| 1 | // Copyright 2009-2021 Intel Corporation | 
| 2 | // SPDX-License-Identifier: Apache-2.0 | 
| 3 |  | 
| 4 | #pragma once | 
| 5 |  | 
| 6 | #include "linearspace2.h" | 
| 7 | #include "linearspace3.h" | 
| 8 | #include "quaternion.h" | 
| 9 | #include "bbox.h" | 
| 10 | #include "vec4.h" | 
| 11 |  | 
| 12 | namespace embree | 
| 13 | { | 
| 14 |   #define VectorT typename L::Vector | 
| 15 |   #define ScalarT typename L::Vector::Scalar | 
| 16 |  | 
| 17 |   //////////////////////////////////////////////////////////////////////////////// | 
| 18 |   // Affine Space | 
| 19 |   //////////////////////////////////////////////////////////////////////////////// | 
| 20 |  | 
| 21 |   template<typename L> | 
| 22 |     struct AffineSpaceT | 
| 23 |     { | 
| 24 |       L l;           /*< linear part of affine space */ | 
| 25 |       VectorT p;     /*< affine part of affine space */ | 
| 26 |  | 
| 27 |       //////////////////////////////////////////////////////////////////////////////// | 
| 28 |       // Constructors, Assignment, Cast, Copy Operations | 
| 29 |       //////////////////////////////////////////////////////////////////////////////// | 
| 30 |  | 
| 31 |       __forceinline AffineSpaceT           ( )                           { } | 
| 32 |       __forceinline AffineSpaceT           ( const AffineSpaceT& other ) { l = other.l; p = other.p; } | 
| 33 |       __forceinline AffineSpaceT           ( const L           & other ) { l = other  ; p = VectorT(zero); } | 
| 34 |       __forceinline AffineSpaceT& operator=( const AffineSpaceT& other ) { l = other.l; p = other.p; return *this; } | 
| 35 |  | 
| 36 |       __forceinline AffineSpaceT( const VectorT& vx, const VectorT& vy, const VectorT& vz, const VectorT& p ) : l(vx,vy,vz), p(p) {} | 
| 37 |       __forceinline AffineSpaceT( const L& l, const VectorT& p ) : l(l), p(p) {} | 
| 38 |  | 
| 39 |       template<typename L1> __forceinline AffineSpaceT( const AffineSpaceT<L1>& s ) : l(s.l), p(s.p) {} | 
| 40 |  | 
| 41 |       //////////////////////////////////////////////////////////////////////////////// | 
| 42 |       // Constants | 
| 43 |       //////////////////////////////////////////////////////////////////////////////// | 
| 44 |  | 
| 45 |       __forceinline AffineSpaceT( ZeroTy ) : l(zero), p(zero) {} | 
| 46 |       __forceinline AffineSpaceT( OneTy )  : l(one),  p(zero) {} | 
| 47 |  | 
| 48 |       /*! return matrix for scaling */ | 
| 49 |       static __forceinline AffineSpaceT scale(const VectorT& s) { return L::scale(s); } | 
| 50 |  | 
| 51 |       /*! return matrix for translation */ | 
| 52 |       static __forceinline AffineSpaceT translate(const VectorT& p) { return AffineSpaceT(one,p); } | 
| 53 |  | 
| 54 |       /*! return matrix for rotation, only in 2D */ | 
| 55 |       static __forceinline AffineSpaceT rotate(const ScalarT& r) { return L::rotate(r); } | 
| 56 |  | 
| 57 |       /*! return matrix for rotation around arbitrary point (2D) or axis (3D) */ | 
| 58 |       static __forceinline AffineSpaceT rotate(const VectorT& u, const ScalarT& r) { return L::rotate(u,r); } | 
| 59 |  | 
| 60 |       /*! return matrix for rotation around arbitrary axis and point, only in 3D */ | 
| 61 |       static __forceinline AffineSpaceT rotate(const VectorT& p, const VectorT& u, const ScalarT& r) { return translate(p: +p) * rotate(u,r) * translate(p: -p);  } | 
| 62 |  | 
| 63 |       /*! return matrix for looking at given point, only in 3D */ | 
| 64 |       static __forceinline AffineSpaceT lookat(const VectorT& eye, const VectorT& point, const VectorT& up) { | 
| 65 |         VectorT Z = normalize(point-eye); | 
| 66 |         VectorT U = normalize(cross(up,Z)); | 
| 67 |         VectorT V = normalize(cross(Z,U)); | 
| 68 |         return AffineSpaceT(L(U,V,Z),eye); | 
| 69 |       } | 
| 70 |  | 
| 71 |     }; | 
| 72 |    | 
| 73 |   // template specialization to get correct identity matrix for type AffineSpace3fa | 
| 74 |   template<> | 
| 75 |     __forceinline AffineSpaceT<LinearSpace3ff>::AffineSpaceT( OneTy )  : l(one),  p(0.f, 0.f, 0.f, 1.f) {} | 
| 76 |  | 
| 77 |   //////////////////////////////////////////////////////////////////////////////// | 
| 78 |   // Unary Operators | 
| 79 |   //////////////////////////////////////////////////////////////////////////////// | 
| 80 |  | 
| 81 |   template<typename L> __forceinline AffineSpaceT<L> operator -( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(-a.l,-a.p); } | 
| 82 |   template<typename L> __forceinline AffineSpaceT<L> operator +( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(+a.l,+a.p); } | 
| 83 |   template<typename L> __forceinline AffineSpaceT<L>        rcp( const AffineSpaceT<L>& a ) { L il = rcp(a.l); return AffineSpaceT<L>(il,-(il*a.p)); } | 
| 84 |  | 
| 85 |   //////////////////////////////////////////////////////////////////////////////// | 
| 86 |   // Binary Operators | 
| 87 |   //////////////////////////////////////////////////////////////////////////////// | 
| 88 |  | 
| 89 |   template<typename L> __forceinline const AffineSpaceT<L> operator +( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l+b.l,a.p+b.p); } | 
| 90 |   template<typename L> __forceinline const AffineSpaceT<L> operator -( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l-b.l,a.p-b.p); } | 
| 91 |  | 
| 92 |   template<typename L> __forceinline const AffineSpaceT<L> operator *( const ScalarT        & a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a*b.l,a*b.p); } | 
| 93 |   template<typename L> __forceinline const AffineSpaceT<L> operator *( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l*b.l,a.l*b.p+a.p); } | 
| 94 |   template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a * rcp(b); } | 
| 95 |   template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const ScalarT        & b ) { return a * rcp(b); } | 
| 96 |  | 
| 97 |   template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a * b; } | 
| 98 |   template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const ScalarT        & b ) { return a = a * b; } | 
| 99 |   template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a / b; } | 
| 100 |   template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const ScalarT        & b ) { return a = a / b; } | 
| 101 |  | 
| 102 |   template<typename L> __forceinline VectorT xfmPoint (const AffineSpaceT<L>& m, const VectorT& p) { return madd(VectorT(p.x),m.l.vx,madd(VectorT(p.y),m.l.vy,madd(VectorT(p.z),m.l.vz,m.p))); } | 
| 103 |   template<typename L> __forceinline VectorT xfmVector(const AffineSpaceT<L>& m, const VectorT& v) { return xfmVector(m.l,v); } | 
| 104 |   template<typename L> __forceinline VectorT xfmNormal(const AffineSpaceT<L>& m, const VectorT& n) { return xfmNormal(m.l,n); } | 
| 105 |  | 
| 106 |   __forceinline const BBox<Vec3fa> xfmBounds(const AffineSpaceT<LinearSpace3<Vec3fa> >& m, const BBox<Vec3fa>& b)  | 
| 107 |   {  | 
| 108 |     BBox3fa dst = empty; | 
| 109 |     const Vec3fa p0(b.lower.x,b.lower.y,b.lower.z); dst.extend(other: xfmPoint(m,p: p0)); | 
| 110 |     const Vec3fa p1(b.lower.x,b.lower.y,b.upper.z); dst.extend(other: xfmPoint(m,p: p1)); | 
| 111 |     const Vec3fa p2(b.lower.x,b.upper.y,b.lower.z); dst.extend(other: xfmPoint(m,p: p2)); | 
| 112 |     const Vec3fa p3(b.lower.x,b.upper.y,b.upper.z); dst.extend(other: xfmPoint(m,p: p3)); | 
| 113 |     const Vec3fa p4(b.upper.x,b.lower.y,b.lower.z); dst.extend(other: xfmPoint(m,p: p4)); | 
| 114 |     const Vec3fa p5(b.upper.x,b.lower.y,b.upper.z); dst.extend(other: xfmPoint(m,p: p5)); | 
| 115 |     const Vec3fa p6(b.upper.x,b.upper.y,b.lower.z); dst.extend(other: xfmPoint(m,p: p6)); | 
| 116 |     const Vec3fa p7(b.upper.x,b.upper.y,b.upper.z); dst.extend(other: xfmPoint(m,p: p7)); | 
| 117 |     return dst; | 
| 118 |   } | 
| 119 |  | 
| 120 |   //////////////////////////////////////////////////////////////////////////////// | 
| 121 |   /// Comparison Operators | 
| 122 |   //////////////////////////////////////////////////////////////////////////////// | 
| 123 |  | 
| 124 |   template<typename L> __forceinline bool operator ==( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l == b.l && a.p == b.p; } | 
| 125 |   template<typename L> __forceinline bool operator !=( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l != b.l || a.p != b.p; } | 
| 126 |  | 
| 127 |   //////////////////////////////////////////////////////////////////////////////// | 
| 128 |   /// Select | 
| 129 |   //////////////////////////////////////////////////////////////////////////////// | 
| 130 |  | 
| 131 |   template<typename L> __forceinline AffineSpaceT<L> select ( const typename L::Vector::Scalar::Bool& s, const AffineSpaceT<L>& t, const AffineSpaceT<L>& f ) { | 
| 132 |     return AffineSpaceT<L>(select(s,t.l,f.l),select(s,t.p,f.p)); | 
| 133 |   } | 
| 134 |  | 
| 135 |   //////////////////////////////////////////////////////////////////////////////// | 
| 136 |   // Output Operators | 
| 137 |   //////////////////////////////////////////////////////////////////////////////// | 
| 138 |  | 
| 139 |   template<typename L> static embree_ostream operator<<(embree_ostream cout, const AffineSpaceT<L>& m) { | 
| 140 |     return cout << "{ l = "  << m.l << ", p = "  << m.p << " }" ; | 
| 141 |   } | 
| 142 |  | 
| 143 |   //////////////////////////////////////////////////////////////////////////////// | 
| 144 |   // Template Instantiations | 
| 145 |   //////////////////////////////////////////////////////////////////////////////// | 
| 146 |  | 
| 147 |   typedef AffineSpaceT<LinearSpace2f> AffineSpace2f; | 
| 148 |   typedef AffineSpaceT<LinearSpace3f> AffineSpace3f; | 
| 149 |   typedef AffineSpaceT<LinearSpace3fa> AffineSpace3fa; | 
| 150 |   typedef AffineSpaceT<LinearSpace3fx> AffineSpace3fx; | 
| 151 |   typedef AffineSpaceT<LinearSpace3ff> AffineSpace3ff; | 
| 152 |   typedef AffineSpaceT<Quaternion3f > OrthonormalSpace3f; | 
| 153 |  | 
| 154 |   template<int N> using AffineSpace3vf = AffineSpaceT<LinearSpace3<Vec3<vfloat<N>>>>; | 
| 155 |   typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<4>>>>  AffineSpace3vf4; | 
| 156 |   typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<8>>>>  AffineSpace3vf8; | 
| 157 |   typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<16>>>> AffineSpace3vf16; | 
| 158 |  | 
| 159 |   template<int N> using AffineSpace3vff = AffineSpaceT<LinearSpace3<Vec4<vfloat<N>>>>; | 
| 160 |   typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<4>>>>  AffineSpace3vfa4; | 
| 161 |   typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<8>>>>  AffineSpace3vfa8; | 
| 162 |   typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<16>>>> AffineSpace3vfa16; | 
| 163 |  | 
| 164 |   ////////////////////////////////////////////////////////////////////////////// | 
| 165 |   /// Interpolation | 
| 166 |   ////////////////////////////////////////////////////////////////////////////// | 
| 167 |   template<typename T, typename R> | 
| 168 |   __forceinline AffineSpaceT<T> lerp(const AffineSpaceT<T>& M0, | 
| 169 |                                      const AffineSpaceT<T>& M1, | 
| 170 |                                      const R& t) | 
| 171 |   { | 
| 172 |     return AffineSpaceT<T>(lerp(M0.l,M1.l,t),lerp(M0.p,M1.p,t)); | 
| 173 |   } | 
| 174 |  | 
| 175 |   // slerp interprets the 16 floats of the matrix M = D * R * S as components of | 
| 176 |   // three matrizes (D, R, S) that are interpolated individually. | 
| 177 |   template<typename T> __forceinline AffineSpaceT<LinearSpace3<Vec3<T>>> | 
| 178 |   slerp(const AffineSpaceT<LinearSpace3<Vec4<T>>>& M0, | 
| 179 |         const AffineSpaceT<LinearSpace3<Vec4<T>>>& M1, | 
| 180 |         const T& t) | 
| 181 |   { | 
| 182 |     QuaternionT<T> q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w); | 
| 183 |     QuaternionT<T> q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w); | 
| 184 |     QuaternionT<T> q = slerp(q0, q1, t); | 
| 185 |  | 
| 186 |     AffineSpaceT<LinearSpace3<Vec3<T>>> S = lerp(M0, M1, t); | 
| 187 |     AffineSpaceT<LinearSpace3<Vec3<T>>> D(one); | 
| 188 |     D.p.x = S.l.vx.y; | 
| 189 |     D.p.y = S.l.vx.z; | 
| 190 |     D.p.z = S.l.vy.z; | 
| 191 |     S.l.vx.y = 0; | 
| 192 |     S.l.vx.z = 0; | 
| 193 |     S.l.vy.z = 0; | 
| 194 |  | 
| 195 |     AffineSpaceT<LinearSpace3<Vec3<T>>> R = LinearSpace3<Vec3<T>>(q); | 
| 196 |     return D * R * S; | 
| 197 |   } | 
| 198 |  | 
| 199 |   // this is a specialized version for Vec3fa because that does | 
| 200 |   // not play along nicely with the other templated Vec3/Vec4 types | 
| 201 |   __forceinline AffineSpace3fa slerp(const AffineSpace3ff& M0, | 
| 202 |                                      const AffineSpace3ff& M1, | 
| 203 |                                      const float& t) | 
| 204 |   { | 
| 205 |     Quaternion3f q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w); | 
| 206 |     Quaternion3f q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w); | 
| 207 |     Quaternion3f q = slerp(q0, q1_: q1, t); | 
| 208 |  | 
| 209 |     AffineSpace3fa S = lerp(M0, M1, t); | 
| 210 |     AffineSpace3fa D(one); | 
| 211 |     D.p.x = S.l.vx.y; | 
| 212 |     D.p.y = S.l.vx.z; | 
| 213 |     D.p.z = S.l.vy.z; | 
| 214 |     S.l.vx.y = 0; | 
| 215 |     S.l.vx.z = 0; | 
| 216 |     S.l.vy.z = 0; | 
| 217 |  | 
| 218 |     AffineSpace3fa R = LinearSpace3fa(q); | 
| 219 |     return D * R * S; | 
| 220 |   } | 
| 221 |    | 
| 222 |   __forceinline AffineSpace3fa quaternionDecompositionToAffineSpace(const AffineSpace3ff& qd) | 
| 223 |   { | 
| 224 |     // compute affine transform from quaternion decomposition | 
| 225 |     Quaternion3f q(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w); | 
| 226 |     AffineSpace3fa M = qd; | 
| 227 |     AffineSpace3fa D(one); | 
| 228 |     D.p.x = M.l.vx.y; | 
| 229 |     D.p.y = M.l.vx.z; | 
| 230 |     D.p.z = M.l.vy.z; | 
| 231 |     M.l.vx.y = 0; | 
| 232 |     M.l.vx.z = 0; | 
| 233 |     M.l.vy.z = 0; | 
| 234 |     AffineSpace3fa R = LinearSpace3fa(q); | 
| 235 |     return D * R * M; | 
| 236 |   } | 
| 237 |    | 
| 238 |   __forceinline void quaternionDecomposition(const AffineSpace3ff& qd, Vec3fa& T, Quaternion3f& q, AffineSpace3fa& S) | 
| 239 |   { | 
| 240 |     q = Quaternion3f(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w); | 
| 241 |     S = qd; | 
| 242 |     T.x = qd.l.vx.y; | 
| 243 |     T.y = qd.l.vx.z; | 
| 244 |     T.z = qd.l.vy.z; | 
| 245 |     S.l.vx.y = 0; | 
| 246 |     S.l.vx.z = 0; | 
| 247 |     S.l.vy.z = 0; | 
| 248 |   } | 
| 249 |  | 
| 250 |   __forceinline AffineSpace3fx quaternionDecomposition(Vec3fa const& T, Quaternion3f const& q, AffineSpace3fa const& S) | 
| 251 |   { | 
| 252 |     AffineSpace3ff M = S; | 
| 253 |     M.l.vx.w = q.i; | 
| 254 |     M.l.vy.w = q.j; | 
| 255 |     M.l.vz.w = q.k; | 
| 256 |     M.p.w    = q.r; | 
| 257 |     M.l.vx.y = T.x; | 
| 258 |     M.l.vx.z = T.y; | 
| 259 |     M.l.vy.z = T.z; | 
| 260 |     return M; | 
| 261 |   } | 
| 262 |  | 
| 263 |   struct __aligned(16) QuaternionDecomposition | 
| 264 |   { | 
| 265 |     float scale_x = 1.f; | 
| 266 |     float scale_y = 1.f; | 
| 267 |     float scale_z = 1.f; | 
| 268 |     float skew_xy = 0.f; | 
| 269 |     float skew_xz = 0.f; | 
| 270 |     float skew_yz = 0.f; | 
| 271 |     float shift_x = 0.f; | 
| 272 |     float shift_y = 0.f; | 
| 273 |     float shift_z = 0.f; | 
| 274 |     float quaternion_r = 1.f; | 
| 275 |     float quaternion_i = 0.f; | 
| 276 |     float quaternion_j = 0.f; | 
| 277 |     float quaternion_k = 0.f; | 
| 278 |     float translation_x = 0.f; | 
| 279 |     float translation_y = 0.f; | 
| 280 |     float translation_z = 0.f; | 
| 281 |   }; | 
| 282 |  | 
| 283 |   __forceinline QuaternionDecomposition quaternionDecomposition(AffineSpace3ff const& M) | 
| 284 |   { | 
| 285 |     QuaternionDecomposition qd; | 
| 286 |     qd.scale_x       = M.l.vx.x; | 
| 287 |     qd.scale_y       = M.l.vy.y; | 
| 288 |     qd.scale_z       = M.l.vz.z; | 
| 289 |     qd.shift_x       = M.p.x; | 
| 290 |     qd.shift_y       = M.p.y; | 
| 291 |     qd.shift_z       = M.p.z; | 
| 292 |     qd.translation_x = M.l.vx.y; | 
| 293 |     qd.translation_y = M.l.vx.z; | 
| 294 |     qd.translation_z = M.l.vy.z; | 
| 295 |     qd.skew_xy       = M.l.vy.x; | 
| 296 |     qd.skew_xz       = M.l.vz.x; | 
| 297 |     qd.skew_yz       = M.l.vz.y; | 
| 298 |     qd.quaternion_r  = M.p.w; | 
| 299 |     qd.quaternion_i  = M.l.vx.w; | 
| 300 |     qd.quaternion_j  = M.l.vy.w; | 
| 301 |     qd.quaternion_k  = M.l.vz.w; | 
| 302 |     return qd; | 
| 303 |   } | 
| 304 |  | 
| 305 |   //////////////////////////////////////////////////////////////////////////////// | 
| 306 |   /* | 
| 307 |    * ! Template Specialization for 2D: return matrix for rotation around point | 
| 308 |    * (rotation around arbitrarty vector is not meaningful in 2D) | 
| 309 |    */ | 
| 310 |   template<> __forceinline | 
| 311 |   AffineSpace2f AffineSpace2f::rotate(const Vec2f& p, const float& r) { | 
| 312 |     return translate(p: +p)*AffineSpace2f(LinearSpace2f::rotate(r))*translate(p: -p); | 
| 313 |   } | 
| 314 |  | 
| 315 |   //////////////////////////////////////////////////////////////////////////////// | 
| 316 |   // Similarity Transform | 
| 317 |   // | 
| 318 |   // checks, if M is a similarity transformation, i.e if there exists a factor D | 
| 319 |   // such that for all x,y: distance(Mx, My) = D * distance(x, y) | 
| 320 |   //////////////////////////////////////////////////////////////////////////////// | 
| 321 |   __forceinline bool similarityTransform(const AffineSpace3fa& M, float* D) | 
| 322 |   { | 
| 323 |     if (D) *D = 0.f; | 
| 324 |     if (abs(x: dot(a: M.l.vx, b: M.l.vy)) > 1e-5f) return false; | 
| 325 |     if (abs(x: dot(a: M.l.vx, b: M.l.vz)) > 1e-5f) return false; | 
| 326 |     if (abs(x: dot(a: M.l.vy, b: M.l.vz)) > 1e-5f) return false; | 
| 327 |  | 
| 328 |     const float D_x = dot(a: M.l.vx, b: M.l.vx); | 
| 329 |     const float D_y = dot(a: M.l.vy, b: M.l.vy); | 
| 330 |     const float D_z = dot(a: M.l.vz, b: M.l.vz); | 
| 331 |  | 
| 332 |     if (abs(x: D_x - D_y) > 1e-5f || | 
| 333 |         abs(x: D_x - D_z) > 1e-5f || | 
| 334 |         abs(x: D_y - D_z) > 1e-5f) | 
| 335 |       return false; | 
| 336 |  | 
| 337 |     if (D) *D = sqrtf(x: D_x); | 
| 338 |     return true; | 
| 339 |   } | 
| 340 |  | 
| 341 |   __forceinline void AffineSpace3fa_store_unaligned(const AffineSpace3fa &source, AffineSpace3fa* ptr) | 
| 342 |   { | 
| 343 |     Vec3fa::storeu(ptr: &ptr->l.vx, v: source.l.vx); | 
| 344 |     Vec3fa::storeu(ptr: &ptr->l.vy, v: source.l.vy); | 
| 345 |     Vec3fa::storeu(ptr: &ptr->l.vz, v: source.l.vz); | 
| 346 |     Vec3fa::storeu(ptr: &ptr->p, v: source.p); | 
| 347 |   } | 
| 348 |  | 
| 349 |   __forceinline AffineSpace3fa AffineSpace3fa_load_unaligned(AffineSpace3fa* ptr) | 
| 350 |   { | 
| 351 |     AffineSpace3fa space; | 
| 352 |     space.l.vx = Vec3fa::loadu(a: &ptr->l.vx); | 
| 353 |     space.l.vy = Vec3fa::loadu(a: &ptr->l.vy); | 
| 354 |     space.l.vz = Vec3fa::loadu(a: &ptr->l.vz); | 
| 355 |     space.p    = Vec3fa::loadu(a: &ptr->p); | 
| 356 |     return space; | 
| 357 |   } | 
| 358 |  | 
| 359 |   #undef VectorT | 
| 360 |   #undef ScalarT | 
| 361 | } | 
| 362 |  |