| 1 | /* |
| 2 | * Copyright (C) 2009, 2012 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef MacroAssemblerCodeRef_h |
| 27 | #define MacroAssemblerCodeRef_h |
| 28 | |
| 29 | #include "Disassembler.h" |
| 30 | #include <wtf/Platform.h> |
| 31 | #include "ExecutableAllocator.h" |
| 32 | #include "LLIntData.h" |
| 33 | #include <wtf/DataLog.h> |
| 34 | #include <wtf/PassRefPtr.h> |
| 35 | #include <wtf/RefPtr.h> |
| 36 | #include <wtf/UnusedParam.h> |
| 37 | #include <qglobal.h> |
| 38 | |
| 39 | // ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid |
| 40 | // instruction address on the platform (for example, check any alignment requirements). |
| 41 | #if CPU(ARM_THUMB2) |
| 42 | // ARM/thumb instructions must be 16-bit aligned, but all code pointers to be loaded |
| 43 | // into the processor are decorated with the bottom bit set, indicating that this is |
| 44 | // thumb code (as oposed to 32-bit traditional ARM). The first test checks for both |
| 45 | // decorated and undectorated null, and the second test ensures that the pointer is |
| 46 | // decorated. |
| 47 | #define ASSERT_VALID_CODE_POINTER(ptr) \ |
| 48 | ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1); |
| 49 | #define ASSERT_VALID_CODE_OFFSET(offset) \ |
| 50 | ASSERT(!(offset & 1)) // Must be multiple of 2. |
| 51 | #else |
| 52 | #define ASSERT_VALID_CODE_POINTER(ptr) \ |
| 53 | ASSERT(ptr) |
| 54 | #define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes! |
| 55 | #endif |
| 56 | |
| 57 | #if CPU(X86) && OS(WINDOWS) |
| 58 | #define CALLING_CONVENTION_IS_STDCALL 1 |
| 59 | #ifndef CDECL |
| 60 | #if COMPILER(MSVC) |
| 61 | #define CDECL __cdecl |
| 62 | #else |
| 63 | #define CDECL __attribute__ ((__cdecl)) |
| 64 | #endif // COMPILER(MSVC) |
| 65 | #endif // CDECL |
| 66 | #else |
| 67 | #define CALLING_CONVENTION_IS_STDCALL 0 |
| 68 | #endif |
| 69 | |
| 70 | #if CPU(X86) && !OS(INTEGRITY) |
| 71 | #define HAS_FASTCALL_CALLING_CONVENTION 1 |
| 72 | #ifndef FASTCALL |
| 73 | #if COMPILER(MSVC) |
| 74 | #define FASTCALL __fastcall |
| 75 | #else |
| 76 | #define FASTCALL __attribute__ ((fastcall)) |
| 77 | #endif // COMPILER(MSVC) |
| 78 | #endif // FASTCALL |
| 79 | #else |
| 80 | #define HAS_FASTCALL_CALLING_CONVENTION 0 |
| 81 | #endif // CPU(X86) |
| 82 | |
| 83 | namespace JSC { |
| 84 | |
| 85 | // FunctionPtr: |
| 86 | // |
| 87 | // FunctionPtr should be used to wrap pointers to C/C++ functions in JSC |
| 88 | // (particularly, the stub functions). |
| 89 | class FunctionPtr { |
| 90 | public: |
| 91 | FunctionPtr() |
| 92 | : m_value(0) |
| 93 | { |
| 94 | } |
| 95 | |
| 96 | template<typename returnType> |
| 97 | FunctionPtr(returnType(*value)()) |
| 98 | : m_value((void*)value) |
| 99 | { |
| 100 | ASSERT_VALID_CODE_POINTER(m_value); |
| 101 | } |
| 102 | |
| 103 | template<typename returnType, typename argType1> |
| 104 | FunctionPtr(returnType(*value)(argType1)) |
| 105 | : m_value((void*)value) |
| 106 | { |
| 107 | ASSERT_VALID_CODE_POINTER(m_value); |
| 108 | } |
| 109 | |
| 110 | template<typename returnType, typename argType1, typename argType2> |
| 111 | FunctionPtr(returnType(*value)(argType1, argType2)) |
| 112 | : m_value((void*)value) |
| 113 | { |
| 114 | ASSERT_VALID_CODE_POINTER(m_value); |
| 115 | } |
| 116 | |
| 117 | template<typename returnType, typename argType1, typename argType2, typename argType3> |
| 118 | FunctionPtr(returnType(*value)(argType1, argType2, argType3)) |
| 119 | : m_value((void*)value) |
| 120 | { |
| 121 | ASSERT_VALID_CODE_POINTER(m_value); |
| 122 | } |
| 123 | |
| 124 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> |
| 125 | FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4)) |
| 126 | : m_value((void*)value) |
| 127 | { |
| 128 | ASSERT_VALID_CODE_POINTER(m_value); |
| 129 | } |
| 130 | |
| 131 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5> |
| 132 | FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5)) |
| 133 | : m_value((void*)value) |
| 134 | { |
| 135 | ASSERT_VALID_CODE_POINTER(m_value); |
| 136 | } |
| 137 | |
| 138 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5, typename argType6> |
| 139 | FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5, argType6)) |
| 140 | : m_value((void*)value) |
| 141 | { |
| 142 | ASSERT_VALID_CODE_POINTER(m_value); |
| 143 | } |
| 144 | |
| 145 | inline FunctionPtr(MacroAssemblerCodePtr ptr); |
| 146 | |
| 147 | // MSVC doesn't seem to treat functions with different calling conventions as |
| 148 | // different types; these methods already defined for fastcall, below. |
| 149 | #if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS) |
| 150 | |
| 151 | template<typename returnType> |
| 152 | FunctionPtr(returnType (CDECL *value)()) |
| 153 | : m_value((void*)value) |
| 154 | { |
| 155 | ASSERT_VALID_CODE_POINTER(m_value); |
| 156 | } |
| 157 | |
| 158 | template<typename returnType, typename argType1> |
| 159 | FunctionPtr(returnType (CDECL *value)(argType1)) |
| 160 | : m_value((void*)value) |
| 161 | { |
| 162 | ASSERT_VALID_CODE_POINTER(m_value); |
| 163 | } |
| 164 | |
| 165 | template<typename returnType, typename argType1, typename argType2> |
| 166 | FunctionPtr(returnType (CDECL *value)(argType1, argType2)) |
| 167 | : m_value((void*)value) |
| 168 | { |
| 169 | ASSERT_VALID_CODE_POINTER(m_value); |
| 170 | } |
| 171 | |
| 172 | template<typename returnType, typename argType1, typename argType2, typename argType3> |
| 173 | FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3)) |
| 174 | : m_value((void*)value) |
| 175 | { |
| 176 | ASSERT_VALID_CODE_POINTER(m_value); |
| 177 | } |
| 178 | |
| 179 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> |
| 180 | FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3, argType4)) |
| 181 | : m_value((void*)value) |
| 182 | { |
| 183 | ASSERT_VALID_CODE_POINTER(m_value); |
| 184 | } |
| 185 | #endif |
| 186 | |
| 187 | #if HAS_FASTCALL_CALLING_CONVENTION |
| 188 | |
| 189 | template<typename returnType> |
| 190 | FunctionPtr(returnType (FASTCALL *value)()) |
| 191 | : m_value((void*)value) |
| 192 | { |
| 193 | ASSERT_VALID_CODE_POINTER(m_value); |
| 194 | } |
| 195 | |
| 196 | template<typename returnType, typename argType1> |
| 197 | FunctionPtr(returnType (FASTCALL *value)(argType1)) |
| 198 | : m_value((void*)value) |
| 199 | { |
| 200 | ASSERT_VALID_CODE_POINTER(m_value); |
| 201 | } |
| 202 | |
| 203 | template<typename returnType, typename argType1, typename argType2> |
| 204 | FunctionPtr(returnType (FASTCALL *value)(argType1, argType2)) |
| 205 | : m_value((void*)value) |
| 206 | { |
| 207 | ASSERT_VALID_CODE_POINTER(m_value); |
| 208 | } |
| 209 | |
| 210 | template<typename returnType, typename argType1, typename argType2, typename argType3> |
| 211 | FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3)) |
| 212 | : m_value((void*)value) |
| 213 | { |
| 214 | ASSERT_VALID_CODE_POINTER(m_value); |
| 215 | } |
| 216 | |
| 217 | template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4> |
| 218 | FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3, argType4)) |
| 219 | : m_value((void*)value) |
| 220 | { |
| 221 | ASSERT_VALID_CODE_POINTER(m_value); |
| 222 | } |
| 223 | #endif |
| 224 | |
| 225 | template<typename FunctionType> |
| 226 | explicit FunctionPtr(FunctionType* value) |
| 227 | // Using a C-ctyle cast here to avoid compiler error on RVTC: |
| 228 | // Error: #694: reinterpret_cast cannot cast away const or other type qualifiers |
| 229 | // (I guess on RVTC function pointers have a different constness to GCC/MSVC?) |
| 230 | : m_value((void*)value) |
| 231 | { |
| 232 | ASSERT_VALID_CODE_POINTER(m_value); |
| 233 | } |
| 234 | |
| 235 | void* value() const { return m_value; } |
| 236 | void* executableAddress() const { return m_value; } |
| 237 | |
| 238 | |
| 239 | private: |
| 240 | void* m_value; |
| 241 | }; |
| 242 | |
| 243 | // ReturnAddressPtr: |
| 244 | // |
| 245 | // ReturnAddressPtr should be used to wrap return addresses generated by processor |
| 246 | // 'call' instructions exectued in JIT code. We use return addresses to look up |
| 247 | // exception and optimization information, and to repatch the call instruction |
| 248 | // that is the source of the return address. |
| 249 | class ReturnAddressPtr { |
| 250 | public: |
| 251 | ReturnAddressPtr() |
| 252 | : m_value(0) |
| 253 | { |
| 254 | } |
| 255 | |
| 256 | explicit ReturnAddressPtr(void* value) |
| 257 | : m_value(value) |
| 258 | { |
| 259 | ASSERT_VALID_CODE_POINTER(m_value); |
| 260 | } |
| 261 | |
| 262 | explicit ReturnAddressPtr(FunctionPtr function) |
| 263 | : m_value(function.value()) |
| 264 | { |
| 265 | ASSERT_VALID_CODE_POINTER(m_value); |
| 266 | } |
| 267 | |
| 268 | void* value() const { return m_value; } |
| 269 | |
| 270 | private: |
| 271 | void* m_value; |
| 272 | }; |
| 273 | |
| 274 | // MacroAssemblerCodePtr: |
| 275 | // |
| 276 | // MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code. |
| 277 | class MacroAssemblerCodePtr { |
| 278 | public: |
| 279 | MacroAssemblerCodePtr() |
| 280 | : m_value(0) |
| 281 | { |
| 282 | } |
| 283 | |
| 284 | explicit MacroAssemblerCodePtr(void* value) |
| 285 | #if CPU(ARM_THUMB2) |
| 286 | // Decorate the pointer as a thumb code pointer. |
| 287 | : m_value(reinterpret_cast<char*>(value) + 1) |
| 288 | #else |
| 289 | : m_value(value) |
| 290 | #endif |
| 291 | { |
| 292 | ASSERT_VALID_CODE_POINTER(m_value); |
| 293 | } |
| 294 | |
| 295 | static MacroAssemblerCodePtr createFromExecutableAddress(void* value) |
| 296 | { |
| 297 | ASSERT_VALID_CODE_POINTER(value); |
| 298 | MacroAssemblerCodePtr result; |
| 299 | result.m_value = value; |
| 300 | return result; |
| 301 | } |
| 302 | |
| 303 | #if ENABLE(LLINT) |
| 304 | static MacroAssemblerCodePtr createLLIntCodePtr(LLIntCode codeId) |
| 305 | { |
| 306 | return createFromExecutableAddress(LLInt::getCodePtr(codeId)); |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | explicit MacroAssemblerCodePtr(ReturnAddressPtr ra) |
| 311 | : m_value(ra.value()) |
| 312 | { |
| 313 | ASSERT_VALID_CODE_POINTER(m_value); |
| 314 | } |
| 315 | |
| 316 | void* executableAddress() const { return m_value; } |
| 317 | #if CPU(ARM_THUMB2) |
| 318 | // To use this pointer as a data address remove the decoration. |
| 319 | void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return reinterpret_cast<char*>(m_value) - 1; } |
| 320 | #else |
| 321 | void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return m_value; } |
| 322 | #endif |
| 323 | |
| 324 | bool operator!() const |
| 325 | { |
| 326 | return !m_value; |
| 327 | } |
| 328 | |
| 329 | private: |
| 330 | void* m_value; |
| 331 | }; |
| 332 | |
| 333 | |
| 334 | FunctionPtr::FunctionPtr(MacroAssemblerCodePtr ptr) |
| 335 | : m_value(ptr.executableAddress()) |
| 336 | { |
| 337 | } |
| 338 | |
| 339 | // MacroAssemblerCodeRef: |
| 340 | // |
| 341 | // A reference to a section of JIT generated code. A CodeRef consists of a |
| 342 | // pointer to the code, and a ref pointer to the pool from within which it |
| 343 | // was allocated. |
| 344 | class MacroAssemblerCodeRef { |
| 345 | private: |
| 346 | // This is private because it's dangerous enough that we want uses of it |
| 347 | // to be easy to find - hence the static create method below. |
| 348 | explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr codePtr) |
| 349 | : m_codePtr(codePtr) |
| 350 | { |
| 351 | ASSERT(m_codePtr); |
| 352 | } |
| 353 | |
| 354 | public: |
| 355 | MacroAssemblerCodeRef() |
| 356 | { |
| 357 | } |
| 358 | |
| 359 | MacroAssemblerCodeRef(PassRefPtr<ExecutableMemoryHandle> executableMemory) |
| 360 | : m_codePtr(executableMemory->codeStart()) |
| 361 | , m_executableMemory(executableMemory) |
| 362 | { |
| 363 | ASSERT(m_executableMemory->isManaged()); |
| 364 | ASSERT(m_executableMemory->codeStart()); |
| 365 | ASSERT(m_codePtr); |
| 366 | } |
| 367 | |
| 368 | // Use this only when you know that the codePtr refers to code that is |
| 369 | // already being kept alive through some other means. Typically this means |
| 370 | // that codePtr is immortal. |
| 371 | static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr codePtr) |
| 372 | { |
| 373 | return MacroAssemblerCodeRef(codePtr); |
| 374 | } |
| 375 | |
| 376 | #if ENABLE(LLINT) |
| 377 | // Helper for creating self-managed code refs from LLInt. |
| 378 | static MacroAssemblerCodeRef createLLIntCodeRef(LLIntCode codeId) |
| 379 | { |
| 380 | return createSelfManagedCodeRef(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(codeId))); |
| 381 | } |
| 382 | #endif |
| 383 | |
| 384 | ExecutableMemoryHandle* executableMemory() const |
| 385 | { |
| 386 | return m_executableMemory.get(); |
| 387 | } |
| 388 | |
| 389 | MacroAssemblerCodePtr code() const |
| 390 | { |
| 391 | return m_codePtr; |
| 392 | } |
| 393 | |
| 394 | size_t size() const |
| 395 | { |
| 396 | if (!m_executableMemory) |
| 397 | return 0; |
| 398 | return m_executableMemory->codeSize(); |
| 399 | } |
| 400 | |
| 401 | bool tryToDisassemble(const char* prefix) const |
| 402 | { |
| 403 | return JSC::tryToDisassemble(m_codePtr, size(), prefix, WTF::dataFile()); |
| 404 | } |
| 405 | |
| 406 | bool operator!() const { return !m_codePtr; } |
| 407 | |
| 408 | private: |
| 409 | MacroAssemblerCodePtr m_codePtr; |
| 410 | RefPtr<ExecutableMemoryHandle> m_executableMemory; |
| 411 | }; |
| 412 | |
| 413 | } // namespace JSC |
| 414 | |
| 415 | #endif // MacroAssemblerCodeRef_h |
| 416 | |