| 1 | /* |
| 2 | Copyright 2018 Google Inc. All Rights Reserved. |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS-IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | // Prevent Visual Studio from complaining about std::copy_n. |
| 18 | #if defined(_WIN32) |
| 19 | #define _SCL_SECURE_NO_WARNINGS |
| 20 | #endif |
| 21 | |
| 22 | #include "base/simd_utils.h" |
| 23 | |
| 24 | #include <algorithm> |
| 25 | #include <limits> |
| 26 | |
| 27 | #include "base/constants_and_types.h" |
| 28 | #include "base/logging.h" |
| 29 | #include "base/misc_math.h" |
| 30 | #include "base/simd_macros.h" |
| 31 | |
| 32 | |
| 33 | namespace vraudio { |
| 34 | |
| 35 | namespace { |
| 36 | |
| 37 | #ifdef SIMD_NEON |
| 38 | // Deinterleaving operates on 8 int16s at a time. |
| 39 | const size_t kSixteenBitSimdLength = SIMD_LENGTH * 2; |
| 40 | #endif // SIMD_NEON |
| 41 | |
| 42 | // Float format of max and min values storable in an int16_t, for clamping. |
| 43 | const float kInt16Max = static_cast<float>(0x7FFF); |
| 44 | const float kInt16Min = static_cast<float>(-0x7FFF); |
| 45 | |
| 46 | // Conversion factors between float and int16_t (both directions). |
| 47 | const float kFloatFromInt16 = 1.0f / kInt16Max; |
| 48 | const float kInt16FromFloat = kInt16Max; |
| 49 | |
| 50 | // Expected SIMD alignment in bytes. |
| 51 | const size_t kSimdSizeBytes = 16; |
| 52 | |
| 53 | inline size_t GetNumChunks(size_t length) { return length / SIMD_LENGTH; } |
| 54 | |
| 55 | inline size_t GetLeftoverSamples(size_t length) { return length % SIMD_LENGTH; } |
| 56 | |
| 57 | template <typename T> |
| 58 | inline bool IsAlignedTemplated(const T* pointer) { |
| 59 | return reinterpret_cast<uintptr_t>(pointer) % kSimdSizeBytes == 0; |
| 60 | } |
| 61 | |
| 62 | #ifdef SIMD_DISABLED |
| 63 | // Calculates the approximate complex magnude of z = real + i * imaginary. |
| 64 | inline void ComplexMagnitude(float real, float imaginary, float* output) { |
| 65 | *output = real * real + imaginary * imaginary; |
| 66 | // The value of |output| is not being recalculated, simply modified. |
| 67 | *output = 1.0f / FastReciprocalSqrt(*output); |
| 68 | } |
| 69 | #endif // defined(SIMD_DISABLED) |
| 70 | |
| 71 | } // namespace |
| 72 | |
| 73 | bool IsAligned(const float* pointer) { |
| 74 | return IsAlignedTemplated<float>(pointer); |
| 75 | } |
| 76 | |
| 77 | bool IsAligned(const int16_t* pointer) { |
| 78 | return IsAlignedTemplated<int16_t>(pointer); |
| 79 | } |
| 80 | |
| 81 | size_t FindNextAlignedArrayIndex(size_t length, size_t type_size_bytes, |
| 82 | size_t memory_alignment_bytes) { |
| 83 | const size_t byte_length = type_size_bytes * length; |
| 84 | const size_t unaligned_bytes = byte_length % memory_alignment_bytes; |
| 85 | const size_t bytes_to_next_aligned = |
| 86 | (unaligned_bytes == 0) ? 0 : memory_alignment_bytes - unaligned_bytes; |
| 87 | return (byte_length + bytes_to_next_aligned) / type_size_bytes; |
| 88 | } |
| 89 | |
| 90 | void AddPointwise(size_t length, const float* input_a, const float* input_b, |
| 91 | float* output) { |
| 92 | DCHECK(input_a); |
| 93 | DCHECK(input_b); |
| 94 | DCHECK(output); |
| 95 | |
| 96 | const SimdVector* input_a_vector = |
| 97 | reinterpret_cast<const SimdVector*>(input_a); |
| 98 | const SimdVector* input_b_vector = |
| 99 | reinterpret_cast<const SimdVector*>(input_b); |
| 100 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 101 | #ifdef SIMD_SSE |
| 102 | const size_t num_chunks = GetNumChunks(length); |
| 103 | const bool inputs_aligned = IsAligned(pointer: input_a) && IsAligned(pointer: input_b); |
| 104 | const bool output_aligned = IsAligned(pointer: output); |
| 105 | if (inputs_aligned && output_aligned) { |
| 106 | for (size_t i = 0; i < num_chunks; ++i) { |
| 107 | output_vector[i] = SIMD_ADD(input_a_vector[i], input_b_vector[i]); |
| 108 | } |
| 109 | } else if (inputs_aligned) { |
| 110 | for (size_t i = 0; i < num_chunks; ++i) { |
| 111 | const SimdVector output_temp = |
| 112 | SIMD_ADD(input_a_vector[i], input_b_vector[i]); |
| 113 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 114 | } |
| 115 | } else if (output_aligned) { |
| 116 | for (size_t i = 0; i < num_chunks; ++i) { |
| 117 | const SimdVector input_a_temp = _mm_load_ps(p: &input_a[i * SIMD_LENGTH]); |
| 118 | const SimdVector input_b_temp = _mm_load_ps(p: &input_b[i * SIMD_LENGTH]); |
| 119 | output_vector[i] = SIMD_ADD(input_a_temp, input_b_temp); |
| 120 | } |
| 121 | } else { |
| 122 | for (size_t i = 0; i < num_chunks; ++i) { |
| 123 | const SimdVector input_a_temp = _mm_load_ps(p: &input_a[i * SIMD_LENGTH]); |
| 124 | const SimdVector input_b_temp = _mm_load_ps(p: &input_b[i * SIMD_LENGTH]); |
| 125 | const SimdVector output_temp = SIMD_ADD(input_a_temp, input_b_temp); |
| 126 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 127 | } |
| 128 | } |
| 129 | #else |
| 130 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 131 | output_vector[i] = SIMD_ADD(input_a_vector[i], input_b_vector[i]); |
| 132 | } |
| 133 | #endif // SIMD_SSE |
| 134 | |
| 135 | // Add samples at the end that were missed by the SIMD chunking. |
| 136 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 137 | DCHECK_GE(length, leftover_samples); |
| 138 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 139 | output[i] = input_a[i] + input_b[i]; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | void SubtractPointwise(size_t length, const float* input_a, |
| 144 | const float* input_b, float* output) { |
| 145 | DCHECK(input_a); |
| 146 | DCHECK(input_b); |
| 147 | DCHECK(output); |
| 148 | |
| 149 | const SimdVector* input_a_vector = |
| 150 | reinterpret_cast<const SimdVector*>(input_a); |
| 151 | const SimdVector* input_b_vector = |
| 152 | reinterpret_cast<const SimdVector*>(input_b); |
| 153 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 154 | |
| 155 | #ifdef SIMD_SSE |
| 156 | const size_t num_chunks = GetNumChunks(length); |
| 157 | const bool inputs_aligned = IsAligned(pointer: input_a) && IsAligned(pointer: input_b); |
| 158 | const bool output_aligned = IsAligned(pointer: output); |
| 159 | if (inputs_aligned && output_aligned) { |
| 160 | for (size_t i = 0; i < num_chunks; ++i) { |
| 161 | output_vector[i] = SIMD_SUB(input_b_vector[i], input_a_vector[i]); |
| 162 | } |
| 163 | } else if (inputs_aligned) { |
| 164 | for (size_t i = 0; i < num_chunks; ++i) { |
| 165 | const SimdVector output_temp = |
| 166 | SIMD_SUB(input_b_vector[i], input_a_vector[i]); |
| 167 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 168 | } |
| 169 | } else if (output_aligned) { |
| 170 | for (size_t i = 0; i < num_chunks; ++i) { |
| 171 | const SimdVector input_a_temp = _mm_load_ps(p: &input_a[i * SIMD_LENGTH]); |
| 172 | const SimdVector input_b_temp = _mm_load_ps(p: &input_b[i * SIMD_LENGTH]); |
| 173 | output_vector[i] = SIMD_SUB(input_b_temp, input_a_temp); |
| 174 | } |
| 175 | } else { |
| 176 | for (size_t i = 0; i < num_chunks; ++i) { |
| 177 | const SimdVector input_a_temp = _mm_load_ps(p: &input_a[i * SIMD_LENGTH]); |
| 178 | const SimdVector input_b_temp = _mm_load_ps(p: &input_b[i * SIMD_LENGTH]); |
| 179 | const SimdVector output_temp = SIMD_SUB(input_b_temp, input_a_temp); |
| 180 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 181 | } |
| 182 | } |
| 183 | #else |
| 184 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 185 | output_vector[i] = SIMD_SUB(input_b_vector[i], input_a_vector[i]); |
| 186 | } |
| 187 | #endif // SIMD_SSE |
| 188 | |
| 189 | // Subtract samples at the end that were missed by the SIMD chunking. |
| 190 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 191 | DCHECK_GE(length, leftover_samples); |
| 192 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 193 | output[i] = input_b[i] - input_a[i]; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | void MultiplyPointwise(size_t length, const float* input_a, |
| 198 | const float* input_b, float* output) { |
| 199 | DCHECK(input_a); |
| 200 | DCHECK(input_b); |
| 201 | DCHECK(output); |
| 202 | |
| 203 | const SimdVector* input_a_vector = |
| 204 | reinterpret_cast<const SimdVector*>(input_a); |
| 205 | const SimdVector* input_b_vector = |
| 206 | reinterpret_cast<const SimdVector*>(input_b); |
| 207 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 208 | |
| 209 | #ifdef SIMD_SSE |
| 210 | const size_t num_chunks = GetNumChunks(length); |
| 211 | const bool inputs_aligned = IsAligned(pointer: input_a) && IsAligned(pointer: input_b); |
| 212 | const bool output_aligned = IsAligned(pointer: output); |
| 213 | if (inputs_aligned && output_aligned) { |
| 214 | for (size_t i = 0; i < num_chunks; ++i) { |
| 215 | output_vector[i] = SIMD_MULTIPLY(input_a_vector[i], input_b_vector[i]); |
| 216 | } |
| 217 | } else if (inputs_aligned) { |
| 218 | for (size_t i = 0; i < num_chunks; ++i) { |
| 219 | const SimdVector output_temp = |
| 220 | SIMD_MULTIPLY(input_a_vector[i], input_b_vector[i]); |
| 221 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 222 | } |
| 223 | } else if (output_aligned) { |
| 224 | for (size_t i = 0; i < num_chunks; ++i) { |
| 225 | const SimdVector input_a_temp = _mm_loadu_ps(p: &input_a[i * SIMD_LENGTH]); |
| 226 | const SimdVector input_b_temp = _mm_loadu_ps(p: &input_b[i * SIMD_LENGTH]); |
| 227 | output_vector[i] = SIMD_MULTIPLY(input_a_temp, input_b_temp); |
| 228 | } |
| 229 | } else { |
| 230 | for (size_t i = 0; i < num_chunks; ++i) { |
| 231 | const SimdVector input_a_temp = _mm_loadu_ps(p: &input_a[i * SIMD_LENGTH]); |
| 232 | const SimdVector input_b_temp = _mm_loadu_ps(p: &input_b[i * SIMD_LENGTH]); |
| 233 | const SimdVector output_temp = SIMD_MULTIPLY(input_a_temp, input_b_temp); |
| 234 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 235 | } |
| 236 | } |
| 237 | #else |
| 238 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 239 | output_vector[i] = SIMD_MULTIPLY(input_a_vector[i], input_b_vector[i]); |
| 240 | } |
| 241 | #endif // SIMD_SSE |
| 242 | |
| 243 | // Multiply samples at the end that were missed by the SIMD chunking. |
| 244 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 245 | DCHECK_GE(length, leftover_samples); |
| 246 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 247 | output[i] = input_a[i] * input_b[i]; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | void MultiplyAndAccumulatePointwise(size_t length, const float* input_a, |
| 252 | const float* input_b, float* accumulator) { |
| 253 | DCHECK(input_a); |
| 254 | DCHECK(input_b); |
| 255 | DCHECK(accumulator); |
| 256 | |
| 257 | const SimdVector* input_a_vector = |
| 258 | reinterpret_cast<const SimdVector*>(input_a); |
| 259 | const SimdVector* input_b_vector = |
| 260 | reinterpret_cast<const SimdVector*>(input_b); |
| 261 | SimdVector* accumulator_vector = reinterpret_cast<SimdVector*>(accumulator); |
| 262 | |
| 263 | #ifdef SIMD_SSE |
| 264 | const size_t num_chunks = GetNumChunks(length); |
| 265 | const bool inputs_aligned = IsAligned(pointer: input_a) && IsAligned(pointer: input_b); |
| 266 | const bool accumulator_aligned = IsAligned(pointer: accumulator); |
| 267 | if (inputs_aligned && accumulator_aligned) { |
| 268 | for (size_t i = 0; i < num_chunks; ++i) { |
| 269 | accumulator_vector[i] = SIMD_MULTIPLY_ADD( |
| 270 | input_a_vector[i], input_b_vector[i], accumulator_vector[i]); |
| 271 | } |
| 272 | } else if (inputs_aligned) { |
| 273 | for (size_t i = 0; i < num_chunks; ++i) { |
| 274 | SimdVector accumulator_temp = _mm_loadu_ps(p: &accumulator[i * SIMD_LENGTH]); |
| 275 | accumulator_temp = SIMD_MULTIPLY_ADD(input_a_vector[i], input_b_vector[i], |
| 276 | accumulator_temp); |
| 277 | _mm_storeu_ps(p: &accumulator[i * SIMD_LENGTH], a: accumulator_temp); |
| 278 | } |
| 279 | } else if (accumulator_aligned) { |
| 280 | for (size_t i = 0; i < num_chunks; ++i) { |
| 281 | const SimdVector input_a_temp = _mm_loadu_ps(p: &input_a[i * SIMD_LENGTH]); |
| 282 | const SimdVector input_b_temp = _mm_loadu_ps(p: &input_b[i * SIMD_LENGTH]); |
| 283 | accumulator_vector[i] = |
| 284 | SIMD_MULTIPLY_ADD(input_a_temp, input_b_temp, accumulator_vector[i]); |
| 285 | } |
| 286 | } else { |
| 287 | for (size_t i = 0; i < num_chunks; ++i) { |
| 288 | const SimdVector input_a_temp = _mm_loadu_ps(p: &input_a[i * SIMD_LENGTH]); |
| 289 | const SimdVector input_b_temp = _mm_loadu_ps(p: &input_b[i * SIMD_LENGTH]); |
| 290 | SimdVector accumulator_temp = _mm_loadu_ps(p: &accumulator[i * SIMD_LENGTH]); |
| 291 | accumulator_temp = |
| 292 | SIMD_MULTIPLY_ADD(input_a_temp, input_b_temp, accumulator_temp); |
| 293 | _mm_storeu_ps(p: &accumulator[i * SIMD_LENGTH], a: accumulator_temp); |
| 294 | } |
| 295 | } |
| 296 | #else |
| 297 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 298 | accumulator_vector[i] = SIMD_MULTIPLY_ADD( |
| 299 | input_a_vector[i], input_b_vector[i], accumulator_vector[i]); |
| 300 | } |
| 301 | #endif // SIMD_SSE |
| 302 | |
| 303 | // Apply gain and accumulate to samples at the end that were missed by the |
| 304 | // SIMD chunking. |
| 305 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 306 | DCHECK_GE(length, leftover_samples); |
| 307 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 308 | accumulator[i] += input_a[i] * input_b[i]; |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | void ScalarMultiply(size_t length, float gain, const float* input, |
| 313 | float* output) { |
| 314 | DCHECK(input); |
| 315 | DCHECK(output); |
| 316 | |
| 317 | const SimdVector* input_vector = reinterpret_cast<const SimdVector*>(input); |
| 318 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 319 | |
| 320 | const SimdVector gain_vector = SIMD_LOAD_ONE_FLOAT(gain); |
| 321 | #ifdef SIMD_SSE |
| 322 | const size_t num_chunks = GetNumChunks(length); |
| 323 | const bool input_aligned = IsAligned(pointer: input); |
| 324 | const bool output_aligned = IsAligned(pointer: output); |
| 325 | if (input_aligned && output_aligned) { |
| 326 | for (size_t i = 0; i < num_chunks; ++i) { |
| 327 | output_vector[i] = SIMD_MULTIPLY(gain_vector, input_vector[i]); |
| 328 | } |
| 329 | } else if (input_aligned) { |
| 330 | for (size_t i = 0; i < num_chunks; ++i) { |
| 331 | const SimdVector output_temp = |
| 332 | SIMD_MULTIPLY(gain_vector, input_vector[i]); |
| 333 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 334 | } |
| 335 | } else if (output_aligned) { |
| 336 | for (size_t i = 0; i < num_chunks; ++i) { |
| 337 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 338 | output_vector[i] = SIMD_MULTIPLY(gain_vector, input_temp); |
| 339 | } |
| 340 | } else { |
| 341 | for (size_t i = 0; i < num_chunks; ++i) { |
| 342 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 343 | const SimdVector output_temp = SIMD_MULTIPLY(gain_vector, input_temp); |
| 344 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 345 | } |
| 346 | } |
| 347 | #else |
| 348 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 349 | output_vector[i] = SIMD_MULTIPLY(gain_vector, input_vector[i]); |
| 350 | } |
| 351 | #endif // SIMD_SSE |
| 352 | |
| 353 | // Apply gain to samples at the end that were missed by the SIMD chunking. |
| 354 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 355 | DCHECK_GE(length, leftover_samples); |
| 356 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 357 | output[i] = input[i] * gain; |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | void ScalarMultiplyAndAccumulate(size_t length, float gain, const float* input, |
| 362 | float* accumulator) { |
| 363 | DCHECK(input); |
| 364 | DCHECK(accumulator); |
| 365 | |
| 366 | const SimdVector* input_vector = reinterpret_cast<const SimdVector*>(input); |
| 367 | SimdVector* accumulator_vector = reinterpret_cast<SimdVector*>(accumulator); |
| 368 | |
| 369 | const SimdVector gain_vector = SIMD_LOAD_ONE_FLOAT(gain); |
| 370 | #ifdef SIMD_SSE |
| 371 | const size_t num_chunks = GetNumChunks(length); |
| 372 | const bool input_aligned = IsAligned(pointer: input); |
| 373 | const bool accumulator_aligned = IsAligned(pointer: accumulator); |
| 374 | if (input_aligned && accumulator_aligned) { |
| 375 | for (size_t i = 0; i < num_chunks; ++i) { |
| 376 | accumulator_vector[i] = SIMD_MULTIPLY_ADD(gain_vector, input_vector[i], |
| 377 | accumulator_vector[i]); |
| 378 | } |
| 379 | } else if (input_aligned) { |
| 380 | for (size_t i = 0; i < num_chunks; ++i) { |
| 381 | SimdVector accumulator_temp = _mm_loadu_ps(p: &accumulator[i * SIMD_LENGTH]); |
| 382 | accumulator_temp = |
| 383 | SIMD_MULTIPLY_ADD(gain_vector, input_vector[i], accumulator_temp); |
| 384 | _mm_storeu_ps(p: &accumulator[i * SIMD_LENGTH], a: accumulator_temp); |
| 385 | } |
| 386 | } else if (accumulator_aligned) { |
| 387 | for (size_t i = 0; i < num_chunks; ++i) { |
| 388 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 389 | accumulator_vector[i] = |
| 390 | SIMD_MULTIPLY_ADD(gain_vector, input_temp, accumulator_vector[i]); |
| 391 | } |
| 392 | } else { |
| 393 | for (size_t i = 0; i < num_chunks; ++i) { |
| 394 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 395 | SimdVector accumulator_temp = _mm_loadu_ps(p: &accumulator[i * SIMD_LENGTH]); |
| 396 | accumulator_temp = |
| 397 | SIMD_MULTIPLY_ADD(gain_vector, input_temp, accumulator_temp); |
| 398 | _mm_storeu_ps(p: &accumulator[i * SIMD_LENGTH], a: accumulator_temp); |
| 399 | } |
| 400 | } |
| 401 | #else |
| 402 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 403 | accumulator_vector[i] = |
| 404 | SIMD_MULTIPLY_ADD(gain_vector, input_vector[i], accumulator_vector[i]); |
| 405 | } |
| 406 | #endif // SIMD_SSE |
| 407 | |
| 408 | // Apply gain and accumulate to samples at the end that were missed by the |
| 409 | // SIMD chunking. |
| 410 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 411 | DCHECK_GE(length, leftover_samples); |
| 412 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 413 | accumulator[i] += input[i] * gain; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | void ReciprocalSqrt(size_t length, const float* input, float* output) { |
| 418 | DCHECK(input); |
| 419 | DCHECK(output); |
| 420 | |
| 421 | #if !defined(SIMD_DISABLED) |
| 422 | const SimdVector* input_vector = reinterpret_cast<const SimdVector*>(input); |
| 423 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 424 | #endif // !defined(SIMD_DISABLED) |
| 425 | |
| 426 | #ifdef SIMD_SSE |
| 427 | const size_t num_chunks = GetNumChunks(length); |
| 428 | const bool input_aligned = IsAligned(pointer: input); |
| 429 | const bool output_aligned = IsAligned(pointer: output); |
| 430 | if (input_aligned && output_aligned) { |
| 431 | for (size_t i = 0; i < num_chunks; ++i) { |
| 432 | output_vector[i] = SIMD_RECIPROCAL_SQRT(input_vector[i]); |
| 433 | } |
| 434 | } else if (input_aligned) { |
| 435 | for (size_t i = 0; i < num_chunks; ++i) { |
| 436 | const SimdVector output_temp = SIMD_RECIPROCAL_SQRT(input_vector[i]); |
| 437 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 438 | } |
| 439 | } else if (output_aligned) { |
| 440 | for (size_t i = 0; i < num_chunks; ++i) { |
| 441 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 442 | output_vector[i] = SIMD_RECIPROCAL_SQRT(input_temp); |
| 443 | } |
| 444 | } else { |
| 445 | for (size_t i = 0; i < num_chunks; ++i) { |
| 446 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 447 | const SimdVector output_temp = SIMD_RECIPROCAL_SQRT(input_temp); |
| 448 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 449 | } |
| 450 | } |
| 451 | #elif defined SIMD_NEON |
| 452 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 453 | output_vector[i] = SIMD_RECIPROCAL_SQRT(input_vector[i]); |
| 454 | } |
| 455 | #endif // SIMD_SSE |
| 456 | |
| 457 | // Apply to samples at the end that were missed by the SIMD chunking. |
| 458 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 459 | DCHECK_GE(length, leftover_samples); |
| 460 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 461 | output[i] = FastReciprocalSqrt(input: input[i]); |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | void Sqrt(size_t length, const float* input, float* output) { |
| 466 | DCHECK(input); |
| 467 | DCHECK(output); |
| 468 | |
| 469 | #if !defined(SIMD_DISABLED) |
| 470 | const SimdVector* input_vector = reinterpret_cast<const SimdVector*>(input); |
| 471 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 472 | #endif // !defined(SIMD_DISABLED) |
| 473 | |
| 474 | #ifdef SIMD_SSE |
| 475 | const size_t num_chunks = GetNumChunks(length); |
| 476 | const bool input_aligned = IsAligned(pointer: input); |
| 477 | const bool output_aligned = IsAligned(pointer: output); |
| 478 | if (input_aligned && output_aligned) { |
| 479 | for (size_t i = 0; i < num_chunks; ++i) { |
| 480 | output_vector[i] = SIMD_SQRT(input_vector[i]); |
| 481 | } |
| 482 | } else if (input_aligned) { |
| 483 | for (size_t i = 0; i < num_chunks; ++i) { |
| 484 | const SimdVector output_temp = SIMD_SQRT(input_vector[i]); |
| 485 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 486 | } |
| 487 | } else if (output_aligned) { |
| 488 | for (size_t i = 0; i < num_chunks; ++i) { |
| 489 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 490 | output_vector[i] = SIMD_SQRT(input_temp); |
| 491 | } |
| 492 | } else { |
| 493 | for (size_t i = 0; i < num_chunks; ++i) { |
| 494 | const SimdVector input_temp = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 495 | const SimdVector output_temp = SIMD_SQRT(input_temp); |
| 496 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: output_temp); |
| 497 | } |
| 498 | } |
| 499 | #elif defined SIMD_NEON |
| 500 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 501 | // This should be faster than using a sqrt method : https://goo.gl/XRKwFp |
| 502 | output_vector[i] = SIMD_SQRT(input_vector[i]); |
| 503 | } |
| 504 | #endif // SIMD_SSE |
| 505 | |
| 506 | // Apply to samples at the end that were missed by the SIMD chunking. |
| 507 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 508 | DCHECK_GE(length, leftover_samples); |
| 509 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 510 | output[i] = 1.0f / FastReciprocalSqrt(input: input[i]); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | void ApproxComplexMagnitude(size_t length, const float* input, float* output) { |
| 515 | DCHECK(input); |
| 516 | DCHECK(output); |
| 517 | |
| 518 | #if !defined(SIMD_DISABLED) |
| 519 | const SimdVector* input_vector = reinterpret_cast<const SimdVector*>(input); |
| 520 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 521 | const size_t num_chunks = GetNumChunks(length); |
| 522 | const bool input_aligned = IsAligned(pointer: input); |
| 523 | const bool output_aligned = IsAligned(pointer: output); |
| 524 | #endif // !defined(SIMD_DISABLED) |
| 525 | |
| 526 | #ifdef SIMD_SSE |
| 527 | if (input_aligned && output_aligned) { |
| 528 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 529 | const size_t first_index = out_index * 2; |
| 530 | const size_t second_index = first_index + 1; |
| 531 | const SimdVector squared_1 = |
| 532 | SIMD_MULTIPLY(input_vector[first_index], input_vector[first_index]); |
| 533 | const SimdVector squared_2 = |
| 534 | SIMD_MULTIPLY(input_vector[second_index], input_vector[second_index]); |
| 535 | const SimdVector unshuffled_1 = |
| 536 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(2, 0, 2, 0)); |
| 537 | const SimdVector unshuffled_2 = |
| 538 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(3, 1, 3, 1)); |
| 539 | output_vector[out_index] = SIMD_ADD(unshuffled_1, unshuffled_2); |
| 540 | output_vector[out_index] = SIMD_SQRT(output_vector[out_index]); |
| 541 | } |
| 542 | } else if (input_aligned) { |
| 543 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 544 | const size_t first_index = out_index * 2; |
| 545 | const size_t second_index = first_index + 1; |
| 546 | const SimdVector squared_1 = |
| 547 | SIMD_MULTIPLY(input_vector[first_index], input_vector[first_index]); |
| 548 | const SimdVector squared_2 = |
| 549 | SIMD_MULTIPLY(input_vector[second_index], input_vector[second_index]); |
| 550 | const SimdVector unshuffled_1 = |
| 551 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(2, 0, 2, 0)); |
| 552 | const SimdVector unshuffled_2 = |
| 553 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(3, 1, 3, 1)); |
| 554 | SimdVector output_temp = SIMD_ADD(unshuffled_1, unshuffled_2); |
| 555 | output_vector[out_index] = SIMD_SQRT(output_temp); |
| 556 | _mm_storeu_ps(p: &output[out_index * SIMD_LENGTH], a: output_temp); |
| 557 | } |
| 558 | } else if (output_aligned) { |
| 559 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 560 | const size_t first_index = out_index * 2; |
| 561 | const size_t second_index = first_index + 1; |
| 562 | const SimdVector first_temp = |
| 563 | _mm_loadu_ps(p: &input[first_index * SIMD_LENGTH]); |
| 564 | const SimdVector second_temp = |
| 565 | _mm_loadu_ps(p: &input[second_index * SIMD_LENGTH]); |
| 566 | const SimdVector squared_1 = SIMD_MULTIPLY(first_temp, first_temp); |
| 567 | const SimdVector squared_2 = SIMD_MULTIPLY(second_temp, second_temp); |
| 568 | const SimdVector unshuffled_1 = |
| 569 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(2, 0, 2, 0)); |
| 570 | const SimdVector unshuffled_2 = |
| 571 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(3, 1, 3, 1)); |
| 572 | output_vector[out_index] = SIMD_ADD(unshuffled_1, unshuffled_2); |
| 573 | output_vector[out_index] = SIMD_SQRT(output_vector[out_index]); |
| 574 | } |
| 575 | } else { |
| 576 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 577 | const size_t first_index = out_index * 2; |
| 578 | const size_t second_index = first_index + 1; |
| 579 | const SimdVector first_temp = |
| 580 | _mm_loadu_ps(p: &input[first_index * SIMD_LENGTH]); |
| 581 | const SimdVector second_temp = |
| 582 | _mm_loadu_ps(p: &input[second_index * SIMD_LENGTH]); |
| 583 | const SimdVector squared_1 = SIMD_MULTIPLY(first_temp, first_temp); |
| 584 | const SimdVector squared_2 = SIMD_MULTIPLY(second_temp, second_temp); |
| 585 | const SimdVector unshuffled_1 = |
| 586 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(2, 0, 2, 0)); |
| 587 | const SimdVector unshuffled_2 = |
| 588 | _mm_shuffle_ps(squared_1, squared_2, _MM_SHUFFLE(3, 1, 3, 1)); |
| 589 | SimdVector output_temp = SIMD_ADD(unshuffled_1, unshuffled_2); |
| 590 | output_temp = SIMD_SQRT(output_temp); |
| 591 | _mm_storeu_ps(p: &output[out_index * SIMD_LENGTH], a: output_temp); |
| 592 | } |
| 593 | } |
| 594 | #elif defined SIMD_NEON |
| 595 | if (input_aligned && output_aligned) { |
| 596 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 597 | const size_t first_index = out_index * 2; |
| 598 | const size_t second_index = first_index + 1; |
| 599 | const SimdVector squared_1 = |
| 600 | SIMD_MULTIPLY(input_vector[first_index], input_vector[first_index]); |
| 601 | const SimdVector squared_2 = |
| 602 | SIMD_MULTIPLY(input_vector[second_index], input_vector[second_index]); |
| 603 | const float32x4x2_t unshuffled = vuzpq_f32(squared_1, squared_2); |
| 604 | output_vector[out_index] = SIMD_ADD(unshuffled.val[0], unshuffled.val[1]); |
| 605 | output_vector[out_index] = SIMD_SQRT(output_vector[out_index]); |
| 606 | } |
| 607 | } else if (input_aligned) { |
| 608 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 609 | const size_t first_index = out_index * 2; |
| 610 | const size_t second_index = first_index + 1; |
| 611 | const SimdVector squared_1 = |
| 612 | SIMD_MULTIPLY(input_vector[first_index], input_vector[first_index]); |
| 613 | const SimdVector squared_2 = |
| 614 | SIMD_MULTIPLY(input_vector[second_index], input_vector[second_index]); |
| 615 | const float32x4x2_t unshuffled = vuzpq_f32(squared_1, squared_2); |
| 616 | SimdVector output_temp = SIMD_ADD(unshuffled.val[0], unshuffled.val[1]); |
| 617 | output_temp = SIMD_SQRT(output_temp); |
| 618 | vst1q_f32(&output[out_index * SIMD_LENGTH], output_temp); |
| 619 | } |
| 620 | } else if (output_aligned) { |
| 621 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 622 | const size_t first_index = out_index * 2; |
| 623 | const size_t second_index = first_index + 1; |
| 624 | const SimdVector first_temp = |
| 625 | vld1q_f32(&input[first_index * SIMD_LENGTH]); |
| 626 | const SimdVector second_temp = |
| 627 | vld1q_f32(&input[second_index * SIMD_LENGTH]); |
| 628 | const SimdVector squared_1 = SIMD_MULTIPLY(first_temp, first_temp); |
| 629 | const SimdVector squared_2 = SIMD_MULTIPLY(second_temp, second_temp); |
| 630 | const float32x4x2_t unshuffled = vuzpq_f32(squared_1, squared_2); |
| 631 | output_vector[out_index] = SIMD_ADD(unshuffled.val[0], unshuffled.val[1]); |
| 632 | output_vector[out_index] = SIMD_SQRT(output_vector[out_index]); |
| 633 | } |
| 634 | } else { |
| 635 | for (size_t out_index = 0; out_index < num_chunks; ++out_index) { |
| 636 | const size_t first_index = out_index * 2; |
| 637 | const size_t second_index = first_index + 1; |
| 638 | const SimdVector first_temp = |
| 639 | vld1q_f32(&input[first_index * SIMD_LENGTH]); |
| 640 | const SimdVector second_temp = |
| 641 | vld1q_f32(&input[second_index * SIMD_LENGTH]); |
| 642 | const SimdVector squared_1 = SIMD_MULTIPLY(first_temp, first_temp); |
| 643 | const SimdVector squared_2 = SIMD_MULTIPLY(second_temp, second_temp); |
| 644 | const float32x4x2_t unshuffled = vuzpq_f32(squared_1, squared_2); |
| 645 | SimdVector output_temp = SIMD_ADD(unshuffled.val[0], unshuffled.val[1]); |
| 646 | output_temp = SIMD_SQRT(output_temp); |
| 647 | vst1q_f32(&output[out_index * SIMD_LENGTH], output_temp); |
| 648 | } |
| 649 | } |
| 650 | #endif // SIMD_SSE |
| 651 | |
| 652 | // Apply to samples at the end that were missed by the SIMD chunking. |
| 653 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 654 | DCHECK_GE(length, leftover_samples); |
| 655 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 656 | const size_t real_index = i * 2; |
| 657 | const size_t imag_index = real_index + 1; |
| 658 | const float squared_sum = (input[real_index] * input[real_index]) + |
| 659 | (input[imag_index] * input[imag_index]); |
| 660 | output[i] = 1.0f / FastReciprocalSqrt(input: squared_sum); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | void ComplexInterleavedFormatFromMagnitudeAndSinCosPhase( |
| 665 | size_t length, const float* magnitude, const float* cos_phase, |
| 666 | const float* sin_phase, float* complex_interleaved_format_output) { |
| 667 | size_t leftover_samples = 0; |
| 668 | #ifdef SIMD_NEON |
| 669 | if (IsAligned(complex_interleaved_format_output) && IsAligned(cos_phase) && |
| 670 | IsAligned(sin_phase) && IsAligned(magnitude)) { |
| 671 | const SimdVector* cos_vec = reinterpret_cast<const SimdVector*>(cos_phase); |
| 672 | const SimdVector* sin_vec = reinterpret_cast<const SimdVector*>(sin_phase); |
| 673 | const SimdVector* magnitude_vec = |
| 674 | reinterpret_cast<const SimdVector*>(magnitude); |
| 675 | |
| 676 | const size_t num_chunks = GetNumChunks(length); |
| 677 | float32x4x2_t interleaved_pair; |
| 678 | |
| 679 | SimdVector* interleaved_vec = |
| 680 | reinterpret_cast<SimdVector*>(complex_interleaved_format_output); |
| 681 | for (size_t i = 0, j = 0; j < num_chunks; ++i, j += 2) { |
| 682 | interleaved_pair = vzipq_f32(cos_vec[i], sin_vec[i]); |
| 683 | interleaved_vec[j] = |
| 684 | SIMD_MULTIPLY(interleaved_pair.val[0], magnitude_vec[i]); |
| 685 | interleaved_vec[j + 1] = |
| 686 | SIMD_MULTIPLY(interleaved_pair.val[1], magnitude_vec[i]); |
| 687 | } |
| 688 | |
| 689 | leftover_samples = GetLeftoverSamples(length); |
| 690 | } |
| 691 | #endif // SIMD_NEON |
| 692 | DCHECK_EQ(leftover_samples % 2U, 0U); |
| 693 | for (size_t i = leftover_samples, j = leftover_samples / 2; i < length; |
| 694 | i += 2, ++j) { |
| 695 | const size_t imaginary_offset = i + 1; |
| 696 | complex_interleaved_format_output[i] = magnitude[j] * cos_phase[j]; |
| 697 | complex_interleaved_format_output[imaginary_offset] = |
| 698 | magnitude[j] * sin_phase[j]; |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | void StereoFromMonoSimd(size_t length, const float* mono, float* left, |
| 703 | float* right) { |
| 704 | ScalarMultiply(length, gain: kInverseSqrtTwo, input: mono, output: left); |
| 705 | std::copy_n(first: left, n: length, result: right); |
| 706 | } |
| 707 | |
| 708 | void MonoFromStereoSimd(size_t length, const float* left, const float* right, |
| 709 | float* mono) { |
| 710 | DCHECK(left); |
| 711 | DCHECK(right); |
| 712 | DCHECK(mono); |
| 713 | |
| 714 | const SimdVector* left_vector = reinterpret_cast<const SimdVector*>(left); |
| 715 | const SimdVector* right_vector = reinterpret_cast<const SimdVector*>(right); |
| 716 | SimdVector* mono_vector = reinterpret_cast<SimdVector*>(mono); |
| 717 | |
| 718 | const SimdVector inv_root_two_vec = SIMD_LOAD_ONE_FLOAT(kInverseSqrtTwo); |
| 719 | #ifdef SIMD_SSE |
| 720 | const size_t num_chunks = GetNumChunks(length); |
| 721 | const bool inputs_aligned = IsAligned(pointer: left) && IsAligned(pointer: right); |
| 722 | const bool mono_aligned = IsAligned(pointer: mono); |
| 723 | if (inputs_aligned && mono_aligned) { |
| 724 | for (size_t i = 0; i < num_chunks; ++i) { |
| 725 | mono_vector[i] = SIMD_MULTIPLY(inv_root_two_vec, |
| 726 | SIMD_ADD(left_vector[i], right_vector[i])); |
| 727 | } |
| 728 | } else if (inputs_aligned) { |
| 729 | for (size_t i = 0; i < num_chunks; ++i) { |
| 730 | const SimdVector mono_temp = SIMD_MULTIPLY( |
| 731 | inv_root_two_vec, SIMD_ADD(left_vector[i], right_vector[i])); |
| 732 | _mm_storeu_ps(p: &mono[i * SIMD_LENGTH], a: mono_temp); |
| 733 | } |
| 734 | } else if (mono_aligned) { |
| 735 | for (size_t i = 0; i < num_chunks; ++i) { |
| 736 | const SimdVector left_temp = _mm_loadu_ps(p: &left[i * SIMD_LENGTH]); |
| 737 | const SimdVector right_temp = _mm_loadu_ps(p: &right[i * SIMD_LENGTH]); |
| 738 | mono_vector[i] = |
| 739 | SIMD_MULTIPLY(inv_root_two_vec, SIMD_ADD(left_temp, right_temp)); |
| 740 | } |
| 741 | } else { |
| 742 | for (size_t i = 0; i < num_chunks; ++i) { |
| 743 | const SimdVector left_temp = _mm_loadu_ps(p: &left[i * SIMD_LENGTH]); |
| 744 | const SimdVector right_temp = _mm_loadu_ps(p: &right[i * SIMD_LENGTH]); |
| 745 | const SimdVector mono_temp = |
| 746 | SIMD_MULTIPLY(inv_root_two_vec, SIMD_ADD(left_temp, right_temp)); |
| 747 | _mm_storeu_ps(p: &mono[i * SIMD_LENGTH], a: mono_temp); |
| 748 | } |
| 749 | } |
| 750 | #else |
| 751 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 752 | mono_vector[i] = SIMD_MULTIPLY(inv_root_two_vec, |
| 753 | SIMD_ADD(left_vector[i], right_vector[i])); |
| 754 | } |
| 755 | #endif // SIMD_SSE |
| 756 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 757 | // Downmix samples at the end that were missed by the SIMD chunking. |
| 758 | DCHECK_GE(length, leftover_samples); |
| 759 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 760 | mono[i] = kInverseSqrtTwo * (left[i] + right[i]); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | #ifdef SIMD_NEON |
| 765 | |
| 766 | void Int16FromFloat(size_t length, const float* input, int16_t* output) { |
| 767 | DCHECK(input); |
| 768 | DCHECK(output); |
| 769 | |
| 770 | // if (input_aligned || output_aligned) { |
| 771 | const SimdVector* input_vector = reinterpret_cast<const SimdVector*>(input); |
| 772 | int16x4_t* output_vector = reinterpret_cast<int16x4_t*>(output); |
| 773 | |
| 774 | // A temporary 32 bit integer vector is needed as we only have intrinsics to |
| 775 | // convert from 32 bit floats to 32 bit ints. Then truncate to 16 bit ints. |
| 776 | int32x4_t temporary_wide_vector; |
| 777 | SimdVector temporary_float_vector; |
| 778 | |
| 779 | const SimdVector scaling_vector = SIMD_LOAD_ONE_FLOAT(kInt16FromFloat); |
| 780 | |
| 781 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 782 | temporary_float_vector = SIMD_MULTIPLY(scaling_vector, input_vector[i]); |
| 783 | temporary_wide_vector = vcvtq_s32_f32(temporary_float_vector); |
| 784 | output_vector[i] = vqmovn_s32(temporary_wide_vector); |
| 785 | } |
| 786 | |
| 787 | // The remainder. |
| 788 | const size_t leftover_samples = GetLeftoverSamples(length); |
| 789 | DCHECK_GE(length, leftover_samples); |
| 790 | float temp_float; |
| 791 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 792 | temp_float = input[i] * kInt16FromFloat; |
| 793 | temp_float = std::min(kInt16Max, std::max(kInt16Min, temp_float)); |
| 794 | output[i] = static_cast<int16_t>(temp_float); |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | void FloatFromInt16(size_t length, const int16_t* input, float* output) { |
| 799 | DCHECK(input); |
| 800 | DCHECK(output); |
| 801 | |
| 802 | size_t leftover_samples = length; |
| 803 | const bool input_aligned = IsAligned(input); |
| 804 | const bool output_aligned = IsAligned(output); |
| 805 | if (input_aligned || output_aligned) { |
| 806 | const int16x4_t* input_vector = reinterpret_cast<const int16x4_t*>(input); |
| 807 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 808 | |
| 809 | int16x4_t temporary_narrow_vector; |
| 810 | SimdVector temporary_float_vector; |
| 811 | int32x4_t temporary_wide_vector; |
| 812 | const SimdVector scaling_vector = SIMD_LOAD_ONE_FLOAT(kFloatFromInt16); |
| 813 | |
| 814 | if (input_aligned && output_aligned) { |
| 815 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 816 | temporary_wide_vector = vmovl_s16(input_vector[i]); |
| 817 | output_vector[i] = vcvtq_f32_s32(temporary_wide_vector); |
| 818 | output_vector[i] = SIMD_MULTIPLY(scaling_vector, output_vector[i]); |
| 819 | } |
| 820 | } else if (input_aligned) { |
| 821 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 822 | temporary_wide_vector = vmovl_s16(input_vector[i]); |
| 823 | temporary_float_vector = vcvtq_f32_s32(temporary_wide_vector); |
| 824 | temporary_float_vector = |
| 825 | SIMD_MULTIPLY(scaling_vector, temporary_float_vector); |
| 826 | vst1q_f32(&output[i * SIMD_LENGTH], temporary_float_vector); |
| 827 | } |
| 828 | } else { |
| 829 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 830 | temporary_narrow_vector = vld1_s16(&input[i * SIMD_LENGTH]); |
| 831 | temporary_wide_vector = vmovl_s16(temporary_narrow_vector); |
| 832 | output_vector[i] = vcvtq_f32_s32(temporary_wide_vector); |
| 833 | output_vector[i] = SIMD_MULTIPLY(scaling_vector, output_vector[i]); |
| 834 | } |
| 835 | } |
| 836 | leftover_samples = GetLeftoverSamples(length); |
| 837 | } |
| 838 | |
| 839 | // The remainder. |
| 840 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 841 | output[i] = static_cast<float>(input[i]) * kFloatFromInt16; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | #elif (defined SIMD_SSE && !defined(_MSC_VER)) |
| 846 | |
| 847 | void Int16FromFloat(size_t length, const float* input, int16_t* output) { |
| 848 | DCHECK(input); |
| 849 | DCHECK(output); |
| 850 | |
| 851 | size_t leftover_samples = length; |
| 852 | const bool input_aligned = IsAligned(pointer: input); |
| 853 | const bool output_aligned = IsAligned(pointer: output); |
| 854 | if (output_aligned) { |
| 855 | const SimdVector* input_vector = reinterpret_cast<const SimdVector*>(input); |
| 856 | __m64* output_vector = reinterpret_cast<__m64*>(output); |
| 857 | |
| 858 | const SimdVector scaling_vector = SIMD_LOAD_ONE_FLOAT(kInt16FromFloat); |
| 859 | const SimdVector min_vector = SIMD_LOAD_ONE_FLOAT(kInt16Min); |
| 860 | const SimdVector max_vector = SIMD_LOAD_ONE_FLOAT(kInt16Max); |
| 861 | |
| 862 | SimdVector temporary_float_vector; |
| 863 | |
| 864 | if (input_aligned) { |
| 865 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 866 | temporary_float_vector = SIMD_MULTIPLY(scaling_vector, input_vector[i]); |
| 867 | temporary_float_vector = _mm_max_ps(a: temporary_float_vector, b: min_vector); |
| 868 | temporary_float_vector = _mm_min_ps(a: temporary_float_vector, b: max_vector); |
| 869 | output_vector[i] = _mm_cvtps_pi16(a: temporary_float_vector); |
| 870 | } |
| 871 | } else { |
| 872 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 873 | temporary_float_vector = _mm_loadu_ps(p: &input[i * SIMD_LENGTH]); |
| 874 | temporary_float_vector = |
| 875 | SIMD_MULTIPLY(scaling_vector, temporary_float_vector); |
| 876 | temporary_float_vector = _mm_max_ps(a: temporary_float_vector, b: min_vector); |
| 877 | temporary_float_vector = _mm_min_ps(a: temporary_float_vector, b: max_vector); |
| 878 | output_vector[i] = _mm_cvtps_pi16(a: temporary_float_vector); |
| 879 | } |
| 880 | } |
| 881 | // There is no easy way to simply store the 16 bit ints so we dont have an |
| 882 | // |input_aligned| only case. |
| 883 | leftover_samples = GetLeftoverSamples(length); |
| 884 | } |
| 885 | |
| 886 | // The remainder. |
| 887 | float temp_float; |
| 888 | for (size_t i = length - GetLeftoverSamples(length); i < length; ++i) { |
| 889 | temp_float = input[i] * kInt16FromFloat; |
| 890 | temp_float = std::min(a: kInt16Max, b: std::max(a: kInt16Min, b: temp_float)); |
| 891 | output[i] = static_cast<int16_t>(temp_float); |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | void FloatFromInt16(size_t length, const int16_t* input, float* output) { |
| 896 | DCHECK(input); |
| 897 | DCHECK(output); |
| 898 | |
| 899 | size_t leftover_samples = length; |
| 900 | const bool input_aligned = IsAligned(pointer: input); |
| 901 | const bool output_aligned = IsAligned(pointer: output); |
| 902 | if (input_aligned) { |
| 903 | SimdVector* output_vector = reinterpret_cast<SimdVector*>(output); |
| 904 | const __m64* input_vector = reinterpret_cast<const __m64*>(input); |
| 905 | |
| 906 | const SimdVector scaling_vector = SIMD_LOAD_ONE_FLOAT(kFloatFromInt16); |
| 907 | |
| 908 | if (output_aligned) { |
| 909 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 910 | output_vector[i] = _mm_cvtpi16_ps(a: input_vector[i]); |
| 911 | output_vector[i] = SIMD_MULTIPLY(scaling_vector, output_vector[i]); |
| 912 | } |
| 913 | } else { |
| 914 | SimdVector temporary_float_vector; |
| 915 | for (size_t i = 0; i < GetNumChunks(length); ++i) { |
| 916 | temporary_float_vector = _mm_cvtpi16_ps(a: input_vector[i]); |
| 917 | temporary_float_vector = |
| 918 | SIMD_MULTIPLY(scaling_vector, temporary_float_vector); |
| 919 | _mm_storeu_ps(p: &output[i * SIMD_LENGTH], a: temporary_float_vector); |
| 920 | } |
| 921 | } |
| 922 | // There is no easy way to simply load the 16 bit ints so we dont have an |
| 923 | // |output_aligned| only case. |
| 924 | leftover_samples = GetLeftoverSamples(length); |
| 925 | } |
| 926 | |
| 927 | // The remainder. |
| 928 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 929 | output[i] = static_cast<float>(input[i]) * kFloatFromInt16; |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | #else // SIMD disabled or Windows build. |
| 934 | |
| 935 | void Int16FromFloat(size_t length, const float* input, int16_t* output) { |
| 936 | DCHECK(input); |
| 937 | DCHECK(output); |
| 938 | |
| 939 | float temp_float; |
| 940 | for (size_t i = 0; i < length; ++i) { |
| 941 | temp_float = input[i] * kInt16FromFloat; |
| 942 | temp_float = std::min(kInt16Max, std::max(kInt16Min, temp_float)); |
| 943 | output[i] = static_cast<int16_t>(temp_float); |
| 944 | } |
| 945 | } |
| 946 | |
| 947 | void FloatFromInt16(size_t length, const int16_t* input, float* output) { |
| 948 | DCHECK(input); |
| 949 | DCHECK(output); |
| 950 | |
| 951 | for (size_t i = 0; i < length; ++i) { |
| 952 | output[i] = static_cast<float>(input[i]) * kFloatFromInt16; |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | #endif // SIMD_NEON |
| 957 | |
| 958 | void InterleaveStereo(size_t length, const int16_t* channel_0, |
| 959 | const int16_t* channel_1, int16_t* interleaved_buffer) { |
| 960 | DCHECK(interleaved_buffer); |
| 961 | DCHECK(channel_0); |
| 962 | DCHECK(channel_1); |
| 963 | |
| 964 | size_t leftover_samples = length; |
| 965 | #ifdef SIMD_NEON |
| 966 | if (IsAligned(interleaved_buffer) && IsAligned(channel_0) && |
| 967 | IsAligned(channel_1)) { |
| 968 | const int16x8_t* channel_0_vec = |
| 969 | reinterpret_cast<const int16x8_t*>(channel_0); |
| 970 | const int16x8_t* channel_1_vec = |
| 971 | reinterpret_cast<const int16x8_t*>(channel_1); |
| 972 | |
| 973 | const size_t num_chunks = length / kSixteenBitSimdLength; |
| 974 | int16x8x2_t interleaved_pair; |
| 975 | |
| 976 | int16x8_t* interleaved_vec = |
| 977 | reinterpret_cast<int16x8_t*>(interleaved_buffer); |
| 978 | for (size_t i = 0, j = 0; i < num_chunks; ++i, j += 2) { |
| 979 | interleaved_pair = vzipq_s16(channel_0_vec[i], channel_1_vec[i]); |
| 980 | interleaved_vec[j] = interleaved_pair.val[0]; |
| 981 | interleaved_vec[j + 1] = interleaved_pair.val[1]; |
| 982 | } |
| 983 | |
| 984 | leftover_samples = length % kSixteenBitSimdLength; |
| 985 | } |
| 986 | #endif // SIMD_NEON |
| 987 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 988 | const size_t interleaved_index = kNumStereoChannels * i; |
| 989 | interleaved_buffer[interleaved_index] = channel_0[i]; |
| 990 | interleaved_buffer[interleaved_index + 1] = channel_1[i]; |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | void InterleaveStereo(size_t length, const float* channel_0, |
| 995 | const float* channel_1, float* interleaved_buffer) { |
| 996 | DCHECK(interleaved_buffer); |
| 997 | DCHECK(channel_0); |
| 998 | DCHECK(channel_1); |
| 999 | |
| 1000 | size_t leftover_samples = length; |
| 1001 | #ifdef SIMD_NEON |
| 1002 | if (IsAligned(interleaved_buffer) && IsAligned(channel_0) && |
| 1003 | IsAligned(channel_1)) { |
| 1004 | const SimdVector* channel_0_vec = |
| 1005 | reinterpret_cast<const SimdVector*>(channel_0); |
| 1006 | const SimdVector* channel_1_vec = |
| 1007 | reinterpret_cast<const SimdVector*>(channel_1); |
| 1008 | |
| 1009 | const size_t num_chunks = GetNumChunks(length); |
| 1010 | float32x4x2_t interleaved_pair; |
| 1011 | |
| 1012 | SimdVector* interleaved_vec = |
| 1013 | reinterpret_cast<SimdVector*>(interleaved_buffer); |
| 1014 | for (size_t i = 0, j = 0; i < num_chunks; ++i, j += 2) { |
| 1015 | interleaved_pair = vzipq_f32(channel_0_vec[i], channel_1_vec[i]); |
| 1016 | interleaved_vec[j] = interleaved_pair.val[0]; |
| 1017 | interleaved_vec[j + 1] = interleaved_pair.val[1]; |
| 1018 | } |
| 1019 | |
| 1020 | leftover_samples = GetLeftoverSamples(length); |
| 1021 | } |
| 1022 | #endif // SIMD_NEON |
| 1023 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 1024 | const size_t interleaved_index = kNumStereoChannels * i; |
| 1025 | interleaved_buffer[interleaved_index] = channel_0[i]; |
| 1026 | interleaved_buffer[interleaved_index + 1] = channel_1[i]; |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | void InterleaveStereo(size_t length, const float* channel_0, |
| 1031 | const float* channel_1, int16_t* interleaved_buffer) { |
| 1032 | DCHECK(interleaved_buffer); |
| 1033 | DCHECK(channel_0); |
| 1034 | DCHECK(channel_1); |
| 1035 | |
| 1036 | size_t leftover_samples = length; |
| 1037 | #ifdef SIMD_NEON |
| 1038 | if (IsAligned(interleaved_buffer) && IsAligned(channel_0) && |
| 1039 | IsAligned(channel_1)) { |
| 1040 | const SimdVector* channel_0_vec = |
| 1041 | reinterpret_cast<const SimdVector*>(channel_0); |
| 1042 | const SimdVector* channel_1_vec = |
| 1043 | reinterpret_cast<const SimdVector*>(channel_1); |
| 1044 | |
| 1045 | const size_t num_chunks = GetNumChunks(length); |
| 1046 | float32x4x2_t interleaved_pair; |
| 1047 | int32x4_t temporary_wide_vector; |
| 1048 | |
| 1049 | const SimdVector scaling_vector = SIMD_LOAD_ONE_FLOAT(kInt16FromFloat); |
| 1050 | const SimdVector min_vector = SIMD_LOAD_ONE_FLOAT(kInt16Min); |
| 1051 | const SimdVector max_vector = SIMD_LOAD_ONE_FLOAT(kInt16Max); |
| 1052 | |
| 1053 | int16x4_t* interleaved_vec = |
| 1054 | reinterpret_cast<int16x4_t*>(interleaved_buffer); |
| 1055 | for (size_t i = 0; i < num_chunks; ++i) { |
| 1056 | const size_t interleaved_index = kNumStereoChannels * i; |
| 1057 | interleaved_pair = vzipq_f32(channel_0_vec[i], channel_1_vec[i]); |
| 1058 | interleaved_pair.val[0] = |
| 1059 | SIMD_MULTIPLY(scaling_vector, interleaved_pair.val[0]); |
| 1060 | interleaved_pair.val[0] = vmaxq_f32(interleaved_pair.val[0], min_vector); |
| 1061 | interleaved_pair.val[0] = vminq_f32(interleaved_pair.val[0], max_vector); |
| 1062 | temporary_wide_vector = vcvtq_s32_f32(interleaved_pair.val[0]); |
| 1063 | interleaved_vec[interleaved_index] = vqmovn_s32(temporary_wide_vector); |
| 1064 | interleaved_pair.val[1] = |
| 1065 | SIMD_MULTIPLY(scaling_vector, interleaved_pair.val[1]); |
| 1066 | interleaved_pair.val[1] = vmaxq_f32(interleaved_pair.val[1], min_vector); |
| 1067 | interleaved_pair.val[1] = vminq_f32(interleaved_pair.val[1], max_vector); |
| 1068 | temporary_wide_vector = vcvtq_s32_f32(interleaved_pair.val[1]); |
| 1069 | interleaved_vec[interleaved_index + 1] = |
| 1070 | vqmovn_s32(temporary_wide_vector); |
| 1071 | } |
| 1072 | |
| 1073 | leftover_samples = GetLeftoverSamples(length); |
| 1074 | } |
| 1075 | #endif // SIMD_NEON |
| 1076 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 1077 | const size_t interleaved_index = kNumStereoChannels * i; |
| 1078 | interleaved_buffer[interleaved_index] = static_cast<int16_t>(std::max( |
| 1079 | a: kInt16Min, b: std::min(a: kInt16Max, b: kInt16FromFloat * channel_0[i]))); |
| 1080 | interleaved_buffer[interleaved_index + 1] = static_cast<int16_t>(std::max( |
| 1081 | a: kInt16Min, b: std::min(a: kInt16Max, b: kInt16FromFloat * channel_1[i]))); |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | void DeinterleaveStereo(size_t length, const int16_t* interleaved_buffer, |
| 1086 | int16_t* channel_0, int16_t* channel_1) { |
| 1087 | DCHECK(interleaved_buffer); |
| 1088 | DCHECK(channel_0); |
| 1089 | DCHECK(channel_1); |
| 1090 | |
| 1091 | size_t leftover_samples = length; |
| 1092 | #ifdef SIMD_NEON |
| 1093 | if (IsAligned(interleaved_buffer) && IsAligned(channel_0) && |
| 1094 | IsAligned(channel_1)) { |
| 1095 | const size_t num_chunks = length / kSixteenBitSimdLength; |
| 1096 | leftover_samples = length % kSixteenBitSimdLength; |
| 1097 | int16x8_t* channel_0_vec = reinterpret_cast<int16x8_t*>(channel_0); |
| 1098 | int16x8_t* channel_1_vec = reinterpret_cast<int16x8_t*>(channel_1); |
| 1099 | int16x8x2_t deinterleaved_pair; |
| 1100 | const int16x8_t* interleaved_vec = |
| 1101 | reinterpret_cast<const int16x8_t*>(interleaved_buffer); |
| 1102 | for (size_t chunk = 0; chunk < num_chunks; ++chunk) { |
| 1103 | const size_t interleaved_index = chunk * kNumStereoChannels; |
| 1104 | deinterleaved_pair = vuzpq_s16(interleaved_vec[interleaved_index], |
| 1105 | interleaved_vec[interleaved_index + 1]); |
| 1106 | channel_0_vec[chunk] = deinterleaved_pair.val[0]; |
| 1107 | channel_1_vec[chunk] = deinterleaved_pair.val[1]; |
| 1108 | } |
| 1109 | } |
| 1110 | #endif // SIMD_NEON |
| 1111 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 1112 | const size_t interleaved_index = kNumStereoChannels * i; |
| 1113 | channel_0[i] = interleaved_buffer[interleaved_index]; |
| 1114 | channel_1[i] = interleaved_buffer[interleaved_index + 1]; |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | void DeinterleaveStereo(size_t length, const float* interleaved_buffer, |
| 1119 | float* channel_0, float* channel_1) { |
| 1120 | DCHECK(interleaved_buffer); |
| 1121 | DCHECK(channel_0); |
| 1122 | DCHECK(channel_1); |
| 1123 | |
| 1124 | size_t leftover_samples = length; |
| 1125 | #ifdef SIMD_NEON |
| 1126 | if (IsAligned(interleaved_buffer) && IsAligned(channel_0) && |
| 1127 | IsAligned(channel_1)) { |
| 1128 | const size_t num_chunks = GetNumChunks(length); |
| 1129 | leftover_samples = GetLeftoverSamples(length); |
| 1130 | SimdVector* channel_0_vec = reinterpret_cast<SimdVector*>(channel_0); |
| 1131 | SimdVector* channel_1_vec = reinterpret_cast<SimdVector*>(channel_1); |
| 1132 | float32x4x2_t deinterleaved_pair; |
| 1133 | |
| 1134 | const SimdVector* interleaved_vec = |
| 1135 | reinterpret_cast<const SimdVector*>(interleaved_buffer); |
| 1136 | for (size_t chunk = 0; chunk < num_chunks; ++chunk) { |
| 1137 | const size_t interleaved_index = chunk * kNumStereoChannels; |
| 1138 | deinterleaved_pair = vuzpq_f32(interleaved_vec[interleaved_index], |
| 1139 | interleaved_vec[interleaved_index + 1]); |
| 1140 | channel_0_vec[chunk] = deinterleaved_pair.val[0]; |
| 1141 | channel_1_vec[chunk] = deinterleaved_pair.val[1]; |
| 1142 | } |
| 1143 | } |
| 1144 | #endif // SIMD_NEON |
| 1145 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 1146 | const size_t interleaved_index = kNumStereoChannels * i; |
| 1147 | channel_0[i] = interleaved_buffer[interleaved_index]; |
| 1148 | channel_1[i] = interleaved_buffer[interleaved_index + 1]; |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | void DeinterleaveStereo(size_t length, const int16_t* interleaved_buffer, |
| 1153 | float* channel_0, float* channel_1) { |
| 1154 | DCHECK(interleaved_buffer); |
| 1155 | DCHECK(channel_0); |
| 1156 | DCHECK(channel_1); |
| 1157 | |
| 1158 | size_t leftover_samples = length; |
| 1159 | #ifdef SIMD_NEON |
| 1160 | if (IsAligned(interleaved_buffer) && IsAligned(channel_0) && |
| 1161 | IsAligned(channel_1)) { |
| 1162 | const size_t num_chunks = GetNumChunks(length); |
| 1163 | leftover_samples = GetLeftoverSamples(length); |
| 1164 | SimdVector* channel_0_vec = reinterpret_cast<SimdVector*>(channel_0); |
| 1165 | SimdVector* channel_1_vec = reinterpret_cast<SimdVector*>(channel_1); |
| 1166 | int16x4x2_t deinterleaved_pair; |
| 1167 | int32x4_t temporary_wide; |
| 1168 | const SimdVector scaling_vector = SIMD_LOAD_ONE_FLOAT(kFloatFromInt16); |
| 1169 | |
| 1170 | const int16x4_t* interleaved_vec = |
| 1171 | reinterpret_cast<const int16x4_t*>(interleaved_buffer); |
| 1172 | for (size_t chunk = 0; chunk < num_chunks; ++chunk) { |
| 1173 | const size_t interleaved_index = chunk * kNumStereoChannels; |
| 1174 | deinterleaved_pair = vuzp_s16(interleaved_vec[interleaved_index], |
| 1175 | interleaved_vec[interleaved_index + 1]); |
| 1176 | temporary_wide = vmovl_s16(deinterleaved_pair.val[0]); |
| 1177 | channel_0_vec[chunk] = vcvtq_f32_s32(temporary_wide); |
| 1178 | channel_0_vec[chunk] = |
| 1179 | SIMD_MULTIPLY(scaling_vector, channel_0_vec[chunk]); |
| 1180 | temporary_wide = vmovl_s16(deinterleaved_pair.val[1]); |
| 1181 | channel_1_vec[chunk] = vcvtq_f32_s32(temporary_wide); |
| 1182 | channel_1_vec[chunk] = |
| 1183 | SIMD_MULTIPLY(scaling_vector, channel_1_vec[chunk]); |
| 1184 | } |
| 1185 | } |
| 1186 | #endif // SIMD_NEON |
| 1187 | for (size_t i = length - leftover_samples; i < length; ++i) { |
| 1188 | const size_t interleaved_index = kNumStereoChannels * i; |
| 1189 | channel_0[i] = static_cast<float>(interleaved_buffer[interleaved_index]) * |
| 1190 | kFloatFromInt16; |
| 1191 | channel_1[i] = |
| 1192 | static_cast<float>(interleaved_buffer[interleaved_index + 1]) * |
| 1193 | kFloatFromInt16; |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | void InterleaveQuad(size_t length, const int16_t* channel_0, |
| 1198 | const int16_t* channel_1, const int16_t* channel_2, |
| 1199 | const int16_t* channel_3, int16_t* workspace, |
| 1200 | int16_t* interleaved_buffer) { |
| 1201 | #ifdef SIMD_NEON |
| 1202 | DCHECK(IsAligned(workspace)); |
| 1203 | const size_t double_length = length * 2; |
| 1204 | int16_t* workspace_half_point = |
| 1205 | workspace + FindNextAlignedArrayIndex(double_length, sizeof(int16_t), |
| 1206 | kMemoryAlignmentBytes); |
| 1207 | InterleaveStereo(length, channel_0, channel_2, workspace); |
| 1208 | InterleaveStereo(length, channel_1, channel_3, workspace_half_point); |
| 1209 | InterleaveStereo(double_length, workspace, workspace_half_point, |
| 1210 | interleaved_buffer); |
| 1211 | #else |
| 1212 | for (size_t i = 0; i < length; ++i) { |
| 1213 | const size_t interleaved_index = kNumFirstOrderAmbisonicChannels * i; |
| 1214 | interleaved_buffer[interleaved_index] = channel_0[i]; |
| 1215 | interleaved_buffer[interleaved_index + 1] = channel_1[i]; |
| 1216 | interleaved_buffer[interleaved_index + 2] = channel_2[i]; |
| 1217 | interleaved_buffer[interleaved_index + 3] = channel_3[i]; |
| 1218 | } |
| 1219 | #endif // SIMD_NEON |
| 1220 | } |
| 1221 | |
| 1222 | void InterleaveQuad(size_t length, const float* channel_0, |
| 1223 | const float* channel_1, const float* channel_2, |
| 1224 | const float* channel_3, float* workspace, |
| 1225 | float* interleaved_buffer) { |
| 1226 | #ifdef SIMD_NEON |
| 1227 | DCHECK(IsAligned(workspace)); |
| 1228 | const size_t double_length = length * 2; |
| 1229 | float* workspace_half_point = |
| 1230 | workspace + FindNextAlignedArrayIndex(double_length, sizeof(float), |
| 1231 | kMemoryAlignmentBytes); |
| 1232 | DCHECK(IsAligned(workspace_half_point)); |
| 1233 | InterleaveStereo(length, channel_0, channel_2, workspace); |
| 1234 | InterleaveStereo(length, channel_1, channel_3, workspace_half_point); |
| 1235 | InterleaveStereo(double_length, workspace, workspace_half_point, |
| 1236 | interleaved_buffer); |
| 1237 | #else |
| 1238 | for (size_t i = 0; i < length; ++i) { |
| 1239 | const size_t interleaved_index = kNumFirstOrderAmbisonicChannels * i; |
| 1240 | interleaved_buffer[interleaved_index] = channel_0[i]; |
| 1241 | interleaved_buffer[interleaved_index + 1] = channel_1[i]; |
| 1242 | interleaved_buffer[interleaved_index + 2] = channel_2[i]; |
| 1243 | interleaved_buffer[interleaved_index + 3] = channel_3[i]; |
| 1244 | } |
| 1245 | #endif // SIMD_NEON |
| 1246 | } |
| 1247 | |
| 1248 | void DeinterleaveQuad(size_t length, const int16_t* interleaved_buffer, |
| 1249 | int16_t* workspace, int16_t* channel_0, |
| 1250 | int16_t* channel_1, int16_t* channel_2, |
| 1251 | int16_t* channel_3) { |
| 1252 | #ifdef SIMD_NEON |
| 1253 | DCHECK(IsAligned(workspace)); |
| 1254 | const size_t double_length = length * 2; |
| 1255 | int16_t* workspace_half_point = |
| 1256 | workspace + FindNextAlignedArrayIndex(double_length, sizeof(int16_t), |
| 1257 | kMemoryAlignmentBytes); |
| 1258 | DCHECK(IsAligned(workspace_half_point)); |
| 1259 | DeinterleaveStereo(double_length, interleaved_buffer, workspace, |
| 1260 | workspace_half_point); |
| 1261 | DeinterleaveStereo(length, workspace, channel_0, channel_2); |
| 1262 | DeinterleaveStereo(length, workspace_half_point, channel_1, channel_3); |
| 1263 | #else |
| 1264 | for (size_t i = 0; i < length; ++i) { |
| 1265 | const size_t interleaved_index = kNumFirstOrderAmbisonicChannels * i; |
| 1266 | channel_0[i] = interleaved_buffer[interleaved_index]; |
| 1267 | channel_1[i] = interleaved_buffer[interleaved_index + 1]; |
| 1268 | channel_2[i] = interleaved_buffer[interleaved_index + 2]; |
| 1269 | channel_3[i] = interleaved_buffer[interleaved_index + 3]; |
| 1270 | } |
| 1271 | #endif // SIMD_NEON |
| 1272 | } |
| 1273 | |
| 1274 | void DeinterleaveQuad(size_t length, const float* interleaved_buffer, |
| 1275 | float* workspace, float* channel_0, float* channel_1, |
| 1276 | float* channel_2, float* channel_3) { |
| 1277 | #ifdef SIMD_NEON |
| 1278 | DCHECK(IsAligned(workspace)); |
| 1279 | const size_t double_length = length * 2; |
| 1280 | float* workspace_half_point = |
| 1281 | workspace + FindNextAlignedArrayIndex(double_length, sizeof(float), |
| 1282 | kMemoryAlignmentBytes); |
| 1283 | DCHECK(IsAligned(workspace_half_point)); |
| 1284 | DeinterleaveStereo(double_length, interleaved_buffer, workspace, |
| 1285 | workspace_half_point); |
| 1286 | DeinterleaveStereo(length, workspace, channel_0, channel_2); |
| 1287 | DeinterleaveStereo(length, workspace_half_point, channel_1, channel_3); |
| 1288 | #else |
| 1289 | for (size_t i = 0; i < length; ++i) { |
| 1290 | const size_t interleaved_index = kNumFirstOrderAmbisonicChannels * i; |
| 1291 | channel_0[i] = interleaved_buffer[interleaved_index]; |
| 1292 | channel_1[i] = interleaved_buffer[interleaved_index + 1]; |
| 1293 | channel_2[i] = interleaved_buffer[interleaved_index + 2]; |
| 1294 | channel_3[i] = interleaved_buffer[interleaved_index + 3]; |
| 1295 | } |
| 1296 | #endif // SIMD_NEON |
| 1297 | } |
| 1298 | |
| 1299 | } // namespace vraudio |
| 1300 | |