| 1 | /* |
| 2 | Copyright 2018 Google Inc. All Rights Reserved. |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS-IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "dsp/multi_channel_iir.h" |
| 18 | |
| 19 | #include <algorithm> |
| 20 | #include <limits> |
| 21 | |
| 22 | #include "base/constants_and_types.h" |
| 23 | #include "base/logging.h" |
| 24 | #include "base/simd_macros.h" |
| 25 | |
| 26 | |
| 27 | namespace vraudio { |
| 28 | |
| 29 | std::unique_ptr<MultiChannelIir> MultiChannelIir::Create( |
| 30 | size_t num_channels, size_t frames_per_buffer, |
| 31 | const std::vector<std::vector<float>>& numerators, |
| 32 | const std::vector<std::vector<float>>& denominators) { |
| 33 | CHECK_EQ(denominators.size(), numerators.size()); |
| 34 | CHECK_EQ(denominators.size(), num_channels); |
| 35 | CHECK_EQ(num_channels % SIMD_LENGTH, 0U); |
| 36 | CHECK_GT(num_channels, 0U); |
| 37 | for (size_t channel = 0; channel < num_channels; ++channel) { |
| 38 | CHECK_GT(denominators[channel].size(), 0U); |
| 39 | CHECK_GT(std::abs(denominators[channel][0]), |
| 40 | std::numeric_limits<float>::epsilon()); |
| 41 | CHECK_EQ(denominators[channel].size(), numerators[channel].size()); |
| 42 | } |
| 43 | |
| 44 | std::unique_ptr<MultiChannelIir> multi_channel_iir(new MultiChannelIir( |
| 45 | num_channels, frames_per_buffer, numerators[0].size())); |
| 46 | CHECK(multi_channel_iir); |
| 47 | |
| 48 | for (size_t channel = 0; channel < num_channels; ++channel) { |
| 49 | size_t interleaved_index = channel; |
| 50 | for (size_t i = 0; i < numerators[channel].size(); ++i) { |
| 51 | // Make the denominator polynomials monic, (divide all coefficients by the |
| 52 | // the first denominator coefficients). Furthermore negate all |
| 53 | // coefficients beyond the first (see equation in Process method). |
| 54 | // Copy the coefficients into the |numerator_| and |denominator_| buffers. |
| 55 | multi_channel_iir->numerator_[0][interleaved_index] = |
| 56 | numerators[channel][i] / denominators[channel][0]; |
| 57 | multi_channel_iir->denominator_[0][interleaved_index] = |
| 58 | denominators[channel][i] / |
| 59 | ((i > 0) ? -denominators[channel][0] : denominators[channel][0]); |
| 60 | interleaved_index += num_channels; |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | multi_channel_iir->delay_line_.Clear(); |
| 65 | return multi_channel_iir; |
| 66 | } |
| 67 | |
| 68 | void MultiChannelIir::Process(AudioBuffer::Channel* interleaved_buffer) { |
| 69 | |
| 70 | DCHECK(interleaved_buffer); |
| 71 | DCHECK_EQ(interleaved_buffer->size(), num_channels_ * frames_per_buffer_); |
| 72 | const SimdVector* simd_numerator = |
| 73 | reinterpret_cast<SimdVector*>(&(numerator_[0][0])); |
| 74 | const SimdVector* simd_denominator = |
| 75 | reinterpret_cast<SimdVector*>(&(denominator_[0][0])); |
| 76 | SimdVector* simd_delay_line = |
| 77 | reinterpret_cast<SimdVector*>(&(delay_line_[0][0])); |
| 78 | SimdVector* simd_buffer = |
| 79 | reinterpret_cast<SimdVector*>(&((*interleaved_buffer)[0])); |
| 80 | |
| 81 | const size_t num_channel_chunks = num_channels_ / SIMD_LENGTH; |
| 82 | const size_t num_buffer_chunks = interleaved_buffer->size() / SIMD_LENGTH; |
| 83 | const size_t delay_length_in_chunks = num_channel_chunks * num_coefficients_; |
| 84 | |
| 85 | for (size_t current_frame = 0, individual_frame = 0; |
| 86 | current_frame < num_buffer_chunks; |
| 87 | current_frame += num_channel_chunks, individual_frame += num_channels_) { |
| 88 | DCHECK_LT(individual_frame, interleaved_buffer->size()); |
| 89 | // Copy the current sample into the delay line at the very start. |
| 90 | // {x[n], w[n-1], w[n-2], . . .} where each x, w represents all channels. |
| 91 | std::copy_n(first: interleaved_buffer->begin() + individual_frame, n: num_channels_, |
| 92 | result: delay_line_[0].begin() + (delay_line_front_ * SIMD_LENGTH)); |
| 93 | // Using A Direct Form II implementation difference equation: |
| 94 | // Source: Digital Signal Processing Principles Algorithms & Applications |
| 95 | // Fourth Edition. John G. Prolakis and Dimitris G. Manolakis - Chap 9 |
| 96 | // w[n] = x[n] - (a1/a0)*w[n-1] - (a2/a0)*w[n-2] - . . . |
| 97 | // y(n) = (b0/a0)*w[n] + (b1/a0)*w[n-1] + (b2/a0)*w[n-2] + . . . |
| 98 | // where x[n] is input, w[n] is storage and y[n] is output. |
| 99 | // The division by a0 has been performed in the constructor along with the |
| 100 | // negation of the denominator coefficients beyond the first. Note also |
| 101 | // that each term here refers to a set of channels. |
| 102 | for (size_t channel_chunk = 0; channel_chunk < num_channel_chunks; |
| 103 | ++channel_chunk) { |
| 104 | // First zero out the relevant section of the buffer before accumulation. |
| 105 | // Zero constant used for loading zeros into a neon simd array, as the |
| 106 | // |vld1q_dup_f32| neon intrinsic requires an lvalue parameter. |
| 107 | const float kZerof = 0.0f; |
| 108 | simd_buffer[current_frame + channel_chunk] = SIMD_LOAD_ONE_FLOAT(kZerof); |
| 109 | for (size_t coeff_offset = num_channel_chunks; |
| 110 | coeff_offset < delay_length_in_chunks; |
| 111 | coeff_offset += num_channel_chunks) { |
| 112 | // Denominator part. |
| 113 | const size_t multiplication_index = channel_chunk + coeff_offset; |
| 114 | const size_t delay_multiplication_index = |
| 115 | (multiplication_index + delay_line_front_) % delay_length_in_chunks; |
| 116 | const size_t delay_write_index = channel_chunk + delay_line_front_; |
| 117 | simd_delay_line[delay_write_index] = |
| 118 | SIMD_MULTIPLY_ADD(simd_denominator[multiplication_index], |
| 119 | simd_delay_line[delay_multiplication_index], |
| 120 | simd_delay_line[delay_write_index]); |
| 121 | } |
| 122 | for (size_t coeff_offset = 0; coeff_offset < delay_length_in_chunks; |
| 123 | coeff_offset += num_channel_chunks) { |
| 124 | // Numerator part. |
| 125 | const size_t multiplication_index = channel_chunk + coeff_offset; |
| 126 | const size_t write_index = current_frame + channel_chunk; |
| 127 | const size_t delay_multiplication_index = |
| 128 | (multiplication_index + delay_line_front_) % delay_length_in_chunks; |
| 129 | simd_buffer[write_index] = |
| 130 | SIMD_MULTIPLY_ADD(simd_numerator[multiplication_index], |
| 131 | simd_delay_line[delay_multiplication_index], |
| 132 | simd_buffer[write_index]); |
| 133 | } |
| 134 | } |
| 135 | // Update the index to the wrapped around 'front' of the delay line. |
| 136 | delay_line_front_ = ((static_cast<int>(delay_line_front_) - |
| 137 | num_channel_chunks + delay_length_in_chunks) % |
| 138 | delay_length_in_chunks); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | MultiChannelIir::MultiChannelIir(size_t num_channels, size_t frames_per_buffer, |
| 143 | size_t num_coefficients) |
| 144 | : num_channels_(num_channels), |
| 145 | frames_per_buffer_(frames_per_buffer), |
| 146 | num_coefficients_(num_coefficients), |
| 147 | delay_line_front_(0), |
| 148 | numerator_(kNumMonoChannels, num_coefficients_ * num_channels_), |
| 149 | denominator_(kNumMonoChannels, num_coefficients_ * num_channels_), |
| 150 | delay_line_(kNumMonoChannels, num_coefficients_ * num_channels_) {} |
| 151 | |
| 152 | } // namespace vraudio |
| 153 | |