| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "default.h" |
| 7 | #include "device.h" |
| 8 | #include "scene.h" |
| 9 | #include "primref.h" |
| 10 | |
| 11 | namespace embree |
| 12 | { |
| 13 | class FastAllocator |
| 14 | { |
| 15 | /*! maximum supported alignment */ |
| 16 | static const size_t maxAlignment = 64; |
| 17 | |
| 18 | /*! maximum allocation size */ |
| 19 | |
| 20 | /* default settings */ |
| 21 | //static const size_t defaultBlockSize = 4096; |
| 22 | #define maxAllocationSize size_t(2*1024*1024-maxAlignment) |
| 23 | |
| 24 | static const size_t MAX_THREAD_USED_BLOCK_SLOTS = 8; |
| 25 | |
| 26 | public: |
| 27 | |
| 28 | struct ThreadLocal2; |
| 29 | enum AllocationType { ALIGNED_MALLOC, OS_MALLOC, SHARED, ANY_TYPE }; |
| 30 | |
| 31 | /*! Per thread structure holding the current memory block. */ |
| 32 | struct __aligned(64) ThreadLocal |
| 33 | { |
| 34 | ALIGNED_CLASS_(64); |
| 35 | public: |
| 36 | |
| 37 | /*! Constructor for usage with ThreadLocalData */ |
| 38 | __forceinline ThreadLocal (ThreadLocal2* parent) |
| 39 | : parent(parent), ptr(nullptr), cur(0), end(0), allocBlockSize(0), bytesUsed(0), bytesWasted(0) {} |
| 40 | |
| 41 | /*! initialize allocator */ |
| 42 | void init(FastAllocator* alloc) |
| 43 | { |
| 44 | ptr = nullptr; |
| 45 | cur = end = 0; |
| 46 | bytesUsed = 0; |
| 47 | bytesWasted = 0; |
| 48 | allocBlockSize = 0; |
| 49 | if (alloc) allocBlockSize = alloc->defaultBlockSize; |
| 50 | } |
| 51 | |
| 52 | /* Allocate aligned memory from the threads memory block. */ |
| 53 | __forceinline void* malloc(FastAllocator* alloc, size_t bytes, size_t align = 16) |
| 54 | { |
| 55 | /* bind the thread local allocator to the proper FastAllocator*/ |
| 56 | parent->bind(alloc_i: alloc); |
| 57 | |
| 58 | assert(align <= maxAlignment); |
| 59 | bytesUsed += bytes; |
| 60 | |
| 61 | /* try to allocate in local block */ |
| 62 | size_t ofs = (align - cur) & (align-1); |
| 63 | cur += bytes + ofs; |
| 64 | if (likely(cur <= end)) { bytesWasted += ofs; return &ptr[cur - bytes]; } |
| 65 | cur -= bytes + ofs; |
| 66 | |
| 67 | /* if allocation is too large allocate with parent allocator */ |
| 68 | if (4*bytes > allocBlockSize) { |
| 69 | return alloc->malloc(bytes,align: maxAlignment,partial: false); |
| 70 | } |
| 71 | |
| 72 | /* get new partial block if allocation failed */ |
| 73 | size_t blockSize = allocBlockSize; |
| 74 | ptr = (char*) alloc->malloc(bytes&: blockSize,align: maxAlignment,partial: true); |
| 75 | bytesWasted += end-cur; |
| 76 | cur = 0; end = blockSize; |
| 77 | |
| 78 | /* retry allocation */ |
| 79 | ofs = (align - cur) & (align-1); |
| 80 | cur += bytes + ofs; |
| 81 | if (likely(cur <= end)) { bytesWasted += ofs; return &ptr[cur - bytes]; } |
| 82 | cur -= bytes + ofs; |
| 83 | |
| 84 | /* get new full block if allocation failed */ |
| 85 | blockSize = allocBlockSize; |
| 86 | ptr = (char*) alloc->malloc(bytes&: blockSize,align: maxAlignment,partial: false); |
| 87 | bytesWasted += end-cur; |
| 88 | cur = 0; end = blockSize; |
| 89 | |
| 90 | /* retry allocation */ |
| 91 | ofs = (align - cur) & (align-1); |
| 92 | cur += bytes + ofs; |
| 93 | if (likely(cur <= end)) { bytesWasted += ofs; return &ptr[cur - bytes]; } |
| 94 | cur -= bytes + ofs; |
| 95 | |
| 96 | /* should never happen as large allocations get handled specially above */ |
| 97 | assert(false); |
| 98 | return nullptr; |
| 99 | } |
| 100 | |
| 101 | |
| 102 | /*! returns amount of used bytes */ |
| 103 | __forceinline size_t getUsedBytes() const { return bytesUsed; } |
| 104 | |
| 105 | /*! returns amount of free bytes */ |
| 106 | __forceinline size_t getFreeBytes() const { return end-cur; } |
| 107 | |
| 108 | /*! returns amount of wasted bytes */ |
| 109 | __forceinline size_t getWastedBytes() const { return bytesWasted; } |
| 110 | |
| 111 | private: |
| 112 | ThreadLocal2* parent; |
| 113 | char* ptr; //!< pointer to memory block |
| 114 | size_t cur; //!< current location of the allocator |
| 115 | size_t end; //!< end of the memory block |
| 116 | size_t allocBlockSize; //!< block size for allocations |
| 117 | size_t bytesUsed; //!< number of total bytes allocated |
| 118 | size_t bytesWasted; //!< number of bytes wasted |
| 119 | }; |
| 120 | |
| 121 | /*! Two thread local structures. */ |
| 122 | struct __aligned(64) ThreadLocal2 |
| 123 | { |
| 124 | ALIGNED_CLASS_(64); |
| 125 | public: |
| 126 | |
| 127 | __forceinline ThreadLocal2() |
| 128 | : alloc(nullptr), alloc0(this), alloc1(this) {} |
| 129 | |
| 130 | /*! bind to fast allocator */ |
| 131 | __forceinline void bind(FastAllocator* alloc_i) |
| 132 | { |
| 133 | assert(alloc_i); |
| 134 | if (alloc.load() == alloc_i) return; |
| 135 | Lock<SpinLock> lock(mutex); |
| 136 | //if (alloc.load() == alloc_i) return; // not required as only one thread calls bind |
| 137 | if (alloc.load()) { |
| 138 | alloc.load()->bytesUsed += alloc0.getUsedBytes() + alloc1.getUsedBytes(); |
| 139 | alloc.load()->bytesFree += alloc0.getFreeBytes() + alloc1.getFreeBytes(); |
| 140 | alloc.load()->bytesWasted += alloc0.getWastedBytes() + alloc1.getWastedBytes(); |
| 141 | } |
| 142 | alloc0.init(alloc: alloc_i); |
| 143 | alloc1.init(alloc: alloc_i); |
| 144 | alloc.store(p: alloc_i); |
| 145 | alloc_i->join(alloc: this); |
| 146 | } |
| 147 | |
| 148 | /*! unbind to fast allocator */ |
| 149 | void unbind(FastAllocator* alloc_i) |
| 150 | { |
| 151 | assert(alloc_i); |
| 152 | if (alloc.load() != alloc_i) return; |
| 153 | Lock<SpinLock> lock(mutex); |
| 154 | if (alloc.load() != alloc_i) return; // required as a different thread calls unbind |
| 155 | alloc.load()->bytesUsed += alloc0.getUsedBytes() + alloc1.getUsedBytes(); |
| 156 | alloc.load()->bytesFree += alloc0.getFreeBytes() + alloc1.getFreeBytes(); |
| 157 | alloc.load()->bytesWasted += alloc0.getWastedBytes() + alloc1.getWastedBytes(); |
| 158 | alloc0.init(alloc: nullptr); |
| 159 | alloc1.init(alloc: nullptr); |
| 160 | alloc.store(p: nullptr); |
| 161 | } |
| 162 | |
| 163 | public: |
| 164 | SpinLock mutex; //!< required as unbind is called from other threads |
| 165 | std::atomic<FastAllocator*> alloc; //!< parent allocator |
| 166 | ThreadLocal alloc0; |
| 167 | ThreadLocal alloc1; |
| 168 | }; |
| 169 | |
| 170 | FastAllocator (Device* device, bool osAllocation) |
| 171 | : device(device), slotMask(0), usedBlocks(nullptr), freeBlocks(nullptr), use_single_mode(false), defaultBlockSize(PAGE_SIZE), estimatedSize(0), |
| 172 | growSize(PAGE_SIZE), maxGrowSize(maxAllocationSize), log2_grow_size_scale(0), bytesUsed(0), bytesFree(0), bytesWasted(0), atype(osAllocation ? OS_MALLOC : ALIGNED_MALLOC), |
| 173 | primrefarray(device,0) |
| 174 | { |
| 175 | for (size_t i=0; i<MAX_THREAD_USED_BLOCK_SLOTS; i++) |
| 176 | { |
| 177 | threadUsedBlocks[i] = nullptr; |
| 178 | threadBlocks[i] = nullptr; |
| 179 | assert(!slotMutex[i].isLocked()); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | ~FastAllocator () { |
| 184 | clear(); |
| 185 | } |
| 186 | |
| 187 | /*! returns the device attached to this allocator */ |
| 188 | Device* getDevice() { |
| 189 | return device; |
| 190 | } |
| 191 | |
| 192 | void share(mvector<PrimRef>& primrefarray_i) { |
| 193 | primrefarray = std::move(primrefarray_i); |
| 194 | } |
| 195 | |
| 196 | void unshare(mvector<PrimRef>& primrefarray_o) |
| 197 | { |
| 198 | reset(); // this removes blocks that are allocated inside the shared primref array |
| 199 | primrefarray_o = std::move(primrefarray); |
| 200 | } |
| 201 | |
| 202 | /*! returns first fast thread local allocator */ |
| 203 | __forceinline ThreadLocal* _threadLocal() { |
| 204 | return &threadLocal2()->alloc0; |
| 205 | } |
| 206 | |
| 207 | void setOSallocation(bool flag) |
| 208 | { |
| 209 | atype = flag ? OS_MALLOC : ALIGNED_MALLOC; |
| 210 | } |
| 211 | |
| 212 | private: |
| 213 | |
| 214 | /*! returns both fast thread local allocators */ |
| 215 | __forceinline ThreadLocal2* threadLocal2() |
| 216 | { |
| 217 | ThreadLocal2* alloc = thread_local_allocator2; |
| 218 | if (alloc == nullptr) { |
| 219 | thread_local_allocator2 = alloc = new ThreadLocal2; |
| 220 | Lock<SpinLock> lock(s_thread_local_allocators_lock); |
| 221 | s_thread_local_allocators.push_back(x: make_unique(ptr: alloc)); |
| 222 | } |
| 223 | return alloc; |
| 224 | } |
| 225 | |
| 226 | public: |
| 227 | |
| 228 | __forceinline void join(ThreadLocal2* alloc) |
| 229 | { |
| 230 | Lock<SpinLock> lock(thread_local_allocators_lock); |
| 231 | thread_local_allocators.push_back(x: alloc); |
| 232 | } |
| 233 | |
| 234 | public: |
| 235 | |
| 236 | struct CachedAllocator |
| 237 | { |
| 238 | __forceinline CachedAllocator(void* ptr) |
| 239 | : alloc(nullptr), talloc0(nullptr), talloc1(nullptr) |
| 240 | { |
| 241 | assert(ptr == nullptr); |
| 242 | } |
| 243 | |
| 244 | __forceinline CachedAllocator(FastAllocator* alloc, ThreadLocal2* talloc) |
| 245 | : alloc(alloc), talloc0(&talloc->alloc0), talloc1(alloc->use_single_mode ? &talloc->alloc0 : &talloc->alloc1) {} |
| 246 | |
| 247 | __forceinline operator bool () const { |
| 248 | return alloc != nullptr; |
| 249 | } |
| 250 | |
| 251 | __forceinline void* operator() (size_t bytes, size_t align = 16) const { |
| 252 | return talloc0->malloc(alloc,bytes,align); |
| 253 | } |
| 254 | |
| 255 | __forceinline void* malloc0 (size_t bytes, size_t align = 16) const { |
| 256 | return talloc0->malloc(alloc,bytes,align); |
| 257 | } |
| 258 | |
| 259 | __forceinline void* malloc1 (size_t bytes, size_t align = 16) const { |
| 260 | return talloc1->malloc(alloc,bytes,align); |
| 261 | } |
| 262 | |
| 263 | public: |
| 264 | FastAllocator* alloc; |
| 265 | ThreadLocal* talloc0; |
| 266 | ThreadLocal* talloc1; |
| 267 | }; |
| 268 | |
| 269 | __forceinline CachedAllocator getCachedAllocator() { |
| 270 | return CachedAllocator(this,threadLocal2()); |
| 271 | } |
| 272 | |
| 273 | /*! Builder interface to create thread local allocator */ |
| 274 | struct Create |
| 275 | { |
| 276 | public: |
| 277 | __forceinline Create (FastAllocator* allocator) : allocator(allocator) {} |
| 278 | __forceinline CachedAllocator operator() () const { return allocator->getCachedAllocator(); } |
| 279 | |
| 280 | private: |
| 281 | FastAllocator* allocator; |
| 282 | }; |
| 283 | |
| 284 | void internal_fix_used_blocks() |
| 285 | { |
| 286 | /* move thread local blocks to global block list */ |
| 287 | for (size_t i = 0; i < MAX_THREAD_USED_BLOCK_SLOTS; i++) |
| 288 | { |
| 289 | while (threadBlocks[i].load() != nullptr) { |
| 290 | Block* nextUsedBlock = threadBlocks[i].load()->next; |
| 291 | threadBlocks[i].load()->next = usedBlocks.load(); |
| 292 | usedBlocks = threadBlocks[i].load(); |
| 293 | threadBlocks[i] = nextUsedBlock; |
| 294 | } |
| 295 | threadBlocks[i] = nullptr; |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | static const size_t threadLocalAllocOverhead = 20; //! 20 means 5% parallel allocation overhead through unfilled thread local blocks |
| 300 | static const size_t mainAllocOverheadStatic = 20; //! 20 means 5% allocation overhead through unfilled main alloc blocks |
| 301 | static const size_t mainAllocOverheadDynamic = 8; //! 20 means 12.5% allocation overhead through unfilled main alloc blocks |
| 302 | |
| 303 | /* calculates a single threaded threshold for the builders such |
| 304 | * that for small scenes the overhead of partly allocated blocks |
| 305 | * per thread is low */ |
| 306 | size_t fixSingleThreadThreshold(size_t branchingFactor, size_t defaultThreshold, size_t numPrimitives, size_t bytesEstimated) |
| 307 | { |
| 308 | if (numPrimitives == 0 || bytesEstimated == 0) |
| 309 | return defaultThreshold; |
| 310 | |
| 311 | /* calculate block size in bytes to fulfill threadLocalAllocOverhead constraint */ |
| 312 | const size_t single_mode_factor = use_single_mode ? 1 : 2; |
| 313 | const size_t threadCount = TaskScheduler::threadCount(); |
| 314 | const size_t singleThreadBytes = single_mode_factor*threadLocalAllocOverhead*defaultBlockSize; |
| 315 | |
| 316 | /* if we do not have to limit number of threads use optimal thresdhold */ |
| 317 | if ( (bytesEstimated+(singleThreadBytes-1))/singleThreadBytes >= threadCount) |
| 318 | return defaultThreshold; |
| 319 | |
| 320 | /* otherwise limit number of threads by calculating proper single thread threshold */ |
| 321 | else { |
| 322 | double bytesPerPrimitive = double(bytesEstimated)/double(numPrimitives); |
| 323 | return size_t(ceil(x: branchingFactor*singleThreadBytes/bytesPerPrimitive)); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | __forceinline size_t alignSize(size_t i) { |
| 328 | return (i+127)/128*128; |
| 329 | } |
| 330 | |
| 331 | /*! initializes the grow size */ |
| 332 | __forceinline void initGrowSizeAndNumSlots(size_t bytesEstimated, bool fast) |
| 333 | { |
| 334 | /* we do not need single thread local allocator mode */ |
| 335 | use_single_mode = false; |
| 336 | |
| 337 | /* calculate growSize such that at most mainAllocationOverhead gets wasted when a block stays unused */ |
| 338 | size_t mainAllocOverhead = fast ? mainAllocOverheadDynamic : mainAllocOverheadStatic; |
| 339 | size_t blockSize = alignSize(i: bytesEstimated/mainAllocOverhead); |
| 340 | growSize = maxGrowSize = clamp(x: blockSize,lower: size_t(1024),maxAllocationSize); |
| 341 | |
| 342 | /* if we reached the maxAllocationSize for growSize, we can |
| 343 | * increase the number of allocation slots by still guaranteeing |
| 344 | * the mainAllocationOverhead */ |
| 345 | slotMask = 0x0; |
| 346 | |
| 347 | if (MAX_THREAD_USED_BLOCK_SLOTS >= 2 && bytesEstimated > 2*mainAllocOverhead*growSize) slotMask = 0x1; |
| 348 | if (MAX_THREAD_USED_BLOCK_SLOTS >= 4 && bytesEstimated > 4*mainAllocOverhead*growSize) slotMask = 0x3; |
| 349 | if (MAX_THREAD_USED_BLOCK_SLOTS >= 8 && bytesEstimated > 8*mainAllocOverhead*growSize) slotMask = 0x7; |
| 350 | if (MAX_THREAD_USED_BLOCK_SLOTS >= 8 && bytesEstimated > 16*mainAllocOverhead*growSize) { growSize *= 2; } /* if the overhead is tiny, double the growSize */ |
| 351 | |
| 352 | /* set the thread local alloc block size */ |
| 353 | size_t defaultBlockSizeSwitch = PAGE_SIZE+maxAlignment; |
| 354 | |
| 355 | /* for sufficiently large scene we can increase the defaultBlockSize over the defaultBlockSizeSwitch size */ |
| 356 | #if 0 // we do not do this as a block size of 4160 if for some reason best for KNL |
| 357 | const size_t threadCount = TaskScheduler::threadCount(); |
| 358 | const size_t single_mode_factor = use_single_mode ? 1 : 2; |
| 359 | const size_t singleThreadBytes = single_mode_factor*threadLocalAllocOverhead*defaultBlockSizeSwitch; |
| 360 | if (bytesEstimated+(singleThreadBytes-1))/singleThreadBytes >= threadCount) |
| 361 | defaultBlockSize = min(max(defaultBlockSizeSwitch,bytesEstimated/(single_mode_factor*threadLocalAllocOverhead*threadCount)),growSize); |
| 362 | |
| 363 | /* otherwise we grow the defaultBlockSize up to defaultBlockSizeSwitch */ |
| 364 | else |
| 365 | #endif |
| 366 | defaultBlockSize = clamp(x: blockSize,lower: size_t(1024),upper: defaultBlockSizeSwitch); |
| 367 | |
| 368 | if (bytesEstimated == 0) { |
| 369 | maxGrowSize = maxAllocationSize; // special mode if builder cannot estimate tree size |
| 370 | defaultBlockSize = defaultBlockSizeSwitch; |
| 371 | } |
| 372 | log2_grow_size_scale = 0; |
| 373 | |
| 374 | if (device->alloc_main_block_size != 0) growSize = device->alloc_main_block_size; |
| 375 | if (device->alloc_num_main_slots >= 1 ) slotMask = 0x0; |
| 376 | if (device->alloc_num_main_slots >= 2 ) slotMask = 0x1; |
| 377 | if (device->alloc_num_main_slots >= 4 ) slotMask = 0x3; |
| 378 | if (device->alloc_num_main_slots >= 8 ) slotMask = 0x7; |
| 379 | if (device->alloc_thread_block_size != 0) defaultBlockSize = device->alloc_thread_block_size; |
| 380 | if (device->alloc_single_thread_alloc != -1) use_single_mode = device->alloc_single_thread_alloc; |
| 381 | } |
| 382 | |
| 383 | /*! initializes the allocator */ |
| 384 | void init(size_t bytesAllocate, size_t bytesReserve, size_t bytesEstimate) |
| 385 | { |
| 386 | internal_fix_used_blocks(); |
| 387 | /* distribute the allocation to multiple thread block slots */ |
| 388 | slotMask = MAX_THREAD_USED_BLOCK_SLOTS-1; // FIXME: remove |
| 389 | if (usedBlocks.load() || freeBlocks.load()) { reset(); return; } |
| 390 | if (bytesReserve == 0) bytesReserve = bytesAllocate; |
| 391 | freeBlocks = Block::create(device,bytesAllocate,bytesReserve,next: nullptr,atype); |
| 392 | estimatedSize = bytesEstimate; |
| 393 | initGrowSizeAndNumSlots(bytesEstimated: bytesEstimate,fast: true); |
| 394 | } |
| 395 | |
| 396 | /*! initializes the allocator */ |
| 397 | void init_estimate(size_t bytesEstimate) |
| 398 | { |
| 399 | internal_fix_used_blocks(); |
| 400 | if (usedBlocks.load() || freeBlocks.load()) { reset(); return; } |
| 401 | /* single allocator mode ? */ |
| 402 | estimatedSize = bytesEstimate; |
| 403 | //initGrowSizeAndNumSlots(bytesEstimate,false); |
| 404 | initGrowSizeAndNumSlots(bytesEstimated: bytesEstimate,fast: false); |
| 405 | |
| 406 | } |
| 407 | |
| 408 | /*! frees state not required after build */ |
| 409 | __forceinline void cleanup() |
| 410 | { |
| 411 | internal_fix_used_blocks(); |
| 412 | |
| 413 | /* unbind all thread local allocators */ |
| 414 | for (auto alloc : thread_local_allocators) alloc->unbind(alloc_i: this); |
| 415 | thread_local_allocators.clear(); |
| 416 | } |
| 417 | |
| 418 | /*! resets the allocator, memory blocks get reused */ |
| 419 | void reset () |
| 420 | { |
| 421 | internal_fix_used_blocks(); |
| 422 | |
| 423 | bytesUsed.store(i: 0); |
| 424 | bytesFree.store(i: 0); |
| 425 | bytesWasted.store(i: 0); |
| 426 | |
| 427 | /* reset all used blocks and move them to begin of free block list */ |
| 428 | while (usedBlocks.load() != nullptr) { |
| 429 | usedBlocks.load()->reset_block(); |
| 430 | Block* nextUsedBlock = usedBlocks.load()->next; |
| 431 | usedBlocks.load()->next = freeBlocks.load(); |
| 432 | freeBlocks = usedBlocks.load(); |
| 433 | usedBlocks = nextUsedBlock; |
| 434 | } |
| 435 | |
| 436 | /* remove all shared blocks as they are re-added during build */ |
| 437 | freeBlocks.store(p: Block::remove_shared_blocks(head: freeBlocks.load())); |
| 438 | |
| 439 | for (size_t i=0; i<MAX_THREAD_USED_BLOCK_SLOTS; i++) |
| 440 | { |
| 441 | threadUsedBlocks[i] = nullptr; |
| 442 | threadBlocks[i] = nullptr; |
| 443 | } |
| 444 | |
| 445 | /* unbind all thread local allocators */ |
| 446 | for (auto alloc : thread_local_allocators) alloc->unbind(alloc_i: this); |
| 447 | thread_local_allocators.clear(); |
| 448 | } |
| 449 | |
| 450 | /*! frees all allocated memory */ |
| 451 | __forceinline void clear() |
| 452 | { |
| 453 | cleanup(); |
| 454 | bytesUsed.store(i: 0); |
| 455 | bytesFree.store(i: 0); |
| 456 | bytesWasted.store(i: 0); |
| 457 | if (usedBlocks.load() != nullptr) usedBlocks.load()->clear_list(device); usedBlocks = nullptr; |
| 458 | if (freeBlocks.load() != nullptr) freeBlocks.load()->clear_list(device); freeBlocks = nullptr; |
| 459 | for (size_t i=0; i<MAX_THREAD_USED_BLOCK_SLOTS; i++) { |
| 460 | threadUsedBlocks[i] = nullptr; |
| 461 | threadBlocks[i] = nullptr; |
| 462 | } |
| 463 | primrefarray.clear(); |
| 464 | } |
| 465 | |
| 466 | __forceinline size_t incGrowSizeScale() |
| 467 | { |
| 468 | size_t scale = log2_grow_size_scale.fetch_add(i: 1)+1; |
| 469 | return size_t(1) << min(a: size_t(16),b: scale); |
| 470 | } |
| 471 | |
| 472 | /*! thread safe allocation of memory */ |
| 473 | void* malloc(size_t& bytes, size_t align, bool partial) |
| 474 | { |
| 475 | assert(align <= maxAlignment); |
| 476 | |
| 477 | while (true) |
| 478 | { |
| 479 | /* allocate using current block */ |
| 480 | size_t threadID = TaskScheduler::threadID(); |
| 481 | size_t slot = threadID & slotMask; |
| 482 | Block* myUsedBlocks = threadUsedBlocks[slot]; |
| 483 | if (myUsedBlocks) { |
| 484 | void* ptr = myUsedBlocks->malloc(device,bytes_in&: bytes,align,partial); |
| 485 | if (ptr) return ptr; |
| 486 | } |
| 487 | |
| 488 | /* throw error if allocation is too large */ |
| 489 | if (bytes > maxAllocationSize) |
| 490 | throw_RTCError(RTC_ERROR_UNKNOWN,"allocation is too large" ); |
| 491 | |
| 492 | /* parallel block creation in case of no freeBlocks, avoids single global mutex */ |
| 493 | if (likely(freeBlocks.load() == nullptr)) |
| 494 | { |
| 495 | Lock<SpinLock> lock(slotMutex[slot]); |
| 496 | if (myUsedBlocks == threadUsedBlocks[slot]) { |
| 497 | const size_t alignedBytes = (bytes+(align-1)) & ~(align-1); |
| 498 | const size_t allocSize = max(a: min(a: growSize,b: maxGrowSize),b: alignedBytes); |
| 499 | assert(allocSize >= bytes); |
| 500 | threadBlocks[slot] = threadUsedBlocks[slot] = Block::create(device,bytesAllocate: allocSize,bytesReserve: allocSize,next: threadBlocks[slot],atype); // FIXME: a large allocation might throw away a block here! |
| 501 | // FIXME: a direct allocation should allocate inside the block here, and not in the next loop! a different thread could do some allocation and make the large allocation fail. |
| 502 | } |
| 503 | continue; |
| 504 | } |
| 505 | |
| 506 | /* if this fails allocate new block */ |
| 507 | { |
| 508 | Lock<SpinLock> lock(mutex); |
| 509 | if (myUsedBlocks == threadUsedBlocks[slot]) |
| 510 | { |
| 511 | if (freeBlocks.load() != nullptr) { |
| 512 | Block* nextFreeBlock = freeBlocks.load()->next; |
| 513 | freeBlocks.load()->next = usedBlocks; |
| 514 | __memory_barrier(); |
| 515 | usedBlocks = freeBlocks.load(); |
| 516 | threadUsedBlocks[slot] = freeBlocks.load(); |
| 517 | freeBlocks = nextFreeBlock; |
| 518 | } else { |
| 519 | const size_t allocSize = min(a: growSize*incGrowSizeScale(),b: maxGrowSize); |
| 520 | usedBlocks = threadUsedBlocks[slot] = Block::create(device,bytesAllocate: allocSize,bytesReserve: allocSize,next: usedBlocks,atype); // FIXME: a large allocation should get delivered directly, like above! |
| 521 | } |
| 522 | } |
| 523 | } |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | /*! add new block */ |
| 528 | void addBlock(void* ptr, ssize_t bytes) |
| 529 | { |
| 530 | Lock<SpinLock> lock(mutex); |
| 531 | const size_t = offsetof(Block,data[0]); |
| 532 | void* aptr = (void*) ((((size_t)ptr)+maxAlignment-1) & ~(maxAlignment-1)); |
| 533 | size_t ofs = (size_t) aptr - (size_t) ptr; |
| 534 | bytes -= ofs; |
| 535 | if (bytes < 4096) return; // ignore empty or very small blocks |
| 536 | freeBlocks = new (aptr) Block(SHARED,bytes-sizeof_Header,bytes-sizeof_Header,freeBlocks,ofs); |
| 537 | } |
| 538 | |
| 539 | /* special allocation only used from morton builder only a single time for each build */ |
| 540 | void* specialAlloc(size_t bytes) |
| 541 | { |
| 542 | assert(freeBlocks.load() != nullptr && freeBlocks.load()->getBlockAllocatedBytes() >= bytes); |
| 543 | return freeBlocks.load()->ptr(); |
| 544 | } |
| 545 | |
| 546 | struct Statistics |
| 547 | { |
| 548 | Statistics () |
| 549 | : bytesUsed(0), bytesFree(0), bytesWasted(0) {} |
| 550 | |
| 551 | Statistics (size_t bytesUsed, size_t bytesFree, size_t bytesWasted) |
| 552 | : bytesUsed(bytesUsed), bytesFree(bytesFree), bytesWasted(bytesWasted) {} |
| 553 | |
| 554 | Statistics (FastAllocator* alloc, AllocationType atype, bool huge_pages = false) |
| 555 | : bytesUsed(0), bytesFree(0), bytesWasted(0) |
| 556 | { |
| 557 | Block* usedBlocks = alloc->usedBlocks.load(); |
| 558 | Block* freeBlocks = alloc->freeBlocks.load(); |
| 559 | if (usedBlocks) bytesUsed += usedBlocks->getUsedBytes(atype,huge_pages); |
| 560 | if (freeBlocks) bytesFree += freeBlocks->getAllocatedBytes(atype,huge_pages); |
| 561 | if (usedBlocks) bytesFree += usedBlocks->getFreeBytes(atype,huge_pages); |
| 562 | if (freeBlocks) bytesWasted += freeBlocks->getWastedBytes(atype,huge_pages); |
| 563 | if (usedBlocks) bytesWasted += usedBlocks->getWastedBytes(atype,huge_pages); |
| 564 | } |
| 565 | |
| 566 | std::string str(size_t numPrimitives) |
| 567 | { |
| 568 | std::stringstream str; |
| 569 | str.setf(fmtfl: std::ios::fixed, mask: std::ios::floatfield); |
| 570 | str << "used = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesUsed << " MB, " |
| 571 | << "free = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesFree << " MB, " |
| 572 | << "wasted = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesWasted << " MB, " |
| 573 | << "total = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesAllocatedTotal() << " MB, " |
| 574 | << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytesAllocatedTotal())/double(numPrimitives); |
| 575 | return str.str(); |
| 576 | } |
| 577 | |
| 578 | friend Statistics operator+ ( const Statistics& a, const Statistics& b) |
| 579 | { |
| 580 | return Statistics(a.bytesUsed+b.bytesUsed, |
| 581 | a.bytesFree+b.bytesFree, |
| 582 | a.bytesWasted+b.bytesWasted); |
| 583 | } |
| 584 | |
| 585 | size_t bytesAllocatedTotal() const { |
| 586 | return bytesUsed + bytesFree + bytesWasted; |
| 587 | } |
| 588 | |
| 589 | public: |
| 590 | size_t bytesUsed; |
| 591 | size_t bytesFree; |
| 592 | size_t bytesWasted; |
| 593 | }; |
| 594 | |
| 595 | Statistics getStatistics(AllocationType atype, bool huge_pages = false) { |
| 596 | return Statistics(this,atype,huge_pages); |
| 597 | } |
| 598 | |
| 599 | size_t getUsedBytes() { |
| 600 | return bytesUsed; |
| 601 | } |
| 602 | |
| 603 | size_t getWastedBytes() { |
| 604 | return bytesWasted; |
| 605 | } |
| 606 | |
| 607 | struct AllStatistics |
| 608 | { |
| 609 | AllStatistics (FastAllocator* alloc) |
| 610 | |
| 611 | : bytesUsed(alloc->bytesUsed), |
| 612 | bytesFree(alloc->bytesFree), |
| 613 | bytesWasted(alloc->bytesWasted), |
| 614 | stat_all(alloc,ANY_TYPE), |
| 615 | stat_malloc(alloc,ALIGNED_MALLOC), |
| 616 | stat_4K(alloc,OS_MALLOC,false), |
| 617 | stat_2M(alloc,OS_MALLOC,true), |
| 618 | stat_shared(alloc,SHARED) {} |
| 619 | |
| 620 | AllStatistics (size_t bytesUsed, |
| 621 | size_t bytesFree, |
| 622 | size_t bytesWasted, |
| 623 | Statistics stat_all, |
| 624 | Statistics stat_malloc, |
| 625 | Statistics stat_4K, |
| 626 | Statistics stat_2M, |
| 627 | Statistics stat_shared) |
| 628 | |
| 629 | : bytesUsed(bytesUsed), |
| 630 | bytesFree(bytesFree), |
| 631 | bytesWasted(bytesWasted), |
| 632 | stat_all(stat_all), |
| 633 | stat_malloc(stat_malloc), |
| 634 | stat_4K(stat_4K), |
| 635 | stat_2M(stat_2M), |
| 636 | stat_shared(stat_shared) {} |
| 637 | |
| 638 | friend AllStatistics operator+ (const AllStatistics& a, const AllStatistics& b) |
| 639 | { |
| 640 | return AllStatistics(a.bytesUsed+b.bytesUsed, |
| 641 | a.bytesFree+b.bytesFree, |
| 642 | a.bytesWasted+b.bytesWasted, |
| 643 | a.stat_all + b.stat_all, |
| 644 | a.stat_malloc + b.stat_malloc, |
| 645 | a.stat_4K + b.stat_4K, |
| 646 | a.stat_2M + b.stat_2M, |
| 647 | a.stat_shared + b.stat_shared); |
| 648 | } |
| 649 | |
| 650 | void print(size_t numPrimitives) |
| 651 | { |
| 652 | std::stringstream str0; |
| 653 | str0.setf(fmtfl: std::ios::fixed, mask: std::ios::floatfield); |
| 654 | str0 << " alloc : " |
| 655 | << "used = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesUsed << " MB, " |
| 656 | << " " |
| 657 | << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytesUsed)/double(numPrimitives); |
| 658 | std::cout << str0.str() << std::endl; |
| 659 | |
| 660 | std::stringstream str1; |
| 661 | str1.setf(fmtfl: std::ios::fixed, mask: std::ios::floatfield); |
| 662 | str1 << " alloc : " |
| 663 | << "used = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesUsed << " MB, " |
| 664 | << "free = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesFree << " MB, " |
| 665 | << "wasted = " << std::setw(7) << std::setprecision(3) << 1E-6f*bytesWasted << " MB, " |
| 666 | << "total = " << std::setw(7) << std::setprecision(3) << 1E-6f*(bytesUsed+bytesFree+bytesWasted) << " MB, " |
| 667 | << "#bytes/prim = " << std::setw(6) << std::setprecision(2) << double(bytesUsed+bytesFree+bytesWasted)/double(numPrimitives); |
| 668 | std::cout << str1.str() << std::endl; |
| 669 | |
| 670 | std::cout << " total : " << stat_all.str(numPrimitives) << std::endl; |
| 671 | std::cout << " 4K : " << stat_4K.str(numPrimitives) << std::endl; |
| 672 | std::cout << " 2M : " << stat_2M.str(numPrimitives) << std::endl; |
| 673 | std::cout << " malloc: " << stat_malloc.str(numPrimitives) << std::endl; |
| 674 | std::cout << " shared: " << stat_shared.str(numPrimitives) << std::endl; |
| 675 | } |
| 676 | |
| 677 | private: |
| 678 | size_t bytesUsed; |
| 679 | size_t bytesFree; |
| 680 | size_t bytesWasted; |
| 681 | Statistics stat_all; |
| 682 | Statistics stat_malloc; |
| 683 | Statistics stat_4K; |
| 684 | Statistics stat_2M; |
| 685 | Statistics stat_shared; |
| 686 | }; |
| 687 | |
| 688 | void print_blocks() |
| 689 | { |
| 690 | std::cout << " estimatedSize = " << estimatedSize << ", slotMask = " << slotMask << ", use_single_mode = " << use_single_mode << ", maxGrowSize = " << maxGrowSize << ", defaultBlockSize = " << defaultBlockSize << std::endl; |
| 691 | |
| 692 | std::cout << " used blocks = " ; |
| 693 | if (usedBlocks.load() != nullptr) usedBlocks.load()->print_list(); |
| 694 | std::cout << "[END]" << std::endl; |
| 695 | |
| 696 | std::cout << " free blocks = " ; |
| 697 | if (freeBlocks.load() != nullptr) freeBlocks.load()->print_list(); |
| 698 | std::cout << "[END]" << std::endl; |
| 699 | } |
| 700 | |
| 701 | private: |
| 702 | |
| 703 | struct Block |
| 704 | { |
| 705 | static Block* create(MemoryMonitorInterface* device, size_t bytesAllocate, size_t bytesReserve, Block* next, AllocationType atype) |
| 706 | { |
| 707 | /* We avoid using os_malloc for small blocks as this could |
| 708 | * cause a risk of fragmenting the virtual address space and |
| 709 | * reach the limit of vm.max_map_count = 65k under Linux. */ |
| 710 | if (atype == OS_MALLOC && bytesAllocate < maxAllocationSize) |
| 711 | atype = ALIGNED_MALLOC; |
| 712 | |
| 713 | /* we need to additionally allocate some header */ |
| 714 | const size_t = offsetof(Block,data[0]); |
| 715 | bytesAllocate = sizeof_Header+bytesAllocate; |
| 716 | bytesReserve = sizeof_Header+bytesReserve; |
| 717 | |
| 718 | /* consume full 4k pages with using os_malloc */ |
| 719 | if (atype == OS_MALLOC) { |
| 720 | bytesAllocate = ((bytesAllocate+PAGE_SIZE-1) & ~(PAGE_SIZE-1)); |
| 721 | bytesReserve = ((bytesReserve +PAGE_SIZE-1) & ~(PAGE_SIZE-1)); |
| 722 | } |
| 723 | |
| 724 | /* either use alignedMalloc or os_malloc */ |
| 725 | void *ptr = nullptr; |
| 726 | if (atype == ALIGNED_MALLOC) |
| 727 | { |
| 728 | /* special handling for default block size */ |
| 729 | if (bytesAllocate == (2*PAGE_SIZE_2M)) |
| 730 | { |
| 731 | const size_t alignment = maxAlignment; |
| 732 | if (device) device->memoryMonitor(bytes: bytesAllocate+alignment,post: false); |
| 733 | ptr = alignedMalloc(size: bytesAllocate,align: alignment); |
| 734 | |
| 735 | /* give hint to transparently convert these pages to 2MB pages */ |
| 736 | const size_t ptr_aligned_begin = ((size_t)ptr) & ~size_t(PAGE_SIZE_2M-1); |
| 737 | os_advise(ptr: (void*)(ptr_aligned_begin + 0),PAGE_SIZE_2M); // may fail if no memory mapped before block |
| 738 | os_advise(ptr: (void*)(ptr_aligned_begin + 1*PAGE_SIZE_2M),PAGE_SIZE_2M); |
| 739 | os_advise(ptr: (void*)(ptr_aligned_begin + 2*PAGE_SIZE_2M),PAGE_SIZE_2M); // may fail if no memory mapped after block |
| 740 | |
| 741 | return new (ptr) Block(ALIGNED_MALLOC,bytesAllocate-sizeof_Header,bytesAllocate-sizeof_Header,next,alignment); |
| 742 | } |
| 743 | else |
| 744 | { |
| 745 | const size_t alignment = maxAlignment; |
| 746 | if (device) device->memoryMonitor(bytes: bytesAllocate+alignment,post: false); |
| 747 | ptr = alignedMalloc(size: bytesAllocate,align: alignment); |
| 748 | return new (ptr) Block(ALIGNED_MALLOC,bytesAllocate-sizeof_Header,bytesAllocate-sizeof_Header,next,alignment); |
| 749 | } |
| 750 | } |
| 751 | else if (atype == OS_MALLOC) |
| 752 | { |
| 753 | if (device) device->memoryMonitor(bytes: bytesAllocate,post: false); |
| 754 | bool huge_pages; ptr = os_malloc(bytes: bytesReserve,hugepages&: huge_pages); |
| 755 | return new (ptr) Block(OS_MALLOC,bytesAllocate-sizeof_Header,bytesReserve-sizeof_Header,next,0,huge_pages); |
| 756 | } |
| 757 | else |
| 758 | assert(false); |
| 759 | |
| 760 | return NULL; |
| 761 | } |
| 762 | |
| 763 | Block (AllocationType atype, size_t bytesAllocate, size_t bytesReserve, Block* next, size_t wasted, bool huge_pages = false) |
| 764 | : cur(0), allocEnd(bytesAllocate), reserveEnd(bytesReserve), next(next), wasted(wasted), atype(atype), huge_pages(huge_pages) |
| 765 | { |
| 766 | assert((((size_t)&data[0]) & (maxAlignment-1)) == 0); |
| 767 | } |
| 768 | |
| 769 | static Block* remove_shared_blocks(Block* head) |
| 770 | { |
| 771 | Block** prev_next = &head; |
| 772 | for (Block* block = head; block; block = block->next) { |
| 773 | if (block->atype == SHARED) *prev_next = block->next; |
| 774 | else prev_next = &block->next; |
| 775 | } |
| 776 | return head; |
| 777 | } |
| 778 | |
| 779 | void clear_list(MemoryMonitorInterface* device) |
| 780 | { |
| 781 | Block* block = this; |
| 782 | while (block) { |
| 783 | Block* next = block->next; |
| 784 | block->clear_block(device); |
| 785 | block = next; |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | void clear_block (MemoryMonitorInterface* device) |
| 790 | { |
| 791 | const size_t = offsetof(Block,data[0]); |
| 792 | const ssize_t sizeof_Alloced = wasted+sizeof_Header+getBlockAllocatedBytes(); |
| 793 | |
| 794 | if (atype == ALIGNED_MALLOC) { |
| 795 | alignedFree(ptr: this); |
| 796 | if (device) device->memoryMonitor(bytes: -sizeof_Alloced,post: true); |
| 797 | } |
| 798 | |
| 799 | else if (atype == OS_MALLOC) { |
| 800 | size_t sizeof_This = sizeof_Header+reserveEnd; |
| 801 | os_free(ptr: this,bytes: sizeof_This,hugepages: huge_pages); |
| 802 | if (device) device->memoryMonitor(bytes: -sizeof_Alloced,post: true); |
| 803 | } |
| 804 | |
| 805 | else /* if (atype == SHARED) */ { |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | void* malloc(MemoryMonitorInterface* device, size_t& bytes_in, size_t align, bool partial) |
| 810 | { |
| 811 | size_t bytes = bytes_in; |
| 812 | assert(align <= maxAlignment); |
| 813 | bytes = (bytes+(align-1)) & ~(align-1); |
| 814 | if (unlikely(cur+bytes > reserveEnd && !partial)) return nullptr; |
| 815 | const size_t i = cur.fetch_add(i: bytes); |
| 816 | if (unlikely(i+bytes > reserveEnd && !partial)) return nullptr; |
| 817 | if (unlikely(i > reserveEnd)) return nullptr; |
| 818 | bytes_in = bytes = min(a: bytes,b: reserveEnd-i); |
| 819 | |
| 820 | if (i+bytes > allocEnd) { |
| 821 | if (device) device->memoryMonitor(bytes: i+bytes-max(a: i,b: allocEnd),post: true); |
| 822 | } |
| 823 | return &data[i]; |
| 824 | } |
| 825 | |
| 826 | void* ptr() { |
| 827 | return &data[cur]; |
| 828 | } |
| 829 | |
| 830 | void reset_block () |
| 831 | { |
| 832 | allocEnd = max(a: allocEnd,b: (size_t)cur); |
| 833 | cur = 0; |
| 834 | } |
| 835 | |
| 836 | size_t getBlockUsedBytes() const { |
| 837 | return min(a: size_t(cur),b: reserveEnd); |
| 838 | } |
| 839 | |
| 840 | size_t getBlockFreeBytes() const { |
| 841 | return getBlockAllocatedBytes() - getBlockUsedBytes(); |
| 842 | } |
| 843 | |
| 844 | size_t getBlockAllocatedBytes() const { |
| 845 | return min(a: max(a: allocEnd,b: size_t(cur)),b: reserveEnd); |
| 846 | } |
| 847 | |
| 848 | size_t getBlockWastedBytes() const { |
| 849 | const size_t = offsetof(Block,data[0]); |
| 850 | return sizeof_Header + wasted; |
| 851 | } |
| 852 | |
| 853 | size_t getBlockReservedBytes() const { |
| 854 | return reserveEnd; |
| 855 | } |
| 856 | |
| 857 | bool hasType(AllocationType atype_i, bool huge_pages_i) const |
| 858 | { |
| 859 | if (atype_i == ANY_TYPE ) return true; |
| 860 | else if (atype == OS_MALLOC) return atype_i == atype && huge_pages_i == huge_pages; |
| 861 | else return atype_i == atype; |
| 862 | } |
| 863 | |
| 864 | size_t getUsedBytes(AllocationType atype, bool huge_pages = false) const { |
| 865 | size_t bytes = 0; |
| 866 | for (const Block* block = this; block; block = block->next) { |
| 867 | if (!block->hasType(atype_i: atype,huge_pages_i: huge_pages)) continue; |
| 868 | bytes += block->getBlockUsedBytes(); |
| 869 | } |
| 870 | return bytes; |
| 871 | } |
| 872 | |
| 873 | size_t getFreeBytes(AllocationType atype, bool huge_pages = false) const { |
| 874 | size_t bytes = 0; |
| 875 | for (const Block* block = this; block; block = block->next) { |
| 876 | if (!block->hasType(atype_i: atype,huge_pages_i: huge_pages)) continue; |
| 877 | bytes += block->getBlockFreeBytes(); |
| 878 | } |
| 879 | return bytes; |
| 880 | } |
| 881 | |
| 882 | size_t getWastedBytes(AllocationType atype, bool huge_pages = false) const { |
| 883 | size_t bytes = 0; |
| 884 | for (const Block* block = this; block; block = block->next) { |
| 885 | if (!block->hasType(atype_i: atype,huge_pages_i: huge_pages)) continue; |
| 886 | bytes += block->getBlockWastedBytes(); |
| 887 | } |
| 888 | return bytes; |
| 889 | } |
| 890 | |
| 891 | size_t getAllocatedBytes(AllocationType atype, bool huge_pages = false) const { |
| 892 | size_t bytes = 0; |
| 893 | for (const Block* block = this; block; block = block->next) { |
| 894 | if (!block->hasType(atype_i: atype,huge_pages_i: huge_pages)) continue; |
| 895 | bytes += block->getBlockAllocatedBytes(); |
| 896 | } |
| 897 | return bytes; |
| 898 | } |
| 899 | |
| 900 | void print_list () |
| 901 | { |
| 902 | for (const Block* block = this; block; block = block->next) |
| 903 | block->print_block(); |
| 904 | } |
| 905 | |
| 906 | void print_block() const |
| 907 | { |
| 908 | if (atype == ALIGNED_MALLOC) std::cout << "A" ; |
| 909 | else if (atype == OS_MALLOC) std::cout << "O" ; |
| 910 | else if (atype == SHARED) std::cout << "S" ; |
| 911 | if (huge_pages) std::cout << "H" ; |
| 912 | size_t bytesUsed = getBlockUsedBytes(); |
| 913 | size_t bytesFree = getBlockFreeBytes(); |
| 914 | size_t bytesWasted = getBlockWastedBytes(); |
| 915 | std::cout << "[" << bytesUsed << ", " << bytesFree << ", " << bytesWasted << "] " ; |
| 916 | } |
| 917 | |
| 918 | public: |
| 919 | std::atomic<size_t> cur; //!< current location of the allocator |
| 920 | std::atomic<size_t> allocEnd; //!< end of the allocated memory region |
| 921 | std::atomic<size_t> reserveEnd; //!< end of the reserved memory region |
| 922 | Block* next; //!< pointer to next block in list |
| 923 | size_t wasted; //!< amount of memory wasted through block alignment |
| 924 | AllocationType atype; //!< allocation mode of the block |
| 925 | bool huge_pages; //!< whether the block uses huge pages |
| 926 | char align[maxAlignment-5*sizeof(size_t)-sizeof(AllocationType)-sizeof(bool)]; //!< align data to maxAlignment |
| 927 | char data[1]; //!< here starts memory to use for allocations |
| 928 | }; |
| 929 | |
| 930 | private: |
| 931 | Device* device; |
| 932 | SpinLock mutex; |
| 933 | size_t slotMask; |
| 934 | std::atomic<Block*> threadUsedBlocks[MAX_THREAD_USED_BLOCK_SLOTS]; |
| 935 | std::atomic<Block*> usedBlocks; |
| 936 | std::atomic<Block*> freeBlocks; |
| 937 | |
| 938 | std::atomic<Block*> threadBlocks[MAX_THREAD_USED_BLOCK_SLOTS]; |
| 939 | SpinLock slotMutex[MAX_THREAD_USED_BLOCK_SLOTS]; |
| 940 | |
| 941 | bool use_single_mode; |
| 942 | size_t defaultBlockSize; |
| 943 | size_t estimatedSize; |
| 944 | size_t growSize; |
| 945 | size_t maxGrowSize; |
| 946 | std::atomic<size_t> log2_grow_size_scale; //!< log2 of scaling factor for grow size // FIXME: remove |
| 947 | std::atomic<size_t> bytesUsed; |
| 948 | std::atomic<size_t> bytesFree; |
| 949 | std::atomic<size_t> bytesWasted; |
| 950 | static __thread ThreadLocal2* thread_local_allocator2; |
| 951 | static SpinLock s_thread_local_allocators_lock; |
| 952 | static std::vector<std::unique_ptr<ThreadLocal2>> s_thread_local_allocators; |
| 953 | SpinLock thread_local_allocators_lock; |
| 954 | std::vector<ThreadLocal2*> thread_local_allocators; |
| 955 | AllocationType atype; |
| 956 | mvector<PrimRef> primrefarray; //!< primrefarray used to allocate nodes |
| 957 | }; |
| 958 | } |
| 959 | |