1 | // Copyright 2009-2021 Intel Corporation |
2 | // SPDX-License-Identifier: Apache-2.0 |
3 | |
4 | #include "bvh_collider.h" |
5 | #include "../geometry/triangle_triangle_intersector.h" |
6 | |
7 | namespace embree |
8 | { |
9 | namespace isa |
10 | { |
11 | #define CSTAT(x) |
12 | |
13 | size_t parallel_depth_threshold = 3; |
14 | CSTAT(std::atomic<size_t> bvh_collide_traversal_steps(0)); |
15 | CSTAT(std::atomic<size_t> bvh_collide_leaf_pairs(0)); |
16 | CSTAT(std::atomic<size_t> bvh_collide_leaf_iterations(0)); |
17 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections1(0)); |
18 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections2(0)); |
19 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections3(0)); |
20 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections4(0)); |
21 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections5(0)); |
22 | CSTAT(std::atomic<size_t> bvh_collide_prim_intersections(0)); |
23 | |
24 | struct Collision |
25 | { |
26 | __forceinline Collision() {} |
27 | |
28 | __forceinline Collision (unsigned geomID0, unsigned primID0, unsigned geomID1, unsigned primID1) |
29 | : geomID0(geomID0), primID0(primID0), geomID1(geomID1), primID1(primID1) {} |
30 | |
31 | unsigned geomID0; |
32 | unsigned primID0; |
33 | unsigned geomID1; |
34 | unsigned primID1; |
35 | }; |
36 | |
37 | template<int N> |
38 | __forceinline size_t overlap(const BBox3fa& box0, const typename BVHN<N>::AABBNode& node1) |
39 | { |
40 | const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),node1.lower_x); |
41 | const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),node1.lower_y); |
42 | const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),node1.lower_z); |
43 | const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),node1.upper_x); |
44 | const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),node1.upper_y); |
45 | const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),node1.upper_z); |
46 | return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z)); |
47 | } |
48 | |
49 | template<int N> |
50 | __forceinline size_t overlap(const BBox3fa& box0, const BBox<Vec3<vfloat<N>>>& box1) |
51 | { |
52 | const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x),box1.lower.x); |
53 | const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y),box1.lower.y); |
54 | const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z),box1.lower.z); |
55 | const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x),box1.upper.x); |
56 | const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y),box1.upper.y); |
57 | const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z),box1.upper.z); |
58 | return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z)); |
59 | } |
60 | |
61 | template<int N> |
62 | __forceinline size_t overlap(const BBox<Vec3<vfloat<N>>>& box0, size_t i, const BBox<Vec3<vfloat<N>>>& box1) |
63 | { |
64 | const vfloat<N> lower_x = max(vfloat<N>(box0.lower.x[i]),box1.lower.x); |
65 | const vfloat<N> lower_y = max(vfloat<N>(box0.lower.y[i]),box1.lower.y); |
66 | const vfloat<N> lower_z = max(vfloat<N>(box0.lower.z[i]),box1.lower.z); |
67 | const vfloat<N> upper_x = min(vfloat<N>(box0.upper.x[i]),box1.upper.x); |
68 | const vfloat<N> upper_y = min(vfloat<N>(box0.upper.y[i]),box1.upper.y); |
69 | const vfloat<N> upper_z = min(vfloat<N>(box0.upper.z[i]),box1.upper.z); |
70 | return movemask((lower_x <= upper_x) & (lower_y <= upper_y) & (lower_z <= upper_z)); |
71 | } |
72 | |
73 | bool intersect_triangle_triangle (Scene* scene0, unsigned geomID0, unsigned primID0, Scene* scene1, unsigned geomID1, unsigned primID1) |
74 | { |
75 | CSTAT(bvh_collide_prim_intersections1++); |
76 | const TriangleMesh* mesh0 = scene0->get<TriangleMesh>(i: geomID0); |
77 | const TriangleMesh* mesh1 = scene1->get<TriangleMesh>(i: geomID1); |
78 | const TriangleMesh::Triangle& tri0 = mesh0->triangle(i: primID0); |
79 | const TriangleMesh::Triangle& tri1 = mesh1->triangle(i: primID1); |
80 | |
81 | /* special culling for scene intersection with itself */ |
82 | if (scene0 == scene1 && geomID0 == geomID1) |
83 | { |
84 | /* ignore self intersections */ |
85 | if (primID0 == primID1) |
86 | return false; |
87 | } |
88 | CSTAT(bvh_collide_prim_intersections2++); |
89 | |
90 | if (scene0 == scene1 && geomID0 == geomID1) |
91 | { |
92 | /* ignore intersection with topological neighbors */ |
93 | const vint4 t0(tri0.v[0],tri0.v[1],tri0.v[2],tri0.v[2]); |
94 | if (any(b: vint4(tri1.v[0]) == t0)) return false; |
95 | if (any(b: vint4(tri1.v[1]) == t0)) return false; |
96 | if (any(b: vint4(tri1.v[2]) == t0)) return false; |
97 | } |
98 | CSTAT(bvh_collide_prim_intersections3++); |
99 | |
100 | const Vec3fa a0 = mesh0->vertex(i: tri0.v[0]); |
101 | const Vec3fa a1 = mesh0->vertex(i: tri0.v[1]); |
102 | const Vec3fa a2 = mesh0->vertex(i: tri0.v[2]); |
103 | const Vec3fa b0 = mesh1->vertex(i: tri1.v[0]); |
104 | const Vec3fa b1 = mesh1->vertex(i: tri1.v[1]); |
105 | const Vec3fa b2 = mesh1->vertex(i: tri1.v[2]); |
106 | |
107 | return TriangleTriangleIntersector::intersect_triangle_triangle(a0,a1,a2,b0,b1,b2); |
108 | } |
109 | |
110 | template<int N> |
111 | __forceinline void BVHNColliderUserGeom<N>::processLeaf(NodeRef node0, NodeRef node1) |
112 | { |
113 | Collision collisions[16]; |
114 | size_t num_collisions = 0; |
115 | |
116 | size_t N0; Object* leaf0 = (Object*) node0.leaf(N0); |
117 | size_t N1; Object* leaf1 = (Object*) node1.leaf(N1); |
118 | for (size_t i=0; i<N0; i++) { |
119 | for (size_t j=0; j<N1; j++) { |
120 | const unsigned geomID0 = leaf0[i].geomID(); |
121 | const unsigned primID0 = leaf0[i].primID(); |
122 | const unsigned geomID1 = leaf1[j].geomID(); |
123 | const unsigned primID1 = leaf1[j].primID(); |
124 | if (this->scene0 == this->scene1 && geomID0 == geomID1 && primID0 == primID1) continue; |
125 | collisions[num_collisions++] = Collision(geomID0,primID0,geomID1,primID1); |
126 | if (num_collisions == 16) { |
127 | this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions); |
128 | num_collisions = 0; |
129 | } |
130 | } |
131 | } |
132 | if (num_collisions) |
133 | this->callback(this->userPtr,(RTCCollision*)&collisions,num_collisions); |
134 | } |
135 | |
136 | template<int N> |
137 | void BVHNCollider<N>::collide_recurse(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1, size_t depth0, size_t depth1) |
138 | { |
139 | CSTAT(bvh_collide_traversal_steps++); |
140 | if (unlikely(ref0.isLeaf())) { |
141 | if (unlikely(ref1.isLeaf())) { |
142 | CSTAT(bvh_collide_leaf_pairs++); |
143 | processLeaf(leaf0: ref0,leaf1: ref1); |
144 | return; |
145 | } else goto recurse_node1; |
146 | |
147 | } else { |
148 | if (unlikely(ref1.isLeaf())) { |
149 | goto recurse_node0; |
150 | } else { |
151 | if (area(b: bounds0) > area(b: bounds1)) { |
152 | goto recurse_node0; |
153 | } |
154 | else { |
155 | goto recurse_node1; |
156 | } |
157 | } |
158 | } |
159 | |
160 | { |
161 | recurse_node0: |
162 | AABBNode* node0 = ref0.getAABBNode(); |
163 | size_t mask = overlap<N>(bounds1,*node0); |
164 | //for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
165 | //for (size_t i=0; i<N; i++) { |
166 | #if 0 |
167 | if (depth0 < parallel_depth_threshold) |
168 | { |
169 | parallel_for(size_t(N), [&] ( size_t i ) { |
170 | if (mask & ( 1 << i)) { |
171 | BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE); |
172 | collide_recurse(node0->child(i),node0->bounds(i),ref1,bounds1,depth0+1,depth1); |
173 | } |
174 | }); |
175 | } |
176 | else |
177 | #endif |
178 | { |
179 | for (size_t m=mask, i=bsf(v: m); m!=0; m=btc(v: m,i), i=bsf(v: m)) { |
180 | BVHN<N>::prefetch(node0->child(i),BVH_FLAG_ALIGNED_NODE); |
181 | collide_recurse(ref0: node0->child(i),bounds0: node0->bounds(i),ref1,bounds1,depth0: depth0+1,depth1); |
182 | } |
183 | } |
184 | return; |
185 | } |
186 | |
187 | { |
188 | recurse_node1: |
189 | AABBNode* node1 = ref1.getAABBNode(); |
190 | size_t mask = overlap<N>(bounds0,*node1); |
191 | //for (size_t m=mask, i=bsf(m); m!=0; m=btc(m,i), i=bsf(m)) { |
192 | //for (size_t i=0; i<N; i++) { |
193 | #if 0 |
194 | if (depth1 < parallel_depth_threshold) |
195 | { |
196 | parallel_for(size_t(N), [&] ( size_t i ) { |
197 | if (mask & ( 1 << i)) { |
198 | BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE); |
199 | collide_recurse(ref0,bounds0,node1->child(i),node1->bounds(i),depth0,depth1+1); |
200 | } |
201 | }); |
202 | } |
203 | else |
204 | #endif |
205 | { |
206 | for (size_t m=mask, i=bsf(v: m); m!=0; m=btc(v: m,i), i=bsf(v: m)) { |
207 | BVHN<N>::prefetch(node1->child(i),BVH_FLAG_ALIGNED_NODE); |
208 | collide_recurse(ref0,bounds0,ref1: node1->child(i),bounds1: node1->bounds(i),depth0,depth1: depth1+1); |
209 | } |
210 | } |
211 | return; |
212 | } |
213 | } |
214 | |
215 | template<int N> |
216 | void BVHNCollider<N>::split(const CollideJob& job, jobvector& jobs) |
217 | { |
218 | if (unlikely(job.ref0.isLeaf())) { |
219 | if (unlikely(job.ref1.isLeaf())) { |
220 | jobs.push_back(job); |
221 | return; |
222 | } else goto recurse_node1; |
223 | } else { |
224 | if (unlikely(job.ref1.isLeaf())) { |
225 | goto recurse_node0; |
226 | } else { |
227 | if (area(job.bounds0) > area(job.bounds1)) { |
228 | goto recurse_node0; |
229 | } |
230 | else { |
231 | goto recurse_node1; |
232 | } |
233 | } |
234 | } |
235 | |
236 | { |
237 | recurse_node0: |
238 | const AABBNode* node0 = job.ref0.getAABBNode(); |
239 | size_t mask = overlap<N>(job.bounds1,*node0); |
240 | for (size_t m=mask, i=bsf(v: m); m!=0; m=btc(v: m,i), i=bsf(v: m)) { |
241 | jobs.push_back(CollideJob(node0->child(i),node0->bounds(i),job.depth0+1,job.ref1,job.bounds1,job.depth1)); |
242 | } |
243 | return; |
244 | } |
245 | |
246 | { |
247 | recurse_node1: |
248 | const AABBNode* node1 = job.ref1.getAABBNode(); |
249 | size_t mask = overlap<N>(job.bounds0,*node1); |
250 | for (size_t m=mask, i=bsf(v: m); m!=0; m=btc(v: m,i), i=bsf(v: m)) { |
251 | jobs.push_back(CollideJob(job.ref0,job.bounds0,job.depth0,node1->child(i),node1->bounds(i),job.depth1+1)); |
252 | } |
253 | return; |
254 | } |
255 | } |
256 | |
257 | template<int N> |
258 | void BVHNCollider<N>::collide_recurse_entry(NodeRef ref0, const BBox3fa& bounds0, NodeRef ref1, const BBox3fa& bounds1) |
259 | { |
260 | CSTAT(bvh_collide_traversal_steps = 0); |
261 | CSTAT(bvh_collide_leaf_pairs = 0); |
262 | CSTAT(bvh_collide_leaf_iterations = 0); |
263 | CSTAT(bvh_collide_prim_intersections1 = 0); |
264 | CSTAT(bvh_collide_prim_intersections2 = 0); |
265 | CSTAT(bvh_collide_prim_intersections3 = 0); |
266 | CSTAT(bvh_collide_prim_intersections4 = 0); |
267 | CSTAT(bvh_collide_prim_intersections5 = 0); |
268 | CSTAT(bvh_collide_prim_intersections = 0); |
269 | #if 0 |
270 | collide_recurse(ref0,bounds0,ref1,bounds1,0,0); |
271 | #else |
272 | const int M = 2048; |
273 | jobvector jobs[2]; |
274 | jobs[0].reserve(M); |
275 | jobs[1].reserve(M); |
276 | jobs[0].push_back(CollideJob(ref0,bounds0,0,ref1,bounds1,0)); |
277 | int source = 0; |
278 | int target = 1; |
279 | |
280 | /* try to split job until job list is full */ |
281 | while (jobs[source].size()+8 <= M) |
282 | { |
283 | for (size_t i=0; i<jobs[source].size(); i++) |
284 | { |
285 | const CollideJob& job = jobs[source][i]; |
286 | size_t remaining = jobs[source].size()-i; |
287 | if (jobs[target].size()+remaining+8 > M) { |
288 | jobs[target].push_back(job); |
289 | } else { |
290 | split(job,jobs&: jobs[target]); |
291 | } |
292 | } |
293 | |
294 | /* stop splitting jobs if we reached only leaves and cannot make progress anymore */ |
295 | if (jobs[target].size() == jobs[source].size()) |
296 | break; |
297 | |
298 | jobs[source].resize(0); |
299 | std::swap(a&: source,b&: target); |
300 | } |
301 | |
302 | /* parallel processing of all jobs */ |
303 | parallel_for(size_t(jobs[source].size()), [&] ( size_t i ) { |
304 | CollideJob& j = jobs[source][i]; |
305 | collide_recurse(ref0: j.ref0,bounds0: j.bounds0,ref1: j.ref1,bounds1: j.bounds1,depth0: j.depth0,depth1: j.depth1); |
306 | }); |
307 | |
308 | |
309 | #endif |
310 | CSTAT(PRINT(bvh_collide_traversal_steps)); |
311 | CSTAT(PRINT(bvh_collide_leaf_pairs)); |
312 | CSTAT(PRINT(bvh_collide_leaf_iterations)); |
313 | CSTAT(PRINT(bvh_collide_prim_intersections1)); |
314 | CSTAT(PRINT(bvh_collide_prim_intersections2)); |
315 | CSTAT(PRINT(bvh_collide_prim_intersections3)); |
316 | CSTAT(PRINT(bvh_collide_prim_intersections4)); |
317 | CSTAT(PRINT(bvh_collide_prim_intersections5)); |
318 | CSTAT(PRINT(bvh_collide_prim_intersections)); |
319 | } |
320 | |
321 | template<int N> |
322 | void BVHNColliderUserGeom<N>::collide(BVH* __restrict__ bvh0, BVH* __restrict__ bvh1, RTCCollideFunc callback, void* userPtr) |
323 | { |
324 | BVHNColliderUserGeom<N>(bvh0->scene,bvh1->scene,callback,userPtr). |
325 | collide_recurse_entry(bvh0->root,bvh0->bounds.bounds(),bvh1->root,bvh1->bounds.bounds()); |
326 | } |
327 | |
328 | #if defined (EMBREE_LOWEST_ISA) |
329 | struct collision_regression_test : public RegressionTest |
330 | { |
331 | collision_regression_test(const char* name) : RegressionTest(name) { |
332 | registerRegressionTest(test: this); |
333 | } |
334 | |
335 | bool run () |
336 | { |
337 | bool passed = true; |
338 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(-0.008815f, 0.041848f, -2.49875e-06f), a1: Vec3fa(-0.008276f, 0.053318f, -2.49875e-06f), a2: Vec3fa(0.003023f, 0.048969f, -2.49875e-06f), |
339 | b0: Vec3fa(0.00245f, 0.037612f, -2.49875e-06f), b1: Vec3fa(0.01434f, 0.042634f, -2.49875e-06f), b2: Vec3fa(0.013499f, 0.031309f, -2.49875e-06f)) == false; |
340 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0,0,0),b1: Vec3fa(1,0,0),b2: Vec3fa(0,1,0)) == true; |
341 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0,0,1),b1: Vec3fa(1,0,1),b2: Vec3fa(0,1,1)) == false; |
342 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0,0,1),b1: Vec3fa(1,0,0),b2: Vec3fa(0,1,0)) == true; |
343 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0,0,0),b1: Vec3fa(1,0,1),b2: Vec3fa(0,1,1)) == true; |
344 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0.1f,0.1f,0),b1: Vec3fa(1,0,1),b2: Vec3fa(0,1,1)) == true; |
345 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0.1f,0.1f,-0.1f),b1: Vec3fa(1,0,1),b2: Vec3fa(0,1,1)) == true; |
346 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0,0,0),b1: Vec3fa(1,0,0),b2: Vec3fa(0,1,0)) == true; |
347 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0,0,0),b1: Vec3fa(0.5f,0,0),b2: Vec3fa(0,0.5f,0)) == true; |
348 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0.1f,0.1f,0),b1: Vec3fa(0.5f,0,0),b2: Vec3fa(0,0.5f,0)) == true; |
349 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0.1f,0.1f,0),b1: Vec3fa(0.5f,0.1f,0),b2: Vec3fa(0.1f,0.5f,0)) == true; |
350 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(0.1f,-0.1f,0),b1: Vec3fa(0.5f,0.1f,0),b2: Vec3fa(0.1f,0.5f,0)) == true; |
351 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), b0: Vec3fa(-0.1f,0.1f,0),b1: Vec3fa(0.5f,0.1f,0),b2: Vec3fa(0.1f,0.5f,0)) == true; |
352 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), |
353 | b0: Vec3fa(-1,1,0) + Vec3fa(0,0,0),b1: Vec3fa(-1,1,0) + Vec3fa(0.1f,0,0),b2: Vec3fa(-1,1,0) + Vec3fa(0,0.1f,0)) == false; |
354 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), |
355 | b0: Vec3fa( 2,0.5f,0) + Vec3fa(0,0,0),b1: Vec3fa( 2,0.5f,0) + Vec3fa(0.1f,0,0),b2: Vec3fa( 2,0.5f,0) + Vec3fa(0,0.1f,0)) == false; |
356 | passed &= TriangleTriangleIntersector::intersect_triangle_triangle (a0: Vec3fa(0,0,0),a1: Vec3fa(1,0,0),a2: Vec3fa(0,1,0), |
357 | b0: Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0,0),b1: Vec3fa(0.5f,-2.0f,0) + Vec3fa(0.1f,0,0),b2: Vec3fa(0.5f,-2.0f,0) + Vec3fa(0,0.1f,0)) == false; |
358 | return passed; |
359 | } |
360 | }; |
361 | |
362 | collision_regression_test collision_regression("collision_regression_test" ); |
363 | #endif |
364 | |
365 | //////////////////////////////////////////////////////////////////////////////// |
366 | /// Collider Definitions |
367 | //////////////////////////////////////////////////////////////////////////////// |
368 | |
369 | DEFINE_COLLIDER(BVH4ColliderUserGeom,BVHNColliderUserGeom<4>); |
370 | |
371 | #if defined(__AVX__) |
372 | DEFINE_COLLIDER(BVH8ColliderUserGeom,BVHNColliderUserGeom<8>); |
373 | #endif |
374 | } |
375 | } |
376 | |