| 1 | // Copyright (C) 2016 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "qgraphicsanchorlayout_p.h" |
| 5 | |
| 6 | #include <QtWidgets/qwidget.h> |
| 7 | #include <QtWidgets/qapplication.h> |
| 8 | #include <QtCore/qstack.h> |
| 9 | |
| 10 | #ifdef QT_DEBUG |
| 11 | #include <QtCore/qfile.h> |
| 12 | #endif |
| 13 | |
| 14 | #include <numeric> |
| 15 | |
| 16 | QT_BEGIN_NAMESPACE |
| 17 | |
| 18 | using namespace Qt::StringLiterals; |
| 19 | |
| 20 | // To ensure that all variables inside the simplex solver are non-negative, |
| 21 | // we limit the size of anchors in the interval [-limit, limit]. Then before |
| 22 | // sending them to the simplex solver we add "limit" as an offset, so that |
| 23 | // they are actually calculated in the interval [0, 2 * limit] |
| 24 | // To avoid numerical errors in platforms where we use single precision, |
| 25 | // we use a tighter limit for the variables range. |
| 26 | const qreal g_offset = (sizeof(qreal) == sizeof(double)) ? QWIDGETSIZE_MAX : QWIDGETSIZE_MAX / 32; |
| 27 | |
| 28 | QGraphicsAnchorPrivate::QGraphicsAnchorPrivate(int version) |
| 29 | : QObjectPrivate(version), layoutPrivate(nullptr), data(nullptr), |
| 30 | sizePolicy(QSizePolicy::Fixed), preferredSize(0), |
| 31 | hasSize(true) |
| 32 | { |
| 33 | } |
| 34 | |
| 35 | QGraphicsAnchorPrivate::~QGraphicsAnchorPrivate() |
| 36 | { |
| 37 | if (data) { |
| 38 | // The QGraphicsAnchor was already deleted at this moment. We must clean |
| 39 | // the dangling pointer to avoid double deletion in the AnchorData dtor. |
| 40 | data->graphicsAnchor = nullptr; |
| 41 | |
| 42 | layoutPrivate->removeAnchor(firstVertex: data->from, secondVertex: data->to); |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | void QGraphicsAnchorPrivate::setSizePolicy(QSizePolicy::Policy policy) |
| 47 | { |
| 48 | if (sizePolicy != policy) { |
| 49 | sizePolicy = policy; |
| 50 | layoutPrivate->q_func()->invalidate(); |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | void QGraphicsAnchorPrivate::setSpacing(qreal value) |
| 55 | { |
| 56 | if (!data) { |
| 57 | qWarning(msg: "QGraphicsAnchor::setSpacing: The anchor does not exist." ); |
| 58 | return; |
| 59 | } |
| 60 | |
| 61 | if (hasSize && (preferredSize == value)) |
| 62 | return; |
| 63 | |
| 64 | // The anchor has an user-defined size |
| 65 | hasSize = true; |
| 66 | preferredSize = value; |
| 67 | |
| 68 | layoutPrivate->q_func()->invalidate(); |
| 69 | } |
| 70 | |
| 71 | void QGraphicsAnchorPrivate::unsetSpacing() |
| 72 | { |
| 73 | if (!data) { |
| 74 | qWarning(msg: "QGraphicsAnchor::setSpacing: The anchor does not exist." ); |
| 75 | return; |
| 76 | } |
| 77 | |
| 78 | // Return to standard direction |
| 79 | hasSize = false; |
| 80 | |
| 81 | layoutPrivate->q_func()->invalidate(); |
| 82 | } |
| 83 | |
| 84 | qreal QGraphicsAnchorPrivate::spacing() const |
| 85 | { |
| 86 | if (!data) { |
| 87 | qWarning(msg: "QGraphicsAnchor::setSpacing: The anchor does not exist." ); |
| 88 | return 0; |
| 89 | } |
| 90 | |
| 91 | return preferredSize; |
| 92 | } |
| 93 | |
| 94 | |
| 95 | static void applySizePolicy(QSizePolicy::Policy policy, |
| 96 | qreal minSizeHint, qreal prefSizeHint, qreal maxSizeHint, |
| 97 | qreal *minSize, qreal *prefSize, |
| 98 | qreal *maxSize) |
| 99 | { |
| 100 | // minSize, prefSize and maxSize are initialized |
| 101 | // with item's preferred Size: this is QSizePolicy::Fixed. |
| 102 | // |
| 103 | // Then we check each flag to find the resultant QSizePolicy, |
| 104 | // according to the following table: |
| 105 | // |
| 106 | // constant value |
| 107 | // QSizePolicy::Fixed 0 |
| 108 | // QSizePolicy::Minimum GrowFlag |
| 109 | // QSizePolicy::Maximum ShrinkFlag |
| 110 | // QSizePolicy::Preferred GrowFlag | ShrinkFlag |
| 111 | // QSizePolicy::Ignored GrowFlag | ShrinkFlag | IgnoreFlag |
| 112 | |
| 113 | if (policy & QSizePolicy::ShrinkFlag) |
| 114 | *minSize = minSizeHint; |
| 115 | else |
| 116 | *minSize = prefSizeHint; |
| 117 | |
| 118 | if (policy & QSizePolicy::GrowFlag) |
| 119 | *maxSize = maxSizeHint; |
| 120 | else |
| 121 | *maxSize = prefSizeHint; |
| 122 | |
| 123 | // Note that these two initializations are affected by the previous flags |
| 124 | if (policy & QSizePolicy::IgnoreFlag) |
| 125 | *prefSize = *minSize; |
| 126 | else |
| 127 | *prefSize = prefSizeHint; |
| 128 | } |
| 129 | |
| 130 | AnchorData::~AnchorData() |
| 131 | { |
| 132 | if (graphicsAnchor) { |
| 133 | // Remove reference to ourself to avoid double removal in |
| 134 | // QGraphicsAnchorPrivate dtor. |
| 135 | QGraphicsAnchorPrivate::get(q: graphicsAnchor)->data = nullptr; |
| 136 | |
| 137 | delete graphicsAnchor; |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | |
| 142 | void AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo) |
| 143 | { |
| 144 | QSizePolicy::Policy policy; |
| 145 | qreal minSizeHint; |
| 146 | qreal prefSizeHint; |
| 147 | qreal maxSizeHint; |
| 148 | |
| 149 | if (item) { |
| 150 | // It is an internal anchor, fetch size information from the item |
| 151 | if (isLayoutAnchor) { |
| 152 | minSize = 0; |
| 153 | prefSize = 0; |
| 154 | maxSize = QWIDGETSIZE_MAX; |
| 155 | if (isCenterAnchor) |
| 156 | maxSize /= 2; |
| 157 | |
| 158 | minPrefSize = prefSize; |
| 159 | maxPrefSize = maxSize; |
| 160 | return; |
| 161 | } else { |
| 162 | if (!isVertical) { |
| 163 | policy = item->sizePolicy().horizontalPolicy(); |
| 164 | minSizeHint = item->effectiveSizeHint(which: Qt::MinimumSize).width(); |
| 165 | prefSizeHint = item->effectiveSizeHint(which: Qt::PreferredSize).width(); |
| 166 | maxSizeHint = item->effectiveSizeHint(which: Qt::MaximumSize).width(); |
| 167 | } else { |
| 168 | policy = item->sizePolicy().verticalPolicy(); |
| 169 | minSizeHint = item->effectiveSizeHint(which: Qt::MinimumSize).height(); |
| 170 | prefSizeHint = item->effectiveSizeHint(which: Qt::PreferredSize).height(); |
| 171 | maxSizeHint = item->effectiveSizeHint(which: Qt::MaximumSize).height(); |
| 172 | } |
| 173 | |
| 174 | if (isCenterAnchor) { |
| 175 | minSizeHint /= 2; |
| 176 | prefSizeHint /= 2; |
| 177 | maxSizeHint /= 2; |
| 178 | } |
| 179 | } |
| 180 | } else { |
| 181 | // It is a user-created anchor, fetch size information from the associated QGraphicsAnchor |
| 182 | Q_ASSERT(graphicsAnchor); |
| 183 | QGraphicsAnchorPrivate *anchorPrivate = QGraphicsAnchorPrivate::get(q: graphicsAnchor); |
| 184 | |
| 185 | // Policy, min and max sizes are straightforward |
| 186 | policy = anchorPrivate->sizePolicy; |
| 187 | minSizeHint = 0; |
| 188 | maxSizeHint = QWIDGETSIZE_MAX; |
| 189 | |
| 190 | // Preferred Size |
| 191 | if (anchorPrivate->hasSize) { |
| 192 | // Anchor has user-defined size |
| 193 | prefSizeHint = anchorPrivate->preferredSize; |
| 194 | } else if (styleInfo) { |
| 195 | // Fetch size information from style |
| 196 | const Qt::Orientation orient = QGraphicsAnchorLayoutPrivate::edgeOrientation(edge: from->m_edge); |
| 197 | qreal s = styleInfo->defaultSpacing(o: orient); |
| 198 | if (s < 0) { |
| 199 | QSizePolicy::ControlType controlTypeFrom = from->m_item->sizePolicy().controlType(); |
| 200 | QSizePolicy::ControlType controlTypeTo = to->m_item->sizePolicy().controlType(); |
| 201 | s = styleInfo->perItemSpacing(control1: controlTypeFrom, control2: controlTypeTo, orientation: orient); |
| 202 | |
| 203 | // ### Currently we do not support negative anchors inside the graph. |
| 204 | // To avoid those being created by a negative style spacing, we must |
| 205 | // make this test. |
| 206 | if (s < 0) |
| 207 | s = 0; |
| 208 | } |
| 209 | prefSizeHint = s; |
| 210 | } else { |
| 211 | prefSizeHint = 0; |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | // Fill minSize, prefSize and maxSize based on policy and sizeHints |
| 216 | applySizePolicy(policy, minSizeHint, prefSizeHint, maxSizeHint, |
| 217 | minSize: &minSize, prefSize: &prefSize, maxSize: &maxSize); |
| 218 | |
| 219 | minPrefSize = prefSize; |
| 220 | maxPrefSize = maxSize; |
| 221 | |
| 222 | // Set the anchor effective sizes to preferred. |
| 223 | // |
| 224 | // Note: The idea here is that all items should remain at their |
| 225 | // preferred size unless where that's impossible. In cases where |
| 226 | // the item is subject to restrictions (anchored to the layout |
| 227 | // edges, for instance), the simplex solver will be run to |
| 228 | // recalculate and override the values we set here. |
| 229 | sizeAtMinimum = prefSize; |
| 230 | sizeAtPreferred = prefSize; |
| 231 | sizeAtMaximum = prefSize; |
| 232 | } |
| 233 | |
| 234 | void ParallelAnchorData::updateChildrenSizes() |
| 235 | { |
| 236 | firstEdge->sizeAtMinimum = sizeAtMinimum; |
| 237 | firstEdge->sizeAtPreferred = sizeAtPreferred; |
| 238 | firstEdge->sizeAtMaximum = sizeAtMaximum; |
| 239 | |
| 240 | if (secondForward()) { |
| 241 | secondEdge->sizeAtMinimum = sizeAtMinimum; |
| 242 | secondEdge->sizeAtPreferred = sizeAtPreferred; |
| 243 | secondEdge->sizeAtMaximum = sizeAtMaximum; |
| 244 | } else { |
| 245 | secondEdge->sizeAtMinimum = -sizeAtMinimum; |
| 246 | secondEdge->sizeAtPreferred = -sizeAtPreferred; |
| 247 | secondEdge->sizeAtMaximum = -sizeAtMaximum; |
| 248 | } |
| 249 | |
| 250 | firstEdge->updateChildrenSizes(); |
| 251 | secondEdge->updateChildrenSizes(); |
| 252 | } |
| 253 | |
| 254 | /* |
| 255 | \internal |
| 256 | |
| 257 | Initialize the parallel anchor size hints using the sizeHint information from |
| 258 | its children. |
| 259 | |
| 260 | Note that parallel groups can lead to unfeasibility, so during calculation, we can |
| 261 | find out one unfeasibility. Because of that this method return boolean. This can't |
| 262 | happen in sequential, so there the method is void. |
| 263 | */ |
| 264 | bool ParallelAnchorData::calculateSizeHints() |
| 265 | { |
| 266 | // Normalize second child sizes. |
| 267 | // A negative anchor of sizes min, minPref, pref, maxPref and max, is equivalent |
| 268 | // to a forward anchor of sizes -max, -maxPref, -pref, -minPref, -min |
| 269 | qreal secondMin; |
| 270 | qreal secondMinPref; |
| 271 | qreal secondPref; |
| 272 | qreal secondMaxPref; |
| 273 | qreal secondMax; |
| 274 | |
| 275 | if (secondForward()) { |
| 276 | secondMin = secondEdge->minSize; |
| 277 | secondMinPref = secondEdge->minPrefSize; |
| 278 | secondPref = secondEdge->prefSize; |
| 279 | secondMaxPref = secondEdge->maxPrefSize; |
| 280 | secondMax = secondEdge->maxSize; |
| 281 | } else { |
| 282 | secondMin = -secondEdge->maxSize; |
| 283 | secondMinPref = -secondEdge->maxPrefSize; |
| 284 | secondPref = -secondEdge->prefSize; |
| 285 | secondMaxPref = -secondEdge->minPrefSize; |
| 286 | secondMax = -secondEdge->minSize; |
| 287 | } |
| 288 | |
| 289 | minSize = qMax(a: firstEdge->minSize, b: secondMin); |
| 290 | maxSize = qMin(a: firstEdge->maxSize, b: secondMax); |
| 291 | |
| 292 | // This condition means that the maximum size of one anchor being simplified is smaller than |
| 293 | // the minimum size of the other anchor. The consequence is that there won't be a valid size |
| 294 | // for this parallel setup. |
| 295 | if (minSize > maxSize) { |
| 296 | return false; |
| 297 | } |
| 298 | |
| 299 | // Preferred size calculation |
| 300 | // The calculation of preferred size is done as follows: |
| 301 | // |
| 302 | // 1) Check whether one of the child anchors is the layout structural anchor |
| 303 | // If so, we can simply copy the preferred information from the other child, |
| 304 | // after bounding it to our minimum and maximum sizes. |
| 305 | // If not, then we proceed with the actual calculations. |
| 306 | // |
| 307 | // 2) The whole algorithm for preferred size calculation is based on the fact |
| 308 | // that, if a given anchor cannot remain at its preferred size, it'd rather |
| 309 | // grow than shrink. |
| 310 | // |
| 311 | // What happens though is that while this affirmative is true for simple |
| 312 | // anchors, it may not be true for sequential anchors that have one or more |
| 313 | // reversed anchors inside it. That happens because when a sequential anchor |
| 314 | // grows, any reversed anchors inside it may be required to shrink, something |
| 315 | // we try to avoid, as said above. |
| 316 | // |
| 317 | // To overcome this, besides their actual preferred size "prefSize", each anchor |
| 318 | // exports what we call "minPrefSize" and "maxPrefSize". These two values define |
| 319 | // a surrounding interval where, if required to move, the anchor would rather |
| 320 | // remain inside. |
| 321 | // |
| 322 | // For standard anchors, this area simply represents the region between |
| 323 | // prefSize and maxSize, which makes sense since our first affirmation. |
| 324 | // For composed anchors, these values are calculated as to reduce the global |
| 325 | // "damage", that is, to reduce the total deviation and the total amount of |
| 326 | // anchors that had to shrink. |
| 327 | |
| 328 | if (firstEdge->isLayoutAnchor) { |
| 329 | prefSize = qBound(min: minSize, val: secondPref, max: maxSize); |
| 330 | minPrefSize = qBound(min: minSize, val: secondMinPref, max: maxSize); |
| 331 | maxPrefSize = qBound(min: minSize, val: secondMaxPref, max: maxSize); |
| 332 | } else if (secondEdge->isLayoutAnchor) { |
| 333 | prefSize = qBound(min: minSize, val: firstEdge->prefSize, max: maxSize); |
| 334 | minPrefSize = qBound(min: minSize, val: firstEdge->minPrefSize, max: maxSize); |
| 335 | maxPrefSize = qBound(min: minSize, val: firstEdge->maxPrefSize, max: maxSize); |
| 336 | } else { |
| 337 | // Calculate the intersection between the "preferred" regions of each child |
| 338 | const qreal lowerBoundary = |
| 339 | qBound(min: minSize, val: qMax(a: firstEdge->minPrefSize, b: secondMinPref), max: maxSize); |
| 340 | const qreal upperBoundary = |
| 341 | qBound(min: minSize, val: qMin(a: firstEdge->maxPrefSize, b: secondMaxPref), max: maxSize); |
| 342 | const qreal prefMean = |
| 343 | qBound(min: minSize, val: (firstEdge->prefSize + secondPref) / 2, max: maxSize); |
| 344 | |
| 345 | if (lowerBoundary < upperBoundary) { |
| 346 | // If there is an intersection between the two regions, this intersection |
| 347 | // will be used as the preferred region of the parallel anchor itself. |
| 348 | // The preferred size will be the bounded average between the two preferred |
| 349 | // sizes. |
| 350 | prefSize = qBound(min: lowerBoundary, val: prefMean, max: upperBoundary); |
| 351 | minPrefSize = lowerBoundary; |
| 352 | maxPrefSize = upperBoundary; |
| 353 | } else { |
| 354 | // If there is no intersection, we have to attribute "damage" to at least |
| 355 | // one of the children. The minimum total damage is achieved in points |
| 356 | // inside the region that extends from (1) the upper boundary of the lower |
| 357 | // region to (2) the lower boundary of the upper region. |
| 358 | // Then, we expose this region as _our_ preferred region and once again, |
| 359 | // use the bounded average as our preferred size. |
| 360 | prefSize = qBound(min: upperBoundary, val: prefMean, max: lowerBoundary); |
| 361 | minPrefSize = upperBoundary; |
| 362 | maxPrefSize = lowerBoundary; |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | // See comment in AnchorData::refreshSizeHints() about sizeAt* values |
| 367 | sizeAtMinimum = prefSize; |
| 368 | sizeAtPreferred = prefSize; |
| 369 | sizeAtMaximum = prefSize; |
| 370 | |
| 371 | return true; |
| 372 | } |
| 373 | |
| 374 | /*! |
| 375 | \internal |
| 376 | returns the factor in the interval [-1, 1]. |
| 377 | -1 is at Minimum |
| 378 | 0 is at Preferred |
| 379 | 1 is at Maximum |
| 380 | */ |
| 381 | static std::pair<QGraphicsAnchorLayoutPrivate::Interval, qreal> getFactor(qreal value, qreal min, |
| 382 | qreal minPref, qreal pref, |
| 383 | qreal maxPref, qreal max) |
| 384 | { |
| 385 | QGraphicsAnchorLayoutPrivate::Interval interval; |
| 386 | qreal lower; |
| 387 | qreal upper; |
| 388 | |
| 389 | if (value < minPref) { |
| 390 | interval = QGraphicsAnchorLayoutPrivate::MinimumToMinPreferred; |
| 391 | lower = min; |
| 392 | upper = minPref; |
| 393 | } else if (value < pref) { |
| 394 | interval = QGraphicsAnchorLayoutPrivate::MinPreferredToPreferred; |
| 395 | lower = minPref; |
| 396 | upper = pref; |
| 397 | } else if (value < maxPref) { |
| 398 | interval = QGraphicsAnchorLayoutPrivate::PreferredToMaxPreferred; |
| 399 | lower = pref; |
| 400 | upper = maxPref; |
| 401 | } else { |
| 402 | interval = QGraphicsAnchorLayoutPrivate::MaxPreferredToMaximum; |
| 403 | lower = maxPref; |
| 404 | upper = max; |
| 405 | } |
| 406 | |
| 407 | qreal progress; |
| 408 | if (upper == lower) { |
| 409 | progress = 0; |
| 410 | } else { |
| 411 | progress = (value - lower) / (upper - lower); |
| 412 | } |
| 413 | |
| 414 | return std::pair(interval, progress); |
| 415 | } |
| 416 | |
| 417 | static qreal interpolate(const std::pair<QGraphicsAnchorLayoutPrivate::Interval, qreal> &factor, |
| 418 | qreal min, qreal minPref, qreal pref, qreal maxPref, qreal max) |
| 419 | { |
| 420 | qreal lower = 0; |
| 421 | qreal upper = 0; |
| 422 | |
| 423 | switch (factor.first) { |
| 424 | case QGraphicsAnchorLayoutPrivate::MinimumToMinPreferred: |
| 425 | lower = min; |
| 426 | upper = minPref; |
| 427 | break; |
| 428 | case QGraphicsAnchorLayoutPrivate::MinPreferredToPreferred: |
| 429 | lower = minPref; |
| 430 | upper = pref; |
| 431 | break; |
| 432 | case QGraphicsAnchorLayoutPrivate::PreferredToMaxPreferred: |
| 433 | lower = pref; |
| 434 | upper = maxPref; |
| 435 | break; |
| 436 | case QGraphicsAnchorLayoutPrivate::MaxPreferredToMaximum: |
| 437 | lower = maxPref; |
| 438 | upper = max; |
| 439 | break; |
| 440 | } |
| 441 | |
| 442 | return lower + factor.second * (upper - lower); |
| 443 | } |
| 444 | |
| 445 | void SequentialAnchorData::updateChildrenSizes() |
| 446 | { |
| 447 | // Band here refers if the value is in the Minimum To Preferred |
| 448 | // band (the lower band) or the Preferred To Maximum (the upper band). |
| 449 | |
| 450 | const std::pair<QGraphicsAnchorLayoutPrivate::Interval, qreal> minFactor = |
| 451 | getFactor(value: sizeAtMinimum, min: minSize, minPref: minPrefSize, pref: prefSize, maxPref: maxPrefSize, max: maxSize); |
| 452 | const std::pair<QGraphicsAnchorLayoutPrivate::Interval, qreal> prefFactor = |
| 453 | getFactor(value: sizeAtPreferred, min: minSize, minPref: minPrefSize, pref: prefSize, maxPref: maxPrefSize, max: maxSize); |
| 454 | const std::pair<QGraphicsAnchorLayoutPrivate::Interval, qreal> maxFactor = |
| 455 | getFactor(value: sizeAtMaximum, min: minSize, minPref: minPrefSize, pref: prefSize, maxPref: maxPrefSize, max: maxSize); |
| 456 | |
| 457 | // XXX This is not safe if Vertex simplification takes place after the sequential |
| 458 | // anchor is created. In that case, "prev" will be a group-vertex, different from |
| 459 | // "from" or "to", that _contains_ one of them. |
| 460 | AnchorVertex *prev = from; |
| 461 | |
| 462 | for (AnchorData *e : m_edges) { |
| 463 | const bool edgeIsForward = (e->from == prev); |
| 464 | if (edgeIsForward) { |
| 465 | e->sizeAtMinimum = interpolate(factor: minFactor, min: e->minSize, minPref: e->minPrefSize, |
| 466 | pref: e->prefSize, maxPref: e->maxPrefSize, max: e->maxSize); |
| 467 | e->sizeAtPreferred = interpolate(factor: prefFactor, min: e->minSize, minPref: e->minPrefSize, |
| 468 | pref: e->prefSize, maxPref: e->maxPrefSize, max: e->maxSize); |
| 469 | e->sizeAtMaximum = interpolate(factor: maxFactor, min: e->minSize, minPref: e->minPrefSize, |
| 470 | pref: e->prefSize, maxPref: e->maxPrefSize, max: e->maxSize); |
| 471 | prev = e->to; |
| 472 | } else { |
| 473 | Q_ASSERT(prev == e->to); |
| 474 | e->sizeAtMinimum = interpolate(factor: minFactor, min: e->maxSize, minPref: e->maxPrefSize, |
| 475 | pref: e->prefSize, maxPref: e->minPrefSize, max: e->minSize); |
| 476 | e->sizeAtPreferred = interpolate(factor: prefFactor, min: e->maxSize, minPref: e->maxPrefSize, |
| 477 | pref: e->prefSize, maxPref: e->minPrefSize, max: e->minSize); |
| 478 | e->sizeAtMaximum = interpolate(factor: maxFactor, min: e->maxSize, minPref: e->maxPrefSize, |
| 479 | pref: e->prefSize, maxPref: e->minPrefSize, max: e->minSize); |
| 480 | prev = e->from; |
| 481 | } |
| 482 | |
| 483 | e->updateChildrenSizes(); |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | void SequentialAnchorData::calculateSizeHints() |
| 488 | { |
| 489 | minSize = 0; |
| 490 | prefSize = 0; |
| 491 | maxSize = 0; |
| 492 | minPrefSize = 0; |
| 493 | maxPrefSize = 0; |
| 494 | |
| 495 | AnchorVertex *prev = from; |
| 496 | |
| 497 | for (AnchorData *edge : m_edges) { |
| 498 | const bool edgeIsForward = (edge->from == prev); |
| 499 | if (edgeIsForward) { |
| 500 | minSize += edge->minSize; |
| 501 | prefSize += edge->prefSize; |
| 502 | maxSize += edge->maxSize; |
| 503 | minPrefSize += edge->minPrefSize; |
| 504 | maxPrefSize += edge->maxPrefSize; |
| 505 | prev = edge->to; |
| 506 | } else { |
| 507 | Q_ASSERT(prev == edge->to); |
| 508 | minSize -= edge->maxSize; |
| 509 | prefSize -= edge->prefSize; |
| 510 | maxSize -= edge->minSize; |
| 511 | minPrefSize -= edge->maxPrefSize; |
| 512 | maxPrefSize -= edge->minPrefSize; |
| 513 | prev = edge->from; |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | // See comment in AnchorData::refreshSizeHints() about sizeAt* values |
| 518 | sizeAtMinimum = prefSize; |
| 519 | sizeAtPreferred = prefSize; |
| 520 | sizeAtMaximum = prefSize; |
| 521 | } |
| 522 | |
| 523 | #ifdef QT_DEBUG |
| 524 | void AnchorData::dump(int indent) { |
| 525 | if (type == Parallel) { |
| 526 | qDebug(msg: "%*s type: parallel:" , indent, "" ); |
| 527 | ParallelAnchorData *p = static_cast<ParallelAnchorData *>(this); |
| 528 | p->firstEdge->dump(indent: indent+2); |
| 529 | p->secondEdge->dump(indent: indent+2); |
| 530 | } else if (type == Sequential) { |
| 531 | const auto *s = static_cast<SequentialAnchorData *>(this); |
| 532 | qDebug(msg: "%*s type: sequential(%lld):" , indent, "" , qint64(s->m_edges.size())); |
| 533 | for (AnchorData *e : s->m_edges) |
| 534 | e->dump(indent: indent + 2); |
| 535 | } else { |
| 536 | qDebug(msg: "%*s type: Normal:" , indent, "" ); |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | #endif |
| 541 | |
| 542 | QSimplexConstraint *GraphPath::constraint(const GraphPath &path) const |
| 543 | { |
| 544 | // Calculate |
| 545 | QSet<AnchorData *> cPositives; |
| 546 | QSet<AnchorData *> cNegatives; |
| 547 | QSet<AnchorData *> intersection; |
| 548 | |
| 549 | cPositives = positives + path.negatives; |
| 550 | cNegatives = negatives + path.positives; |
| 551 | |
| 552 | intersection = cPositives & cNegatives; |
| 553 | |
| 554 | cPositives -= intersection; |
| 555 | cNegatives -= intersection; |
| 556 | |
| 557 | // Fill |
| 558 | QSimplexConstraint *c = new QSimplexConstraint; |
| 559 | QSet<AnchorData *>::iterator i; |
| 560 | for (i = cPositives.begin(); i != cPositives.end(); ++i) |
| 561 | c->variables.insert(key: *i, value: 1.0); |
| 562 | |
| 563 | for (i = cNegatives.begin(); i != cNegatives.end(); ++i) |
| 564 | c->variables.insert(key: *i, value: -1.0); |
| 565 | |
| 566 | return c; |
| 567 | } |
| 568 | |
| 569 | #ifdef QT_DEBUG |
| 570 | QString GraphPath::toString() const |
| 571 | { |
| 572 | QString string; |
| 573 | string += "Path: "_L1 ; |
| 574 | |
| 575 | for (AnchorData *edge : positives) |
| 576 | string += QString::fromLatin1(ba: " (+++) %1" ).arg(a: edge->toString()); |
| 577 | |
| 578 | for (AnchorData *edge : negatives) |
| 579 | string += QString::fromLatin1(ba: " (---) %1" ).arg(a: edge->toString()); |
| 580 | |
| 581 | return string; |
| 582 | } |
| 583 | #endif |
| 584 | |
| 585 | QGraphicsAnchorLayoutPrivate::QGraphicsAnchorLayoutPrivate() |
| 586 | : calculateGraphCacheDirty(true), styleInfoDirty(true) |
| 587 | { |
| 588 | } |
| 589 | |
| 590 | Qt::AnchorPoint QGraphicsAnchorLayoutPrivate::oppositeEdge(Qt::AnchorPoint edge) |
| 591 | { |
| 592 | switch (edge) { |
| 593 | case Qt::AnchorLeft: |
| 594 | edge = Qt::AnchorRight; |
| 595 | break; |
| 596 | case Qt::AnchorRight: |
| 597 | edge = Qt::AnchorLeft; |
| 598 | break; |
| 599 | case Qt::AnchorTop: |
| 600 | edge = Qt::AnchorBottom; |
| 601 | break; |
| 602 | case Qt::AnchorBottom: |
| 603 | edge = Qt::AnchorTop; |
| 604 | break; |
| 605 | default: |
| 606 | break; |
| 607 | } |
| 608 | return edge; |
| 609 | } |
| 610 | |
| 611 | |
| 612 | /*! |
| 613 | \internal |
| 614 | |
| 615 | Adds \a newAnchor to the graph. |
| 616 | |
| 617 | Returns the newAnchor itself if it could be added without further changes to the graph. If a |
| 618 | new parallel anchor had to be created, then returns the new parallel anchor. If a parallel anchor |
| 619 | had to be created and it results in an unfeasible setup, \a feasible is set to false, otherwise |
| 620 | true. |
| 621 | |
| 622 | Note that in the case a new parallel anchor is created, it might also take over some constraints |
| 623 | from its children anchors. |
| 624 | */ |
| 625 | AnchorData *QGraphicsAnchorLayoutPrivate::addAnchorMaybeParallel(AnchorData *newAnchor, bool *feasible) |
| 626 | { |
| 627 | const Qt::Orientation orientation = newAnchor->isVertical ? Qt::Vertical : Qt::Horizontal; |
| 628 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 629 | *feasible = true; |
| 630 | |
| 631 | // If already exists one anchor where newAnchor is supposed to be, we create a parallel |
| 632 | // anchor. |
| 633 | if (AnchorData *oldAnchor = g.takeEdge(first: newAnchor->from, second: newAnchor->to)) { |
| 634 | ParallelAnchorData *parallel = new ParallelAnchorData(oldAnchor, newAnchor); |
| 635 | |
| 636 | // The parallel anchor will "replace" its children anchors in |
| 637 | // every center constraint that they appear. |
| 638 | |
| 639 | // ### If the dependent (center) anchors had reference(s) to their constraints, we |
| 640 | // could avoid traversing all the itemCenterConstraints. |
| 641 | QList<QSimplexConstraint *> &constraints = itemCenterConstraints[orientation]; |
| 642 | |
| 643 | AnchorData *children[2] = { oldAnchor, newAnchor }; |
| 644 | QList<QSimplexConstraint *> *childrenConstraints[2] = { ¶llel->m_firstConstraints, |
| 645 | ¶llel->m_secondConstraints }; |
| 646 | |
| 647 | for (int i = 0; i < 2; ++i) { |
| 648 | AnchorData *child = children[i]; |
| 649 | QList<QSimplexConstraint *> *childConstraints = childrenConstraints[i]; |
| 650 | |
| 651 | // We need to fix the second child constraints if the parallel group will have the |
| 652 | // opposite direction of the second child anchor. For the point of view of external |
| 653 | // entities, this anchor was reversed. So if at some point we say that the parallel |
| 654 | // has a value of 20, this mean that the second child (when reversed) will be |
| 655 | // assigned -20. |
| 656 | const bool needsReverse = i == 1 && !parallel->secondForward(); |
| 657 | |
| 658 | if (!child->isCenterAnchor) |
| 659 | continue; |
| 660 | |
| 661 | parallel->isCenterAnchor = true; |
| 662 | |
| 663 | for (int j = 0; j < constraints.size(); ++j) { |
| 664 | QSimplexConstraint *c = constraints[j]; |
| 665 | if (c->variables.contains(key: child)) { |
| 666 | childConstraints->append(t: c); |
| 667 | qreal v = c->variables.take(key: child); |
| 668 | if (needsReverse) |
| 669 | v *= -1; |
| 670 | c->variables.insert(key: parallel, value: v); |
| 671 | } |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | // At this point we can identify that the parallel anchor is not feasible, e.g. one |
| 676 | // anchor minimum size is bigger than the other anchor maximum size. |
| 677 | *feasible = parallel->calculateSizeHints(); |
| 678 | newAnchor = parallel; |
| 679 | } |
| 680 | |
| 681 | g.createEdge(first: newAnchor->from, second: newAnchor->to, data: newAnchor); |
| 682 | return newAnchor; |
| 683 | } |
| 684 | |
| 685 | /*! |
| 686 | \internal |
| 687 | |
| 688 | Takes the sequence of vertices described by (\a before, \a vertices, \a after) and removes |
| 689 | all anchors connected to the vertices in \a vertices, returning one simplified anchor between |
| 690 | \a before and \a after. |
| 691 | |
| 692 | Note that this function doesn't add the created anchor to the graph. This should be done by |
| 693 | the caller. |
| 694 | */ |
| 695 | static AnchorData *createSequence(Graph<AnchorVertex, AnchorData> *graph, AnchorVertex *before, |
| 696 | const QList<AnchorVertex *> &vertices, AnchorVertex *after) |
| 697 | { |
| 698 | #if defined(QT_DEBUG) && 0 |
| 699 | QString strVertices; |
| 700 | for (int i = 0; i < vertices.count(); ++i) { |
| 701 | strVertices += QString::fromLatin1("%1 - " ).arg(vertices.at(i)->toString()); |
| 702 | } |
| 703 | QString strPath = QString::fromLatin1("%1 - %2%3" ).arg(before->toString(), strVertices, after->toString()); |
| 704 | qDebug("simplifying [%s] to [%s - %s]" , qPrintable(strPath), qPrintable(before->toString()), qPrintable(after->toString())); |
| 705 | #endif |
| 706 | |
| 707 | AnchorVertex *prev = before; |
| 708 | QList<AnchorData *> edges; |
| 709 | edges.reserve(asize: vertices.size() + 1); |
| 710 | |
| 711 | const int numVertices = vertices.size(); |
| 712 | edges.reserve(asize: numVertices + 1); |
| 713 | // Take from the graph, the edges that will be simplificated |
| 714 | for (int i = 0; i < numVertices; ++i) { |
| 715 | AnchorVertex *next = vertices.at(i); |
| 716 | AnchorData *ad = graph->takeEdge(first: prev, second: next); |
| 717 | Q_ASSERT(ad); |
| 718 | edges.append(t: ad); |
| 719 | prev = next; |
| 720 | } |
| 721 | |
| 722 | // Take the last edge (not covered in the loop above) |
| 723 | AnchorData *ad = graph->takeEdge(first: vertices.last(), second: after); |
| 724 | Q_ASSERT(ad); |
| 725 | edges.append(t: ad); |
| 726 | |
| 727 | // Create sequence |
| 728 | SequentialAnchorData *sequence = new SequentialAnchorData(vertices, edges); |
| 729 | sequence->from = before; |
| 730 | sequence->to = after; |
| 731 | |
| 732 | sequence->calculateSizeHints(); |
| 733 | |
| 734 | return sequence; |
| 735 | } |
| 736 | |
| 737 | /*! |
| 738 | \internal |
| 739 | |
| 740 | The purpose of this function is to simplify the graph. |
| 741 | Simplification serves two purposes: |
| 742 | 1. Reduce the number of edges in the graph, (thus the number of variables to the equation |
| 743 | solver is reduced, and the solver performs better). |
| 744 | 2. Be able to do distribution of sequences of edges more intelligently (esp. with sequential |
| 745 | anchors) |
| 746 | |
| 747 | It is essential that it must be possible to restore simplified anchors back to their "original" |
| 748 | form. This is done by restoreSimplifiedAnchor(). |
| 749 | |
| 750 | There are two types of simplification that can be done: |
| 751 | 1. Sequential simplification |
| 752 | Sequential simplification means that all sequences of anchors will be merged into one single |
| 753 | anchor. Only anhcors that points in the same direction will be merged. |
| 754 | 2. Parallel simplification |
| 755 | If a simplified sequential anchor is about to be inserted between two vertices in the graph |
| 756 | and there already exist an anchor between those two vertices, a parallel anchor will be |
| 757 | created that serves as a placeholder for the sequential anchor and the anchor that was |
| 758 | already between the two vertices. |
| 759 | |
| 760 | The process of simplification can be described as: |
| 761 | |
| 762 | 1. Simplify all sequences of anchors into one anchor. |
| 763 | If no further simplification was done, go to (3) |
| 764 | - If there already exist an anchor where the sequential anchor is supposed to be inserted, |
| 765 | take that anchor out of the graph |
| 766 | - Then create a parallel anchor that holds the sequential anchor and the anchor just taken |
| 767 | out of the graph. |
| 768 | 2. Go to (1) |
| 769 | 3. Done |
| 770 | |
| 771 | When creating the parallel anchors, the algorithm might identify unfeasible situations. In this |
| 772 | case the simplification process stops and returns \c false. Otherwise returns \c true. |
| 773 | */ |
| 774 | bool QGraphicsAnchorLayoutPrivate::simplifyGraph(Qt::Orientation orientation) |
| 775 | { |
| 776 | if (items.isEmpty()) |
| 777 | return true; |
| 778 | |
| 779 | #if defined(QT_DEBUG) && 0 |
| 780 | qDebug("Simplifying Graph for %s" , |
| 781 | orientation == Horizontal ? "Horizontal" : "Vertical" ); |
| 782 | |
| 783 | static int count = 0; |
| 784 | if (orientation == Horizontal) { |
| 785 | count++; |
| 786 | dumpGraph(QString::fromLatin1("%1-full" ).arg(count)); |
| 787 | } |
| 788 | #endif |
| 789 | |
| 790 | // Vertex simplification |
| 791 | if (!simplifyVertices(orientation)) { |
| 792 | restoreVertices(orientation); |
| 793 | return false; |
| 794 | } |
| 795 | |
| 796 | // Anchor simplification |
| 797 | bool dirty; |
| 798 | bool feasible = true; |
| 799 | do { |
| 800 | dirty = simplifyGraphIteration(orientation, feasible: &feasible); |
| 801 | } while (dirty && feasible); |
| 802 | |
| 803 | // Note that if we are not feasible, we fallback and make sure that the graph is fully restored |
| 804 | if (!feasible) { |
| 805 | restoreSimplifiedGraph(orientation); |
| 806 | restoreVertices(orientation); |
| 807 | return false; |
| 808 | } |
| 809 | |
| 810 | #if defined(QT_DEBUG) && 0 |
| 811 | dumpGraph(QString::fromLatin1("%1-simplified-%2" ).arg(count).arg( |
| 812 | QString::fromLatin1(orientation == Horizontal ? "Horizontal" : "Vertical" ))); |
| 813 | #endif |
| 814 | |
| 815 | return true; |
| 816 | } |
| 817 | |
| 818 | static AnchorVertex *replaceVertex_helper(AnchorData *data, AnchorVertex *oldV, AnchorVertex *newV) |
| 819 | { |
| 820 | AnchorVertex *other; |
| 821 | if (data->from == oldV) { |
| 822 | data->from = newV; |
| 823 | other = data->to; |
| 824 | } else { |
| 825 | data->to = newV; |
| 826 | other = data->from; |
| 827 | } |
| 828 | return other; |
| 829 | } |
| 830 | |
| 831 | bool QGraphicsAnchorLayoutPrivate::replaceVertex(Qt::Orientation orientation, AnchorVertex *oldV, |
| 832 | AnchorVertex *newV, const QList<AnchorData *> &edges) |
| 833 | { |
| 834 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 835 | bool feasible = true; |
| 836 | |
| 837 | for (int i = 0; i < edges.size(); ++i) { |
| 838 | AnchorData *ad = edges[i]; |
| 839 | AnchorVertex *otherV = replaceVertex_helper(data: ad, oldV, newV); |
| 840 | |
| 841 | #if defined(QT_DEBUG) |
| 842 | ad->name = QString::fromLatin1(ba: "%1 --to--> %2" ).arg(args: ad->from->toString(), args: ad->to->toString()); |
| 843 | #endif |
| 844 | |
| 845 | bool newFeasible; |
| 846 | AnchorData *newAnchor = addAnchorMaybeParallel(newAnchor: ad, feasible: &newFeasible); |
| 847 | feasible &= newFeasible; |
| 848 | |
| 849 | if (newAnchor != ad) { |
| 850 | // A parallel was created, we mark that in the list of anchors created by vertex |
| 851 | // simplification. This is needed because we want to restore them in a separate step |
| 852 | // from the restoration of anchor simplification. |
| 853 | anchorsFromSimplifiedVertices[orientation].append(t: newAnchor); |
| 854 | } |
| 855 | |
| 856 | g.takeEdge(first: oldV, second: otherV); |
| 857 | } |
| 858 | |
| 859 | return feasible; |
| 860 | } |
| 861 | |
| 862 | /*! |
| 863 | \internal |
| 864 | */ |
| 865 | bool QGraphicsAnchorLayoutPrivate::simplifyVertices(Qt::Orientation orientation) |
| 866 | { |
| 867 | Q_Q(QGraphicsAnchorLayout); |
| 868 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 869 | |
| 870 | // We'll walk through vertices |
| 871 | QStack<AnchorVertex *> stack; |
| 872 | stack.push(t: layoutFirstVertex[orientation]); |
| 873 | QSet<AnchorVertex *> visited; |
| 874 | |
| 875 | while (!stack.isEmpty()) { |
| 876 | AnchorVertex *v = stack.pop(); |
| 877 | visited.insert(value: v); |
| 878 | |
| 879 | // Each adjacent of 'v' is a possible vertex to be merged. So we traverse all of |
| 880 | // them. Since once a merge is made, we might add new adjacents, and we don't want to |
| 881 | // pass two times through one adjacent. The 'index' is used to track our position. |
| 882 | QList<AnchorVertex *> adjacents = g.adjacentVertices(vertex: v); |
| 883 | int index = 0; |
| 884 | |
| 885 | while (index < adjacents.size()) { |
| 886 | AnchorVertex *next = adjacents.at(i: index); |
| 887 | index++; |
| 888 | |
| 889 | AnchorData *data = g.edgeData(first: v, second: next); |
| 890 | const bool bothLayoutVertices = v->m_item == q && next->m_item == q; |
| 891 | const bool zeroSized = !data->minSize && !data->maxSize; |
| 892 | |
| 893 | if (!bothLayoutVertices && zeroSized) { |
| 894 | |
| 895 | // Create a new vertex pair, note that we keep a list of those vertices so we can |
| 896 | // easily process them when restoring the graph. |
| 897 | AnchorVertexPair *newV = new AnchorVertexPair(v, next, data); |
| 898 | simplifiedVertices[orientation].append(t: newV); |
| 899 | |
| 900 | // Collect the anchors of both vertices, the new vertex pair will take their place |
| 901 | // in those anchors |
| 902 | const QList<AnchorVertex *> &vAdjacents = g.adjacentVertices(vertex: v); |
| 903 | const QList<AnchorVertex *> &nextAdjacents = g.adjacentVertices(vertex: next); |
| 904 | |
| 905 | for (int i = 0; i < vAdjacents.size(); ++i) { |
| 906 | AnchorVertex *adjacent = vAdjacents.at(i); |
| 907 | if (adjacent != next) { |
| 908 | AnchorData *ad = g.edgeData(first: v, second: adjacent); |
| 909 | newV->m_firstAnchors.append(t: ad); |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | for (int i = 0; i < nextAdjacents.size(); ++i) { |
| 914 | AnchorVertex *adjacent = nextAdjacents.at(i); |
| 915 | if (adjacent != v) { |
| 916 | AnchorData *ad = g.edgeData(first: next, second: adjacent); |
| 917 | newV->m_secondAnchors.append(t: ad); |
| 918 | |
| 919 | // We'll also add new vertices to the adjacent list of the new 'v', to be |
| 920 | // created as a vertex pair and replace the current one. |
| 921 | if (!adjacents.contains(t: adjacent)) |
| 922 | adjacents.append(t: adjacent); |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | // ### merge this loop into the ones that calculated m_firstAnchors/m_secondAnchors? |
| 927 | // Make newV take the place of v and next |
| 928 | bool feasible = replaceVertex(orientation, oldV: v, newV, edges: newV->m_firstAnchors); |
| 929 | feasible &= replaceVertex(orientation, oldV: next, newV, edges: newV->m_secondAnchors); |
| 930 | |
| 931 | // Update the layout vertex information if one of the vertices is a layout vertex. |
| 932 | AnchorVertex *layoutVertex = nullptr; |
| 933 | if (v->m_item == q) |
| 934 | layoutVertex = v; |
| 935 | else if (next->m_item == q) |
| 936 | layoutVertex = next; |
| 937 | |
| 938 | if (layoutVertex) { |
| 939 | // Layout vertices always have m_item == q... |
| 940 | newV->m_item = q; |
| 941 | changeLayoutVertex(orientation, oldV: layoutVertex, newV); |
| 942 | } |
| 943 | |
| 944 | g.takeEdge(first: v, second: next); |
| 945 | |
| 946 | // If a non-feasibility is found, we leave early and cancel the simplification |
| 947 | if (!feasible) |
| 948 | return false; |
| 949 | |
| 950 | v = newV; |
| 951 | visited.insert(value: newV); |
| 952 | |
| 953 | } else if (!visited.contains(value: next) && !stack.contains(t: next)) { |
| 954 | // If the adjacent is not fit for merge and it wasn't visited by the outermost |
| 955 | // loop, we add it to the stack. |
| 956 | stack.push(t: next); |
| 957 | } |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | return true; |
| 962 | } |
| 963 | |
| 964 | /*! |
| 965 | \internal |
| 966 | |
| 967 | One iteration of the simplification algorithm. Returns \c true if another iteration is needed. |
| 968 | |
| 969 | The algorithm walks the graph in depth-first order, and only collects vertices that has two |
| 970 | edges connected to it. If the vertex does not have two edges or if it is a layout edge, it |
| 971 | will take all the previously collected vertices and try to create a simplified sequential |
| 972 | anchor representing all the previously collected vertices. Once the simplified anchor is |
| 973 | inserted, the collected list is cleared in order to find the next sequence to simplify. |
| 974 | |
| 975 | Note that there are some catches to this that are not covered by the above explanation, see |
| 976 | the function comments for more details. |
| 977 | */ |
| 978 | bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(Qt::Orientation orientation, |
| 979 | bool *feasible) |
| 980 | { |
| 981 | Q_Q(QGraphicsAnchorLayout); |
| 982 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 983 | |
| 984 | QSet<AnchorVertex *> visited; |
| 985 | QStack<std::pair<AnchorVertex *, AnchorVertex *> > stack; |
| 986 | stack.push(t: std::pair(static_cast<AnchorVertex *>(nullptr), layoutFirstVertex[orientation])); |
| 987 | QList<AnchorVertex *> candidates; |
| 988 | |
| 989 | // Walk depth-first, in the stack we store start of the candidate sequence (beforeSequence) |
| 990 | // and the vertex to be visited. |
| 991 | while (!stack.isEmpty()) { |
| 992 | std::pair<AnchorVertex *, AnchorVertex *> pair = stack.pop(); |
| 993 | AnchorVertex *beforeSequence = pair.first; |
| 994 | AnchorVertex *v = pair.second; |
| 995 | |
| 996 | // The basic idea is to determine whether we found an end of sequence, |
| 997 | // if that's the case, we stop adding vertices to the candidate list |
| 998 | // and do a simplification step. |
| 999 | // |
| 1000 | // A vertex can trigger an end of sequence if |
| 1001 | // (a) it is a layout vertex, we don't simplify away the layout vertices; |
| 1002 | // (b) it does not have exactly 2 adjacents; |
| 1003 | // (c) its next adjacent is already visited (a cycle in the graph). |
| 1004 | // (d) the next anchor is a center anchor. |
| 1005 | |
| 1006 | const QList<AnchorVertex *> &adjacents = g.adjacentVertices(vertex: v); |
| 1007 | const bool isLayoutVertex = v->m_item == q; |
| 1008 | AnchorVertex *afterSequence = v; |
| 1009 | bool endOfSequence = false; |
| 1010 | |
| 1011 | // |
| 1012 | // Identify the end cases. |
| 1013 | // |
| 1014 | |
| 1015 | // Identifies cases (a) and (b) |
| 1016 | endOfSequence = isLayoutVertex || adjacents.size() != 2; |
| 1017 | |
| 1018 | if (!endOfSequence) { |
| 1019 | // This is a tricky part. We peek at the next vertex to find out whether |
| 1020 | // |
| 1021 | // - we already visited the next vertex (c); |
| 1022 | // - the next anchor is a center (d). |
| 1023 | // |
| 1024 | // Those are needed to identify the remaining end of sequence cases. Note that unlike |
| 1025 | // (a) and (b), we preempt the end of sequence by looking into the next vertex. |
| 1026 | |
| 1027 | // Peek at the next vertex |
| 1028 | AnchorVertex *after; |
| 1029 | if (candidates.isEmpty()) |
| 1030 | after = (beforeSequence == adjacents.last() ? adjacents.first() : adjacents.last()); |
| 1031 | else |
| 1032 | after = (candidates.constLast() == adjacents.last() ? adjacents.first() : adjacents.last()); |
| 1033 | |
| 1034 | // ### At this point we assumed that candidates will not contain 'after', this may not hold |
| 1035 | // when simplifying FLOATing anchors. |
| 1036 | Q_ASSERT(!candidates.contains(after)); |
| 1037 | |
| 1038 | const AnchorData *data = g.edgeData(first: v, second: after); |
| 1039 | Q_ASSERT(data); |
| 1040 | const bool cycleFound = visited.contains(value: after); |
| 1041 | |
| 1042 | // Now cases (c) and (d)... |
| 1043 | endOfSequence = cycleFound || data->isCenterAnchor; |
| 1044 | |
| 1045 | if (!endOfSequence) { |
| 1046 | // If it's not an end of sequence, then the vertex didn't trigger neither of the |
| 1047 | // previously three cases, so it can be added to the candidates list. |
| 1048 | candidates.append(t: v); |
| 1049 | } else if (cycleFound && (beforeSequence != after)) { |
| 1050 | afterSequence = after; |
| 1051 | candidates.append(t: v); |
| 1052 | } |
| 1053 | } |
| 1054 | |
| 1055 | // |
| 1056 | // Add next non-visited vertices to the stack. |
| 1057 | // |
| 1058 | for (int i = 0; i < adjacents.size(); ++i) { |
| 1059 | AnchorVertex *next = adjacents.at(i); |
| 1060 | if (visited.contains(value: next)) |
| 1061 | continue; |
| 1062 | |
| 1063 | // If current vertex is an end of sequence, and it'll reset the candidates list. So |
| 1064 | // the next vertices will build candidates lists with the current vertex as 'before' |
| 1065 | // vertex. If it's not an end of sequence, we keep the original 'before' vertex, |
| 1066 | // since we are keeping the candidates list. |
| 1067 | if (endOfSequence) |
| 1068 | stack.push(t: std::pair(v, next)); |
| 1069 | else |
| 1070 | stack.push(t: std::pair(beforeSequence, next)); |
| 1071 | } |
| 1072 | |
| 1073 | visited.insert(value: v); |
| 1074 | |
| 1075 | if (!endOfSequence || candidates.isEmpty()) |
| 1076 | continue; |
| 1077 | |
| 1078 | // |
| 1079 | // Create a sequence for (beforeSequence, candidates, afterSequence). |
| 1080 | // |
| 1081 | |
| 1082 | // One restriction we have is to not simplify half of an anchor and let the other half |
| 1083 | // unsimplified. So we remove center edges before and after the sequence. |
| 1084 | const AnchorData *firstAnchor = g.edgeData(first: beforeSequence, second: candidates.constFirst()); |
| 1085 | if (firstAnchor->isCenterAnchor) { |
| 1086 | beforeSequence = candidates.constFirst(); |
| 1087 | candidates.remove(i: 0); |
| 1088 | |
| 1089 | // If there's not candidates to be simplified, leave. |
| 1090 | if (candidates.isEmpty()) |
| 1091 | continue; |
| 1092 | } |
| 1093 | |
| 1094 | const AnchorData *lastAnchor = g.edgeData(first: candidates.constLast(), second: afterSequence); |
| 1095 | if (lastAnchor->isCenterAnchor) { |
| 1096 | afterSequence = candidates.constLast(); |
| 1097 | candidates.remove(i: candidates.size() - 1); |
| 1098 | |
| 1099 | if (candidates.isEmpty()) |
| 1100 | continue; |
| 1101 | } |
| 1102 | |
| 1103 | // |
| 1104 | // Add the sequence to the graph. |
| 1105 | // |
| 1106 | |
| 1107 | AnchorData *sequence = createSequence(graph: &g, before: beforeSequence, vertices: candidates, after: afterSequence); |
| 1108 | |
| 1109 | // If 'beforeSequence' and 'afterSequence' already had an anchor between them, we'll |
| 1110 | // create a parallel anchor between the new sequence and the old anchor. |
| 1111 | bool newFeasible; |
| 1112 | AnchorData *newAnchor = addAnchorMaybeParallel(newAnchor: sequence, feasible: &newFeasible); |
| 1113 | |
| 1114 | if (!newFeasible) { |
| 1115 | *feasible = false; |
| 1116 | return false; |
| 1117 | } |
| 1118 | |
| 1119 | // When a new parallel anchor is create in the graph, we finish the iteration and return |
| 1120 | // true to indicate a new iteration is needed. This happens because a parallel anchor |
| 1121 | // changes the number of adjacents one vertex has, possibly opening up oportunities for |
| 1122 | // building candidate lists (when adjacents == 2). |
| 1123 | if (newAnchor != sequence) |
| 1124 | return true; |
| 1125 | |
| 1126 | // If there was no parallel simplification, we'll keep walking the graph. So we clear the |
| 1127 | // candidates list to start again. |
| 1128 | candidates.clear(); |
| 1129 | } |
| 1130 | |
| 1131 | return false; |
| 1132 | } |
| 1133 | |
| 1134 | void QGraphicsAnchorLayoutPrivate::restoreSimplifiedAnchor(AnchorData *edge) |
| 1135 | { |
| 1136 | const Qt::Orientation orientation = edge->isVertical ? Qt::Vertical : Qt::Horizontal; |
| 1137 | #if 0 |
| 1138 | static const char *anchortypes[] = {"Normal" , |
| 1139 | "Sequential" , |
| 1140 | "Parallel" }; |
| 1141 | qDebug("Restoring %s edge." , anchortypes[int(edge->type)]); |
| 1142 | #endif |
| 1143 | |
| 1144 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 1145 | |
| 1146 | if (edge->type == AnchorData::Normal) { |
| 1147 | g.createEdge(first: edge->from, second: edge->to, data: edge); |
| 1148 | |
| 1149 | } else if (edge->type == AnchorData::Sequential) { |
| 1150 | const auto *sequence = static_cast<SequentialAnchorData *>(edge); |
| 1151 | |
| 1152 | for (AnchorData *data : sequence->m_edges) |
| 1153 | restoreSimplifiedAnchor(edge: data); |
| 1154 | |
| 1155 | delete sequence; |
| 1156 | |
| 1157 | } else if (edge->type == AnchorData::Parallel) { |
| 1158 | |
| 1159 | // Skip parallel anchors that were created by vertex simplification, they will be processed |
| 1160 | // later, when restoring vertex simplification. |
| 1161 | // ### we could improve this check bit having a bit inside 'edge' |
| 1162 | if (anchorsFromSimplifiedVertices[orientation].contains(t: edge)) |
| 1163 | return; |
| 1164 | |
| 1165 | ParallelAnchorData* parallel = static_cast<ParallelAnchorData*>(edge); |
| 1166 | restoreSimplifiedConstraints(parallel); |
| 1167 | |
| 1168 | // ### Because of the way parallel anchors are created in the anchor simplification |
| 1169 | // algorithm, we know that one of these will be a sequence, so it'll be safe if the other |
| 1170 | // anchor create an edge between the same vertices as the parallel. |
| 1171 | Q_ASSERT(parallel->firstEdge->type == AnchorData::Sequential |
| 1172 | || parallel->secondEdge->type == AnchorData::Sequential); |
| 1173 | restoreSimplifiedAnchor(edge: parallel->firstEdge); |
| 1174 | restoreSimplifiedAnchor(edge: parallel->secondEdge); |
| 1175 | |
| 1176 | delete parallel; |
| 1177 | } |
| 1178 | } |
| 1179 | |
| 1180 | void QGraphicsAnchorLayoutPrivate::restoreSimplifiedConstraints(ParallelAnchorData *parallel) |
| 1181 | { |
| 1182 | if (!parallel->isCenterAnchor) |
| 1183 | return; |
| 1184 | |
| 1185 | for (int i = 0; i < parallel->m_firstConstraints.size(); ++i) { |
| 1186 | QSimplexConstraint *c = parallel->m_firstConstraints.at(i); |
| 1187 | qreal v = c->variables[parallel]; |
| 1188 | c->variables.remove(key: parallel); |
| 1189 | c->variables.insert(key: parallel->firstEdge, value: v); |
| 1190 | } |
| 1191 | |
| 1192 | // When restoring, we might have to revert constraints back. See comments on |
| 1193 | // addAnchorMaybeParallel(). |
| 1194 | const bool needsReverse = !parallel->secondForward(); |
| 1195 | |
| 1196 | for (int i = 0; i < parallel->m_secondConstraints.size(); ++i) { |
| 1197 | QSimplexConstraint *c = parallel->m_secondConstraints.at(i); |
| 1198 | qreal v = c->variables[parallel]; |
| 1199 | if (needsReverse) |
| 1200 | v *= -1; |
| 1201 | c->variables.remove(key: parallel); |
| 1202 | c->variables.insert(key: parallel->secondEdge, value: v); |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | void QGraphicsAnchorLayoutPrivate::restoreSimplifiedGraph(Qt::Orientation orientation) |
| 1207 | { |
| 1208 | #if 0 |
| 1209 | qDebug("Restoring Simplified Graph for %s" , |
| 1210 | orientation == Horizontal ? "Horizontal" : "Vertical" ); |
| 1211 | #endif |
| 1212 | |
| 1213 | // Restore anchor simplification |
| 1214 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 1215 | QList<std::pair<AnchorVertex *, AnchorVertex *>> connections = g.connections(); |
| 1216 | for (int i = 0; i < connections.size(); ++i) { |
| 1217 | AnchorVertex *v1 = connections.at(i).first; |
| 1218 | AnchorVertex *v2 = connections.at(i).second; |
| 1219 | AnchorData *edge = g.edgeData(first: v1, second: v2); |
| 1220 | |
| 1221 | // We restore only sequential anchors and parallels that were not created by |
| 1222 | // vertex simplification. |
| 1223 | if (edge->type == AnchorData::Sequential |
| 1224 | || (edge->type == AnchorData::Parallel && |
| 1225 | !anchorsFromSimplifiedVertices[orientation].contains(t: edge))) { |
| 1226 | |
| 1227 | g.takeEdge(first: v1, second: v2); |
| 1228 | restoreSimplifiedAnchor(edge); |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | restoreVertices(orientation); |
| 1233 | } |
| 1234 | |
| 1235 | void QGraphicsAnchorLayoutPrivate::restoreVertices(Qt::Orientation orientation) |
| 1236 | { |
| 1237 | Q_Q(QGraphicsAnchorLayout); |
| 1238 | |
| 1239 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 1240 | QList<AnchorVertexPair *> &toRestore = simplifiedVertices[orientation]; |
| 1241 | |
| 1242 | // Since we keep a list of parallel anchors and vertices that were created during vertex |
| 1243 | // simplification, we can now iterate on those lists instead of traversing the graph |
| 1244 | // recursively. |
| 1245 | |
| 1246 | // First, restore the constraints changed when we created parallel anchors. Note that this |
| 1247 | // works at this point because the constraints doesn't depend on vertex information and at |
| 1248 | // this point it's always safe to identify whether the second child is forward or backwards. |
| 1249 | // In the next step, we'll change the anchors vertices so that would not be possible anymore. |
| 1250 | QList<AnchorData *> ¶llelAnchors = anchorsFromSimplifiedVertices[orientation]; |
| 1251 | |
| 1252 | for (int i = parallelAnchors.size() - 1; i >= 0; --i) { |
| 1253 | ParallelAnchorData *parallel = static_cast<ParallelAnchorData *>(parallelAnchors.at(i)); |
| 1254 | restoreSimplifiedConstraints(parallel); |
| 1255 | } |
| 1256 | |
| 1257 | // Then, we will restore the vertices in the inverse order of creation, this way we ensure that |
| 1258 | // the vertex being restored was not wrapped by another simplification. |
| 1259 | for (int i = toRestore.size() - 1; i >= 0; --i) { |
| 1260 | AnchorVertexPair *pair = toRestore.at(i); |
| 1261 | QList<AnchorVertex *> adjacents = g.adjacentVertices(vertex: pair); |
| 1262 | |
| 1263 | // Restore the removed edge, this will also restore both vertices 'first' and 'second' to |
| 1264 | // the graph structure. |
| 1265 | AnchorVertex *first = pair->m_first; |
| 1266 | AnchorVertex *second = pair->m_second; |
| 1267 | g.createEdge(first, second, data: pair->m_removedAnchor); |
| 1268 | |
| 1269 | // Restore the anchors for the first child vertex |
| 1270 | for (int j = 0; j < pair->m_firstAnchors.size(); ++j) { |
| 1271 | AnchorData *ad = pair->m_firstAnchors.at(i: j); |
| 1272 | Q_ASSERT(ad->from == pair || ad->to == pair); |
| 1273 | |
| 1274 | replaceVertex_helper(data: ad, oldV: pair, newV: first); |
| 1275 | g.createEdge(first: ad->from, second: ad->to, data: ad); |
| 1276 | } |
| 1277 | |
| 1278 | // Restore the anchors for the second child vertex |
| 1279 | for (int j = 0; j < pair->m_secondAnchors.size(); ++j) { |
| 1280 | AnchorData *ad = pair->m_secondAnchors.at(i: j); |
| 1281 | Q_ASSERT(ad->from == pair || ad->to == pair); |
| 1282 | |
| 1283 | replaceVertex_helper(data: ad, oldV: pair, newV: second); |
| 1284 | g.createEdge(first: ad->from, second: ad->to, data: ad); |
| 1285 | } |
| 1286 | |
| 1287 | for (int j = 0; j < adjacents.size(); ++j) { |
| 1288 | g.takeEdge(first: pair, second: adjacents.at(i: j)); |
| 1289 | } |
| 1290 | |
| 1291 | // The pair simplified a layout vertex, so place back the correct vertex in the variable |
| 1292 | // that track layout vertices |
| 1293 | if (pair->m_item == q) { |
| 1294 | AnchorVertex *layoutVertex = first->m_item == q ? first : second; |
| 1295 | Q_ASSERT(layoutVertex->m_item == q); |
| 1296 | changeLayoutVertex(orientation, oldV: pair, newV: layoutVertex); |
| 1297 | } |
| 1298 | |
| 1299 | delete pair; |
| 1300 | } |
| 1301 | qDeleteAll(c: parallelAnchors); |
| 1302 | parallelAnchors.clear(); |
| 1303 | toRestore.clear(); |
| 1304 | } |
| 1305 | |
| 1306 | Qt::Orientation |
| 1307 | QGraphicsAnchorLayoutPrivate::edgeOrientation(Qt::AnchorPoint edge) noexcept |
| 1308 | { |
| 1309 | return edge > Qt::AnchorRight ? Qt::Vertical : Qt::Horizontal; |
| 1310 | } |
| 1311 | |
| 1312 | /*! |
| 1313 | \internal |
| 1314 | |
| 1315 | Create internal anchors to connect the layout edges (Left to Right and |
| 1316 | Top to Bottom). |
| 1317 | |
| 1318 | These anchors doesn't have size restrictions, that will be enforced by |
| 1319 | other anchors and items in the layout. |
| 1320 | */ |
| 1321 | void QGraphicsAnchorLayoutPrivate::createLayoutEdges() |
| 1322 | { |
| 1323 | Q_Q(QGraphicsAnchorLayout); |
| 1324 | QGraphicsLayoutItem *layout = q; |
| 1325 | |
| 1326 | // Horizontal |
| 1327 | AnchorData *data = new AnchorData; |
| 1328 | addAnchor_helper(firstItem: layout, firstEdge: Qt::AnchorLeft, secondItem: layout, |
| 1329 | secondEdge: Qt::AnchorRight, data); |
| 1330 | data->maxSize = QWIDGETSIZE_MAX; |
| 1331 | |
| 1332 | // Save a reference to layout vertices |
| 1333 | layoutFirstVertex[Qt::Horizontal] = internalVertex(item: layout, edge: Qt::AnchorLeft); |
| 1334 | layoutCentralVertex[Qt::Horizontal] = nullptr; |
| 1335 | layoutLastVertex[Qt::Horizontal] = internalVertex(item: layout, edge: Qt::AnchorRight); |
| 1336 | |
| 1337 | // Vertical |
| 1338 | data = new AnchorData; |
| 1339 | addAnchor_helper(firstItem: layout, firstEdge: Qt::AnchorTop, secondItem: layout, |
| 1340 | secondEdge: Qt::AnchorBottom, data); |
| 1341 | data->maxSize = QWIDGETSIZE_MAX; |
| 1342 | |
| 1343 | // Save a reference to layout vertices |
| 1344 | layoutFirstVertex[Qt::Vertical] = internalVertex(item: layout, edge: Qt::AnchorTop); |
| 1345 | layoutCentralVertex[Qt::Vertical] = nullptr; |
| 1346 | layoutLastVertex[Qt::Vertical] = internalVertex(item: layout, edge: Qt::AnchorBottom); |
| 1347 | } |
| 1348 | |
| 1349 | void QGraphicsAnchorLayoutPrivate::deleteLayoutEdges() |
| 1350 | { |
| 1351 | Q_Q(QGraphicsAnchorLayout); |
| 1352 | |
| 1353 | Q_ASSERT(!internalVertex(q, Qt::AnchorHorizontalCenter)); |
| 1354 | Q_ASSERT(!internalVertex(q, Qt::AnchorVerticalCenter)); |
| 1355 | |
| 1356 | removeAnchor_helper(v1: internalVertex(item: q, edge: Qt::AnchorLeft), |
| 1357 | v2: internalVertex(item: q, edge: Qt::AnchorRight)); |
| 1358 | removeAnchor_helper(v1: internalVertex(item: q, edge: Qt::AnchorTop), |
| 1359 | v2: internalVertex(item: q, edge: Qt::AnchorBottom)); |
| 1360 | } |
| 1361 | |
| 1362 | void QGraphicsAnchorLayoutPrivate::createItemEdges(QGraphicsLayoutItem *item) |
| 1363 | { |
| 1364 | items.append(t: item); |
| 1365 | |
| 1366 | // Create horizontal and vertical internal anchors for the item and |
| 1367 | // refresh its size hint / policy values. |
| 1368 | AnchorData *data = new AnchorData; |
| 1369 | addAnchor_helper(firstItem: item, firstEdge: Qt::AnchorLeft, secondItem: item, secondEdge: Qt::AnchorRight, data); |
| 1370 | data->refreshSizeHints(); |
| 1371 | |
| 1372 | data = new AnchorData; |
| 1373 | addAnchor_helper(firstItem: item, firstEdge: Qt::AnchorTop, secondItem: item, secondEdge: Qt::AnchorBottom, data); |
| 1374 | data->refreshSizeHints(); |
| 1375 | } |
| 1376 | |
| 1377 | /*! |
| 1378 | \internal |
| 1379 | |
| 1380 | By default, each item in the layout is represented internally as |
| 1381 | a single anchor in each direction. For instance, from Left to Right. |
| 1382 | |
| 1383 | However, to support anchorage of items to the center of items, we |
| 1384 | must split this internal anchor into two half-anchors. From Left |
| 1385 | to Center and then from Center to Right, with the restriction that |
| 1386 | these anchors must have the same time at all times. |
| 1387 | */ |
| 1388 | void QGraphicsAnchorLayoutPrivate::createCenterAnchors( |
| 1389 | QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge) |
| 1390 | { |
| 1391 | Q_Q(QGraphicsAnchorLayout); |
| 1392 | |
| 1393 | Qt::Orientation orientation; |
| 1394 | switch (centerEdge) { |
| 1395 | case Qt::AnchorHorizontalCenter: |
| 1396 | orientation = Qt::Horizontal; |
| 1397 | break; |
| 1398 | case Qt::AnchorVerticalCenter: |
| 1399 | orientation = Qt::Vertical; |
| 1400 | break; |
| 1401 | default: |
| 1402 | // Don't create center edges unless needed |
| 1403 | return; |
| 1404 | } |
| 1405 | |
| 1406 | // Check if vertex already exists |
| 1407 | if (internalVertex(item, edge: centerEdge)) |
| 1408 | return; |
| 1409 | |
| 1410 | // Orientation code |
| 1411 | Qt::AnchorPoint firstEdge; |
| 1412 | Qt::AnchorPoint lastEdge; |
| 1413 | |
| 1414 | if (orientation == Qt::Horizontal) { |
| 1415 | firstEdge = Qt::AnchorLeft; |
| 1416 | lastEdge = Qt::AnchorRight; |
| 1417 | } else { |
| 1418 | firstEdge = Qt::AnchorTop; |
| 1419 | lastEdge = Qt::AnchorBottom; |
| 1420 | } |
| 1421 | |
| 1422 | AnchorVertex *first = internalVertex(item, edge: firstEdge); |
| 1423 | AnchorVertex *last = internalVertex(item, edge: lastEdge); |
| 1424 | Q_ASSERT(first && last); |
| 1425 | |
| 1426 | // Create new anchors |
| 1427 | QSimplexConstraint *c = new QSimplexConstraint; |
| 1428 | |
| 1429 | AnchorData *data = new AnchorData; |
| 1430 | c->variables.insert(key: data, value: 1.0); |
| 1431 | addAnchor_helper(firstItem: item, firstEdge, secondItem: item, secondEdge: centerEdge, data); |
| 1432 | data->isCenterAnchor = true; |
| 1433 | data->dependency = AnchorData::Master; |
| 1434 | data->refreshSizeHints(); |
| 1435 | |
| 1436 | data = new AnchorData; |
| 1437 | c->variables.insert(key: data, value: -1.0); |
| 1438 | addAnchor_helper(firstItem: item, firstEdge: centerEdge, secondItem: item, secondEdge: lastEdge, data); |
| 1439 | data->isCenterAnchor = true; |
| 1440 | data->dependency = AnchorData::Slave; |
| 1441 | data->refreshSizeHints(); |
| 1442 | |
| 1443 | itemCenterConstraints[orientation].append(t: c); |
| 1444 | |
| 1445 | // Remove old one |
| 1446 | removeAnchor_helper(v1: first, v2: last); |
| 1447 | |
| 1448 | if (item == q) { |
| 1449 | layoutCentralVertex[orientation] = internalVertex(item: q, edge: centerEdge); |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | void QGraphicsAnchorLayoutPrivate::removeCenterAnchors( |
| 1454 | QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge, |
| 1455 | bool substitute) |
| 1456 | { |
| 1457 | Q_Q(QGraphicsAnchorLayout); |
| 1458 | |
| 1459 | Qt::Orientation orientation; |
| 1460 | switch (centerEdge) { |
| 1461 | case Qt::AnchorHorizontalCenter: |
| 1462 | orientation = Qt::Horizontal; |
| 1463 | break; |
| 1464 | case Qt::AnchorVerticalCenter: |
| 1465 | orientation = Qt::Vertical; |
| 1466 | break; |
| 1467 | default: |
| 1468 | // Don't remove edges that not the center ones |
| 1469 | return; |
| 1470 | } |
| 1471 | |
| 1472 | // Orientation code |
| 1473 | Qt::AnchorPoint firstEdge; |
| 1474 | Qt::AnchorPoint lastEdge; |
| 1475 | |
| 1476 | if (orientation == Qt::Horizontal) { |
| 1477 | firstEdge = Qt::AnchorLeft; |
| 1478 | lastEdge = Qt::AnchorRight; |
| 1479 | } else { |
| 1480 | firstEdge = Qt::AnchorTop; |
| 1481 | lastEdge = Qt::AnchorBottom; |
| 1482 | } |
| 1483 | |
| 1484 | AnchorVertex *center = internalVertex(item, edge: centerEdge); |
| 1485 | if (!center) |
| 1486 | return; |
| 1487 | AnchorVertex *first = internalVertex(item, edge: firstEdge); |
| 1488 | |
| 1489 | Q_ASSERT(first); |
| 1490 | Q_ASSERT(center); |
| 1491 | |
| 1492 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 1493 | |
| 1494 | |
| 1495 | AnchorData *oldData = g.edgeData(first, second: center); |
| 1496 | // Remove center constraint |
| 1497 | for (int i = itemCenterConstraints[orientation].size() - 1; i >= 0; --i) { |
| 1498 | if (itemCenterConstraints[orientation].at(i)->variables.contains(key: oldData)) { |
| 1499 | delete itemCenterConstraints[orientation].takeAt(i); |
| 1500 | break; |
| 1501 | } |
| 1502 | } |
| 1503 | |
| 1504 | if (substitute) { |
| 1505 | // Create the new anchor that should substitute the left-center-right anchors. |
| 1506 | AnchorData *data = new AnchorData; |
| 1507 | addAnchor_helper(firstItem: item, firstEdge, secondItem: item, secondEdge: lastEdge, data); |
| 1508 | data->refreshSizeHints(); |
| 1509 | |
| 1510 | // Remove old anchors |
| 1511 | removeAnchor_helper(v1: first, v2: center); |
| 1512 | removeAnchor_helper(v1: center, v2: internalVertex(item, edge: lastEdge)); |
| 1513 | |
| 1514 | } else { |
| 1515 | // this is only called from removeAnchors() |
| 1516 | // first, remove all non-internal anchors |
| 1517 | QList<AnchorVertex*> adjacents = g.adjacentVertices(vertex: center); |
| 1518 | for (int i = 0; i < adjacents.size(); ++i) { |
| 1519 | AnchorVertex *v = adjacents.at(i); |
| 1520 | if (v->m_item != item) { |
| 1521 | removeAnchor_helper(v1: center, v2: internalVertex(item: v->m_item, edge: v->m_edge)); |
| 1522 | } |
| 1523 | } |
| 1524 | // when all non-internal anchors is removed it will automatically merge the |
| 1525 | // center anchor into a left-right (or top-bottom) anchor. We must also delete that. |
| 1526 | // by this time, the center vertex is deleted and merged into a non-centered internal anchor |
| 1527 | removeAnchor_helper(v1: first, v2: internalVertex(item, edge: lastEdge)); |
| 1528 | } |
| 1529 | |
| 1530 | if (item == q) { |
| 1531 | layoutCentralVertex[orientation] = nullptr; |
| 1532 | } |
| 1533 | } |
| 1534 | |
| 1535 | |
| 1536 | void QGraphicsAnchorLayoutPrivate::removeCenterConstraints(QGraphicsLayoutItem *item, |
| 1537 | Qt::Orientation orientation) |
| 1538 | { |
| 1539 | // Remove the item center constraints associated to this item |
| 1540 | // ### This is a temporary solution. We should probably use a better |
| 1541 | // data structure to hold items and/or their associated constraints |
| 1542 | // so that we can remove those easily |
| 1543 | |
| 1544 | AnchorVertex *first = internalVertex(item, edge: orientation == Qt::Horizontal ? |
| 1545 | Qt::AnchorLeft : |
| 1546 | Qt::AnchorTop); |
| 1547 | AnchorVertex *center = internalVertex(item, edge: orientation == Qt::Horizontal ? |
| 1548 | Qt::AnchorHorizontalCenter : |
| 1549 | Qt::AnchorVerticalCenter); |
| 1550 | |
| 1551 | // Skip if no center constraints exist |
| 1552 | if (!center) |
| 1553 | return; |
| 1554 | |
| 1555 | Q_ASSERT(first); |
| 1556 | AnchorData *internalAnchor = graph[orientation].edgeData(first, second: center); |
| 1557 | |
| 1558 | // Look for our anchor in all item center constraints, then remove it |
| 1559 | for (int i = 0; i < itemCenterConstraints[orientation].size(); ++i) { |
| 1560 | if (itemCenterConstraints[orientation].at(i)->variables.contains(key: internalAnchor)) { |
| 1561 | delete itemCenterConstraints[orientation].takeAt(i); |
| 1562 | break; |
| 1563 | } |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | /*! |
| 1568 | * \internal |
| 1569 | * Implements the high level "addAnchor" feature. Called by the public API |
| 1570 | * addAnchor method. |
| 1571 | * |
| 1572 | * The optional \a spacing argument defines the size of the anchor. If not provided, |
| 1573 | * the anchor size is either 0 or not-set, depending on type of anchor created (see |
| 1574 | * matrix below). |
| 1575 | * |
| 1576 | * All anchors that remain with size not-set will assume the standard spacing, |
| 1577 | * set either by the layout style or through the "setSpacing" layout API. |
| 1578 | */ |
| 1579 | QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::addAnchor(QGraphicsLayoutItem *firstItem, |
| 1580 | Qt::AnchorPoint firstEdge, |
| 1581 | QGraphicsLayoutItem *secondItem, |
| 1582 | Qt::AnchorPoint secondEdge, |
| 1583 | qreal *spacing) |
| 1584 | { |
| 1585 | Q_Q(QGraphicsAnchorLayout); |
| 1586 | if ((firstItem == nullptr) || (secondItem == nullptr)) { |
| 1587 | qWarning(msg: "QGraphicsAnchorLayout::addAnchor(): " |
| 1588 | "Cannot anchor NULL items" ); |
| 1589 | return nullptr; |
| 1590 | } |
| 1591 | |
| 1592 | if (firstItem == secondItem) { |
| 1593 | qWarning(msg: "QGraphicsAnchorLayout::addAnchor(): " |
| 1594 | "Cannot anchor the item to itself" ); |
| 1595 | return nullptr; |
| 1596 | } |
| 1597 | |
| 1598 | if (edgeOrientation(edge: secondEdge) != edgeOrientation(edge: firstEdge)) { |
| 1599 | qWarning(msg: "QGraphicsAnchorLayout::addAnchor(): " |
| 1600 | "Cannot anchor edges of different orientations" ); |
| 1601 | return nullptr; |
| 1602 | } |
| 1603 | |
| 1604 | const QGraphicsLayoutItem *parentWidget = q->parentLayoutItem(); |
| 1605 | if (firstItem == parentWidget || secondItem == parentWidget) { |
| 1606 | qWarning(msg: "QGraphicsAnchorLayout::addAnchor(): " |
| 1607 | "You cannot add the parent of the layout to the layout." ); |
| 1608 | return nullptr; |
| 1609 | } |
| 1610 | |
| 1611 | // In QGraphicsAnchorLayout, items are represented in its internal |
| 1612 | // graph as four anchors that connect: |
| 1613 | // - Left -> HCenter |
| 1614 | // - HCenter-> Right |
| 1615 | // - Top -> VCenter |
| 1616 | // - VCenter -> Bottom |
| 1617 | |
| 1618 | // Ensure that the internal anchors have been created for both items. |
| 1619 | if (firstItem != q && !items.contains(t: firstItem)) { |
| 1620 | createItemEdges(item: firstItem); |
| 1621 | addChildLayoutItem(item: firstItem); |
| 1622 | } |
| 1623 | if (secondItem != q && !items.contains(t: secondItem)) { |
| 1624 | createItemEdges(item: secondItem); |
| 1625 | addChildLayoutItem(item: secondItem); |
| 1626 | } |
| 1627 | |
| 1628 | // Create center edges if needed |
| 1629 | createCenterAnchors(item: firstItem, centerEdge: firstEdge); |
| 1630 | createCenterAnchors(item: secondItem, centerEdge: secondEdge); |
| 1631 | |
| 1632 | // Use heuristics to find out what the user meant with this anchor. |
| 1633 | correctEdgeDirection(firstItem, firstEdge, secondItem, secondEdge); |
| 1634 | |
| 1635 | AnchorData *data = new AnchorData; |
| 1636 | QGraphicsAnchor *graphicsAnchor = acquireGraphicsAnchor(data); |
| 1637 | |
| 1638 | addAnchor_helper(firstItem, firstEdge, secondItem, secondEdge, data); |
| 1639 | |
| 1640 | if (spacing) { |
| 1641 | graphicsAnchor->setSpacing(*spacing); |
| 1642 | } else { |
| 1643 | // If firstItem or secondItem is the layout itself, the spacing will default to 0. |
| 1644 | // Otherwise, the following matrix is used (questionmark means that the spacing |
| 1645 | // is queried from the style): |
| 1646 | // from |
| 1647 | // to Left HCenter Right |
| 1648 | // Left 0 0 ? |
| 1649 | // HCenter 0 0 0 |
| 1650 | // Right ? 0 0 |
| 1651 | if (firstItem == q |
| 1652 | || secondItem == q |
| 1653 | || pickEdge(edge: firstEdge, orientation: Qt::Horizontal) == Qt::AnchorHorizontalCenter |
| 1654 | || oppositeEdge(edge: firstEdge) != secondEdge) { |
| 1655 | graphicsAnchor->setSpacing(0); |
| 1656 | } else { |
| 1657 | graphicsAnchor->unsetSpacing(); |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | return graphicsAnchor; |
| 1662 | } |
| 1663 | |
| 1664 | /* |
| 1665 | \internal |
| 1666 | |
| 1667 | This method adds an AnchorData to the internal graph. It is responsible for doing |
| 1668 | the boilerplate part of such task. |
| 1669 | |
| 1670 | If another AnchorData exists between the mentioned vertices, it is deleted and |
| 1671 | the new one is inserted. |
| 1672 | */ |
| 1673 | void QGraphicsAnchorLayoutPrivate::addAnchor_helper(QGraphicsLayoutItem *firstItem, |
| 1674 | Qt::AnchorPoint firstEdge, |
| 1675 | QGraphicsLayoutItem *secondItem, |
| 1676 | Qt::AnchorPoint secondEdge, |
| 1677 | AnchorData *data) |
| 1678 | { |
| 1679 | Q_Q(QGraphicsAnchorLayout); |
| 1680 | |
| 1681 | const Qt::Orientation orientation = edgeOrientation(edge: firstEdge); |
| 1682 | |
| 1683 | // Create or increase the reference count for the related vertices. |
| 1684 | AnchorVertex *v1 = addInternalVertex(item: firstItem, edge: firstEdge); |
| 1685 | AnchorVertex *v2 = addInternalVertex(item: secondItem, edge: secondEdge); |
| 1686 | |
| 1687 | // Remove previous anchor |
| 1688 | if (graph[orientation].edgeData(first: v1, second: v2)) { |
| 1689 | removeAnchor_helper(v1, v2); |
| 1690 | } |
| 1691 | |
| 1692 | // If its an internal anchor, set the associated item |
| 1693 | if (firstItem == secondItem) |
| 1694 | data->item = firstItem; |
| 1695 | |
| 1696 | data->isVertical = orientation == Qt::Vertical; |
| 1697 | |
| 1698 | // Create a bi-directional edge in the sense it can be transversed both |
| 1699 | // from v1 or v2. "data" however is shared between the two references |
| 1700 | // so we still know that the anchor direction is from 1 to 2. |
| 1701 | data->from = v1; |
| 1702 | data->to = v2; |
| 1703 | #ifdef QT_DEBUG |
| 1704 | data->name = QString::fromLatin1(ba: "%1 --to--> %2" ).arg(args: v1->toString(), args: v2->toString()); |
| 1705 | #endif |
| 1706 | // ### bit to track internal anchors, since inside AnchorData methods |
| 1707 | // we don't have access to the 'q' pointer. |
| 1708 | data->isLayoutAnchor = (data->item == q); |
| 1709 | |
| 1710 | graph[orientation].createEdge(first: v1, second: v2, data); |
| 1711 | } |
| 1712 | |
| 1713 | QGraphicsAnchor *QGraphicsAnchorLayoutPrivate::getAnchor(QGraphicsLayoutItem *firstItem, |
| 1714 | Qt::AnchorPoint firstEdge, |
| 1715 | QGraphicsLayoutItem *secondItem, |
| 1716 | Qt::AnchorPoint secondEdge) |
| 1717 | { |
| 1718 | // Do not expose internal anchors |
| 1719 | if (firstItem == secondItem) |
| 1720 | return nullptr; |
| 1721 | |
| 1722 | const Qt::Orientation orientation = edgeOrientation(edge: firstEdge); |
| 1723 | AnchorVertex *v1 = internalVertex(item: firstItem, edge: firstEdge); |
| 1724 | AnchorVertex *v2 = internalVertex(item: secondItem, edge: secondEdge); |
| 1725 | |
| 1726 | QGraphicsAnchor *graphicsAnchor = nullptr; |
| 1727 | |
| 1728 | AnchorData *data = graph[orientation].edgeData(first: v1, second: v2); |
| 1729 | if (data) { |
| 1730 | // We could use "acquireGraphicsAnchor" here, but to avoid a regression where |
| 1731 | // an internal anchor was wrongly exposed, I want to ensure no new |
| 1732 | // QGraphicsAnchor instances are created by this call. |
| 1733 | // This assumption must hold because anchors are either user-created (and already |
| 1734 | // have their public object created), or they are internal (and must not reach |
| 1735 | // this point). |
| 1736 | Q_ASSERT(data->graphicsAnchor); |
| 1737 | graphicsAnchor = data->graphicsAnchor; |
| 1738 | } |
| 1739 | return graphicsAnchor; |
| 1740 | } |
| 1741 | |
| 1742 | /*! |
| 1743 | * \internal |
| 1744 | * |
| 1745 | * Implements the high level "removeAnchor" feature. Called by |
| 1746 | * the QAnchorData destructor. |
| 1747 | */ |
| 1748 | void QGraphicsAnchorLayoutPrivate::removeAnchor(AnchorVertex *firstVertex, |
| 1749 | AnchorVertex *secondVertex) |
| 1750 | { |
| 1751 | Q_Q(QGraphicsAnchorLayout); |
| 1752 | |
| 1753 | // Save references to items while it's safe to assume the vertices exist |
| 1754 | QGraphicsLayoutItem *firstItem = firstVertex->m_item; |
| 1755 | QGraphicsLayoutItem *secondItem = secondVertex->m_item; |
| 1756 | |
| 1757 | // Delete the anchor (may trigger deletion of center vertices) |
| 1758 | removeAnchor_helper(v1: firstVertex, v2: secondVertex); |
| 1759 | |
| 1760 | // Ensure no dangling pointer is left behind |
| 1761 | firstVertex = secondVertex = nullptr; |
| 1762 | |
| 1763 | // Checking if the item stays in the layout or not |
| 1764 | bool keepFirstItem = false; |
| 1765 | bool keepSecondItem = false; |
| 1766 | |
| 1767 | std::pair<AnchorVertex *, int> v; |
| 1768 | int refcount = -1; |
| 1769 | |
| 1770 | if (firstItem != q) { |
| 1771 | for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) { |
| 1772 | v = m_vertexList.value(key: std::pair(firstItem, static_cast<Qt::AnchorPoint>(i))); |
| 1773 | if (v.first) { |
| 1774 | if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter) |
| 1775 | refcount = 2; |
| 1776 | else |
| 1777 | refcount = 1; |
| 1778 | |
| 1779 | if (v.second > refcount) { |
| 1780 | keepFirstItem = true; |
| 1781 | break; |
| 1782 | } |
| 1783 | } |
| 1784 | } |
| 1785 | } else |
| 1786 | keepFirstItem = true; |
| 1787 | |
| 1788 | if (secondItem != q) { |
| 1789 | for (int i = Qt::AnchorLeft; i <= Qt::AnchorBottom; ++i) { |
| 1790 | v = m_vertexList.value(key: std::pair(secondItem, static_cast<Qt::AnchorPoint>(i))); |
| 1791 | if (v.first) { |
| 1792 | if (i == Qt::AnchorHorizontalCenter || i == Qt::AnchorVerticalCenter) |
| 1793 | refcount = 2; |
| 1794 | else |
| 1795 | refcount = 1; |
| 1796 | |
| 1797 | if (v.second > refcount) { |
| 1798 | keepSecondItem = true; |
| 1799 | break; |
| 1800 | } |
| 1801 | } |
| 1802 | } |
| 1803 | } else |
| 1804 | keepSecondItem = true; |
| 1805 | |
| 1806 | if (!keepFirstItem) |
| 1807 | q->removeAt(index: items.indexOf(t: firstItem)); |
| 1808 | |
| 1809 | if (!keepSecondItem) |
| 1810 | q->removeAt(index: items.indexOf(t: secondItem)); |
| 1811 | |
| 1812 | // Removing anchors invalidates the layout |
| 1813 | q->invalidate(); |
| 1814 | } |
| 1815 | |
| 1816 | /* |
| 1817 | \internal |
| 1818 | |
| 1819 | Implements the low level "removeAnchor" feature. Called by |
| 1820 | private methods. |
| 1821 | */ |
| 1822 | void QGraphicsAnchorLayoutPrivate::removeAnchor_helper(AnchorVertex *v1, AnchorVertex *v2) |
| 1823 | { |
| 1824 | Q_ASSERT(v1 && v2); |
| 1825 | |
| 1826 | // Remove edge from graph |
| 1827 | const Qt::Orientation o = edgeOrientation(edge: v1->m_edge); |
| 1828 | graph[o].removeEdge(first: v1, second: v2); |
| 1829 | |
| 1830 | // Decrease vertices reference count (may trigger a deletion) |
| 1831 | removeInternalVertex(item: v1->m_item, edge: v1->m_edge); |
| 1832 | removeInternalVertex(item: v2->m_item, edge: v2->m_edge); |
| 1833 | } |
| 1834 | |
| 1835 | AnchorVertex *QGraphicsAnchorLayoutPrivate::addInternalVertex(QGraphicsLayoutItem *item, |
| 1836 | Qt::AnchorPoint edge) |
| 1837 | { |
| 1838 | std::pair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge); |
| 1839 | std::pair<AnchorVertex *, int> v = m_vertexList.value(key: pair); |
| 1840 | |
| 1841 | if (!v.first) { |
| 1842 | Q_ASSERT(v.second == 0); |
| 1843 | v.first = new AnchorVertex(item, edge); |
| 1844 | } |
| 1845 | v.second++; |
| 1846 | m_vertexList.insert(key: pair, value: v); |
| 1847 | return v.first; |
| 1848 | } |
| 1849 | |
| 1850 | /** |
| 1851 | * \internal |
| 1852 | * |
| 1853 | * returns the AnchorVertex that was dereferenced, also when it was removed. |
| 1854 | * returns 0 if it did not exist. |
| 1855 | */ |
| 1856 | void QGraphicsAnchorLayoutPrivate::removeInternalVertex(QGraphicsLayoutItem *item, |
| 1857 | Qt::AnchorPoint edge) |
| 1858 | { |
| 1859 | std::pair<QGraphicsLayoutItem *, Qt::AnchorPoint> pair(item, edge); |
| 1860 | std::pair<AnchorVertex *, int> v = m_vertexList.value(key: pair); |
| 1861 | |
| 1862 | if (!v.first) { |
| 1863 | qWarning(msg: "This item with this edge is not in the graph" ); |
| 1864 | return; |
| 1865 | } |
| 1866 | |
| 1867 | v.second--; |
| 1868 | if (v.second == 0) { |
| 1869 | // Remove reference and delete vertex |
| 1870 | m_vertexList.remove(key: pair); |
| 1871 | delete v.first; |
| 1872 | } else { |
| 1873 | // Update reference count |
| 1874 | m_vertexList.insert(key: pair, value: v); |
| 1875 | |
| 1876 | if ((v.second == 2) && |
| 1877 | ((edge == Qt::AnchorHorizontalCenter) || |
| 1878 | (edge == Qt::AnchorVerticalCenter))) { |
| 1879 | removeCenterAnchors(item, centerEdge: edge, substitute: true); |
| 1880 | } |
| 1881 | } |
| 1882 | } |
| 1883 | |
| 1884 | void QGraphicsAnchorLayoutPrivate::removeVertex(QGraphicsLayoutItem *item, Qt::AnchorPoint edge) |
| 1885 | { |
| 1886 | if (AnchorVertex *v = internalVertex(item, edge)) { |
| 1887 | Graph<AnchorVertex, AnchorData> &g = graph[edgeOrientation(edge)]; |
| 1888 | const auto allVertices = g.adjacentVertices(vertex: v); |
| 1889 | for (auto *v2 : allVertices) { |
| 1890 | g.removeEdge(first: v, second: v2); |
| 1891 | removeInternalVertex(item, edge); |
| 1892 | removeInternalVertex(item: v2->m_item, edge: v2->m_edge); |
| 1893 | } |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | void QGraphicsAnchorLayoutPrivate::removeAnchors(QGraphicsLayoutItem *item) |
| 1898 | { |
| 1899 | // remove the center anchor first!! |
| 1900 | removeCenterAnchors(item, centerEdge: Qt::AnchorHorizontalCenter, substitute: false); |
| 1901 | removeVertex(item, edge: Qt::AnchorLeft); |
| 1902 | removeVertex(item, edge: Qt::AnchorRight); |
| 1903 | |
| 1904 | removeCenterAnchors(item, centerEdge: Qt::AnchorVerticalCenter, substitute: false); |
| 1905 | removeVertex(item, edge: Qt::AnchorTop); |
| 1906 | removeVertex(item, edge: Qt::AnchorBottom); |
| 1907 | } |
| 1908 | |
| 1909 | /*! |
| 1910 | \internal |
| 1911 | |
| 1912 | Use heuristics to determine the correct orientation of a given anchor. |
| 1913 | |
| 1914 | After API discussions, we decided we would like expressions like |
| 1915 | anchor(A, Left, B, Right) to mean the same as anchor(B, Right, A, Left). |
| 1916 | The problem with this is that anchors could become ambiguous, for |
| 1917 | instance, what does the anchor A, B of size X mean? |
| 1918 | |
| 1919 | "pos(B) = pos(A) + X" or "pos(A) = pos(B) + X" ? |
| 1920 | |
| 1921 | To keep the API user friendly and at the same time, keep our algorithm |
| 1922 | deterministic, we use an heuristic to determine a direction for each |
| 1923 | added anchor and then keep it. The heuristic is based on the fact |
| 1924 | that people usually avoid overlapping items, therefore: |
| 1925 | |
| 1926 | "A, RIGHT to B, LEFT" means that B is to the LEFT of A. |
| 1927 | "B, LEFT to A, RIGHT" is corrected to the above anchor. |
| 1928 | |
| 1929 | Special correction is also applied when one of the items is the |
| 1930 | layout. We handle Layout Left as if it was another items's Right |
| 1931 | and Layout Right as another item's Left. |
| 1932 | */ |
| 1933 | void QGraphicsAnchorLayoutPrivate::correctEdgeDirection(QGraphicsLayoutItem *&firstItem, |
| 1934 | Qt::AnchorPoint &firstEdge, |
| 1935 | QGraphicsLayoutItem *&secondItem, |
| 1936 | Qt::AnchorPoint &secondEdge) |
| 1937 | { |
| 1938 | Q_Q(QGraphicsAnchorLayout); |
| 1939 | |
| 1940 | if ((firstItem != q) && (secondItem != q)) { |
| 1941 | // If connection is between widgets (not the layout itself) |
| 1942 | // Ensure that "right-edges" sit to the left of "left-edges". |
| 1943 | if (firstEdge < secondEdge) { |
| 1944 | qSwap(value1&: firstItem, value2&: secondItem); |
| 1945 | qSwap(value1&: firstEdge, value2&: secondEdge); |
| 1946 | } |
| 1947 | } else if (firstItem == q) { |
| 1948 | // If connection involves the right or bottom of a layout, ensure |
| 1949 | // the layout is the second item. |
| 1950 | if ((firstEdge == Qt::AnchorRight) || (firstEdge == Qt::AnchorBottom)) { |
| 1951 | qSwap(value1&: firstItem, value2&: secondItem); |
| 1952 | qSwap(value1&: firstEdge, value2&: secondEdge); |
| 1953 | } |
| 1954 | } else if ((secondEdge != Qt::AnchorRight) && (secondEdge != Qt::AnchorBottom)) { |
| 1955 | // If connection involves the left, center or top of layout, ensure |
| 1956 | // the layout is the first item. |
| 1957 | qSwap(value1&: firstItem, value2&: secondItem); |
| 1958 | qSwap(value1&: firstEdge, value2&: secondEdge); |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | QLayoutStyleInfo &QGraphicsAnchorLayoutPrivate::styleInfo() const |
| 1963 | { |
| 1964 | if (styleInfoDirty) { |
| 1965 | Q_Q(const QGraphicsAnchorLayout); |
| 1966 | //### Fix this if QGV ever gets support for Metal style or different Aqua sizes. |
| 1967 | QWidget *wid = nullptr; |
| 1968 | |
| 1969 | QGraphicsLayoutItem *parent = q->parentLayoutItem(); |
| 1970 | while (parent && parent->isLayout()) { |
| 1971 | parent = parent->parentLayoutItem(); |
| 1972 | } |
| 1973 | QGraphicsWidget *w = nullptr; |
| 1974 | if (parent) { |
| 1975 | QGraphicsItem *parentItem = parent->graphicsItem(); |
| 1976 | if (parentItem && parentItem->isWidget()) |
| 1977 | w = static_cast<QGraphicsWidget*>(parentItem); |
| 1978 | } |
| 1979 | |
| 1980 | QStyle *style = w ? w->style() : QApplication::style(); |
| 1981 | cachedStyleInfo = QLayoutStyleInfo(style, wid); |
| 1982 | cachedStyleInfo.setDefaultSpacing(o: Qt::Horizontal, spacing: spacings[Qt::Horizontal]); |
| 1983 | cachedStyleInfo.setDefaultSpacing(o: Qt::Vertical, spacing: spacings[Qt::Vertical]); |
| 1984 | |
| 1985 | styleInfoDirty = false; |
| 1986 | } |
| 1987 | return cachedStyleInfo; |
| 1988 | } |
| 1989 | |
| 1990 | /*! |
| 1991 | \internal |
| 1992 | |
| 1993 | Called on activation. Uses Linear Programming to define minimum, preferred |
| 1994 | and maximum sizes for the layout. Also calculates the sizes that each item |
| 1995 | should assume when the layout is in one of such situations. |
| 1996 | */ |
| 1997 | void QGraphicsAnchorLayoutPrivate::calculateGraphs() |
| 1998 | { |
| 1999 | if (!calculateGraphCacheDirty) |
| 2000 | return; |
| 2001 | calculateGraphs(orientation: Qt::Horizontal); |
| 2002 | calculateGraphs(orientation: Qt::Vertical); |
| 2003 | calculateGraphCacheDirty = false; |
| 2004 | } |
| 2005 | |
| 2006 | // ### Maybe getGraphParts could return the variables when traversing, at least |
| 2007 | // for trunk... |
| 2008 | QList<AnchorData *> getVariables(const QList<QSimplexConstraint *> &constraints) |
| 2009 | { |
| 2010 | QSet<AnchorData *> variableSet; |
| 2011 | for (int i = 0; i < constraints.size(); ++i) { |
| 2012 | const QSimplexConstraint *c = constraints.at(i); |
| 2013 | for (auto it = c->variables.cbegin(), end = c->variables.cend(); it != end; ++it) |
| 2014 | variableSet.insert(value: static_cast<AnchorData *>(it.key())); |
| 2015 | } |
| 2016 | return variableSet.values(); |
| 2017 | } |
| 2018 | |
| 2019 | /*! |
| 2020 | \internal |
| 2021 | |
| 2022 | Calculate graphs is the method that puts together all the helper routines |
| 2023 | so that the AnchorLayout can calculate the sizes of each item. |
| 2024 | |
| 2025 | In a nutshell it should do: |
| 2026 | |
| 2027 | 1) Refresh anchor nominal sizes, that is, the size that each anchor would |
| 2028 | have if no other restrictions applied. This is done by querying the |
| 2029 | layout style and the sizeHints of the items belonging to the layout. |
| 2030 | |
| 2031 | 2) Simplify the graph by grouping together parallel and sequential anchors |
| 2032 | into "group anchors". These have equivalent minimum, preferred and maximum |
| 2033 | sizeHints as the anchors they replace. |
| 2034 | |
| 2035 | 3) Check if we got to a trivial case. In some cases, the whole graph can be |
| 2036 | simplified into a single anchor. If so, use this information. If not, |
| 2037 | then call the Simplex solver to calculate the anchors sizes. |
| 2038 | |
| 2039 | 4) Once the root anchors had its sizes calculated, propagate that to the |
| 2040 | anchors they represent. |
| 2041 | */ |
| 2042 | void QGraphicsAnchorLayoutPrivate::calculateGraphs(Qt::Orientation orientation) |
| 2043 | { |
| 2044 | #if defined(QT_DEBUG) || defined(QT_BUILD_INTERNAL) |
| 2045 | lastCalculationUsedSimplex[orientation] = false; |
| 2046 | #endif |
| 2047 | |
| 2048 | static bool simplificationEnabled = qEnvironmentVariableIsEmpty(varName: "QT_ANCHORLAYOUT_NO_SIMPLIFICATION" ); |
| 2049 | |
| 2050 | // Reset the nominal sizes of each anchor based on the current item sizes |
| 2051 | refreshAllSizeHints(orientation); |
| 2052 | |
| 2053 | // Simplify the graph |
| 2054 | if (simplificationEnabled && !simplifyGraph(orientation)) { |
| 2055 | qWarning(msg: "QGraphicsAnchorLayout: anchor setup is not feasible." ); |
| 2056 | graphHasConflicts[orientation] = true; |
| 2057 | return; |
| 2058 | } |
| 2059 | |
| 2060 | // Traverse all graph edges and store the possible paths to each vertex |
| 2061 | findPaths(orientation); |
| 2062 | |
| 2063 | // From the paths calculated above, extract the constraints that the current |
| 2064 | // anchor setup impose, to our Linear Programming problem. |
| 2065 | constraintsFromPaths(orientation); |
| 2066 | |
| 2067 | // Split the constraints and anchors into groups that should be fed to the |
| 2068 | // simplex solver independently. Currently we find two groups: |
| 2069 | // |
| 2070 | // 1) The "trunk", that is, the set of anchors (items) that are connected |
| 2071 | // to the two opposite sides of our layout, and thus need to stretch in |
| 2072 | // order to fit in the current layout size. |
| 2073 | // |
| 2074 | // 2) The floating or semi-floating anchors (items) that are those which |
| 2075 | // are connected to only one (or none) of the layout sides, thus are not |
| 2076 | // influenced by the layout size. |
| 2077 | const auto parts = getGraphParts(orientation); |
| 2078 | |
| 2079 | // Now run the simplex solver to calculate Minimum, Preferred and Maximum sizes |
| 2080 | // of the "trunk" set of constraints and variables. |
| 2081 | // ### does trunk always exist? empty = trunk is the layout left->center->right |
| 2082 | const QList<AnchorData *> trunkVariables = getVariables(constraints: parts.trunkConstraints); |
| 2083 | |
| 2084 | // For minimum and maximum, use the path between the two layout sides as the |
| 2085 | // objective function. |
| 2086 | AnchorVertex *v = layoutLastVertex[orientation]; |
| 2087 | GraphPath trunkPath = graphPaths[orientation].value(key: v); |
| 2088 | |
| 2089 | bool feasible = calculateTrunk(orientation, trunkPath, constraints: parts.trunkConstraints, variables: trunkVariables); |
| 2090 | |
| 2091 | // For the other parts that not the trunk, solve only for the preferred size |
| 2092 | // that is the size they will remain at, since they are not stretched by the |
| 2093 | // layout. |
| 2094 | |
| 2095 | if (feasible && !parts.nonTrunkConstraints.isEmpty()) { |
| 2096 | const QList<AnchorData *> partVariables = getVariables(constraints: parts.nonTrunkConstraints); |
| 2097 | Q_ASSERT(!partVariables.isEmpty()); |
| 2098 | feasible = calculateNonTrunk(constraints: parts.nonTrunkConstraints, variables: partVariables); |
| 2099 | } |
| 2100 | |
| 2101 | // Propagate the new sizes down the simplified graph, ie. tell the |
| 2102 | // group anchors to set their children anchors sizes. |
| 2103 | updateAnchorSizes(orientation); |
| 2104 | |
| 2105 | graphHasConflicts[orientation] = !feasible; |
| 2106 | |
| 2107 | // Clean up our data structures. They are not needed anymore since |
| 2108 | // distribution uses just interpolation. |
| 2109 | qDeleteAll(c: constraints[orientation]); |
| 2110 | constraints[orientation].clear(); |
| 2111 | graphPaths[orientation].clear(); // ### |
| 2112 | |
| 2113 | if (simplificationEnabled) |
| 2114 | restoreSimplifiedGraph(orientation); |
| 2115 | } |
| 2116 | |
| 2117 | /*! |
| 2118 | \internal |
| 2119 | |
| 2120 | Shift all the constraints by a certain amount. This allows us to deal with negative values in |
| 2121 | the linear program if they are bounded by a certain limit. Functions should be careful to |
| 2122 | call it again with a negative amount, to shift the constraints back. |
| 2123 | */ |
| 2124 | static void shiftConstraints(const QList<QSimplexConstraint *> &constraints, qreal amount) |
| 2125 | { |
| 2126 | for (int i = 0; i < constraints.size(); ++i) { |
| 2127 | QSimplexConstraint *c = constraints.at(i); |
| 2128 | const qreal multiplier = std::accumulate(first: c->variables.cbegin(), last: c->variables.cend(), init: qreal(0)); |
| 2129 | c->constant += multiplier * amount; |
| 2130 | } |
| 2131 | } |
| 2132 | |
| 2133 | /*! |
| 2134 | \internal |
| 2135 | |
| 2136 | Calculate the sizes for all anchors which are part of the trunk. This works |
| 2137 | on top of a (possibly) simplified graph. |
| 2138 | */ |
| 2139 | bool QGraphicsAnchorLayoutPrivate::calculateTrunk(Qt::Orientation orientation, const GraphPath &path, |
| 2140 | const QList<QSimplexConstraint *> &constraints, |
| 2141 | const QList<AnchorData *> &variables) |
| 2142 | { |
| 2143 | bool feasible = true; |
| 2144 | bool needsSimplex = !constraints.isEmpty(); |
| 2145 | |
| 2146 | #if 0 |
| 2147 | qDebug("Simplex %s for trunk of %s" , needsSimplex ? "used" : "NOT used" , |
| 2148 | orientation == Qt::Horizontal ? "Horizontal" : "Vertical" ); |
| 2149 | #endif |
| 2150 | |
| 2151 | if (needsSimplex) { |
| 2152 | |
| 2153 | QList<QSimplexConstraint *> sizeHintConstraints = constraintsFromSizeHints(anchors: variables); |
| 2154 | QList<QSimplexConstraint *> allConstraints = constraints + sizeHintConstraints; |
| 2155 | |
| 2156 | shiftConstraints(constraints: allConstraints, amount: g_offset); |
| 2157 | |
| 2158 | // Solve min and max size hints |
| 2159 | qreal min, max; |
| 2160 | feasible = solveMinMax(constraints: allConstraints, path, min: &min, max: &max); |
| 2161 | |
| 2162 | if (feasible) { |
| 2163 | solvePreferred(constraints, variables); |
| 2164 | |
| 2165 | // Calculate and set the preferred size for the layout, |
| 2166 | // from the edge sizes that were calculated above. |
| 2167 | qreal pref(0.0); |
| 2168 | for (const AnchorData *ad : path.positives) |
| 2169 | pref += ad->sizeAtPreferred; |
| 2170 | for (const AnchorData *ad : path.negatives) |
| 2171 | pref -= ad->sizeAtPreferred; |
| 2172 | |
| 2173 | sizeHints[orientation][Qt::MinimumSize] = min; |
| 2174 | sizeHints[orientation][Qt::PreferredSize] = pref; |
| 2175 | sizeHints[orientation][Qt::MaximumSize] = max; |
| 2176 | } |
| 2177 | |
| 2178 | qDeleteAll(c: sizeHintConstraints); |
| 2179 | shiftConstraints(constraints, amount: -g_offset); |
| 2180 | |
| 2181 | } else { |
| 2182 | // No Simplex is necessary because the path was simplified all the way to a single |
| 2183 | // anchor. |
| 2184 | Q_ASSERT(path.positives.size() == 1); |
| 2185 | Q_ASSERT(path.negatives.size() == 0); |
| 2186 | |
| 2187 | AnchorData *ad = *path.positives.cbegin(); |
| 2188 | ad->sizeAtMinimum = ad->minSize; |
| 2189 | ad->sizeAtPreferred = ad->prefSize; |
| 2190 | ad->sizeAtMaximum = ad->maxSize; |
| 2191 | |
| 2192 | sizeHints[orientation][Qt::MinimumSize] = ad->sizeAtMinimum; |
| 2193 | sizeHints[orientation][Qt::PreferredSize] = ad->sizeAtPreferred; |
| 2194 | sizeHints[orientation][Qt::MaximumSize] = ad->sizeAtMaximum; |
| 2195 | } |
| 2196 | |
| 2197 | #if defined(QT_DEBUG) || defined(QT_BUILD_INTERNAL) |
| 2198 | lastCalculationUsedSimplex[orientation] = needsSimplex; |
| 2199 | #endif |
| 2200 | |
| 2201 | return feasible; |
| 2202 | } |
| 2203 | |
| 2204 | /*! |
| 2205 | \internal |
| 2206 | */ |
| 2207 | bool QGraphicsAnchorLayoutPrivate::calculateNonTrunk(const QList<QSimplexConstraint *> &constraints, |
| 2208 | const QList<AnchorData *> &variables) |
| 2209 | { |
| 2210 | shiftConstraints(constraints, amount: g_offset); |
| 2211 | bool feasible = solvePreferred(constraints, variables); |
| 2212 | |
| 2213 | if (feasible) { |
| 2214 | // Propagate size at preferred to other sizes. Semi-floats always will be |
| 2215 | // in their sizeAtPreferred. |
| 2216 | for (int j = 0; j < variables.size(); ++j) { |
| 2217 | AnchorData *ad = variables.at(i: j); |
| 2218 | Q_ASSERT(ad); |
| 2219 | ad->sizeAtMinimum = ad->sizeAtPreferred; |
| 2220 | ad->sizeAtMaximum = ad->sizeAtPreferred; |
| 2221 | } |
| 2222 | } |
| 2223 | |
| 2224 | shiftConstraints(constraints, amount: -g_offset); |
| 2225 | return feasible; |
| 2226 | } |
| 2227 | |
| 2228 | /*! |
| 2229 | \internal |
| 2230 | |
| 2231 | Traverse the graph refreshing the size hints. Edges will query their associated |
| 2232 | item or graphicsAnchor for their size hints. |
| 2233 | */ |
| 2234 | void QGraphicsAnchorLayoutPrivate::refreshAllSizeHints(Qt::Orientation orientation) |
| 2235 | { |
| 2236 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 2237 | QList<std::pair<AnchorVertex *, AnchorVertex *>> vertices = g.connections(); |
| 2238 | |
| 2239 | QLayoutStyleInfo styleInf = styleInfo(); |
| 2240 | for (int i = 0; i < vertices.size(); ++i) { |
| 2241 | AnchorData *data = g.edgeData(first: vertices.at(i).first, second: vertices.at(i).second); |
| 2242 | data->refreshSizeHints(styleInfo: &styleInf); |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | /*! |
| 2247 | \internal |
| 2248 | |
| 2249 | This method walks the graph using a breadth-first search to find paths |
| 2250 | between the root vertex and each vertex on the graph. The edges |
| 2251 | directions in each path are considered and they are stored as a |
| 2252 | positive edge (left-to-right) or negative edge (right-to-left). |
| 2253 | |
| 2254 | The list of paths is used later to generate a list of constraints. |
| 2255 | */ |
| 2256 | void QGraphicsAnchorLayoutPrivate::findPaths(Qt::Orientation orientation) |
| 2257 | { |
| 2258 | QQueue<std::pair<AnchorVertex *, AnchorVertex *> > queue; |
| 2259 | |
| 2260 | QSet<AnchorData *> visited; |
| 2261 | |
| 2262 | AnchorVertex *root = layoutFirstVertex[orientation]; |
| 2263 | |
| 2264 | graphPaths[orientation].insert(key: root, value: GraphPath()); |
| 2265 | |
| 2266 | const auto adjacentVertices = graph[orientation].adjacentVertices(vertex: root); |
| 2267 | for (AnchorVertex *v : adjacentVertices) |
| 2268 | queue.enqueue(t: std::pair(root, v)); |
| 2269 | |
| 2270 | while(!queue.isEmpty()) { |
| 2271 | std::pair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue(); |
| 2272 | AnchorData *edge = graph[orientation].edgeData(first: pair.first, second: pair.second); |
| 2273 | |
| 2274 | if (visited.contains(value: edge)) |
| 2275 | continue; |
| 2276 | |
| 2277 | visited.insert(value: edge); |
| 2278 | GraphPath current = graphPaths[orientation].value(key: pair.first); |
| 2279 | |
| 2280 | if (edge->from == pair.first) |
| 2281 | current.positives.insert(value: edge); |
| 2282 | else |
| 2283 | current.negatives.insert(value: edge); |
| 2284 | |
| 2285 | graphPaths[orientation].insert(key: pair.second, value: current); |
| 2286 | |
| 2287 | const auto adjacentVertices = graph[orientation].adjacentVertices(vertex: pair.second); |
| 2288 | for (AnchorVertex *v : adjacentVertices) |
| 2289 | queue.enqueue(t: std::pair(pair.second, v)); |
| 2290 | } |
| 2291 | |
| 2292 | // We will walk through every reachable items (non-float) store them in a temporary set. |
| 2293 | // We them create a set of all items and subtract the non-floating items from the set in |
| 2294 | // order to get the floating items. The floating items is then stored in m_floatItems |
| 2295 | identifyFloatItems(visited, orientation); |
| 2296 | } |
| 2297 | |
| 2298 | /*! |
| 2299 | \internal |
| 2300 | |
| 2301 | Each vertex on the graph that has more than one path to it |
| 2302 | represents a contra int to the sizes of the items in these paths. |
| 2303 | |
| 2304 | This method walks the list of paths to each vertex, generate |
| 2305 | the constraints and store them in a list so they can be used later |
| 2306 | by the Simplex solver. |
| 2307 | */ |
| 2308 | void QGraphicsAnchorLayoutPrivate::constraintsFromPaths(Qt::Orientation orientation) |
| 2309 | { |
| 2310 | const auto vertices = graphPaths[orientation].uniqueKeys(); |
| 2311 | for (AnchorVertex *vertex : vertices) { |
| 2312 | int valueCount = graphPaths[orientation].count(key: vertex); |
| 2313 | if (valueCount == 1) |
| 2314 | continue; |
| 2315 | |
| 2316 | QList<GraphPath> pathsToVertex = graphPaths[orientation].values(key: vertex); |
| 2317 | for (int i = 1; i < valueCount; ++i) { |
| 2318 | constraints[orientation] += \ |
| 2319 | pathsToVertex[0].constraint(path: pathsToVertex.at(i)); |
| 2320 | } |
| 2321 | } |
| 2322 | } |
| 2323 | |
| 2324 | /*! |
| 2325 | \internal |
| 2326 | */ |
| 2327 | void QGraphicsAnchorLayoutPrivate::updateAnchorSizes(Qt::Orientation orientation) |
| 2328 | { |
| 2329 | Graph<AnchorVertex, AnchorData> &g = graph[orientation]; |
| 2330 | const QList<std::pair<AnchorVertex *, AnchorVertex *>> &vertices = g.connections(); |
| 2331 | |
| 2332 | for (int i = 0; i < vertices.size(); ++i) { |
| 2333 | AnchorData *ad = g.edgeData(first: vertices.at(i).first, second: vertices.at(i).second); |
| 2334 | ad->updateChildrenSizes(); |
| 2335 | } |
| 2336 | } |
| 2337 | |
| 2338 | /*! |
| 2339 | \internal |
| 2340 | |
| 2341 | Create LP constraints for each anchor based on its minimum and maximum |
| 2342 | sizes, as specified in its size hints |
| 2343 | */ |
| 2344 | QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHints( |
| 2345 | const QList<AnchorData *> &anchors) |
| 2346 | { |
| 2347 | if (anchors.isEmpty()) |
| 2348 | return QList<QSimplexConstraint *>(); |
| 2349 | |
| 2350 | // Look for the layout edge. That can be either the first half in case the |
| 2351 | // layout is split in two, or the whole layout anchor. |
| 2352 | const Qt::Orientation orient = anchors.first()->isVertical ? Qt::Vertical : Qt::Horizontal; |
| 2353 | AnchorData *layoutEdge = nullptr; |
| 2354 | if (layoutCentralVertex[orient]) { |
| 2355 | layoutEdge = graph[orient].edgeData(first: layoutFirstVertex[orient], second: layoutCentralVertex[orient]); |
| 2356 | } else { |
| 2357 | layoutEdge = graph[orient].edgeData(first: layoutFirstVertex[orient], second: layoutLastVertex[orient]); |
| 2358 | } |
| 2359 | |
| 2360 | // If maxSize is less then "infinite", that means there are other anchors |
| 2361 | // grouped together with this one. We can't ignore its maximum value so we |
| 2362 | // set back the variable to NULL to prevent the continue condition from being |
| 2363 | // satisfied in the loop below. |
| 2364 | const qreal expectedMax = layoutCentralVertex[orient] ? QWIDGETSIZE_MAX / 2 : QWIDGETSIZE_MAX; |
| 2365 | qreal actualMax; |
| 2366 | if (layoutEdge->from == layoutFirstVertex[orient]) { |
| 2367 | actualMax = layoutEdge->maxSize; |
| 2368 | } else { |
| 2369 | actualMax = -layoutEdge->minSize; |
| 2370 | } |
| 2371 | if (actualMax != expectedMax) { |
| 2372 | layoutEdge = nullptr; |
| 2373 | } |
| 2374 | |
| 2375 | // For each variable, create constraints based on size hints |
| 2376 | QList<QSimplexConstraint *> anchorConstraints; |
| 2377 | bool unboundedProblem = true; |
| 2378 | for (int i = 0; i < anchors.size(); ++i) { |
| 2379 | AnchorData *ad = anchors.at(i); |
| 2380 | |
| 2381 | // Anchors that have their size directly linked to another one don't need constraints |
| 2382 | // For exammple, the second half of an item has exactly the same size as the first half |
| 2383 | // thus constraining the latter is enough. |
| 2384 | if (ad->dependency == AnchorData::Slave) |
| 2385 | continue; |
| 2386 | |
| 2387 | // To use negative variables inside simplex, we shift them so the minimum negative value is |
| 2388 | // mapped to zero before solving. To make sure that it works, we need to guarantee that the |
| 2389 | // variables are all inside a certain boundary. |
| 2390 | qreal boundedMin = qBound(min: -g_offset, val: ad->minSize, max: g_offset); |
| 2391 | qreal boundedMax = qBound(min: -g_offset, val: ad->maxSize, max: g_offset); |
| 2392 | |
| 2393 | if ((boundedMin == boundedMax) || qFuzzyCompare(p1: boundedMin, p2: boundedMax)) { |
| 2394 | QSimplexConstraint *c = new QSimplexConstraint; |
| 2395 | c->variables.insert(key: ad, value: 1.0); |
| 2396 | c->constant = boundedMin; |
| 2397 | c->ratio = QSimplexConstraint::Equal; |
| 2398 | anchorConstraints += c; |
| 2399 | unboundedProblem = false; |
| 2400 | } else { |
| 2401 | QSimplexConstraint *c = new QSimplexConstraint; |
| 2402 | c->variables.insert(key: ad, value: 1.0); |
| 2403 | c->constant = boundedMin; |
| 2404 | c->ratio = QSimplexConstraint::MoreOrEqual; |
| 2405 | anchorConstraints += c; |
| 2406 | |
| 2407 | // We avoid adding restrictions to the layout internal anchors. That's |
| 2408 | // to prevent unnecessary fair distribution from happening due to this |
| 2409 | // artificial restriction. |
| 2410 | if (ad == layoutEdge) |
| 2411 | continue; |
| 2412 | |
| 2413 | c = new QSimplexConstraint; |
| 2414 | c->variables.insert(key: ad, value: 1.0); |
| 2415 | c->constant = boundedMax; |
| 2416 | c->ratio = QSimplexConstraint::LessOrEqual; |
| 2417 | anchorConstraints += c; |
| 2418 | unboundedProblem = false; |
| 2419 | } |
| 2420 | } |
| 2421 | |
| 2422 | // If no upper boundary restriction was added, add one to avoid unbounded problem |
| 2423 | if (unboundedProblem) { |
| 2424 | QSimplexConstraint *c = new QSimplexConstraint; |
| 2425 | c->variables.insert(key: layoutEdge, value: 1.0); |
| 2426 | // The maximum size that the layout can take |
| 2427 | c->constant = g_offset; |
| 2428 | c->ratio = QSimplexConstraint::LessOrEqual; |
| 2429 | anchorConstraints += c; |
| 2430 | } |
| 2431 | |
| 2432 | return anchorConstraints; |
| 2433 | } |
| 2434 | |
| 2435 | /*! |
| 2436 | \internal |
| 2437 | */ |
| 2438 | QGraphicsAnchorLayoutPrivate::GraphParts |
| 2439 | QGraphicsAnchorLayoutPrivate::getGraphParts(Qt::Orientation orientation) |
| 2440 | { |
| 2441 | GraphParts result; |
| 2442 | |
| 2443 | Q_ASSERT(layoutFirstVertex[orientation] && layoutLastVertex[orientation]); |
| 2444 | |
| 2445 | AnchorData *edgeL1 = nullptr; |
| 2446 | AnchorData *edgeL2 = nullptr; |
| 2447 | |
| 2448 | // The layout may have a single anchor between Left and Right or two half anchors |
| 2449 | // passing through the center |
| 2450 | if (layoutCentralVertex[orientation]) { |
| 2451 | edgeL1 = graph[orientation].edgeData(first: layoutFirstVertex[orientation], second: layoutCentralVertex[orientation]); |
| 2452 | edgeL2 = graph[orientation].edgeData(first: layoutCentralVertex[orientation], second: layoutLastVertex[orientation]); |
| 2453 | } else { |
| 2454 | edgeL1 = graph[orientation].edgeData(first: layoutFirstVertex[orientation], second: layoutLastVertex[orientation]); |
| 2455 | } |
| 2456 | |
| 2457 | result.nonTrunkConstraints = constraints[orientation] + itemCenterConstraints[orientation]; |
| 2458 | |
| 2459 | QSet<QSimplexVariable *> trunkVariables; |
| 2460 | |
| 2461 | trunkVariables += edgeL1; |
| 2462 | if (edgeL2) |
| 2463 | trunkVariables += edgeL2; |
| 2464 | |
| 2465 | bool dirty; |
| 2466 | auto end = result.nonTrunkConstraints.end(); |
| 2467 | do { |
| 2468 | dirty = false; |
| 2469 | |
| 2470 | auto isMatch = [&result, &trunkVariables](QSimplexConstraint *c) -> bool { |
| 2471 | bool match = false; |
| 2472 | |
| 2473 | // Check if this constraint have some overlap with current |
| 2474 | // trunk variables... |
| 2475 | for (QSimplexVariable *ad : std::as_const(t&: trunkVariables)) { |
| 2476 | if (c->variables.contains(key: ad)) { |
| 2477 | match = true; |
| 2478 | break; |
| 2479 | } |
| 2480 | } |
| 2481 | |
| 2482 | // If so, we add it to trunk, and erase it from the |
| 2483 | // remaining constraints. |
| 2484 | if (match) { |
| 2485 | result.trunkConstraints += c; |
| 2486 | for (auto jt = c->variables.cbegin(), end = c->variables.cend(); jt != end; ++jt) |
| 2487 | trunkVariables.insert(value: jt.key()); |
| 2488 | return true; |
| 2489 | } else { |
| 2490 | // Note that we don't erase the constraint if it's not |
| 2491 | // a match, since in a next iteration of a do-while we |
| 2492 | // can pass on it again and it will be a match. |
| 2493 | // |
| 2494 | // For example: if trunk share a variable with |
| 2495 | // remainingConstraints[1] and it shares with |
| 2496 | // remainingConstraints[0], we need a second iteration |
| 2497 | // of the do-while loop to match both. |
| 2498 | return false; |
| 2499 | } |
| 2500 | }; |
| 2501 | const auto newEnd = std::remove_if(first: result.nonTrunkConstraints.begin(), last: end, pred: isMatch); |
| 2502 | dirty = newEnd != end; |
| 2503 | end = newEnd; |
| 2504 | } while (dirty); |
| 2505 | |
| 2506 | result.nonTrunkConstraints.erase(abegin: end, aend: result.nonTrunkConstraints.end()); |
| 2507 | |
| 2508 | return result; |
| 2509 | } |
| 2510 | |
| 2511 | /*! |
| 2512 | \internal |
| 2513 | |
| 2514 | Use all visited Anchors on findPaths() so we can identify non-float Items. |
| 2515 | */ |
| 2516 | void QGraphicsAnchorLayoutPrivate::identifyFloatItems(const QSet<AnchorData *> &visited, Qt::Orientation orientation) |
| 2517 | { |
| 2518 | QSet<QGraphicsLayoutItem *> nonFloating; |
| 2519 | |
| 2520 | for (const AnchorData *ad : visited) |
| 2521 | identifyNonFloatItems_helper(ad, nonFloatingItemsIdentifiedSoFar: &nonFloating); |
| 2522 | |
| 2523 | QSet<QGraphicsLayoutItem *> floatItems; |
| 2524 | for (QGraphicsLayoutItem *item : std::as_const(t&: items)) { |
| 2525 | if (!nonFloating.contains(value: item)) |
| 2526 | floatItems.insert(value: item); |
| 2527 | } |
| 2528 | m_floatItems[orientation] = std::move(floatItems); |
| 2529 | } |
| 2530 | |
| 2531 | |
| 2532 | /*! |
| 2533 | \internal |
| 2534 | |
| 2535 | Given an anchor, if it is an internal anchor and Normal we must mark it's item as non-float. |
| 2536 | If the anchor is Sequential or Parallel, we must iterate on its children recursively until we reach |
| 2537 | internal anchors (items). |
| 2538 | */ |
| 2539 | void QGraphicsAnchorLayoutPrivate::identifyNonFloatItems_helper(const AnchorData *ad, QSet<QGraphicsLayoutItem *> *nonFloatingItemsIdentifiedSoFar) |
| 2540 | { |
| 2541 | Q_Q(QGraphicsAnchorLayout); |
| 2542 | |
| 2543 | switch(ad->type) { |
| 2544 | case AnchorData::Normal: |
| 2545 | if (ad->item && ad->item != q) |
| 2546 | nonFloatingItemsIdentifiedSoFar->insert(value: ad->item); |
| 2547 | break; |
| 2548 | case AnchorData::Sequential: |
| 2549 | for (const AnchorData *d : static_cast<const SequentialAnchorData *>(ad)->m_edges) |
| 2550 | identifyNonFloatItems_helper(ad: d, nonFloatingItemsIdentifiedSoFar); |
| 2551 | break; |
| 2552 | case AnchorData::Parallel: |
| 2553 | identifyNonFloatItems_helper(ad: static_cast<const ParallelAnchorData *>(ad)->firstEdge, nonFloatingItemsIdentifiedSoFar); |
| 2554 | identifyNonFloatItems_helper(ad: static_cast<const ParallelAnchorData *>(ad)->secondEdge, nonFloatingItemsIdentifiedSoFar); |
| 2555 | break; |
| 2556 | } |
| 2557 | } |
| 2558 | |
| 2559 | /*! |
| 2560 | \internal |
| 2561 | |
| 2562 | Use the current vertices distance to calculate and set the geometry of |
| 2563 | each item. |
| 2564 | */ |
| 2565 | void QGraphicsAnchorLayoutPrivate::setItemsGeometries(const QRectF &geom) |
| 2566 | { |
| 2567 | Q_Q(QGraphicsAnchorLayout); |
| 2568 | AnchorVertex *firstH, *secondH, *firstV, *secondV; |
| 2569 | |
| 2570 | qreal top; |
| 2571 | qreal left; |
| 2572 | qreal right; |
| 2573 | |
| 2574 | q->getContentsMargins(left: &left, top: &top, right: &right, bottom: nullptr); |
| 2575 | const Qt::LayoutDirection visualDir = visualDirection(); |
| 2576 | if (visualDir == Qt::RightToLeft) |
| 2577 | qSwap(value1&: left, value2&: right); |
| 2578 | |
| 2579 | left += geom.left(); |
| 2580 | top += geom.top(); |
| 2581 | right = geom.right() - right; |
| 2582 | |
| 2583 | for (QGraphicsLayoutItem *item : std::as_const(t&: items)) { |
| 2584 | QRectF newGeom; |
| 2585 | QSizeF itemPreferredSize = item->effectiveSizeHint(which: Qt::PreferredSize); |
| 2586 | if (m_floatItems[Qt::Horizontal].contains(value: item)) { |
| 2587 | newGeom.setLeft(0); |
| 2588 | newGeom.setRight(itemPreferredSize.width()); |
| 2589 | } else { |
| 2590 | firstH = internalVertex(item, edge: Qt::AnchorLeft); |
| 2591 | secondH = internalVertex(item, edge: Qt::AnchorRight); |
| 2592 | |
| 2593 | if (visualDir == Qt::LeftToRight) { |
| 2594 | newGeom.setLeft(left + firstH->distance); |
| 2595 | newGeom.setRight(left + secondH->distance); |
| 2596 | } else { |
| 2597 | newGeom.setLeft(right - secondH->distance); |
| 2598 | newGeom.setRight(right - firstH->distance); |
| 2599 | } |
| 2600 | } |
| 2601 | |
| 2602 | if (m_floatItems[Qt::Vertical].contains(value: item)) { |
| 2603 | newGeom.setTop(0); |
| 2604 | newGeom.setBottom(itemPreferredSize.height()); |
| 2605 | } else { |
| 2606 | firstV = internalVertex(item, edge: Qt::AnchorTop); |
| 2607 | secondV = internalVertex(item, edge: Qt::AnchorBottom); |
| 2608 | |
| 2609 | newGeom.setTop(top + firstV->distance); |
| 2610 | newGeom.setBottom(top + secondV->distance); |
| 2611 | } |
| 2612 | |
| 2613 | item->setGeometry(newGeom); |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | /*! |
| 2618 | \internal |
| 2619 | |
| 2620 | Calculate the position of each vertex based on the paths to each of |
| 2621 | them as well as the current edges sizes. |
| 2622 | */ |
| 2623 | void QGraphicsAnchorLayoutPrivate::calculateVertexPositions(Qt::Orientation orientation) |
| 2624 | { |
| 2625 | QQueue<std::pair<AnchorVertex *, AnchorVertex *> > queue; |
| 2626 | QSet<AnchorVertex *> visited; |
| 2627 | |
| 2628 | // Get root vertex |
| 2629 | AnchorVertex *root = layoutFirstVertex[orientation]; |
| 2630 | |
| 2631 | root->distance = 0; |
| 2632 | visited.insert(value: root); |
| 2633 | |
| 2634 | // Add initial edges to the queue |
| 2635 | const auto adjacentVertices = graph[orientation].adjacentVertices(vertex: root); |
| 2636 | for (AnchorVertex *v : adjacentVertices) |
| 2637 | queue.enqueue(t: std::pair(root, v)); |
| 2638 | |
| 2639 | // Do initial calculation required by "interpolateEdge()" |
| 2640 | setupEdgesInterpolation(orientation); |
| 2641 | |
| 2642 | // Traverse the graph and calculate vertex positions |
| 2643 | while (!queue.isEmpty()) { |
| 2644 | std::pair<AnchorVertex *, AnchorVertex *> pair = queue.dequeue(); |
| 2645 | AnchorData *edge = graph[orientation].edgeData(first: pair.first, second: pair.second); |
| 2646 | |
| 2647 | if (visited.contains(value: pair.second)) |
| 2648 | continue; |
| 2649 | |
| 2650 | visited.insert(value: pair.second); |
| 2651 | interpolateEdge(base: pair.first, edge); |
| 2652 | |
| 2653 | QList<AnchorVertex *> adjacents = graph[orientation].adjacentVertices(vertex: pair.second); |
| 2654 | for (int i = 0; i < adjacents.size(); ++i) { |
| 2655 | if (!visited.contains(value: adjacents.at(i))) |
| 2656 | queue.enqueue(t: std::pair(pair.second, adjacents.at(i))); |
| 2657 | } |
| 2658 | } |
| 2659 | } |
| 2660 | |
| 2661 | /*! |
| 2662 | \internal |
| 2663 | |
| 2664 | Calculate interpolation parameters based on current Layout Size. |
| 2665 | Must be called once before calling "interpolateEdgeSize()" for |
| 2666 | the edges. |
| 2667 | */ |
| 2668 | void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation( |
| 2669 | Qt::Orientation orientation) |
| 2670 | { |
| 2671 | Q_Q(QGraphicsAnchorLayout); |
| 2672 | |
| 2673 | qreal current; |
| 2674 | current = (orientation == Qt::Horizontal) ? q->contentsRect().width() : q->contentsRect().height(); |
| 2675 | |
| 2676 | std::pair<Interval, qreal> result; |
| 2677 | result = getFactor(value: current, |
| 2678 | min: sizeHints[orientation][Qt::MinimumSize], |
| 2679 | minPref: sizeHints[orientation][Qt::PreferredSize], |
| 2680 | pref: sizeHints[orientation][Qt::PreferredSize], |
| 2681 | maxPref: sizeHints[orientation][Qt::PreferredSize], |
| 2682 | max: sizeHints[orientation][Qt::MaximumSize]); |
| 2683 | |
| 2684 | interpolationInterval[orientation] = result.first; |
| 2685 | interpolationProgress[orientation] = result.second; |
| 2686 | } |
| 2687 | |
| 2688 | /*! |
| 2689 | \internal |
| 2690 | |
| 2691 | Calculate the current Edge size based on the current Layout size and the |
| 2692 | size the edge is supposed to have when the layout is at its: |
| 2693 | |
| 2694 | - minimum size, |
| 2695 | - preferred size, |
| 2696 | - maximum size. |
| 2697 | |
| 2698 | These three key values are calculated in advance using linear |
| 2699 | programming (more expensive) or the simplification algorithm, then |
| 2700 | subsequential resizes of the parent layout require a simple |
| 2701 | interpolation. |
| 2702 | */ |
| 2703 | void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base, AnchorData *edge) |
| 2704 | { |
| 2705 | const Qt::Orientation orientation = edge->isVertical ? Qt::Vertical : Qt::Horizontal; |
| 2706 | const std::pair<Interval, qreal> factor(interpolationInterval[orientation], |
| 2707 | interpolationProgress[orientation]); |
| 2708 | |
| 2709 | qreal edgeDistance = interpolate(factor, min: edge->sizeAtMinimum, minPref: edge->sizeAtPreferred, |
| 2710 | pref: edge->sizeAtPreferred, maxPref: edge->sizeAtPreferred, |
| 2711 | max: edge->sizeAtMaximum); |
| 2712 | |
| 2713 | Q_ASSERT(edge->from == base || edge->to == base); |
| 2714 | |
| 2715 | // Calculate the distance for the vertex opposite to the base |
| 2716 | if (edge->from == base) { |
| 2717 | edge->to->distance = base->distance + edgeDistance; |
| 2718 | } else { |
| 2719 | edge->from->distance = base->distance - edgeDistance; |
| 2720 | } |
| 2721 | } |
| 2722 | |
| 2723 | bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList<QSimplexConstraint *> &constraints, |
| 2724 | const GraphPath &path, qreal *min, qreal *max) |
| 2725 | { |
| 2726 | QSimplex simplex; |
| 2727 | bool feasible = simplex.setConstraints(constraints); |
| 2728 | if (feasible) { |
| 2729 | // Obtain the objective constraint |
| 2730 | QSimplexConstraint objective; |
| 2731 | QSet<AnchorData *>::const_iterator iter; |
| 2732 | for (iter = path.positives.constBegin(); iter != path.positives.constEnd(); ++iter) |
| 2733 | objective.variables.insert(key: *iter, value: 1.0); |
| 2734 | |
| 2735 | for (iter = path.negatives.constBegin(); iter != path.negatives.constEnd(); ++iter) |
| 2736 | objective.variables.insert(key: *iter, value: -1.0); |
| 2737 | |
| 2738 | const qreal objectiveOffset = (path.positives.size() - path.negatives.size()) * g_offset; |
| 2739 | simplex.setObjective(&objective); |
| 2740 | |
| 2741 | // Calculate minimum values |
| 2742 | *min = simplex.solveMin() - objectiveOffset; |
| 2743 | |
| 2744 | // Save sizeAtMinimum results |
| 2745 | QList<AnchorData *> variables = getVariables(constraints); |
| 2746 | for (int i = 0; i < variables.size(); ++i) { |
| 2747 | AnchorData *ad = static_cast<AnchorData *>(variables.at(i)); |
| 2748 | ad->sizeAtMinimum = ad->result - g_offset; |
| 2749 | } |
| 2750 | |
| 2751 | // Calculate maximum values |
| 2752 | *max = simplex.solveMax() - objectiveOffset; |
| 2753 | |
| 2754 | // Save sizeAtMaximum results |
| 2755 | for (int i = 0; i < variables.size(); ++i) { |
| 2756 | AnchorData *ad = static_cast<AnchorData *>(variables.at(i)); |
| 2757 | ad->sizeAtMaximum = ad->result - g_offset; |
| 2758 | } |
| 2759 | } |
| 2760 | return feasible; |
| 2761 | } |
| 2762 | |
| 2763 | enum slackType { Grower = -1, Shrinker = 1 }; |
| 2764 | static std::pair<QSimplexVariable *, QSimplexConstraint *> createSlack(QSimplexConstraint *sizeConstraint, |
| 2765 | qreal interval, slackType type) |
| 2766 | { |
| 2767 | QSimplexVariable *slack = new QSimplexVariable; |
| 2768 | sizeConstraint->variables.insert(key: slack, value: type); |
| 2769 | |
| 2770 | QSimplexConstraint *limit = new QSimplexConstraint; |
| 2771 | limit->variables.insert(key: slack, value: 1.0); |
| 2772 | limit->ratio = QSimplexConstraint::LessOrEqual; |
| 2773 | limit->constant = interval; |
| 2774 | |
| 2775 | return std::pair(slack, limit); |
| 2776 | } |
| 2777 | |
| 2778 | bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList<QSimplexConstraint *> &constraints, |
| 2779 | const QList<AnchorData *> &variables) |
| 2780 | { |
| 2781 | QList<QSimplexConstraint *> preferredConstraints; |
| 2782 | QList<QSimplexVariable *> preferredVariables; |
| 2783 | QSimplexConstraint objective; |
| 2784 | |
| 2785 | // Fill the objective coefficients for this variable. In the |
| 2786 | // end the objective function will be |
| 2787 | // |
| 2788 | // z = n * (A_shrinker_hard + A_grower_hard + B_shrinker_hard + B_grower_hard + ...) + |
| 2789 | // (A_shrinker_soft + A_grower_soft + B_shrinker_soft + B_grower_soft + ...) |
| 2790 | // |
| 2791 | // where n is the number of variables that have |
| 2792 | // slacks. Note that here we use the number of variables |
| 2793 | // as coefficient, this is to mark the "shrinker slack |
| 2794 | // variable" less likely to get value than the "grower |
| 2795 | // slack variable". |
| 2796 | |
| 2797 | // This will fill the values for the structural constraints |
| 2798 | // and we now fill the values for the slack constraints (one per variable), |
| 2799 | // which have this form (the constant A_pref was set when creating the slacks): |
| 2800 | // |
| 2801 | // A + A_shrinker_hard + A_shrinker_soft - A_grower_hard - A_grower_soft = A_pref |
| 2802 | // |
| 2803 | for (int i = 0; i < variables.size(); ++i) { |
| 2804 | AnchorData *ad = variables.at(i); |
| 2805 | |
| 2806 | // The layout original structure anchors are not relevant in preferred size calculation |
| 2807 | if (ad->isLayoutAnchor) |
| 2808 | continue; |
| 2809 | |
| 2810 | // By default, all variables are equal to their preferred size. If they have room to |
| 2811 | // grow or shrink, such flexibility will be added by the additional variables below. |
| 2812 | QSimplexConstraint *sizeConstraint = new QSimplexConstraint; |
| 2813 | preferredConstraints += sizeConstraint; |
| 2814 | sizeConstraint->variables.insert(key: ad, value: 1.0); |
| 2815 | sizeConstraint->constant = ad->prefSize + g_offset; |
| 2816 | |
| 2817 | // Can easily shrink |
| 2818 | std::pair<QSimplexVariable *, QSimplexConstraint *> slack; |
| 2819 | const qreal softShrinkInterval = ad->prefSize - ad->minPrefSize; |
| 2820 | if (softShrinkInterval) { |
| 2821 | slack = createSlack(sizeConstraint, interval: softShrinkInterval, type: Shrinker); |
| 2822 | preferredVariables += slack.first; |
| 2823 | preferredConstraints += slack.second; |
| 2824 | |
| 2825 | // Add to objective with ratio == 1 (soft) |
| 2826 | objective.variables.insert(key: slack.first, value: 1.0); |
| 2827 | } |
| 2828 | |
| 2829 | // Can easily grow |
| 2830 | const qreal softGrowInterval = ad->maxPrefSize - ad->prefSize; |
| 2831 | if (softGrowInterval) { |
| 2832 | slack = createSlack(sizeConstraint, interval: softGrowInterval, type: Grower); |
| 2833 | preferredVariables += slack.first; |
| 2834 | preferredConstraints += slack.second; |
| 2835 | |
| 2836 | // Add to objective with ratio == 1 (soft) |
| 2837 | objective.variables.insert(key: slack.first, value: 1.0); |
| 2838 | } |
| 2839 | |
| 2840 | // Can shrink if really necessary |
| 2841 | const qreal hardShrinkInterval = ad->minPrefSize - ad->minSize; |
| 2842 | if (hardShrinkInterval) { |
| 2843 | slack = createSlack(sizeConstraint, interval: hardShrinkInterval, type: Shrinker); |
| 2844 | preferredVariables += slack.first; |
| 2845 | preferredConstraints += slack.second; |
| 2846 | |
| 2847 | // Add to objective with ratio == N (hard) |
| 2848 | objective.variables.insert(key: slack.first, value: variables.size()); |
| 2849 | } |
| 2850 | |
| 2851 | // Can grow if really necessary |
| 2852 | const qreal hardGrowInterval = ad->maxSize - ad->maxPrefSize; |
| 2853 | if (hardGrowInterval) { |
| 2854 | slack = createSlack(sizeConstraint, interval: hardGrowInterval, type: Grower); |
| 2855 | preferredVariables += slack.first; |
| 2856 | preferredConstraints += slack.second; |
| 2857 | |
| 2858 | // Add to objective with ratio == N (hard) |
| 2859 | objective.variables.insert(key: slack.first, value: variables.size()); |
| 2860 | } |
| 2861 | } |
| 2862 | |
| 2863 | QSimplex *simplex = new QSimplex; |
| 2864 | bool feasible = simplex->setConstraints(constraints + preferredConstraints); |
| 2865 | if (feasible) { |
| 2866 | simplex->setObjective(&objective); |
| 2867 | |
| 2868 | // Calculate minimum values |
| 2869 | simplex->solveMin(); |
| 2870 | |
| 2871 | // Save sizeAtPreferred results |
| 2872 | for (int i = 0; i < variables.size(); ++i) { |
| 2873 | AnchorData *ad = variables.at(i); |
| 2874 | ad->sizeAtPreferred = ad->result - g_offset; |
| 2875 | } |
| 2876 | } |
| 2877 | |
| 2878 | // Make sure we delete the simplex solver -before- we delete the |
| 2879 | // constraints used by it. |
| 2880 | delete simplex; |
| 2881 | |
| 2882 | // Delete constraints and variables we created. |
| 2883 | qDeleteAll(c: preferredConstraints); |
| 2884 | qDeleteAll(c: preferredVariables); |
| 2885 | |
| 2886 | return feasible; |
| 2887 | } |
| 2888 | |
| 2889 | /*! |
| 2890 | \internal |
| 2891 | Returns \c true if there are no arrangement that satisfies all constraints. |
| 2892 | Otherwise returns \c false. |
| 2893 | |
| 2894 | \sa addAnchor() |
| 2895 | */ |
| 2896 | bool QGraphicsAnchorLayoutPrivate::hasConflicts() const |
| 2897 | { |
| 2898 | QGraphicsAnchorLayoutPrivate *that = const_cast<QGraphicsAnchorLayoutPrivate*>(this); |
| 2899 | that->calculateGraphs(); |
| 2900 | |
| 2901 | bool floatConflict = !m_floatItems[Qt::Horizontal].isEmpty() || !m_floatItems[Qt::Vertical].isEmpty(); |
| 2902 | |
| 2903 | return graphHasConflicts[Qt::Horizontal] || graphHasConflicts[Qt::Vertical] || floatConflict; |
| 2904 | } |
| 2905 | |
| 2906 | #ifdef QT_DEBUG |
| 2907 | void QGraphicsAnchorLayoutPrivate::dumpGraph(const QString &name) |
| 2908 | { |
| 2909 | QFile file(QString::fromLatin1(ba: "anchorlayout.%1.dot" ).arg(a: name)); |
| 2910 | if (!file.open(flags: QIODevice::WriteOnly | QIODevice::Text | QIODevice::Truncate)) |
| 2911 | qWarning(msg: "Could not write to %ls" , qUtf16Printable(file.fileName())); |
| 2912 | |
| 2913 | QString str = QString::fromLatin1(ba: "digraph anchorlayout {\nnode [shape=\"rect\"]\n%1}" ); |
| 2914 | QString dotContents = graph[Qt::Horizontal].serializeToDot(); |
| 2915 | dotContents += graph[Qt::Vertical].serializeToDot(); |
| 2916 | file.write(data: str.arg(a: dotContents).toLocal8Bit()); |
| 2917 | |
| 2918 | file.close(); |
| 2919 | } |
| 2920 | #endif |
| 2921 | |
| 2922 | QT_END_NAMESPACE |
| 2923 | |