| 1 | /* |
| 2 | * Copyright (C) 2008 Apple Inc. All Rights Reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef WTF_StdLibExtras_h |
| 27 | #define |
| 28 | |
| 29 | #include <wtf/Assertions.h> |
| 30 | #include <wtf/CheckedArithmetic.h> |
| 31 | #include <wtf/Platform.h> |
| 32 | #include <memory> |
| 33 | #include <qglobal.h> |
| 34 | |
| 35 | // Use these to declare and define a static local variable (static T;) so that |
| 36 | // it is leaked so that its destructors are not called at exit. Using this |
| 37 | // macro also allows workarounds a compiler bug present in Apple's version of GCC 4.0.1. |
| 38 | #ifndef DEFINE_STATIC_LOCAL |
| 39 | #if COMPILER(GCC) && defined(__APPLE_CC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 0 && __GNUC_PATCHLEVEL__ == 1 |
| 40 | #define DEFINE_STATIC_LOCAL(type, name, arguments) \ |
| 41 | static type* name##Ptr = new type arguments; \ |
| 42 | type& name = *name##Ptr |
| 43 | #else |
| 44 | #define DEFINE_STATIC_LOCAL(type, name, arguments) \ |
| 45 | static type& name = *new type arguments |
| 46 | #endif |
| 47 | #endif |
| 48 | |
| 49 | // Use this macro to declare and define a debug-only global variable that may have a |
| 50 | // non-trivial constructor and destructor. When building with clang, this will suppress |
| 51 | // warnings about global constructors and exit-time destructors. |
| 52 | #ifndef NDEBUG |
| 53 | #if COMPILER(CLANG) |
| 54 | #define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) \ |
| 55 | _Pragma("clang diagnostic push") \ |
| 56 | _Pragma("clang diagnostic ignored \"-Wglobal-constructors\"") \ |
| 57 | _Pragma("clang diagnostic ignored \"-Wexit-time-destructors\"") \ |
| 58 | static type name arguments; \ |
| 59 | _Pragma("clang diagnostic pop") |
| 60 | #else |
| 61 | #define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) \ |
| 62 | static type name arguments; |
| 63 | #endif // COMPILER(CLANG) |
| 64 | #else |
| 65 | #define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) |
| 66 | #endif // NDEBUG |
| 67 | |
| 68 | // OBJECT_OFFSETOF: Like the C++ offsetof macro, but you can use it with classes. |
| 69 | // The magic number 0x4000 is insignificant. We use it to avoid using NULL, since |
| 70 | // NULL can cause compiler problems, especially in cases of multiple inheritance. |
| 71 | #define OBJECT_OFFSETOF(class, field) (reinterpret_cast<ptrdiff_t>(&(reinterpret_cast<class*>(0x4000)->field)) - 0x4000) |
| 72 | |
| 73 | // STRINGIZE: Can convert any value to quoted string, even expandable macros |
| 74 | #define STRINGIZE(exp) #exp |
| 75 | #define STRINGIZE_VALUE_OF(exp) STRINGIZE(exp) |
| 76 | |
| 77 | #define FALLTHROUGH Q_FALLTHROUGH() |
| 78 | |
| 79 | /* |
| 80 | * The reinterpret_cast<Type1*>([pointer to Type2]) expressions - where |
| 81 | * sizeof(Type1) > sizeof(Type2) - cause the following warning on ARM with GCC: |
| 82 | * increases required alignment of target type. |
| 83 | * |
| 84 | * An implicit or an extra static_cast<void*> bypasses the warning. |
| 85 | * For more info see the following bugzilla entries: |
| 86 | * - https://bugs.webkit.org/show_bug.cgi?id=38045 |
| 87 | * - http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43976 |
| 88 | */ |
| 89 | #if (CPU(ARM) || CPU(MIPS)) && COMPILER(GCC) |
| 90 | template<typename Type> |
| 91 | bool isPointerTypeAlignmentOkay(Type* ptr) |
| 92 | { |
| 93 | return !(reinterpret_cast<intptr_t>(ptr) % __alignof__(Type)); |
| 94 | } |
| 95 | |
| 96 | template<typename TypePtr> |
| 97 | TypePtr reinterpret_cast_ptr(void* ptr) |
| 98 | { |
| 99 | ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr))); |
| 100 | return reinterpret_cast<TypePtr>(ptr); |
| 101 | } |
| 102 | |
| 103 | template<typename TypePtr> |
| 104 | TypePtr reinterpret_cast_ptr(const void* ptr) |
| 105 | { |
| 106 | ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr))); |
| 107 | return reinterpret_cast<TypePtr>(ptr); |
| 108 | } |
| 109 | #else |
| 110 | template<typename Type> |
| 111 | bool isPointerTypeAlignmentOkay(Type*) |
| 112 | { |
| 113 | return true; |
| 114 | } |
| 115 | #define reinterpret_cast_ptr reinterpret_cast |
| 116 | #endif |
| 117 | |
| 118 | namespace WTF { |
| 119 | |
| 120 | static const size_t KB = 1024; |
| 121 | static const size_t MB = 1024 * 1024; |
| 122 | |
| 123 | inline bool isPointerAligned(void* p) |
| 124 | { |
| 125 | return !((intptr_t)(p) & (sizeof(char*) - 1)); |
| 126 | } |
| 127 | |
| 128 | inline bool is8ByteAligned(void* p) |
| 129 | { |
| 130 | return !((uintptr_t)(p) & (sizeof(double) - 1)); |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * C++'s idea of a reinterpret_cast lacks sufficient cojones. |
| 135 | */ |
| 136 | template<typename TO, typename FROM> |
| 137 | inline TO bitwise_cast(FROM from) |
| 138 | { |
| 139 | COMPILE_ASSERT(sizeof(TO) == sizeof(FROM), WTF_bitwise_cast_sizeof_casted_types_is_equal); |
| 140 | union { |
| 141 | FROM from; |
| 142 | TO to; |
| 143 | } u; |
| 144 | u.from = from; |
| 145 | return u.to; |
| 146 | } |
| 147 | |
| 148 | template<typename To, typename From> |
| 149 | inline To safeCast(From value) |
| 150 | { |
| 151 | ASSERT(isInBounds<To>(value)); |
| 152 | return static_cast<To>(value); |
| 153 | } |
| 154 | |
| 155 | // Returns a count of the number of bits set in 'bits'. |
| 156 | inline size_t bitCount(unsigned bits) |
| 157 | { |
| 158 | bits = bits - ((bits >> 1) & 0x55555555); |
| 159 | bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333); |
| 160 | return (((bits + (bits >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; |
| 161 | } |
| 162 | |
| 163 | // Macro that returns a compile time constant with the length of an array, but gives an error if passed a non-array. |
| 164 | template<typename T, size_t Size> char (&ArrayLengthHelperFunction(T (&)[Size]))[Size]; |
| 165 | // GCC needs some help to deduce a 0 length array. |
| 166 | #if COMPILER(GCC) |
| 167 | template<typename T> char (&ArrayLengthHelperFunction(T (&)[0]))[0]; |
| 168 | #endif |
| 169 | #define WTF_ARRAY_LENGTH(array) sizeof(::WTF::ArrayLengthHelperFunction(array)) |
| 170 | |
| 171 | // Efficient implementation that takes advantage of powers of two. |
| 172 | inline size_t roundUpToMultipleOf(size_t divisor, size_t x) |
| 173 | { |
| 174 | Q_ASSERT(divisor && !(divisor & (divisor - 1))); |
| 175 | size_t remainderMask = divisor - 1; |
| 176 | return (x + remainderMask) & ~remainderMask; |
| 177 | } |
| 178 | template<size_t divisor> inline size_t roundUpToMultipleOf(size_t x) |
| 179 | { |
| 180 | COMPILE_ASSERT(divisor && !(divisor & (divisor - 1)), divisor_is_a_power_of_two); |
| 181 | return roundUpToMultipleOf(divisor, x); |
| 182 | } |
| 183 | |
| 184 | enum BinarySearchMode { |
| 185 | KeyMustBePresentInArray, |
| 186 | KeyMightNotBePresentInArray, |
| 187 | ReturnAdjacentElementIfKeyIsNotPresent |
| 188 | }; |
| 189 | |
| 190 | template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey, BinarySearchMode mode> |
| 191 | inline ArrayElementType* binarySearchImpl(ArrayType& array, size_t size, KeyType key, const ExtractKey& = ExtractKey()) |
| 192 | { |
| 193 | size_t offset = 0; |
| 194 | while (size > 1) { |
| 195 | size_t pos = (size - 1) >> 1; |
| 196 | KeyType val = extractKey(&array[offset + pos]); |
| 197 | |
| 198 | if (val == key) |
| 199 | return &array[offset + pos]; |
| 200 | // The item we are looking for is smaller than the item being check; reduce the value of 'size', |
| 201 | // chopping off the right hand half of the array. |
| 202 | if (key < val) |
| 203 | size = pos; |
| 204 | // Discard all values in the left hand half of the array, up to and including the item at pos. |
| 205 | else { |
| 206 | size -= (pos + 1); |
| 207 | offset += (pos + 1); |
| 208 | } |
| 209 | |
| 210 | ASSERT(mode != KeyMustBePresentInArray || size); |
| 211 | } |
| 212 | |
| 213 | if (mode == KeyMightNotBePresentInArray && !size) |
| 214 | return 0; |
| 215 | |
| 216 | ArrayElementType* result = &array[offset]; |
| 217 | |
| 218 | if (mode == KeyMightNotBePresentInArray && key != extractKey(result)) |
| 219 | return 0; |
| 220 | |
| 221 | if (mode == KeyMustBePresentInArray) { |
| 222 | ASSERT(size == 1); |
| 223 | ASSERT(key == extractKey(result)); |
| 224 | } |
| 225 | |
| 226 | return result; |
| 227 | } |
| 228 | |
| 229 | // If the element is not found, crash if asserts are enabled, and behave like approximateBinarySearch in release builds. |
| 230 | template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| 231 | inline ArrayElementType* binarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey = ExtractKey()) |
| 232 | { |
| 233 | return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(array, size, key, extractKey); |
| 234 | } |
| 235 | |
| 236 | // Return zero if the element is not found. |
| 237 | template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| 238 | inline ArrayElementType* tryBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey = ExtractKey()) |
| 239 | { |
| 240 | return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(array, size, key, extractKey); |
| 241 | } |
| 242 | |
| 243 | // Return the element that is either to the left, or the right, of where the element would have been found. |
| 244 | template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| 245 | inline ArrayElementType* approximateBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey = ExtractKey()) |
| 246 | { |
| 247 | return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(array, size, key, extractKey); |
| 248 | } |
| 249 | |
| 250 | // Variants of the above that use const. |
| 251 | template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| 252 | inline ArrayElementType* binarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey = ExtractKey()) |
| 253 | { |
| 254 | return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey); |
| 255 | } |
| 256 | template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| 257 | inline ArrayElementType* tryBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey = ExtractKey()) |
| 258 | { |
| 259 | return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey); |
| 260 | } |
| 261 | template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| 262 | inline ArrayElementType* approximateBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey = ExtractKey()) |
| 263 | { |
| 264 | return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(const_cast<ArrayType&>(array), size, key, extractKey); |
| 265 | } |
| 266 | |
| 267 | } // namespace WTF |
| 268 | |
| 269 | // This version of placement new omits a 0 check. |
| 270 | enum NotNullTag { NotNull }; |
| 271 | inline void* operator new(size_t, NotNullTag, void* location) |
| 272 | { |
| 273 | ASSERT(location); |
| 274 | return location; |
| 275 | } |
| 276 | |
| 277 | using WTF::KB; |
| 278 | using WTF::MB; |
| 279 | using WTF::isPointerAligned; |
| 280 | using WTF::is8ByteAligned; |
| 281 | using WTF::binarySearch; |
| 282 | using WTF::tryBinarySearch; |
| 283 | using WTF::approximateBinarySearch; |
| 284 | using WTF::bitwise_cast; |
| 285 | using WTF::safeCast; |
| 286 | |
| 287 | #endif // WTF_StdLibExtras_h |
| 288 | |