1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
5// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_MATHFUNCTIONSIMPL_H
12#define EIGEN_MATHFUNCTIONSIMPL_H
13
14namespace Eigen {
15
16namespace internal {
17
18/** \internal \returns the hyperbolic tan of \a a (coeff-wise)
19 Doesn't do anything fancy, just a 13/6-degree rational interpolant which
20 is accurate up to a couple of ulps in the (approximate) range [-8, 8],
21 outside of which tanh(x) = +/-1 in single precision. The input is clamped
22 to the range [-c, c]. The value c is chosen as the smallest value where
23 the approximation evaluates to exactly 1. In the reange [-0.0004, 0.0004]
24 the approxmation tanh(x) ~= x is used for better accuracy as x tends to zero.
25
26 This implementation works on both scalars and packets.
27*/
28template<typename T>
29T generic_fast_tanh_float(const T& a_x)
30{
31 // Clamp the inputs to the range [-c, c]
32#ifdef EIGEN_VECTORIZE_FMA
33 const T plus_clamp = pset1<T>(7.99881172180175781f);
34 const T minus_clamp = pset1<T>(-7.99881172180175781f);
35#else
36 const T plus_clamp = pset1<T>(7.90531110763549805f);
37 const T minus_clamp = pset1<T>(-7.90531110763549805f);
38#endif
39 const T tiny = pset1<T>(0.0004f);
40 const T x = pmax(pmin(a_x, plus_clamp), minus_clamp);
41 const T tiny_mask = pcmp_lt(pabs(a_x), tiny);
42 // The monomial coefficients of the numerator polynomial (odd).
43 const T alpha_1 = pset1<T>(4.89352455891786e-03f);
44 const T alpha_3 = pset1<T>(6.37261928875436e-04f);
45 const T alpha_5 = pset1<T>(1.48572235717979e-05f);
46 const T alpha_7 = pset1<T>(5.12229709037114e-08f);
47 const T alpha_9 = pset1<T>(-8.60467152213735e-11f);
48 const T alpha_11 = pset1<T>(2.00018790482477e-13f);
49 const T alpha_13 = pset1<T>(-2.76076847742355e-16f);
50
51 // The monomial coefficients of the denominator polynomial (even).
52 const T beta_0 = pset1<T>(4.89352518554385e-03f);
53 const T beta_2 = pset1<T>(2.26843463243900e-03f);
54 const T beta_4 = pset1<T>(1.18534705686654e-04f);
55 const T beta_6 = pset1<T>(1.19825839466702e-06f);
56
57 // Since the polynomials are odd/even, we need x^2.
58 const T x2 = pmul(x, x);
59
60 // Evaluate the numerator polynomial p.
61 T p = pmadd(x2, alpha_13, alpha_11);
62 p = pmadd(x2, p, alpha_9);
63 p = pmadd(x2, p, alpha_7);
64 p = pmadd(x2, p, alpha_5);
65 p = pmadd(x2, p, alpha_3);
66 p = pmadd(x2, p, alpha_1);
67 p = pmul(x, p);
68
69 // Evaluate the denominator polynomial q.
70 T q = pmadd(x2, beta_6, beta_4);
71 q = pmadd(x2, q, beta_2);
72 q = pmadd(x2, q, beta_0);
73
74 // Divide the numerator by the denominator.
75 return pselect(tiny_mask, x, pdiv(p, q));
76}
77
78template<typename RealScalar>
79EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
80RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
81{
82 // IEEE IEC 6059 special cases.
83 if ((numext::isinf)(x) || (numext::isinf)(y))
84 return NumTraits<RealScalar>::infinity();
85 if ((numext::isnan)(x) || (numext::isnan)(y))
86 return NumTraits<RealScalar>::quiet_NaN();
87
88 EIGEN_USING_STD(sqrt);
89 RealScalar p, qp;
90 p = numext::maxi(x,y);
91 if(p==RealScalar(0)) return RealScalar(0);
92 qp = numext::mini(y,x) / p;
93 return p * sqrt(RealScalar(1) + qp*qp);
94}
95
96template<typename Scalar>
97struct hypot_impl
98{
99 typedef typename NumTraits<Scalar>::Real RealScalar;
100 static EIGEN_DEVICE_FUNC
101 inline RealScalar run(const Scalar& x, const Scalar& y)
102 {
103 EIGEN_USING_STD(abs);
104 return positive_real_hypot<RealScalar>(abs(x), abs(y));
105 }
106};
107
108// Generic complex sqrt implementation that correctly handles corner cases
109// according to https://en.cppreference.com/w/cpp/numeric/complex/sqrt
110template<typename T>
111EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) {
112 // Computes the principal sqrt of the input.
113 //
114 // For a complex square root of the number x + i*y. We want to find real
115 // numbers u and v such that
116 // (u + i*v)^2 = x + i*y <=>
117 // u^2 - v^2 + i*2*u*v = x + i*v.
118 // By equating the real and imaginary parts we get:
119 // u^2 - v^2 = x
120 // 2*u*v = y.
121 //
122 // For x >= 0, this has the numerically stable solution
123 // u = sqrt(0.5 * (x + sqrt(x^2 + y^2)))
124 // v = y / (2 * u)
125 // and for x < 0,
126 // v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2)))
127 // u = y / (2 * v)
128 //
129 // Letting w = sqrt(0.5 * (|x| + |z|)),
130 // if x == 0: u = w, v = sign(y) * w
131 // if x > 0: u = w, v = y / (2 * w)
132 // if x < 0: u = |y| / (2 * w), v = sign(y) * w
133
134 const T x = numext::real(z);
135 const T y = numext::imag(z);
136 const T zero = T(0);
137 const T w = numext::sqrt(T(0.5) * (numext::abs(x) + numext::hypot(x, y)));
138
139 return
140 (numext::isinf)(y) ? std::complex<T>(NumTraits<T>::infinity(), y)
141 : x == zero ? std::complex<T>(w, y < zero ? -w : w)
142 : x > zero ? std::complex<T>(w, y / (2 * w))
143 : std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w );
144}
145
146// Generic complex rsqrt implementation.
147template<typename T>
148EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) {
149 // Computes the principal reciprocal sqrt of the input.
150 //
151 // For a complex reciprocal square root of the number z = x + i*y. We want to
152 // find real numbers u and v such that
153 // (u + i*v)^2 = 1 / (x + i*y) <=>
154 // u^2 - v^2 + i*2*u*v = x/|z|^2 - i*v/|z|^2.
155 // By equating the real and imaginary parts we get:
156 // u^2 - v^2 = x/|z|^2
157 // 2*u*v = y/|z|^2.
158 //
159 // For x >= 0, this has the numerically stable solution
160 // u = sqrt(0.5 * (x + |z|)) / |z|
161 // v = -y / (2 * u * |z|)
162 // and for x < 0,
163 // v = -sign(y) * sqrt(0.5 * (-x + |z|)) / |z|
164 // u = -y / (2 * v * |z|)
165 //
166 // Letting w = sqrt(0.5 * (|x| + |z|)),
167 // if x == 0: u = w / |z|, v = -sign(y) * w / |z|
168 // if x > 0: u = w / |z|, v = -y / (2 * w * |z|)
169 // if x < 0: u = |y| / (2 * w * |z|), v = -sign(y) * w / |z|
170
171 const T x = numext::real(z);
172 const T y = numext::imag(z);
173 const T zero = T(0);
174
175 const T abs_z = numext::hypot(x, y);
176 const T w = numext::sqrt(T(0.5) * (numext::abs(x) + abs_z));
177 const T woz = w / abs_z;
178 // Corner cases consistent with 1/sqrt(z) on gcc/clang.
179 return
180 abs_z == zero ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN())
181 : ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero)
182 : x == zero ? std::complex<T>(woz, y < zero ? woz : -woz)
183 : x > zero ? std::complex<T>(woz, -y / (2 * w * abs_z))
184 : std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz );
185}
186
187template<typename T>
188EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z) {
189 // Computes complex log.
190 T a = numext::abs(z);
191 EIGEN_USING_STD(atan2);
192 T b = atan2(z.imag(), z.real());
193 return std::complex<T>(numext::log(a), b);
194}
195
196} // end namespace internal
197
198} // end namespace Eigen
199
200#endif // EIGEN_MATHFUNCTIONSIMPL_H
201

source code of qtmultimedia/src/3rdparty/eigen/Eigen/src/Core/MathFunctionsImpl.h