| 1 | /* |
| 2 | * Copyright (C) 2008, 2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef MacroAssembler_h |
| 27 | #define MacroAssembler_h |
| 28 | |
| 29 | #include <wtf/Platform.h> |
| 30 | |
| 31 | #if ENABLE(ASSEMBLER) |
| 32 | |
| 33 | #include "MacroAssemblerARMv7.h" |
| 34 | #include "MacroAssemblerARM64.h" |
| 35 | |
| 36 | #if CPU(ARM_THUMB2) |
| 37 | namespace JSC { typedef MacroAssemblerARMv7 MacroAssemblerBase; }; |
| 38 | |
| 39 | #elif CPU(ARM64) |
| 40 | namespace JSC { typedef MacroAssemblerARM64 MacroAssemblerBase; }; |
| 41 | |
| 42 | #elif CPU(MIPS) |
| 43 | #include "MacroAssemblerMIPS.h" |
| 44 | namespace JSC { |
| 45 | typedef MacroAssemblerMIPS MacroAssemblerBase; |
| 46 | }; |
| 47 | |
| 48 | #elif CPU(X86) |
| 49 | #include "MacroAssemblerX86.h" |
| 50 | namespace JSC { typedef MacroAssemblerX86 MacroAssemblerBase; }; |
| 51 | |
| 52 | #elif CPU(X86_64) |
| 53 | #include "MacroAssemblerX86_64.h" |
| 54 | namespace JSC { typedef MacroAssemblerX86_64 MacroAssemblerBase; }; |
| 55 | |
| 56 | #else |
| 57 | #error "The MacroAssembler is not supported on this platform." |
| 58 | #endif |
| 59 | |
| 60 | namespace JSC { |
| 61 | |
| 62 | template <typename MacroAssemblerBase> |
| 63 | class MacroAssembler : public MacroAssemblerBase { |
| 64 | public: |
| 65 | |
| 66 | using DoubleCondition = typename MacroAssemblerBase::DoubleCondition; |
| 67 | using ResultCondition = typename MacroAssemblerBase::ResultCondition; |
| 68 | using RelationalCondition = typename MacroAssemblerBase::RelationalCondition; |
| 69 | using RegisterID = typename MacroAssemblerBase::RegisterID; |
| 70 | using Address = typename MacroAssemblerBase::Address; |
| 71 | using ExtendedAddress = typename MacroAssemblerBase::ExtendedAddress; |
| 72 | using BaseIndex = typename MacroAssemblerBase::BaseIndex; |
| 73 | using ImplicitAddress = typename MacroAssemblerBase::ImplicitAddress; |
| 74 | using AbsoluteAddress = typename MacroAssemblerBase::AbsoluteAddress; |
| 75 | using TrustedImm32 = typename MacroAssemblerBase::TrustedImm32; |
| 76 | using TrustedImm64 = typename MacroAssemblerBase::TrustedImm64; |
| 77 | using TrustedImmPtr = typename MacroAssemblerBase::TrustedImmPtr; |
| 78 | using Imm32 = typename MacroAssemblerBase::Imm32; |
| 79 | using Imm64 = typename MacroAssemblerBase::Imm64; |
| 80 | using ImmPtr = typename MacroAssemblerBase::ImmPtr; |
| 81 | using Label = typename MacroAssemblerBase::Label; |
| 82 | using DataLabelPtr = typename MacroAssemblerBase::DataLabelPtr; |
| 83 | using DataLabel32 = typename MacroAssemblerBase::DataLabel32; |
| 84 | using DataLabelCompact = typename MacroAssemblerBase::DataLabelCompact; |
| 85 | using Jump = typename MacroAssemblerBase::Jump; |
| 86 | using PatchableJump = typename MacroAssemblerBase::PatchableJump; |
| 87 | using MacroAssemblerBase::PointerSize; |
| 88 | |
| 89 | using MacroAssemblerBase::pop; |
| 90 | using MacroAssemblerBase::jump; |
| 91 | using MacroAssemblerBase::branch32; |
| 92 | using MacroAssemblerBase::move; |
| 93 | using MacroAssemblerBase::store32; |
| 94 | using MacroAssemblerBase::add32; |
| 95 | using MacroAssemblerBase::xor32; |
| 96 | using MacroAssemblerBase::sub32; |
| 97 | using MacroAssemblerBase::load32; |
| 98 | |
| 99 | |
| 100 | #if CPU(X86_64) || CPU(ARM64) |
| 101 | using MacroAssemblerBase::add64; |
| 102 | using MacroAssemblerBase::sub64; |
| 103 | using MacroAssemblerBase::xor64; |
| 104 | using MacroAssemblerBase::load64; |
| 105 | using MacroAssemblerBase::store64; |
| 106 | #endif |
| 107 | |
| 108 | #if ENABLE(JIT_CONSTANT_BLINDING) |
| 109 | using MacroAssemblerBase::add32; |
| 110 | using MacroAssemblerBase::and32; |
| 111 | using MacroAssemblerBase::branchAdd32; |
| 112 | using MacroAssemblerBase::branchMul32; |
| 113 | using MacroAssemblerBase::branchSub32; |
| 114 | using MacroAssemblerBase::lshift32; |
| 115 | using MacroAssemblerBase::or32; |
| 116 | using MacroAssemblerBase::rshift32; |
| 117 | using MacroAssemblerBase::store32; |
| 118 | using MacroAssemblerBase::sub32; |
| 119 | using MacroAssemblerBase::urshift32; |
| 120 | using MacroAssemblerBase::xor32; |
| 121 | #endif |
| 122 | |
| 123 | static const double twoToThe32; // This is super useful for some double code. |
| 124 | |
| 125 | // Utilities used by the DFG JIT. |
| 126 | #if ENABLE(DFG_JIT) || ENABLE(DFG_JIT_UTILITY_METHODS) |
| 127 | using MacroAssemblerBase::invert; |
| 128 | |
| 129 | static DoubleCondition invert(DoubleCondition cond) |
| 130 | { |
| 131 | switch (cond) { |
| 132 | case DoubleCondition::DoubleEqual: |
| 133 | return DoubleCondition::DoubleNotEqualOrUnordered; |
| 134 | case DoubleCondition::DoubleNotEqual: |
| 135 | return DoubleCondition::DoubleEqualOrUnordered; |
| 136 | case DoubleCondition::DoubleGreaterThan: |
| 137 | return DoubleCondition::DoubleLessThanOrEqualOrUnordered; |
| 138 | case DoubleCondition::DoubleGreaterThanOrEqual: |
| 139 | return DoubleCondition::DoubleLessThanOrUnordered; |
| 140 | case DoubleCondition::DoubleLessThan: |
| 141 | return DoubleCondition::DoubleGreaterThanOrEqualOrUnordered; |
| 142 | case DoubleCondition::DoubleLessThanOrEqual: |
| 143 | return DoubleCondition::DoubleGreaterThanOrUnordered; |
| 144 | case DoubleCondition::DoubleEqualOrUnordered: |
| 145 | return DoubleCondition::DoubleNotEqual; |
| 146 | case DoubleCondition::DoubleNotEqualOrUnordered: |
| 147 | return DoubleCondition::DoubleEqual; |
| 148 | case DoubleCondition::DoubleGreaterThanOrUnordered: |
| 149 | return DoubleCondition::DoubleLessThanOrEqual; |
| 150 | case DoubleCondition::DoubleGreaterThanOrEqualOrUnordered: |
| 151 | return DoubleCondition::DoubleLessThan; |
| 152 | case DoubleCondition::DoubleLessThanOrUnordered: |
| 153 | return DoubleCondition::DoubleGreaterThanOrEqual; |
| 154 | case DoubleCondition::DoubleLessThanOrEqualOrUnordered: |
| 155 | return DoubleCondition::DoubleGreaterThan; |
| 156 | default: |
| 157 | RELEASE_ASSERT_NOT_REACHED(); |
| 158 | return DoubleCondition::DoubleEqual; // make compiler happy |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | static bool isInvertible(ResultCondition cond) |
| 163 | { |
| 164 | switch (cond) { |
| 165 | case ResultCondition::Zero: |
| 166 | case ResultCondition::NonZero: |
| 167 | return true; |
| 168 | default: |
| 169 | return false; |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | static ResultCondition invert(ResultCondition cond) |
| 174 | { |
| 175 | switch (cond) { |
| 176 | case ResultCondition::Zero: |
| 177 | return ResultCondition::NonZero; |
| 178 | case ResultCondition::NonZero: |
| 179 | return ResultCondition::Zero; |
| 180 | default: |
| 181 | RELEASE_ASSERT_NOT_REACHED(); |
| 182 | return ResultCondition::Zero; // Make compiler happy for release builds. |
| 183 | } |
| 184 | } |
| 185 | #endif |
| 186 | |
| 187 | // Platform agnostic onvenience functions, |
| 188 | // described in terms of other macro assembly methods. |
| 189 | void pop() |
| 190 | { |
| 191 | addPtr(TrustedImm32(PointerSize), MacroAssemblerBase::stackPointerRegister); |
| 192 | } |
| 193 | |
| 194 | void peek(RegisterID dest, int index = 0) |
| 195 | { |
| 196 | loadPtr(Address(MacroAssemblerBase::stackPointerRegister, (index * PointerSize)), dest); |
| 197 | } |
| 198 | |
| 199 | Address addressForPoke(int index) |
| 200 | { |
| 201 | return Address(MacroAssemblerBase::stackPointerRegister, (index * PointerSize)); |
| 202 | } |
| 203 | |
| 204 | void poke(RegisterID src, int index = 0) |
| 205 | { |
| 206 | storePtr(src, addressForPoke(index)); |
| 207 | } |
| 208 | |
| 209 | void poke(TrustedImm32 value, int index = 0) |
| 210 | { |
| 211 | store32(value, addressForPoke(index)); |
| 212 | } |
| 213 | |
| 214 | void poke(TrustedImmPtr imm, int index = 0) |
| 215 | { |
| 216 | storePtr(imm, addressForPoke(index)); |
| 217 | } |
| 218 | |
| 219 | #if CPU(X86_64) || CPU(ARM64) |
| 220 | void peek64(RegisterID dest, int index = 0) |
| 221 | { |
| 222 | load64(Address(MacroAssemblerBase::stackPointerRegister, (index * sizeof(void*))), dest); |
| 223 | } |
| 224 | |
| 225 | void poke(TrustedImm64 value, int index = 0) |
| 226 | { |
| 227 | store64(value, addressForPoke(index)); |
| 228 | } |
| 229 | |
| 230 | void poke64(RegisterID src, int index = 0) |
| 231 | { |
| 232 | store64(src, addressForPoke(index)); |
| 233 | } |
| 234 | #endif |
| 235 | |
| 236 | // Backwards banches, these are currently all implemented using existing forwards branch mechanisms. |
| 237 | void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target) |
| 238 | { |
| 239 | branchPtr(cond, op1, imm).linkTo(target, this); |
| 240 | } |
| 241 | void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target) |
| 242 | { |
| 243 | branchPtr(cond, op1, imm).linkTo(target, this); |
| 244 | } |
| 245 | |
| 246 | void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target) |
| 247 | { |
| 248 | branch32(cond, op1, op2).linkTo(target, this); |
| 249 | } |
| 250 | |
| 251 | void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target) |
| 252 | { |
| 253 | branch32(cond, op1, imm).linkTo(target, this); |
| 254 | } |
| 255 | |
| 256 | void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target) |
| 257 | { |
| 258 | branch32(cond, op1, imm).linkTo(target, this); |
| 259 | } |
| 260 | |
| 261 | void branch32(RelationalCondition cond, RegisterID left, Address right, Label target) |
| 262 | { |
| 263 | branch32(cond, left, right).linkTo(target, this); |
| 264 | } |
| 265 | |
| 266 | Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right) |
| 267 | { |
| 268 | return branch32(commute(condition: cond), right, left); |
| 269 | } |
| 270 | |
| 271 | Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right) |
| 272 | { |
| 273 | return branch32(commute(condition: cond), right, left); |
| 274 | } |
| 275 | |
| 276 | void branchTestPtr(ResultCondition cond, RegisterID reg, Label target) |
| 277 | { |
| 278 | branchTestPtr(cond, reg).linkTo(target, this); |
| 279 | } |
| 280 | |
| 281 | #if !CPU(ARM_THUMB2) && !CPU(ARM64) |
| 282 | PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(0)) |
| 283 | { |
| 284 | return PatchableJump(branchPtr(cond, left, right)); |
| 285 | } |
| 286 | |
| 287 | PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(0)) |
| 288 | { |
| 289 | return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue)); |
| 290 | } |
| 291 | |
| 292 | PatchableJump patchableJump() |
| 293 | { |
| 294 | return PatchableJump(jump()); |
| 295 | } |
| 296 | |
| 297 | PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| 298 | { |
| 299 | return PatchableJump(branchTest32(cond, reg, mask)); |
| 300 | } |
| 301 | #endif // !CPU(ARM_THUMB2) && !CPU(ARM64) |
| 302 | |
| 303 | #if !CPU(ARM) |
| 304 | PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm) |
| 305 | { |
| 306 | return PatchableJump(branch32(cond, reg, imm)); |
| 307 | } |
| 308 | #endif // !(CPU(ARM) |
| 309 | |
| 310 | void jump(Label target) |
| 311 | { |
| 312 | jump().linkTo(target, this); |
| 313 | } |
| 314 | |
| 315 | // Commute a relational condition, returns a new condition that will produce |
| 316 | // the same results given the same inputs but with their positions exchanged. |
| 317 | static RelationalCondition commute(RelationalCondition condition) |
| 318 | { |
| 319 | switch (condition) { |
| 320 | case RelationalCondition::Above: |
| 321 | return RelationalCondition::Below; |
| 322 | case RelationalCondition::AboveOrEqual: |
| 323 | return RelationalCondition::BelowOrEqual; |
| 324 | case RelationalCondition::Below: |
| 325 | return RelationalCondition::Above; |
| 326 | case RelationalCondition::BelowOrEqual: |
| 327 | return RelationalCondition::AboveOrEqual; |
| 328 | case RelationalCondition::GreaterThan: |
| 329 | return RelationalCondition::LessThan; |
| 330 | case RelationalCondition::GreaterThanOrEqual: |
| 331 | return RelationalCondition::LessThanOrEqual; |
| 332 | case RelationalCondition::LessThan: |
| 333 | return RelationalCondition::GreaterThan; |
| 334 | case RelationalCondition::LessThanOrEqual: |
| 335 | return RelationalCondition::GreaterThanOrEqual; |
| 336 | default: |
| 337 | break; |
| 338 | } |
| 339 | |
| 340 | ASSERT(condition == RelationalCondition::Equal || condition == RelationalCondition::NotEqual); |
| 341 | return condition; |
| 342 | } |
| 343 | |
| 344 | static const unsigned BlindingModulus = 64; |
| 345 | bool shouldConsiderBlinding() |
| 346 | { |
| 347 | return !(this->random() & (BlindingModulus - 1)); |
| 348 | } |
| 349 | |
| 350 | // Ptr methods |
| 351 | // On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents. |
| 352 | // FIXME: should this use a test for 32-bitness instead of this specific exception? |
| 353 | #if !CPU(X86_64) && !CPU(ARM64) |
| 354 | void addPtr(Address src, RegisterID dest) |
| 355 | { |
| 356 | add32(src, dest); |
| 357 | } |
| 358 | |
| 359 | void addPtr(AbsoluteAddress src, RegisterID dest) |
| 360 | { |
| 361 | add32(src, dest); |
| 362 | } |
| 363 | |
| 364 | void addPtr(RegisterID src, RegisterID dest) |
| 365 | { |
| 366 | add32(src, dest); |
| 367 | } |
| 368 | |
| 369 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
| 370 | { |
| 371 | add32(imm, srcDest); |
| 372 | } |
| 373 | |
| 374 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
| 375 | { |
| 376 | add32(TrustedImm32(imm), dest); |
| 377 | } |
| 378 | |
| 379 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| 380 | { |
| 381 | add32(imm, src, dest); |
| 382 | } |
| 383 | |
| 384 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
| 385 | { |
| 386 | add32(imm, address); |
| 387 | } |
| 388 | |
| 389 | void andPtr(RegisterID src, RegisterID dest) |
| 390 | { |
| 391 | and32(src, dest); |
| 392 | } |
| 393 | |
| 394 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
| 395 | { |
| 396 | and32(imm, srcDest); |
| 397 | } |
| 398 | |
| 399 | void negPtr(RegisterID dest) |
| 400 | { |
| 401 | neg32(dest); |
| 402 | } |
| 403 | |
| 404 | void orPtr(RegisterID src, RegisterID dest) |
| 405 | { |
| 406 | or32(src, dest); |
| 407 | } |
| 408 | |
| 409 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
| 410 | { |
| 411 | or32(op1, op2, dest); |
| 412 | } |
| 413 | |
| 414 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
| 415 | { |
| 416 | or32(TrustedImm32(imm), dest); |
| 417 | } |
| 418 | |
| 419 | void orPtr(TrustedImm32 imm, RegisterID dest) |
| 420 | { |
| 421 | or32(imm, dest); |
| 422 | } |
| 423 | |
| 424 | void subPtr(RegisterID src, RegisterID dest) |
| 425 | { |
| 426 | sub32(src, dest); |
| 427 | } |
| 428 | |
| 429 | void subPtr(TrustedImm32 imm, RegisterID dest) |
| 430 | { |
| 431 | sub32(imm, dest); |
| 432 | } |
| 433 | |
| 434 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
| 435 | { |
| 436 | sub32(TrustedImm32(imm), dest); |
| 437 | } |
| 438 | |
| 439 | void xorPtr(RegisterID src, RegisterID dest) |
| 440 | { |
| 441 | xor32(src, dest); |
| 442 | } |
| 443 | |
| 444 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
| 445 | { |
| 446 | xor32(imm, srcDest); |
| 447 | } |
| 448 | |
| 449 | |
| 450 | void loadPtr(ImplicitAddress address, RegisterID dest) |
| 451 | { |
| 452 | load32(address, dest); |
| 453 | } |
| 454 | |
| 455 | void loadPtr(BaseIndex address, RegisterID dest) |
| 456 | { |
| 457 | load32(address, dest); |
| 458 | } |
| 459 | |
| 460 | void loadPtr(const void* address, RegisterID dest) |
| 461 | { |
| 462 | load32(address, dest); |
| 463 | } |
| 464 | |
| 465 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
| 466 | { |
| 467 | return load32WithAddressOffsetPatch(address, dest); |
| 468 | } |
| 469 | |
| 470 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
| 471 | { |
| 472 | return load32WithCompactAddressOffsetPatch(address, dest); |
| 473 | } |
| 474 | |
| 475 | void move(ImmPtr imm, RegisterID dest) |
| 476 | { |
| 477 | move(Imm32(imm.asTrustedImmPtr()), dest); |
| 478 | } |
| 479 | |
| 480 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| 481 | { |
| 482 | compare32(cond, left, right, dest); |
| 483 | } |
| 484 | |
| 485 | void storePtr(RegisterID src, ImplicitAddress address) |
| 486 | { |
| 487 | store32(src, address); |
| 488 | } |
| 489 | |
| 490 | void storePtr(RegisterID src, BaseIndex address) |
| 491 | { |
| 492 | store32(src, address); |
| 493 | } |
| 494 | |
| 495 | void storePtr(RegisterID src, void* address) |
| 496 | { |
| 497 | store32(src, address); |
| 498 | } |
| 499 | |
| 500 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
| 501 | { |
| 502 | store32(TrustedImm32(imm), address); |
| 503 | } |
| 504 | |
| 505 | void storePtr(ImmPtr imm, Address address) |
| 506 | { |
| 507 | store32(Imm32(imm.asTrustedImmPtr()), address); |
| 508 | } |
| 509 | |
| 510 | void storePtr(TrustedImmPtr imm, void* address) |
| 511 | { |
| 512 | store32(TrustedImm32(imm), address); |
| 513 | } |
| 514 | |
| 515 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
| 516 | { |
| 517 | return store32WithAddressOffsetPatch(src, address); |
| 518 | } |
| 519 | |
| 520 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
| 521 | { |
| 522 | return branch32(cond, left, right); |
| 523 | } |
| 524 | |
| 525 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
| 526 | { |
| 527 | return branch32(cond, left, TrustedImm32(right)); |
| 528 | } |
| 529 | |
| 530 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
| 531 | { |
| 532 | return branch32(cond, left, Imm32(right.asTrustedImmPtr())); |
| 533 | } |
| 534 | |
| 535 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
| 536 | { |
| 537 | return branch32(cond, left, right); |
| 538 | } |
| 539 | |
| 540 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
| 541 | { |
| 542 | return branch32(cond, left, right); |
| 543 | } |
| 544 | |
| 545 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| 546 | { |
| 547 | return branch32(cond, left, right); |
| 548 | } |
| 549 | |
| 550 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
| 551 | { |
| 552 | return branch32(cond, left, TrustedImm32(right)); |
| 553 | } |
| 554 | |
| 555 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right) |
| 556 | { |
| 557 | return branch32(cond, left, TrustedImm32(right)); |
| 558 | } |
| 559 | |
| 560 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 561 | { |
| 562 | return branchSub32(cond, src, dest); |
| 563 | } |
| 564 | |
| 565 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
| 566 | { |
| 567 | return branchTest32(cond, reg, mask); |
| 568 | } |
| 569 | |
| 570 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| 571 | { |
| 572 | return branchTest32(cond, reg, mask); |
| 573 | } |
| 574 | |
| 575 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| 576 | { |
| 577 | return branchTest32(cond, address, mask); |
| 578 | } |
| 579 | |
| 580 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| 581 | { |
| 582 | return branchTest32(cond, address, mask); |
| 583 | } |
| 584 | |
| 585 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 586 | { |
| 587 | return branchAdd32(cond, src, dest); |
| 588 | } |
| 589 | |
| 590 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| 591 | { |
| 592 | return branchSub32(cond, imm, dest); |
| 593 | } |
| 594 | using MacroAssemblerBase::branchTest8; |
| 595 | Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| 596 | { |
| 597 | return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask); |
| 598 | } |
| 599 | #else |
| 600 | void addPtr(RegisterID src, RegisterID dest) |
| 601 | { |
| 602 | add64(src, dest); |
| 603 | } |
| 604 | |
| 605 | void addPtr(Address src, RegisterID dest) |
| 606 | { |
| 607 | add64(src, dest); |
| 608 | } |
| 609 | |
| 610 | void addPtr(TrustedImm32 imm, RegisterID srcDest) |
| 611 | { |
| 612 | add64(imm, srcDest); |
| 613 | } |
| 614 | |
| 615 | void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| 616 | { |
| 617 | add64(imm, src, dest); |
| 618 | } |
| 619 | |
| 620 | void addPtr(TrustedImm32 imm, Address address) |
| 621 | { |
| 622 | add64(imm, address); |
| 623 | } |
| 624 | |
| 625 | void addPtr(AbsoluteAddress src, RegisterID dest) |
| 626 | { |
| 627 | add64(src, dest); |
| 628 | } |
| 629 | |
| 630 | void addPtr(TrustedImmPtr imm, RegisterID dest) |
| 631 | { |
| 632 | add64(TrustedImm64(imm), dest); |
| 633 | } |
| 634 | |
| 635 | void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
| 636 | { |
| 637 | add64(imm, address); |
| 638 | } |
| 639 | |
| 640 | void andPtr(RegisterID src, RegisterID dest) |
| 641 | { |
| 642 | and64(src, dest); |
| 643 | } |
| 644 | |
| 645 | void andPtr(TrustedImm32 imm, RegisterID srcDest) |
| 646 | { |
| 647 | and64(imm, srcDest); |
| 648 | } |
| 649 | |
| 650 | void negPtr(RegisterID dest) |
| 651 | { |
| 652 | neg64(dest); |
| 653 | } |
| 654 | |
| 655 | void orPtr(RegisterID src, RegisterID dest) |
| 656 | { |
| 657 | or64(src, dest); |
| 658 | } |
| 659 | |
| 660 | void orPtr(TrustedImm32 imm, RegisterID dest) |
| 661 | { |
| 662 | or64(imm, dest); |
| 663 | } |
| 664 | |
| 665 | void orPtr(TrustedImmPtr imm, RegisterID dest) |
| 666 | { |
| 667 | or64(TrustedImm64(imm), dest); |
| 668 | } |
| 669 | |
| 670 | void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
| 671 | { |
| 672 | or64(op1, op2, dest); |
| 673 | } |
| 674 | |
| 675 | void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| 676 | { |
| 677 | or64(imm, src, dest); |
| 678 | } |
| 679 | |
| 680 | void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst) |
| 681 | { |
| 682 | rotateRight64(imm, srcDst); |
| 683 | } |
| 684 | |
| 685 | void subPtr(RegisterID src, RegisterID dest) |
| 686 | { |
| 687 | sub64(src, dest); |
| 688 | } |
| 689 | |
| 690 | void subPtr(TrustedImm32 imm, RegisterID dest) |
| 691 | { |
| 692 | sub64(imm, dest); |
| 693 | } |
| 694 | |
| 695 | void subPtr(TrustedImmPtr imm, RegisterID dest) |
| 696 | { |
| 697 | sub64(TrustedImm64(imm), dest); |
| 698 | } |
| 699 | |
| 700 | void xorPtr(RegisterID src, RegisterID dest) |
| 701 | { |
| 702 | xor64(src, dest); |
| 703 | } |
| 704 | |
| 705 | void xorPtr(RegisterID src, Address dest) |
| 706 | { |
| 707 | xor64(src, dest); |
| 708 | } |
| 709 | |
| 710 | void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
| 711 | { |
| 712 | xor64(imm, srcDest); |
| 713 | } |
| 714 | |
| 715 | void loadPtr(ImplicitAddress address, RegisterID dest) |
| 716 | { |
| 717 | load64(address, dest); |
| 718 | } |
| 719 | |
| 720 | void loadPtr(BaseIndex address, RegisterID dest) |
| 721 | { |
| 722 | load64(address, dest); |
| 723 | } |
| 724 | |
| 725 | void loadPtr(const void* address, RegisterID dest) |
| 726 | { |
| 727 | load64(address, dest); |
| 728 | } |
| 729 | |
| 730 | DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
| 731 | { |
| 732 | return load64WithAddressOffsetPatch(address, dest); |
| 733 | } |
| 734 | |
| 735 | DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
| 736 | { |
| 737 | return load64WithCompactAddressOffsetPatch(address, dest); |
| 738 | } |
| 739 | |
| 740 | void storePtr(RegisterID src, ImplicitAddress address) |
| 741 | { |
| 742 | store64(src, address); |
| 743 | } |
| 744 | |
| 745 | void storePtr(RegisterID src, BaseIndex address) |
| 746 | { |
| 747 | store64(src, address); |
| 748 | } |
| 749 | |
| 750 | void storePtr(RegisterID src, void* address) |
| 751 | { |
| 752 | store64(src, address); |
| 753 | } |
| 754 | |
| 755 | void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
| 756 | { |
| 757 | store64(TrustedImm64(imm), address); |
| 758 | } |
| 759 | |
| 760 | void storePtr(TrustedImmPtr imm, BaseIndex address) |
| 761 | { |
| 762 | store64(TrustedImm64(imm), address); |
| 763 | } |
| 764 | |
| 765 | DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
| 766 | { |
| 767 | return store64WithAddressOffsetPatch(src, address); |
| 768 | } |
| 769 | |
| 770 | void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| 771 | { |
| 772 | compare64(cond, left, right, dest); |
| 773 | } |
| 774 | |
| 775 | void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
| 776 | { |
| 777 | compare64(cond, left, right, dest); |
| 778 | } |
| 779 | |
| 780 | void testPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) |
| 781 | { |
| 782 | test64(cond, reg, mask, dest); |
| 783 | } |
| 784 | |
| 785 | void testPtr(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) |
| 786 | { |
| 787 | test64(cond, reg, mask, dest); |
| 788 | } |
| 789 | |
| 790 | Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
| 791 | { |
| 792 | return this->branch64(cond, left, right); |
| 793 | } |
| 794 | |
| 795 | Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
| 796 | { |
| 797 | return this->branch64(cond, left, TrustedImm64(right)); |
| 798 | } |
| 799 | |
| 800 | Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
| 801 | { |
| 802 | return branch64(cond, left, right); |
| 803 | } |
| 804 | |
| 805 | Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
| 806 | { |
| 807 | return branch64(cond, left, right); |
| 808 | } |
| 809 | |
| 810 | Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| 811 | { |
| 812 | return branch64(cond, left, right); |
| 813 | } |
| 814 | |
| 815 | Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
| 816 | { |
| 817 | return branch64(cond, left, TrustedImm64(right)); |
| 818 | } |
| 819 | |
| 820 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
| 821 | { |
| 822 | return branchTest64(cond, reg, mask); |
| 823 | } |
| 824 | |
| 825 | Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| 826 | { |
| 827 | return this->branchTest64(cond, reg, mask); |
| 828 | } |
| 829 | |
| 830 | Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| 831 | { |
| 832 | return branchTest64(cond, address, mask); |
| 833 | } |
| 834 | |
| 835 | Jump branchTestPtr(ResultCondition cond, Address address, RegisterID reg) |
| 836 | { |
| 837 | return branchTest64(cond, address, reg); |
| 838 | } |
| 839 | |
| 840 | Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| 841 | { |
| 842 | return branchTest64(cond, address, mask); |
| 843 | } |
| 844 | |
| 845 | Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| 846 | { |
| 847 | return branchTest64(cond, address, mask); |
| 848 | } |
| 849 | |
| 850 | Jump branchAddPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| 851 | { |
| 852 | return branchAdd64(cond, imm, dest); |
| 853 | } |
| 854 | |
| 855 | Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 856 | { |
| 857 | return branchAdd64(cond, src, dest); |
| 858 | } |
| 859 | |
| 860 | Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| 861 | { |
| 862 | return branchSub64(cond, imm, dest); |
| 863 | } |
| 864 | |
| 865 | Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| 866 | { |
| 867 | return branchSub64(cond, src, dest); |
| 868 | } |
| 869 | |
| 870 | Jump branchSubPtr(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) |
| 871 | { |
| 872 | return branchSub64(cond, src1, src2, dest); |
| 873 | } |
| 874 | #endif // !CPU(X86_64) && !CPU(ARM64) |
| 875 | |
| 876 | #if ENABLE(JIT_CONSTANT_BLINDING) |
| 877 | using MacroAssemblerBase::and64; |
| 878 | using MacroAssemblerBase::convertInt32ToDouble; |
| 879 | using MacroAssemblerBase::store64; |
| 880 | bool shouldBlindDouble(double value) |
| 881 | { |
| 882 | // Don't trust NaN or +/-Infinity |
| 883 | if (!std::isfinite(value)) |
| 884 | return shouldConsiderBlinding(); |
| 885 | |
| 886 | // Try to force normalisation, and check that there's no change |
| 887 | // in the bit pattern |
| 888 | if (bitwise_cast<uint64_t>(value * 1.0) != bitwise_cast<uint64_t>(value)) |
| 889 | return shouldConsiderBlinding(); |
| 890 | |
| 891 | value = abs(value); |
| 892 | // Only allow a limited set of fractional components |
| 893 | double scaledValue = value * 8; |
| 894 | if (scaledValue / 8 != value) |
| 895 | return shouldConsiderBlinding(); |
| 896 | double frac = scaledValue - floor(scaledValue); |
| 897 | if (frac != 0.0) |
| 898 | return shouldConsiderBlinding(); |
| 899 | |
| 900 | return value > 0xff; |
| 901 | } |
| 902 | |
| 903 | bool shouldBlind(ImmPtr imm) |
| 904 | { |
| 905 | #if ENABLE(FORCED_JIT_BLINDING) |
| 906 | UNUSED_PARAM(imm); |
| 907 | // Debug always blind all constants, if only so we know |
| 908 | // if we've broken blinding during patch development. |
| 909 | return true; |
| 910 | #endif |
| 911 | |
| 912 | // First off we'll special case common, "safe" values to avoid hurting |
| 913 | // performance too much |
| 914 | uintptr_t value = imm.asTrustedImmPtr().asIntptr(); |
| 915 | switch (value) { |
| 916 | case 0xffff: |
| 917 | case 0xffffff: |
| 918 | case 0xffffffffL: |
| 919 | case 0xffffffffffL: |
| 920 | case 0xffffffffffffL: |
| 921 | case 0xffffffffffffffL: |
| 922 | case 0xffffffffffffffffL: |
| 923 | return false; |
| 924 | default: { |
| 925 | if (value <= 0xff) |
| 926 | return false; |
| 927 | if (~value <= 0xff) |
| 928 | return false; |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | if (!shouldConsiderBlinding()) |
| 933 | return false; |
| 934 | |
| 935 | return shouldBlindForSpecificArch(value); |
| 936 | } |
| 937 | |
| 938 | struct RotatedImmPtr { |
| 939 | RotatedImmPtr(uintptr_t v1, uint8_t v2) |
| 940 | : value(v1) |
| 941 | , rotation(v2) |
| 942 | { |
| 943 | } |
| 944 | TrustedImmPtr value; |
| 945 | TrustedImm32 rotation; |
| 946 | }; |
| 947 | |
| 948 | RotatedImmPtr rotationBlindConstant(ImmPtr imm) |
| 949 | { |
| 950 | uint8_t rotation = random() % (sizeof(void*) * 8); |
| 951 | uintptr_t value = imm.asTrustedImmPtr().asIntptr(); |
| 952 | value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation)); |
| 953 | return RotatedImmPtr(value, rotation); |
| 954 | } |
| 955 | |
| 956 | void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest) |
| 957 | { |
| 958 | move(constant.value, dest); |
| 959 | rotateRightPtr(constant.rotation, dest); |
| 960 | } |
| 961 | |
| 962 | bool shouldBlind(Imm64 imm) |
| 963 | { |
| 964 | #if ENABLE(FORCED_JIT_BLINDING) |
| 965 | UNUSED_PARAM(imm); |
| 966 | // Debug always blind all constants, if only so we know |
| 967 | // if we've broken blinding during patch development. |
| 968 | return true; |
| 969 | #endif |
| 970 | |
| 971 | // First off we'll special case common, "safe" values to avoid hurting |
| 972 | // performance too much |
| 973 | uint64_t value = imm.asTrustedImm64().m_value; |
| 974 | switch (value) { |
| 975 | case 0xffff: |
| 976 | case 0xffffff: |
| 977 | case 0xffffffffL: |
| 978 | case 0xffffffffffL: |
| 979 | case 0xffffffffffffL: |
| 980 | case 0xffffffffffffffL: |
| 981 | case 0xffffffffffffffffL: |
| 982 | return false; |
| 983 | default: { |
| 984 | if (value <= 0xff) |
| 985 | return false; |
| 986 | if (~value <= 0xff) |
| 987 | return false; |
| 988 | |
| 989 | JSValue jsValue = JSValue::decode(value); |
| 990 | if (jsValue.isInt32()) |
| 991 | return shouldBlind(Imm32(jsValue.asInt32())); |
| 992 | if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble())) |
| 993 | return false; |
| 994 | |
| 995 | if (!shouldBlindDouble(bitwise_cast<double>(value))) |
| 996 | return false; |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | if (!shouldConsiderBlinding()) |
| 1001 | return false; |
| 1002 | |
| 1003 | return shouldBlindForSpecificArch(value); |
| 1004 | } |
| 1005 | |
| 1006 | struct RotatedImm64 { |
| 1007 | RotatedImm64(uint64_t v1, uint8_t v2) |
| 1008 | : value(v1) |
| 1009 | , rotation(v2) |
| 1010 | { |
| 1011 | } |
| 1012 | TrustedImm64 value; |
| 1013 | TrustedImm32 rotation; |
| 1014 | }; |
| 1015 | |
| 1016 | RotatedImm64 rotationBlindConstant(Imm64 imm) |
| 1017 | { |
| 1018 | uint8_t rotation = random() % (sizeof(int64_t) * 8); |
| 1019 | uint64_t value = imm.asTrustedImm64().m_value; |
| 1020 | value = (value << rotation) | (value >> (sizeof(int64_t) * 8 - rotation)); |
| 1021 | return RotatedImm64(value, rotation); |
| 1022 | } |
| 1023 | |
| 1024 | void loadRotationBlindedConstant(RotatedImm64 constant, RegisterID dest) |
| 1025 | { |
| 1026 | move(constant.value, dest); |
| 1027 | rotateRight64(constant.rotation, dest); |
| 1028 | } |
| 1029 | |
| 1030 | void convertInt32ToDouble(Imm32 imm, FPRegisterID dest) |
| 1031 | { |
| 1032 | if (shouldBlind(imm)) { |
| 1033 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1034 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister); |
| 1035 | convertInt32ToDouble(scratchRegister, dest); |
| 1036 | } else |
| 1037 | convertInt32ToDouble(imm.asTrustedImm32(), dest); |
| 1038 | } |
| 1039 | |
| 1040 | void move(ImmPtr imm, RegisterID dest) |
| 1041 | { |
| 1042 | if (shouldBlind(imm)) |
| 1043 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
| 1044 | else |
| 1045 | move(imm.asTrustedImmPtr(), dest); |
| 1046 | } |
| 1047 | |
| 1048 | void move(Imm64 imm, RegisterID dest) |
| 1049 | { |
| 1050 | if (shouldBlind(imm)) |
| 1051 | loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
| 1052 | else |
| 1053 | move(imm.asTrustedImm64(), dest); |
| 1054 | } |
| 1055 | |
| 1056 | void and64(Imm32 imm, RegisterID dest) |
| 1057 | { |
| 1058 | if (shouldBlind(imm)) { |
| 1059 | BlindedImm32 key = andBlindedConstant(imm); |
| 1060 | and64(key.value1, dest); |
| 1061 | and64(key.value2, dest); |
| 1062 | } else |
| 1063 | and64(imm.asTrustedImm32(), dest); |
| 1064 | } |
| 1065 | |
| 1066 | Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
| 1067 | { |
| 1068 | if (shouldBlind(right)) { |
| 1069 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1070 | loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister); |
| 1071 | return branchPtr(cond, left, scratchRegister); |
| 1072 | } |
| 1073 | return branchPtr(cond, left, right.asTrustedImmPtr()); |
| 1074 | } |
| 1075 | |
| 1076 | void storePtr(ImmPtr imm, Address dest) |
| 1077 | { |
| 1078 | if (shouldBlind(imm)) { |
| 1079 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1080 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
| 1081 | storePtr(scratchRegister, dest); |
| 1082 | } else |
| 1083 | storePtr(imm.asTrustedImmPtr(), dest); |
| 1084 | } |
| 1085 | |
| 1086 | void store64(Imm64 imm, Address dest) |
| 1087 | { |
| 1088 | if (shouldBlind(imm)) { |
| 1089 | RegisterID scratchRegister = scratchRegisterForBlinding(); |
| 1090 | loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
| 1091 | store64(scratchRegister, dest); |
| 1092 | } else |
| 1093 | store64(imm.asTrustedImm64(), dest); |
| 1094 | } |
| 1095 | |
| 1096 | #endif |
| 1097 | |
| 1098 | #if ENABLE(JIT_CONSTANT_BLINDING) |
| 1099 | bool shouldBlind(Imm32 imm) |
| 1100 | { |
| 1101 | #if ENABLE(FORCED_JIT_BLINDING) |
| 1102 | UNUSED_PARAM(imm); |
| 1103 | // Debug always blind all constants, if only so we know |
| 1104 | // if we've broken blinding during patch development. |
| 1105 | return true; |
| 1106 | #else |
| 1107 | |
| 1108 | // First off we'll special case common, "safe" values to avoid hurting |
| 1109 | // performance too much |
| 1110 | uint32_t value = imm.asTrustedImm32().m_value; |
| 1111 | switch (value) { |
| 1112 | case 0xffff: |
| 1113 | case 0xffffff: |
| 1114 | case 0xffffffff: |
| 1115 | return false; |
| 1116 | default: |
| 1117 | if (value <= 0xff) |
| 1118 | return false; |
| 1119 | if (~value <= 0xff) |
| 1120 | return false; |
| 1121 | } |
| 1122 | |
| 1123 | if (!shouldConsiderBlinding()) |
| 1124 | return false; |
| 1125 | |
| 1126 | return shouldBlindForSpecificArch(value); |
| 1127 | #endif |
| 1128 | } |
| 1129 | |
| 1130 | struct BlindedImm32 { |
| 1131 | BlindedImm32(int32_t v1, int32_t v2) |
| 1132 | : value1(v1) |
| 1133 | , value2(v2) |
| 1134 | { |
| 1135 | } |
| 1136 | TrustedImm32 value1; |
| 1137 | TrustedImm32 value2; |
| 1138 | }; |
| 1139 | |
| 1140 | uint32_t keyForConstant(uint32_t value, uint32_t& mask) |
| 1141 | { |
| 1142 | uint32_t key = random(); |
| 1143 | if (value <= 0xff) |
| 1144 | mask = 0xff; |
| 1145 | else if (value <= 0xffff) |
| 1146 | mask = 0xffff; |
| 1147 | else if (value <= 0xffffff) |
| 1148 | mask = 0xffffff; |
| 1149 | else |
| 1150 | mask = 0xffffffff; |
| 1151 | return key & mask; |
| 1152 | } |
| 1153 | |
| 1154 | uint32_t keyForConstant(uint32_t value) |
| 1155 | { |
| 1156 | uint32_t mask = 0; |
| 1157 | return keyForConstant(value, mask); |
| 1158 | } |
| 1159 | |
| 1160 | BlindedImm32 xorBlindConstant(Imm32 imm) |
| 1161 | { |
| 1162 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1163 | uint32_t key = keyForConstant(baseValue); |
| 1164 | return BlindedImm32(baseValue ^ key, key); |
| 1165 | } |
| 1166 | |
| 1167 | BlindedImm32 additionBlindedConstant(Imm32 imm) |
| 1168 | { |
| 1169 | // The addition immediate may be used as a pointer offset. Keep aligned based on "imm". |
| 1170 | static uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff }; |
| 1171 | |
| 1172 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1173 | uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3]; |
| 1174 | if (key > baseValue) |
| 1175 | key = key - baseValue; |
| 1176 | return BlindedImm32(baseValue - key, key); |
| 1177 | } |
| 1178 | |
| 1179 | BlindedImm32 andBlindedConstant(Imm32 imm) |
| 1180 | { |
| 1181 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1182 | uint32_t mask = 0; |
| 1183 | uint32_t key = keyForConstant(baseValue, mask); |
| 1184 | ASSERT((baseValue & mask) == baseValue); |
| 1185 | return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask); |
| 1186 | } |
| 1187 | |
| 1188 | BlindedImm32 orBlindedConstant(Imm32 imm) |
| 1189 | { |
| 1190 | uint32_t baseValue = imm.asTrustedImm32().m_value; |
| 1191 | uint32_t mask = 0; |
| 1192 | uint32_t key = keyForConstant(baseValue, mask); |
| 1193 | ASSERT((baseValue & mask) == baseValue); |
| 1194 | return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask); |
| 1195 | } |
| 1196 | |
| 1197 | void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest) |
| 1198 | { |
| 1199 | move(constant.value1, dest); |
| 1200 | xor32(constant.value2, dest); |
| 1201 | } |
| 1202 | |
| 1203 | void add32(Imm32 imm, RegisterID dest) |
| 1204 | { |
| 1205 | if (shouldBlind(imm)) { |
| 1206 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1207 | add32(key.value1, dest); |
| 1208 | add32(key.value2, dest); |
| 1209 | } else |
| 1210 | add32(imm.asTrustedImm32(), dest); |
| 1211 | } |
| 1212 | |
| 1213 | void addPtr(Imm32 imm, RegisterID dest) |
| 1214 | { |
| 1215 | if (shouldBlind(imm)) { |
| 1216 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1217 | addPtr(key.value1, dest); |
| 1218 | addPtr(key.value2, dest); |
| 1219 | } else |
| 1220 | addPtr(imm.asTrustedImm32(), dest); |
| 1221 | } |
| 1222 | |
| 1223 | void and32(Imm32 imm, RegisterID dest) |
| 1224 | { |
| 1225 | if (shouldBlind(imm)) { |
| 1226 | BlindedImm32 key = andBlindedConstant(imm); |
| 1227 | and32(key.value1, dest); |
| 1228 | and32(key.value2, dest); |
| 1229 | } else |
| 1230 | and32(imm.asTrustedImm32(), dest); |
| 1231 | } |
| 1232 | |
| 1233 | void andPtr(Imm32 imm, RegisterID dest) |
| 1234 | { |
| 1235 | if (shouldBlind(imm)) { |
| 1236 | BlindedImm32 key = andBlindedConstant(imm); |
| 1237 | andPtr(key.value1, dest); |
| 1238 | andPtr(key.value2, dest); |
| 1239 | } else |
| 1240 | andPtr(imm.asTrustedImm32(), dest); |
| 1241 | } |
| 1242 | |
| 1243 | void and32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1244 | { |
| 1245 | if (shouldBlind(imm)) { |
| 1246 | if (src == dest) |
| 1247 | return and32(imm.asTrustedImm32(), dest); |
| 1248 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1249 | and32(src, dest); |
| 1250 | } else |
| 1251 | and32(imm.asTrustedImm32(), src, dest); |
| 1252 | } |
| 1253 | |
| 1254 | void move(Imm32 imm, RegisterID dest) |
| 1255 | { |
| 1256 | if (shouldBlind(imm)) |
| 1257 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1258 | else |
| 1259 | move(imm.asTrustedImm32(), dest); |
| 1260 | } |
| 1261 | |
| 1262 | void or32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1263 | { |
| 1264 | if (shouldBlind(imm)) { |
| 1265 | if (src == dest) |
| 1266 | return or32(imm, dest); |
| 1267 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1268 | or32(src, dest); |
| 1269 | } else |
| 1270 | or32(imm.asTrustedImm32(), src, dest); |
| 1271 | } |
| 1272 | |
| 1273 | void or32(Imm32 imm, RegisterID dest) |
| 1274 | { |
| 1275 | if (shouldBlind(imm)) { |
| 1276 | BlindedImm32 key = orBlindedConstant(imm); |
| 1277 | or32(key.value1, dest); |
| 1278 | or32(key.value2, dest); |
| 1279 | } else |
| 1280 | or32(imm.asTrustedImm32(), dest); |
| 1281 | } |
| 1282 | |
| 1283 | void poke(Imm32 value, int index = 0) |
| 1284 | { |
| 1285 | store32(value, addressForPoke(index)); |
| 1286 | } |
| 1287 | |
| 1288 | void poke(ImmPtr value, int index = 0) |
| 1289 | { |
| 1290 | storePtr(value, addressForPoke(index)); |
| 1291 | } |
| 1292 | |
| 1293 | #if CPU(X86_64) |
| 1294 | void poke(Imm64 value, int index = 0) |
| 1295 | { |
| 1296 | store64(value, addressForPoke(index)); |
| 1297 | } |
| 1298 | #endif |
| 1299 | |
| 1300 | void store32(Imm32 imm, Address dest) |
| 1301 | { |
| 1302 | if (shouldBlind(imm)) { |
| 1303 | #if CPU(X86) || CPU(X86_64) |
| 1304 | BlindedImm32 blind = xorBlindConstant(imm); |
| 1305 | store32(blind.value1, dest); |
| 1306 | xor32(blind.value2, dest); |
| 1307 | #else |
| 1308 | if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) { |
| 1309 | loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister); |
| 1310 | store32(scratchRegister, dest); |
| 1311 | } else { |
| 1312 | // If we don't have a scratch register available for use, we'll just |
| 1313 | // place a random number of nops. |
| 1314 | uint32_t nopCount = random() & 3; |
| 1315 | while (nopCount--) |
| 1316 | nop(); |
| 1317 | store32(imm.asTrustedImm32(), dest); |
| 1318 | } |
| 1319 | #endif |
| 1320 | } else |
| 1321 | store32(imm.asTrustedImm32(), dest); |
| 1322 | } |
| 1323 | |
| 1324 | void sub32(Imm32 imm, RegisterID dest) |
| 1325 | { |
| 1326 | if (shouldBlind(imm)) { |
| 1327 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1328 | sub32(key.value1, dest); |
| 1329 | sub32(key.value2, dest); |
| 1330 | } else |
| 1331 | sub32(imm.asTrustedImm32(), dest); |
| 1332 | } |
| 1333 | |
| 1334 | void subPtr(Imm32 imm, RegisterID dest) |
| 1335 | { |
| 1336 | if (shouldBlind(imm)) { |
| 1337 | BlindedImm32 key = additionBlindedConstant(imm); |
| 1338 | subPtr(key.value1, dest); |
| 1339 | subPtr(key.value2, dest); |
| 1340 | } else |
| 1341 | subPtr(imm.asTrustedImm32(), dest); |
| 1342 | } |
| 1343 | |
| 1344 | void xor32(Imm32 imm, RegisterID src, RegisterID dest) |
| 1345 | { |
| 1346 | if (shouldBlind(imm)) { |
| 1347 | BlindedImm32 blind = xorBlindConstant(imm); |
| 1348 | xor32(blind.value1, src, dest); |
| 1349 | xor32(blind.value2, dest); |
| 1350 | } else |
| 1351 | xor32(imm.asTrustedImm32(), src, dest); |
| 1352 | } |
| 1353 | |
| 1354 | void xor32(Imm32 imm, RegisterID dest) |
| 1355 | { |
| 1356 | if (shouldBlind(imm)) { |
| 1357 | BlindedImm32 blind = xorBlindConstant(imm); |
| 1358 | xor32(blind.value1, dest); |
| 1359 | xor32(blind.value2, dest); |
| 1360 | } else |
| 1361 | xor32(imm.asTrustedImm32(), dest); |
| 1362 | } |
| 1363 | |
| 1364 | Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right) |
| 1365 | { |
| 1366 | if (shouldBlind(right)) { |
| 1367 | if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) { |
| 1368 | loadXorBlindedConstant(xorBlindConstant(right), scratchRegister); |
| 1369 | return branch32(cond, left, scratchRegister); |
| 1370 | } |
| 1371 | // If we don't have a scratch register available for use, we'll just |
| 1372 | // place a random number of nops. |
| 1373 | uint32_t nopCount = random() & 3; |
| 1374 | while (nopCount--) |
| 1375 | nop(); |
| 1376 | return branch32(cond, left, right.asTrustedImm32()); |
| 1377 | } |
| 1378 | |
| 1379 | return branch32(cond, left, right.asTrustedImm32()); |
| 1380 | } |
| 1381 | |
| 1382 | Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
| 1383 | { |
| 1384 | if (src == dest) |
| 1385 | ASSERT(scratchRegisterForBlinding()); |
| 1386 | |
| 1387 | if (shouldBlind(imm)) { |
| 1388 | if (src == dest) { |
| 1389 | if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) { |
| 1390 | move(src, scratchRegister); |
| 1391 | src = scratchRegister; |
| 1392 | } |
| 1393 | } |
| 1394 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1395 | return branchAdd32(cond, src, dest); |
| 1396 | } |
| 1397 | return branchAdd32(cond, src, imm.asTrustedImm32(), dest); |
| 1398 | } |
| 1399 | |
| 1400 | Jump branchMul32(ResultCondition cond, Imm32 imm, RegisterID src, RegisterID dest) |
| 1401 | { |
| 1402 | if (src == dest) |
| 1403 | ASSERT(scratchRegisterForBlinding()); |
| 1404 | |
| 1405 | if (shouldBlind(imm)) { |
| 1406 | if (src == dest) { |
| 1407 | if (RegisterID scratchRegister = (RegisterID)scratchRegisterForBlinding()) { |
| 1408 | move(src, scratchRegister); |
| 1409 | src = scratchRegister; |
| 1410 | } |
| 1411 | } |
| 1412 | loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| 1413 | return branchMul32(cond, src, dest); |
| 1414 | } |
| 1415 | return branchMul32(cond, imm.asTrustedImm32(), src, dest); |
| 1416 | } |
| 1417 | |
| 1418 | // branchSub32 takes a scratch register as 32 bit platforms make use of this, |
| 1419 | // with src == dst, and on x86-32 we don't have a platform scratch register. |
| 1420 | Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch) |
| 1421 | { |
| 1422 | if (shouldBlind(imm)) { |
| 1423 | ASSERT(scratch != dest); |
| 1424 | ASSERT(scratch != src); |
| 1425 | loadXorBlindedConstant(xorBlindConstant(imm), scratch); |
| 1426 | return branchSub32(cond, src, scratch, dest); |
| 1427 | } |
| 1428 | return branchSub32(cond, src, imm.asTrustedImm32(), dest); |
| 1429 | } |
| 1430 | |
| 1431 | // Immediate shifts only have 5 controllable bits |
| 1432 | // so we'll consider them safe for now. |
| 1433 | TrustedImm32 trustedImm32ForShift(Imm32 imm) |
| 1434 | { |
| 1435 | return TrustedImm32(imm.asTrustedImm32().m_value & 31); |
| 1436 | } |
| 1437 | |
| 1438 | void lshift32(Imm32 imm, RegisterID dest) |
| 1439 | { |
| 1440 | lshift32(trustedImm32ForShift(imm), dest); |
| 1441 | } |
| 1442 | |
| 1443 | void lshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| 1444 | { |
| 1445 | lshift32(src, trustedImm32ForShift(amount), dest); |
| 1446 | } |
| 1447 | |
| 1448 | void rshift32(Imm32 imm, RegisterID dest) |
| 1449 | { |
| 1450 | rshift32(trustedImm32ForShift(imm), dest); |
| 1451 | } |
| 1452 | |
| 1453 | void rshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| 1454 | { |
| 1455 | rshift32(src, trustedImm32ForShift(amount), dest); |
| 1456 | } |
| 1457 | |
| 1458 | void urshift32(Imm32 imm, RegisterID dest) |
| 1459 | { |
| 1460 | urshift32(trustedImm32ForShift(imm), dest); |
| 1461 | } |
| 1462 | |
| 1463 | void urshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| 1464 | { |
| 1465 | urshift32(src, trustedImm32ForShift(amount), dest); |
| 1466 | } |
| 1467 | #endif |
| 1468 | }; |
| 1469 | |
| 1470 | #if CPU(ARM_THUMB2) |
| 1471 | typedef MacroAssembler<MacroAssemblerARMv7> DefaultMacroAssembler; |
| 1472 | #elif CPU(ARM64) |
| 1473 | typedef MacroAssembler<MacroAssemblerARM64> DefaultMacroAssembler; |
| 1474 | #elif CPU(MIPS) |
| 1475 | typedef MacroAssembler<MacroAssemblerMIPS> DefaultMacroAssembler; |
| 1476 | #elif CPU(X86) |
| 1477 | typedef MacroAssembler<MacroAssemblerX86> DefaultMacroAssembler; |
| 1478 | #elif CPU(X86_64) |
| 1479 | typedef MacroAssembler<MacroAssemblerX86_64> DefaultMacroAssembler; |
| 1480 | #endif |
| 1481 | |
| 1482 | } // namespace JSC |
| 1483 | |
| 1484 | #else // ENABLE(ASSEMBLER) |
| 1485 | |
| 1486 | // If there is no assembler for this platform, at least allow code to make references to |
| 1487 | // some of the things it would otherwise define, albeit without giving that code any way |
| 1488 | // of doing anything useful. |
| 1489 | class MacroAssembler { |
| 1490 | private: |
| 1491 | MacroAssembler() { } |
| 1492 | |
| 1493 | public: |
| 1494 | |
| 1495 | enum RegisterID { NoRegister }; |
| 1496 | enum FPRegisterID { NoFPRegister }; |
| 1497 | }; |
| 1498 | |
| 1499 | #endif // ENABLE(ASSEMBLER) |
| 1500 | |
| 1501 | #endif // MacroAssembler_h |
| 1502 | |