this class provides the parameters that QDtlsClientVerifier |
114 | will use to generate DTLS cookies. They include a cryptographic hash |
115 | algorithm and a secret. |
116 | |
117 | \note An empty secret is considered to be invalid by |
118 | QDtlsClientVerifier::setCookieGeneratorParameters(). |
119 | |
120 | \sa QDtlsClientVerifier::setCookieGeneratorParameters(), |
121 | QDtlsClientVerifier::cookieGeneratorParameters(), |
122 | QDtls::setCookieGeneratorParameters(), |
123 | QDtls::cookieGeneratorParameters(), |
124 | QCryptographicHash::Algorithm |
125 | */ |
126 | |
127 | /*! |
128 | \enum QDtlsError |
129 | \brief Describes errors that can be found by QDtls and QDtlsClientVerifier. |
130 | \relates QDtls |
131 | \since 5.12 |
132 | |
133 | \ingroup network |
134 | \ingroup ssl |
135 | \inmodule QtNetwork |
136 | |
137 | This enum describes general and TLS-specific errors that can be encountered |
138 | by objects of the classes QDtlsClientVerifier and QDtls. |
139 | |
140 | \value NoError No error occurred, the last operation was successful. |
141 | \value InvalidInputParameters Input parameters provided by a caller were |
142 | invalid. |
143 | \value InvalidOperation An operation was attempted in a state that did not |
144 | permit it. |
145 | \value UnderlyingSocketError QUdpSocket::writeDatagram() failed, QUdpSocket::error() |
146 | and QUdpSocket::errorString() can provide more specific information. |
147 | \value RemoteClosedConnectionError TLS shutdown alert message was received. |
148 | \value PeerVerificationError Peer's identity could not be verified during the |
149 | TLS handshake. |
150 | \value TlsInitializationError An error occurred while initializing an underlying |
151 | TLS backend. |
152 | \value TlsFatalError A fatal error occurred during TLS handshake, other |
153 | than peer verification error or TLS initialization error. |
154 | \value TlsNonFatalError A failure to encrypt or decrypt a datagram, non-fatal, |
155 | meaning QDtls can continue working after this error. |
156 | */ |
157 | |
158 | /*! |
159 | \class QDtls |
160 | \brief This class provides encryption for UDP sockets. |
161 | \since 5.12 |
162 | |
163 | \ingroup network |
164 | \ingroup ssl |
165 | \inmodule QtNetwork |
166 | |
167 | The QDtls class can be used to establish a secure connection with a network |
168 | peer using User Datagram Protocol (UDP). DTLS connection over essentially |
169 | connectionless UDP means that two peers first have to successfully complete |
170 | a TLS handshake by calling doHandshake(). After the handshake has completed, |
171 | encrypted datagrams can be sent to the peer using writeDatagramEncrypted(). |
172 | Encrypted datagrams coming from the peer can be decrypted by decryptDatagram(). |
173 | |
174 | QDtls is designed to work with QUdpSocket. Since QUdpSocket can receive |
175 | datagrams coming from different peers, an application must implement |
176 | demultiplexing, forwarding datagrams coming from different peers to their |
177 | corresponding instances of QDtls. An association between a network peer |
178 | and its QDtls object can be established using the peer's address and port |
179 | number. Before starting a handshake, the application must set the peer's |
180 | address and port number using setPeer(). |
181 | |
182 | QDtls does not read datagrams from QUdpSocket, this is expected to be done by |
183 | the application, for example, in a slot attached to the QUdpSocket::readyRead() |
184 | signal. Then, these datagrams must be processed by QDtls. |
185 | |
186 | \note QDtls does \e not take ownership of the QUdpSocket object. |
187 | |
188 | Normally, several datagrams are to be received and sent by both peers during |
189 | the handshake phase. Upon reading datagrams, server and client must pass these |
190 | datagrams to doHandshake() until some error is found or handshakeState() |
191 | returns HandshakeComplete: |
192 | |
193 | \snippet code/src_network_ssl_qdtls.cpp 0 |
194 | |
195 | For a server, the first call to doHandshake() requires a non-empty datagram |
196 | containing a ClientHello message. If the server also deploys QDtlsClientVerifier, |
197 | the first ClientHello message is expected to be the one verified by QDtlsClientVerifier. |
198 | |
199 | In case the peer's identity cannot be validated during the handshake, the application |
200 | must inspect errors returned by peerVerificationErrors() and then either |
201 | ignore errors by calling ignoreVerificationErrors() or abort the handshake |
202 | by calling abortHandshake(). If errors were ignored, the handshake can be |
203 | resumed by calling resumeHandshake(). |
204 | |
205 | After the handshake has been completed, datagrams can be sent to and received |
206 | from the network peer securely: |
207 | |
208 | \snippet code/src_network_ssl_qdtls.cpp 2 |
209 | |
210 | A DTLS connection may be closed using shutdown(). |
211 | |
212 | \snippet code/src_network_ssl_qdtls.cpp 3 |
213 | |
214 | \warning It's recommended to call shutdown() before destroying the client's QDtls |
215 | object if you are planning to re-use the same port number to connect to the |
216 | server later. Otherwise, the server may drop incoming ClientHello messages, |
217 | see \l {RFC 6347, section 4.2.8} |
218 | for more details and implementation hints. |
219 | |
220 | If the server does not use QDtlsClientVerifier, it \e must configure its |
221 | QDtls objects to disable the cookie verification procedure: |
222 | |
223 | \snippet code/src_network_ssl_qdtls.cpp 4 |
224 | |
225 | A server that uses cookie verification with non-default generator parameters |
226 | \e must set the same parameters for its QDtls object before starting the handshake. |
227 | |
228 | \note The DTLS protocol leaves Path Maximum Transmission Unit (PMTU) discovery |
229 | to the application. The application may provide QDtls with the MTU using |
230 | setMtuHint(). This hint affects only the handshake phase, since only handshake |
231 | messages can be fragmented and reassembled by the DTLS. All other messages sent |
232 | by the application must fit into a single datagram. |
233 | \note DTLS-specific headers add some overhead to application data further |
234 | reducing the possible message size. |
235 | \warning A server configured to reply with HelloVerifyRequest will drop |
236 | all fragmented ClientHello messages, never starting a handshake. |
237 | |
238 | The \l{secureudpserver}{DTLS server} and \l{secureudpclient}{DTLS client} |
239 | examples illustrate how to use QDtls in applications. |
240 | |
241 | \sa QUdpSocket, QDtlsClientVerifier, HandshakeState, QDtlsError, QSslConfiguration |
242 | */ |
243 | |
244 | /*! |
245 | \typedef QDtls::GeneratorParameters |
246 | */ |
247 | |
248 | /*! |
249 | \fn void QDtls::handshakeTimeout() |
250 | |
251 | Packet loss can result in timeouts during the handshake phase. In this case |
252 | QDtls emits a handshakeTimeout() signal. Call handleTimeout() to retransmit |
253 | the handshake messages: |
254 | |
255 | \snippet code/src_network_ssl_qdtls.cpp 1 |
256 | |
257 | \sa handleTimeout() |
258 | */ |
259 | |
260 | /*! |
261 | \fn void QDtls::pskRequired(QSslPreSharedKeyAuthenticator *authenticator) |
262 | |
263 | QDtls emits this signal when it negotiates a PSK ciphersuite, and therefore |
264 | a PSK authentication is then required. |
265 | |
266 | When using PSK, the client must send to the server a valid identity and a |
267 | valid pre shared key, in order for the TLS handshake to continue. |
268 | Applications can provide this information in a slot connected to this |
269 | signal, by filling in the passed \a authenticator object according to their |
270 | needs. |
271 | |
272 | \note Ignoring this signal, or failing to provide the required credentials, |
273 | will cause the handshake to fail, and therefore the connection to be aborted. |
274 | |
275 | \note The \a authenticator object is owned by QDtls and must not be deleted |
276 | by the application. |
277 | |
278 | \sa QSslPreSharedKeyAuthenticator |
279 | */ |
280 | |
281 | /*! |
282 | \enum QDtls::HandshakeState |
283 | \brief Describes the current state of DTLS handshake. |
284 | \since 5.12 |
285 | |
286 | \ingroup network |
287 | \ingroup ssl |
288 | \inmodule QtNetwork |
289 | |
290 | This enum describes the current state of DTLS handshake for a QDtls |
291 | connection. |
292 | |
293 | \value HandshakeNotStarted Nothing done yet. |
294 | \value HandshakeInProgress Handshake was initiated and no errors were found so far. |
295 | \value PeerVerificationFailed The identity of the peer can't be established. |
296 | \value HandshakeComplete Handshake completed successfully and encrypted connection |
297 | was established. |
298 | |
299 | \sa QDtls::doHandshake(), QDtls::handshakeState() |
300 | */ |
301 | |
302 | |
303 | QT_BEGIN_NAMESPACE |
304 | |
305 | static QString msgUnsupportedMulticastAddress() |
306 | { |
307 | return QDtls::tr(s: "Multicast and broadcast addresses are not supported" ); |
308 | } |
309 | |
310 | /*! |
311 | Default constructs GeneratorParameters object with QCryptographicHash::Sha1 |
312 | as its algorithm and an empty secret. |
313 | |
314 | \sa QDtlsClientVerifier::setCookieGeneratorParameters(), |
315 | QDtlsClientVerifier::cookieGeneratorParameters(), |
316 | QDtls::setCookieGeneratorParameters(), |
317 | QDtls::cookieGeneratorParameters() |
318 | */ |
319 | QDtlsClientVerifier::GeneratorParameters::GeneratorParameters() |
320 | { |
321 | } |
322 | |
323 | /*! |
324 | Constructs GeneratorParameters object from \a algorithm and \a secret. |
325 | |
326 | \sa QDtlsClientVerifier::setCookieGeneratorParameters(), |
327 | QDtlsClientVerifier::cookieGeneratorParameters(), |
328 | QDtls::setCookieGeneratorParameters(), |
329 | QDtls::cookieGeneratorParameters() |
330 | */ |
331 | QDtlsClientVerifier::GeneratorParameters::GeneratorParameters(QCryptographicHash::Algorithm algorithm, const QByteArray &secret) |
332 | : hash(algorithm), secret(secret) |
333 | { |
334 | } |
335 | |
336 | QDtlsClientVerifierPrivate::QDtlsClientVerifierPrivate() |
337 | { |
338 | const auto *tlsBackend = QSslSocketPrivate::tlsBackendInUse(); |
339 | if (!tlsBackend) { |
340 | qCWarning(lcSsl, "No TLS backend is available, cannot verify DTLS client" ); |
341 | return; |
342 | } |
343 | backend.reset(p: tlsBackend->createDtlsCookieVerifier()); |
344 | if (!backend.get()) |
345 | qCWarning(lcSsl) << "The backend" << tlsBackend->backendName() << "does not support DTLS cookies" ; |
346 | } |
347 | |
348 | QDtlsClientVerifierPrivate::~QDtlsClientVerifierPrivate() = default; |
349 | |
350 | /*! |
351 | Constructs a QDtlsClientVerifier object, \a parent is passed to QObject's |
352 | constructor. |
353 | */ |
354 | QDtlsClientVerifier::QDtlsClientVerifier(QObject *parent) |
355 | : QObject(*new QDtlsClientVerifierPrivate, parent) |
356 | { |
357 | Q_D(QDtlsClientVerifier); |
358 | |
359 | if (auto *backend = d->backend.get()) { |
360 | // The default configuration suffices: verifier never does a full |
361 | // handshake and upon verifying a cookie in a client hello message, |
362 | // it reports success. |
363 | auto conf = QSslConfiguration::defaultDtlsConfiguration(); |
364 | conf.setPeerVerifyMode(QSslSocket::VerifyNone); |
365 | backend->setConfiguration(conf); |
366 | } |
367 | } |
368 | |
369 | /*! |
370 | Destroys the QDtlsClientVerifier object. |
371 | */ |
372 | QDtlsClientVerifier::~QDtlsClientVerifier() |
373 | { |
374 | } |
375 | |
376 | /*! |
377 | Sets the secret and the cryptographic hash algorithm from \a params. This |
378 | QDtlsClientVerifier will use these to generate cookies. If the new secret |
379 | has size zero, this function returns \c false and does not change the |
380 | cookie generator parameters. |
381 | |
382 | \note The secret is supposed to be a cryptographically secure sequence of bytes. |
383 | |
384 | \sa QDtlsClientVerifier::GeneratorParameters, cookieGeneratorParameters(), |
385 | QCryptographicHash::Algorithm |
386 | */ |
387 | bool QDtlsClientVerifier::setCookieGeneratorParameters(const GeneratorParameters ¶ms) |
388 | { |
389 | Q_D(QDtlsClientVerifier); |
390 | if (auto *backend = d->backend.get()) |
391 | return backend->setCookieGeneratorParameters(params); |
392 | |
393 | return false; |
394 | } |
395 | |
396 | /*! |
397 | Returns the current secret and hash algorithm used to generate cookies. |
398 | The default hash algorithm is QCryptographicHash::Sha256 if Qt was configured |
399 | to support it, QCryptographicHash::Sha1 otherwise. The default secret is |
400 | obtained from the backend-specific cryptographically strong pseudorandom |
401 | number generator. |
402 | |
403 | \sa QCryptographicHash::Algorithm, QDtlsClientVerifier::GeneratorParameters, |
404 | setCookieGeneratorParameters() |
405 | */ |
406 | QDtlsClientVerifier::GeneratorParameters QDtlsClientVerifier::cookieGeneratorParameters() const |
407 | { |
408 | Q_D(const QDtlsClientVerifier); |
409 | |
410 | if (const auto *backend = d->backend.get()) |
411 | return backend->cookieGeneratorParameters(); |
412 | |
413 | return {}; |
414 | } |
415 | |
416 | /*! |
417 | \a socket must be a valid pointer, \a dgram must be a non-empty |
418 | datagram, \a address cannot be null, broadcast, or multicast. |
419 | \a port is the remote peer's port. This function returns \c true |
420 | if \a dgram contains a ClientHello message with a valid cookie. |
421 | If no matching cookie is found, verifyClient() will send a |
422 | HelloVerifyRequest message using \a socket and return \c false. |
423 | |
424 | The following snippet shows how a server application may check for errors: |
425 | |
426 | \snippet code/src_network_ssl_qdtlscookie.cpp 2 |
427 | |
428 | \sa QHostAddress::isNull(), QHostAddress::isBroadcast(), QHostAddress::isMulticast(), |
429 | setCookieGeneratorParameters(), cookieGeneratorParameters() |
430 | */ |
431 | bool QDtlsClientVerifier::verifyClient(QUdpSocket *socket, const QByteArray &dgram, |
432 | const QHostAddress &address, quint16 port) |
433 | { |
434 | Q_D(QDtlsClientVerifier); |
435 | |
436 | auto *backend = d->backend.get(); |
437 | if (!backend) |
438 | return false; |
439 | |
440 | if (!socket || address.isNull() || !dgram.size()) { |
441 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, |
442 | description: tr(s: "A valid UDP socket, non-empty datagram, and valid address/port were expected" )); |
443 | return false; |
444 | } |
445 | |
446 | if (address.isBroadcast() || address.isMulticast()) { |
447 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, |
448 | description: msgUnsupportedMulticastAddress()); |
449 | return false; |
450 | } |
451 | |
452 | return backend->verifyClient(socket, dgram, address, port); |
453 | } |
454 | |
455 | /*! |
456 | Convenience function. Returns the last ClientHello message that was successfully |
457 | verified, or an empty QByteArray if no verification has completed. |
458 | |
459 | \sa verifyClient() |
460 | */ |
461 | QByteArray QDtlsClientVerifier::verifiedHello() const |
462 | { |
463 | Q_D(const QDtlsClientVerifier); |
464 | |
465 | if (const auto *backend = d->backend.get()) |
466 | return backend->verifiedHello(); |
467 | |
468 | return {}; |
469 | } |
470 | |
471 | /*! |
472 | Returns the last error that occurred or QDtlsError::NoError. |
473 | |
474 | \sa QDtlsError, dtlsErrorString() |
475 | */ |
476 | QDtlsError QDtlsClientVerifier::dtlsError() const |
477 | { |
478 | Q_D(const QDtlsClientVerifier); |
479 | |
480 | if (const auto *backend = d->backend.get()) |
481 | return backend->error(); |
482 | |
483 | return QDtlsError::TlsInitializationError; |
484 | } |
485 | |
486 | /*! |
487 | Returns a textual description of the last error, or an empty string. |
488 | |
489 | \sa dtlsError() |
490 | */ |
491 | QString QDtlsClientVerifier::dtlsErrorString() const |
492 | { |
493 | Q_D(const QDtlsClientVerifier); |
494 | |
495 | if (const auto *backend = d->backend.get()) |
496 | return backend->errorString(); |
497 | |
498 | return QStringLiteral("No TLS backend is available, no client verification" ); |
499 | } |
500 | |
501 | QDtlsPrivate::QDtlsPrivate() = default; |
502 | QDtlsPrivate::~QDtlsPrivate() = default; |
503 | |
504 | /*! |
505 | Creates a QDtls object, \a parent is passed to the QObject constructor. |
506 | \a mode is QSslSocket::SslServerMode for a server-side DTLS connection or |
507 | QSslSocket::SslClientMode for a client. |
508 | |
509 | \sa sslMode(), QSslSocket::SslMode |
510 | */ |
511 | QDtls::QDtls(QSslSocket::SslMode mode, QObject *parent) |
512 | : QObject(*new QDtlsPrivate, parent) |
513 | { |
514 | Q_D(QDtls); |
515 | const auto *tlsBackend = QSslSocketPrivate::tlsBackendInUse(); |
516 | if (!tlsBackend) { |
517 | qCWarning(lcSsl, "No TLS backend found, QDtls is unsupported" ); |
518 | return; |
519 | } |
520 | d->backend.reset(p: tlsBackend->createDtlsCryptograph(qObject: this, mode)); |
521 | if (!d->backend.get()) { |
522 | qCWarning(lcSsl) << "TLS backend" << tlsBackend->backendName() |
523 | << "does not support the protocol DTLS" ; |
524 | } |
525 | setDtlsConfiguration(QSslConfiguration::defaultDtlsConfiguration()); |
526 | } |
527 | |
528 | /*! |
529 | Destroys the QDtls object. |
530 | */ |
531 | QDtls::~QDtls() |
532 | { |
533 | } |
534 | |
535 | /*! |
536 | Sets the peer's address, \a port, and host name and returns \c true |
537 | if successful. \a address must not be null, multicast, or broadcast. |
538 | \a verificationName is the host name used for the certificate validation. |
539 | |
540 | \sa peerAddress(), peerPort(), peerVerificationName() |
541 | */ |
542 | bool QDtls::setPeer(const QHostAddress &address, quint16 port, |
543 | const QString &verificationName) |
544 | { |
545 | Q_D(QDtls); |
546 | |
547 | auto *backend = d->backend.get(); |
548 | if (!backend) |
549 | return false; |
550 | |
551 | if (backend->state() != HandshakeNotStarted) { |
552 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
553 | description: tr(s: "Cannot set peer after handshake started" )); |
554 | return false; |
555 | } |
556 | |
557 | if (address.isNull()) { |
558 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, |
559 | description: tr(s: "Invalid address" )); |
560 | return false; |
561 | } |
562 | |
563 | if (address.isBroadcast() || address.isMulticast()) { |
564 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, |
565 | description: msgUnsupportedMulticastAddress()); |
566 | return false; |
567 | } |
568 | |
569 | backend->clearDtlsError(); |
570 | backend->setPeer(addr: address, port, name: verificationName); |
571 | |
572 | return true; |
573 | } |
574 | |
575 | /*! |
576 | Sets the host \a name that will be used for the certificate validation |
577 | and returns \c true if successful. |
578 | |
579 | \note This function must be called before the handshake starts. |
580 | |
581 | \sa peerVerificationName(), setPeer() |
582 | */ |
583 | bool QDtls::setPeerVerificationName(const QString &name) |
584 | { |
585 | Q_D(QDtls); |
586 | |
587 | auto *backend = d->backend.get(); |
588 | if (!backend) |
589 | return false; |
590 | |
591 | if (backend->state() != HandshakeNotStarted) { |
592 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
593 | description: tr(s: "Cannot set verification name after handshake started" )); |
594 | return false; |
595 | } |
596 | |
597 | backend->clearDtlsError(); |
598 | backend->setPeerVerificationName(name); |
599 | |
600 | return true; |
601 | } |
602 | |
603 | /*! |
604 | Returns the peer's address, set by setPeer(), or QHostAddress::Null. |
605 | |
606 | \sa setPeer() |
607 | */ |
608 | QHostAddress QDtls::peerAddress() const |
609 | { |
610 | Q_D(const QDtls); |
611 | |
612 | if (const auto *backend = d->backend.get()) |
613 | return backend->peerAddress(); |
614 | |
615 | return {}; |
616 | } |
617 | |
618 | /*! |
619 | Returns the peer's port number, set by setPeer(), or 0. |
620 | |
621 | \sa setPeer() |
622 | */ |
623 | quint16 QDtls::peerPort() const |
624 | { |
625 | Q_D(const QDtls); |
626 | |
627 | if (const auto *backend = d->backend.get()) |
628 | return backend->peerPort(); |
629 | |
630 | return 0; |
631 | } |
632 | |
633 | /*! |
634 | Returns the host name set by setPeer() or setPeerVerificationName(). |
635 | The default value is an empty string. |
636 | |
637 | \sa setPeerVerificationName(), setPeer() |
638 | */ |
639 | QString QDtls::peerVerificationName() const |
640 | { |
641 | Q_D(const QDtls); |
642 | |
643 | if (const auto *backend = d->backend.get()) |
644 | return backend->peerVerificationName(); |
645 | |
646 | return {}; |
647 | } |
648 | |
649 | /*! |
650 | Returns QSslSocket::SslServerMode for a server-side connection and |
651 | QSslSocket::SslClientMode for a client. |
652 | |
653 | \sa QDtls(), QSslSocket::SslMode |
654 | */ |
655 | QSslSocket::SslMode QDtls::sslMode() const |
656 | { |
657 | Q_D(const QDtls); |
658 | |
659 | if (const auto *backend = d->backend.get()) |
660 | return backend->cryptographMode(); |
661 | |
662 | return QSslSocket::UnencryptedMode; |
663 | } |
664 | |
665 | /*! |
666 | \a mtuHint is the maximum transmission unit (MTU), either discovered or guessed |
667 | by the application. The application is not required to set this value. |
668 | |
669 | \sa mtuHint(), QAbstractSocket::PathMtuSocketOption |
670 | */ |
671 | void QDtls::setMtuHint(quint16 mtuHint) |
672 | { |
673 | Q_D(QDtls); |
674 | |
675 | if (auto *backend = d->backend.get()) |
676 | backend->setDtlsMtuHint(mtuHint); |
677 | } |
678 | |
679 | /*! |
680 | Returns the value previously set by setMtuHint(). The default value is 0. |
681 | |
682 | \sa setMtuHint() |
683 | */ |
684 | quint16 QDtls::mtuHint() const |
685 | { |
686 | Q_D(const QDtls); |
687 | |
688 | if (const auto *backend = d->backend.get()) |
689 | return backend->dtlsMtuHint(); |
690 | |
691 | return 0; |
692 | } |
693 | |
694 | /*! |
695 | Sets the cryptographic hash algorithm and the secret from \a params. |
696 | This function is only needed for a server-side QDtls connection. |
697 | Returns \c true if successful. |
698 | |
699 | \note This function must be called before the handshake starts. |
700 | |
701 | \sa cookieGeneratorParameters(), doHandshake(), QDtlsClientVerifier, |
702 | QDtlsClientVerifier::cookieGeneratorParameters() |
703 | */ |
704 | bool QDtls::setCookieGeneratorParameters(const GeneratorParameters ¶ms) |
705 | { |
706 | Q_D(QDtls); |
707 | |
708 | if (auto *backend = d->backend.get()) |
709 | backend->setCookieGeneratorParameters(params); |
710 | |
711 | return false; |
712 | } |
713 | |
714 | /*! |
715 | Returns the current hash algorithm and secret, either default ones or previously |
716 | set by a call to setCookieGeneratorParameters(). |
717 | |
718 | The default hash algorithm is QCryptographicHash::Sha256 if Qt was |
719 | configured to support it, QCryptographicHash::Sha1 otherwise. The default |
720 | secret is obtained from the backend-specific cryptographically strong |
721 | pseudorandom number generator. |
722 | |
723 | \sa QDtlsClientVerifier, cookieGeneratorParameters() |
724 | */ |
725 | QDtls::GeneratorParameters QDtls::cookieGeneratorParameters() const |
726 | { |
727 | Q_D(const QDtls); |
728 | |
729 | if (const auto *backend = d->backend.get()) |
730 | return backend->cookieGeneratorParameters(); |
731 | |
732 | return {}; |
733 | } |
734 | |
735 | /*! |
736 | Sets the connection's TLS configuration from \a configuration |
737 | and returns \c true if successful. |
738 | |
739 | \note This function must be called before the handshake starts. |
740 | |
741 | \sa dtlsConfiguration(), doHandshake() |
742 | */ |
743 | bool QDtls::setDtlsConfiguration(const QSslConfiguration &configuration) |
744 | { |
745 | Q_D(QDtls); |
746 | |
747 | auto *backend = d->backend.get(); |
748 | if (!backend) |
749 | return false; |
750 | |
751 | if (backend->state() != HandshakeNotStarted) { |
752 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
753 | description: tr(s: "Cannot set configuration after handshake started" )); |
754 | return false; |
755 | } |
756 | |
757 | backend->setConfiguration(configuration); |
758 | return true; |
759 | } |
760 | |
761 | /*! |
762 | Returns either the default DTLS configuration or the configuration set by an |
763 | earlier call to setDtlsConfiguration(). |
764 | |
765 | \sa setDtlsConfiguration(), QSslConfiguration::defaultDtlsConfiguration() |
766 | */ |
767 | QSslConfiguration QDtls::dtlsConfiguration() const |
768 | { |
769 | Q_D(const QDtls); |
770 | if (const auto *backend = d->backend.get()) |
771 | return backend->configuration(); |
772 | |
773 | return {}; |
774 | } |
775 | |
776 | /*! |
777 | Returns the current handshake state for this QDtls. |
778 | |
779 | \sa doHandshake(), QDtls::HandshakeState |
780 | */ |
781 | QDtls::HandshakeState QDtls::handshakeState()const |
782 | { |
783 | Q_D(const QDtls); |
784 | |
785 | if (const auto *backend = d->backend.get()) |
786 | return backend->state(); |
787 | |
788 | return QDtls::HandshakeNotStarted; |
789 | } |
790 | |
791 | /*! |
792 | Starts or continues a DTLS handshake. \a socket must be a valid pointer. |
793 | When starting a server-side DTLS handshake, \a dgram must contain the initial |
794 | ClientHello message read from QUdpSocket. This function returns \c true if |
795 | no error was found. Handshake state can be tested using handshakeState(). |
796 | \c false return means some error occurred, use dtlsError() for more |
797 | detailed information. |
798 | |
799 | \note If the identity of the peer can't be established, the error is set to |
800 | QDtlsError::PeerVerificationError. If you want to ignore verification errors |
801 | and continue connecting, you must call ignoreVerificationErrors() and then |
802 | resumeHandshake(). If the errors cannot be ignored, you must call |
803 | abortHandshake(). |
804 | |
805 | \snippet code/src_network_ssl_qdtls.cpp 5 |
806 | |
807 | \sa handshakeState(), dtlsError(), ignoreVerificationErrors(), resumeHandshake(), |
808 | abortHandshake() |
809 | */ |
810 | bool QDtls::doHandshake(QUdpSocket *socket, const QByteArray &dgram) |
811 | { |
812 | Q_D(QDtls); |
813 | |
814 | auto *backend = d->backend.get(); |
815 | if (!backend) |
816 | return false; |
817 | |
818 | if (backend->state() == HandshakeNotStarted) |
819 | return startHandshake(socket, dgram); |
820 | else if (backend->state() == HandshakeInProgress) |
821 | return continueHandshake(socket, dgram); |
822 | |
823 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
824 | description: tr(s: "Cannot start/continue handshake, invalid handshake state" )); |
825 | return false; |
826 | } |
827 | |
828 | /*! |
829 | \internal |
830 | */ |
831 | bool QDtls::startHandshake(QUdpSocket *socket, const QByteArray &datagram) |
832 | { |
833 | Q_D(QDtls); |
834 | |
835 | auto *backend = d->backend.get(); |
836 | if (!backend) |
837 | return false; |
838 | |
839 | if (!socket) { |
840 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, description: tr(s: "Invalid (nullptr) socket" )); |
841 | return false; |
842 | } |
843 | |
844 | if (backend->peerAddress().isNull()) { |
845 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
846 | description: tr(s: "To start a handshake you must set peer's address and port first" )); |
847 | return false; |
848 | } |
849 | |
850 | if (sslMode() == QSslSocket::SslServerMode && !datagram.size()) { |
851 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, |
852 | description: tr(s: "To start a handshake, DTLS server requires non-empty datagram (client hello)" )); |
853 | return false; |
854 | } |
855 | |
856 | if (backend->state() != HandshakeNotStarted) { |
857 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
858 | description: tr(s: "Cannot start handshake, already done/in progress" )); |
859 | return false; |
860 | } |
861 | |
862 | return backend->startHandshake(socket, dgram: datagram); |
863 | } |
864 | |
865 | /*! |
866 | If a timeout occurs during the handshake, the handshakeTimeout() signal |
867 | is emitted. The application must call handleTimeout() to retransmit handshake |
868 | messages; handleTimeout() returns \c true if a timeout has occurred, false |
869 | otherwise. \a socket must be a valid pointer. |
870 | |
871 | \sa handshakeTimeout() |
872 | */ |
873 | bool QDtls::handleTimeout(QUdpSocket *socket) |
874 | { |
875 | Q_D(QDtls); |
876 | |
877 | auto *backend = d->backend.get(); |
878 | if (!backend) |
879 | return false; |
880 | |
881 | if (!socket) { |
882 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, description: tr(s: "Invalid (nullptr) socket" )); |
883 | return false; |
884 | } |
885 | |
886 | return backend->handleTimeout(socket); |
887 | } |
888 | |
889 | /*! |
890 | \internal |
891 | */ |
892 | bool QDtls::continueHandshake(QUdpSocket *socket, const QByteArray &datagram) |
893 | { |
894 | Q_D(QDtls); |
895 | |
896 | auto *backend = d->backend.get(); |
897 | if (!backend) |
898 | return false; |
899 | |
900 | if (!socket || !datagram.size()) { |
901 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, |
902 | description: tr(s: "A valid QUdpSocket and non-empty datagram are needed to continue the handshake" )); |
903 | return false; |
904 | } |
905 | |
906 | if (backend->state() != HandshakeInProgress) { |
907 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
908 | description: tr(s: "Cannot continue handshake, not in InProgress state" )); |
909 | return false; |
910 | } |
911 | |
912 | return backend->continueHandshake(socket, dgram: datagram); |
913 | } |
914 | |
915 | /*! |
916 | If peer verification errors were ignored during the handshake, |
917 | resumeHandshake() resumes and completes the handshake and returns |
918 | \c true. \a socket must be a valid pointer. Returns \c false if |
919 | the handshake could not be resumed. |
920 | |
921 | \sa doHandshake(), abortHandshake() peerVerificationErrors(), ignoreVerificationErrors() |
922 | */ |
923 | bool QDtls::resumeHandshake(QUdpSocket *socket) |
924 | { |
925 | Q_D(QDtls); |
926 | |
927 | auto *backend = d->backend.get(); |
928 | if (!backend) |
929 | return false; |
930 | |
931 | if (!socket) { |
932 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, description: tr(s: "Invalid (nullptr) socket" )); |
933 | return false; |
934 | } |
935 | |
936 | if (backend->state() != PeerVerificationFailed) { |
937 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
938 | description: tr(s: "Cannot resume, not in VerificationError state" )); |
939 | return false; |
940 | } |
941 | |
942 | return backend->resumeHandshake(socket); |
943 | } |
944 | |
945 | /*! |
946 | Aborts the ongoing handshake. Returns true if one was on-going on \a socket; |
947 | otherwise, sets a suitable error and returns false. |
948 | |
949 | \sa doHandshake(), resumeHandshake() |
950 | */ |
951 | bool QDtls::abortHandshake(QUdpSocket *socket) |
952 | { |
953 | Q_D(QDtls); |
954 | |
955 | auto *backend = d->backend.get(); |
956 | if (!backend) |
957 | return false; |
958 | |
959 | if (!socket) { |
960 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, description: tr(s: "Invalid (nullptr) socket" )); |
961 | return false; |
962 | } |
963 | |
964 | if (backend->state() != PeerVerificationFailed && backend->state() != HandshakeInProgress) { |
965 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
966 | description: tr(s: "No handshake in progress, nothing to abort" )); |
967 | return false; |
968 | } |
969 | |
970 | backend->abortHandshake(socket); |
971 | return true; |
972 | } |
973 | |
974 | /*! |
975 | Sends an encrypted shutdown alert message and closes the DTLS connection. |
976 | Handshake state changes to QDtls::HandshakeNotStarted. \a socket must be a |
977 | valid pointer. This function returns \c true on success. |
978 | |
979 | \sa doHandshake() |
980 | */ |
981 | bool QDtls::shutdown(QUdpSocket *socket) |
982 | { |
983 | Q_D(QDtls); |
984 | |
985 | auto *backend = d->backend.get(); |
986 | if (!backend) |
987 | return false; |
988 | |
989 | if (!socket) { |
990 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, |
991 | description: tr(s: "Invalid (nullptr) socket" )); |
992 | return false; |
993 | } |
994 | |
995 | if (!backend->isConnectionEncrypted()) { |
996 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
997 | description: tr(s: "Cannot send shutdown alert, not encrypted" )); |
998 | return false; |
999 | } |
1000 | |
1001 | backend->sendShutdownAlert(socket); |
1002 | return true; |
1003 | } |
1004 | |
1005 | /*! |
1006 | Returns \c true if DTLS handshake completed successfully. |
1007 | |
1008 | \sa doHandshake(), handshakeState() |
1009 | */ |
1010 | bool QDtls::isConnectionEncrypted() const |
1011 | { |
1012 | Q_D(const QDtls); |
1013 | |
1014 | |
1015 | if (const auto *backend = d->backend.get()) |
1016 | return backend->isConnectionEncrypted(); |
1017 | |
1018 | return false; |
1019 | } |
1020 | |
1021 | /*! |
1022 | Returns the cryptographic \l {QSslCipher} {cipher} used by this connection, |
1023 | or a null cipher if the connection isn't encrypted. The cipher for the |
1024 | session is selected during the handshake phase. The cipher is used to encrypt |
1025 | and decrypt data. |
1026 | |
1027 | QSslConfiguration provides functions for setting the ordered list of ciphers |
1028 | from which the handshake phase will eventually select the session cipher. |
1029 | This ordered list must be in place before the handshake phase begins. |
1030 | |
1031 | \sa QSslConfiguration, setDtlsConfiguration(), dtlsConfiguration() |
1032 | */ |
1033 | QSslCipher QDtls::sessionCipher() const |
1034 | { |
1035 | Q_D(const QDtls); |
1036 | |
1037 | if (const auto *backend = d->backend.get()) |
1038 | return backend->dtlsSessionCipher(); |
1039 | |
1040 | return {}; |
1041 | } |
1042 | |
1043 | /*! |
1044 | Returns the DTLS protocol version used by this connection, or UnknownProtocol |
1045 | if the connection isn't encrypted yet. The protocol for the connection is selected |
1046 | during the handshake phase. |
1047 | |
1048 | setDtlsConfiguration() can set the preferred version before the handshake starts. |
1049 | |
1050 | \sa setDtlsConfiguration(), QSslConfiguration, QSslConfiguration::defaultDtlsConfiguration(), |
1051 | QSslConfiguration::setProtocol() |
1052 | */ |
1053 | QSsl::SslProtocol QDtls::sessionProtocol() const |
1054 | { |
1055 | Q_D(const QDtls); |
1056 | |
1057 | if (const auto *backend = d->backend.get()) |
1058 | return backend->dtlsSessionProtocol(); |
1059 | |
1060 | return QSsl::UnknownProtocol; |
1061 | } |
1062 | |
1063 | /*! |
1064 | Encrypts \a dgram and writes the encrypted data into \a socket. Returns the |
1065 | number of bytes written, or -1 in case of error. The handshake must be completed |
1066 | before writing encrypted data. \a socket must be a valid |
1067 | pointer. |
1068 | |
1069 | \sa doHandshake(), handshakeState(), isConnectionEncrypted(), dtlsError() |
1070 | */ |
1071 | qint64 QDtls::writeDatagramEncrypted(QUdpSocket *socket, const QByteArray &dgram) |
1072 | { |
1073 | Q_D(QDtls); |
1074 | |
1075 | auto *backend = d->backend.get(); |
1076 | if (!backend) |
1077 | return -1; |
1078 | |
1079 | if (!socket) { |
1080 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, description: tr(s: "Invalid (nullptr) socket" )); |
1081 | return -1; |
1082 | } |
1083 | |
1084 | if (!isConnectionEncrypted()) { |
1085 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
1086 | description: tr(s: "Cannot write a datagram, not in encrypted state" )); |
1087 | return -1; |
1088 | } |
1089 | |
1090 | return backend->writeDatagramEncrypted(socket, dgram); |
1091 | } |
1092 | |
1093 | /*! |
1094 | Decrypts \a dgram and returns its contents as plain text. The handshake must |
1095 | be completed before datagrams can be decrypted. Depending on the type of the |
1096 | TLS message the connection may write into \a socket, which must be a valid |
1097 | pointer. |
1098 | */ |
1099 | QByteArray QDtls::decryptDatagram(QUdpSocket *socket, const QByteArray &dgram) |
1100 | { |
1101 | Q_D(QDtls); |
1102 | |
1103 | auto *backend = d->backend.get(); |
1104 | if (!backend) |
1105 | return {}; |
1106 | |
1107 | if (!socket) { |
1108 | backend->setDtlsError(code: QDtlsError::InvalidInputParameters, description: tr(s: "Invalid (nullptr) socket" )); |
1109 | return {}; |
1110 | } |
1111 | |
1112 | if (!isConnectionEncrypted()) { |
1113 | backend->setDtlsError(code: QDtlsError::InvalidOperation, |
1114 | description: tr(s: "Cannot read a datagram, not in encrypted state" )); |
1115 | return {}; |
1116 | } |
1117 | |
1118 | if (!dgram.size()) |
1119 | return {}; |
1120 | |
1121 | return backend->decryptDatagram(socket, dgram); |
1122 | } |
1123 | |
1124 | /*! |
1125 | Returns the last error encountered by the connection or QDtlsError::NoError. |
1126 | |
1127 | \sa dtlsErrorString(), QDtlsError |
1128 | */ |
1129 | QDtlsError QDtls::dtlsError() const |
1130 | { |
1131 | Q_D(const QDtls); |
1132 | |
1133 | if (const auto *backend = d->backend.get()) |
1134 | return backend->error(); |
1135 | |
1136 | return QDtlsError::NoError; |
1137 | } |
1138 | |
1139 | /*! |
1140 | Returns a textual description for the last error encountered by the connection |
1141 | or empty string. |
1142 | |
1143 | \sa dtlsError() |
1144 | */ |
1145 | QString QDtls::dtlsErrorString() const |
1146 | { |
1147 | Q_D(const QDtls); |
1148 | |
1149 | if (const auto *backend = d->backend.get()) |
1150 | return backend->errorString(); |
1151 | |
1152 | return {}; |
1153 | } |
1154 | |
1155 | /*! |
1156 | Returns errors found while establishing the identity of the peer. |
1157 | |
1158 | If you want to continue connecting despite the errors that have occurred, |
1159 | you must call ignoreVerificationErrors(). |
1160 | */ |
1161 | QList<QSslError> QDtls::peerVerificationErrors() const |
1162 | { |
1163 | Q_D(const QDtls); |
1164 | |
1165 | if (const auto *backend = d->backend.get()) |
1166 | return backend->peerVerificationErrors(); |
1167 | |
1168 | //return d->tlsErrors; |
1169 | return {}; |
1170 | } |
1171 | |
1172 | /*! |
1173 | This method tells QDtls to ignore only the errors given in \a errorsToIgnore. |
1174 | |
1175 | If, for instance, you want to connect to a server that uses a self-signed |
1176 | certificate, consider the following snippet: |
1177 | |
1178 | \snippet code/src_network_ssl_qdtls.cpp 6 |
1179 | |
1180 | You can also call this function after doHandshake() encountered the |
1181 | QDtlsError::PeerVerificationError error, and then resume the handshake by |
1182 | calling resumeHandshake(). |
1183 | |
1184 | Later calls to this function will replace the list of errors that were |
1185 | passed in previous calls. You can clear the list of errors you want to ignore |
1186 | by calling this function with an empty list. |
1187 | |
1188 | \sa doHandshake(), resumeHandshake(), QSslError |
1189 | */ |
1190 | void QDtls::ignoreVerificationErrors(const QList<QSslError> &errorsToIgnore) |
1191 | { |
1192 | Q_D(QDtls); |
1193 | |
1194 | if (auto *backend = d->backend.get()) |
1195 | backend->ignoreVerificationErrors(errorsToIgnore); |
1196 | } |
1197 | |
1198 | QT_END_NAMESPACE |
1199 | |
1200 | #include "moc_qdtls.cpp" |
1201 | |