1 | // Copyright 2009-2021 Intel Corporation |
2 | // SPDX-License-Identifier: Apache-2.0 |
3 | |
4 | #pragma once |
5 | |
6 | #include "catmullclark_patch.h" |
7 | #include "bezier_curve.h" |
8 | |
9 | namespace embree |
10 | { |
11 | template<class T, class S> |
12 | static __forceinline T deCasteljau(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3) |
13 | { |
14 | const T v0_1 = lerp(v0,v1,uu); |
15 | const T v1_1 = lerp(v1,v2,uu); |
16 | const T v2_1 = lerp(v2,v3,uu); |
17 | const T v0_2 = lerp(v0_1,v1_1,uu); |
18 | const T v1_2 = lerp(v1_1,v2_1,uu); |
19 | const T v0_3 = lerp(v0_2,v1_2,uu); |
20 | return v0_3; |
21 | } |
22 | |
23 | template<class T, class S> |
24 | static __forceinline T deCasteljau_tangent(const S& uu, const T& v0, const T& v1, const T& v2, const T& v3) |
25 | { |
26 | const T v0_1 = lerp(v0,v1,uu); |
27 | const T v1_1 = lerp(v1,v2,uu); |
28 | const T v2_1 = lerp(v2,v3,uu); |
29 | const T v0_2 = lerp(v0_1,v1_1,uu); |
30 | const T v1_2 = lerp(v1_1,v2_1,uu); |
31 | return S(3.0f)*(v1_2-v0_2); |
32 | } |
33 | |
34 | template<typename Vertex> |
35 | __forceinline Vertex computeInnerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { |
36 | return 1.0f / 36.0f * (16.0f * v[y][x] + 4.0f * (v[y-1][x] + v[y+1][x] + v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y+1][x+1] + v[y-1][x+1] + v[y+1][x-1])); |
37 | } |
38 | |
39 | template<typename Vertex> |
40 | __forceinline Vertex computeTopEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { |
41 | return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y-1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + (v[y-1][x-1] + v[y-1][x+1])); |
42 | } |
43 | |
44 | template<typename Vertex> |
45 | __forceinline Vertex computeBottomEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { |
46 | return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y+1][x] + 2.0f * (v[y][x-1] + v[y][x+1]) + v[y+1][x-1] + v[y+1][x+1]); |
47 | } |
48 | |
49 | template<typename Vertex> |
50 | __forceinline Vertex computeLeftEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { |
51 | return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x-1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x-1] + v[y+1][x-1]); |
52 | } |
53 | |
54 | template<typename Vertex> |
55 | __forceinline Vertex computeRightEdgeBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x) { |
56 | return 1.0f / 18.0f * (8.0f * v[y][x] + 4.0f * v[y][x+1] + 2.0f * (v[y-1][x] + v[y+1][x]) + v[y-1][x+1] + v[y+1][x+1]); |
57 | } |
58 | |
59 | template<typename Vertex> |
60 | __forceinline Vertex computeCornerBezierControlPoint(const Vertex v[4][4], const size_t y, const size_t x, const ssize_t delta_y, const ssize_t delta_x) |
61 | { |
62 | return 1.0f / 9.0f * (4.0f * v[y][x] + 2.0f * (v[y+delta_y][x] + v[y][x+delta_x]) + v[y+delta_y][x+delta_x]); |
63 | } |
64 | |
65 | template<typename Vertex, typename Vertex_t> |
66 | class __aligned(64) BezierPatchT |
67 | { |
68 | public: |
69 | Vertex matrix[4][4]; |
70 | |
71 | public: |
72 | |
73 | __forceinline BezierPatchT() {} |
74 | |
75 | __forceinline BezierPatchT (const HalfEdge* edge, const char* vertices, size_t stride); |
76 | |
77 | __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch); |
78 | |
79 | __forceinline BezierPatchT(const CatmullClarkPatchT<Vertex,Vertex_t>& patch, |
80 | const BezierCurveT<Vertex>* border0, |
81 | const BezierCurveT<Vertex>* border1, |
82 | const BezierCurveT<Vertex>* border2, |
83 | const BezierCurveT<Vertex>* border3); |
84 | |
85 | __forceinline BezierPatchT(const BSplinePatchT<Vertex,Vertex_t>& source) |
86 | { |
87 | /* compute inner bezier control points */ |
88 | matrix[0][0] = computeInnerBezierControlPoint(source.v,1,1); |
89 | matrix[0][3] = computeInnerBezierControlPoint(source.v,1,2); |
90 | matrix[3][3] = computeInnerBezierControlPoint(source.v,2,2); |
91 | matrix[3][0] = computeInnerBezierControlPoint(source.v,2,1); |
92 | |
93 | /* compute top edge control points */ |
94 | matrix[0][1] = computeRightEdgeBezierControlPoint(source.v,1,1); |
95 | matrix[0][2] = computeLeftEdgeBezierControlPoint(source.v,1,2); |
96 | |
97 | /* compute buttom edge control points */ |
98 | matrix[3][1] = computeRightEdgeBezierControlPoint(source.v,2,1); |
99 | matrix[3][2] = computeLeftEdgeBezierControlPoint(source.v,2,2); |
100 | |
101 | /* compute left edge control points */ |
102 | matrix[1][0] = computeBottomEdgeBezierControlPoint(source.v,1,1); |
103 | matrix[2][0] = computeTopEdgeBezierControlPoint(source.v,2,1); |
104 | |
105 | /* compute right edge control points */ |
106 | matrix[1][3] = computeBottomEdgeBezierControlPoint(source.v,1,2); |
107 | matrix[2][3] = computeTopEdgeBezierControlPoint(source.v,2,2); |
108 | |
109 | /* compute corner control points */ |
110 | matrix[1][1] = computeCornerBezierControlPoint(source.v,1,1, 1, 1); |
111 | matrix[1][2] = computeCornerBezierControlPoint(source.v,1,2, 1,-1); |
112 | matrix[2][2] = computeCornerBezierControlPoint(source.v,2,2,-1,-1); |
113 | matrix[2][1] = computeCornerBezierControlPoint(source.v,2,1,-1, 1); |
114 | } |
115 | |
116 | static __forceinline Vertex_t bilinear(const Vec4f Bu, const Vertex matrix[4][4], const Vec4f Bv) |
117 | { |
118 | const Vertex_t M0 = madd(Bu.x,matrix[0][0],madd(Bu.y,matrix[0][1],madd(Bu.z,matrix[0][2],Bu.w * matrix[0][3]))); |
119 | const Vertex_t M1 = madd(Bu.x,matrix[1][0],madd(Bu.y,matrix[1][1],madd(Bu.z,matrix[1][2],Bu.w * matrix[1][3]))); |
120 | const Vertex_t M2 = madd(Bu.x,matrix[2][0],madd(Bu.y,matrix[2][1],madd(Bu.z,matrix[2][2],Bu.w * matrix[2][3]))); |
121 | const Vertex_t M3 = madd(Bu.x,matrix[3][0],madd(Bu.y,matrix[3][1],madd(Bu.z,matrix[3][2],Bu.w * matrix[3][3]))); |
122 | return madd(Bv.x,M0,madd(Bv.y,M1,madd(Bv.z,M2,Bv.w*M3))); |
123 | } |
124 | |
125 | static __forceinline Vertex_t eval(const Vertex matrix[4][4], const float uu, const float vv) |
126 | { |
127 | const Vec4f Bu = BezierBasis::eval(u: uu); |
128 | const Vec4f Bv = BezierBasis::eval(u: vv); |
129 | return bilinear(Bu,matrix,Bv); |
130 | } |
131 | |
132 | static __forceinline Vertex_t eval_du(const Vertex matrix[4][4], const float uu, const float vv) |
133 | { |
134 | const Vec4f Bu = BezierBasis::derivative(u: uu); |
135 | const Vec4f Bv = BezierBasis::eval(u: vv); |
136 | return bilinear(Bu,matrix,Bv); |
137 | } |
138 | |
139 | static __forceinline Vertex_t eval_dv(const Vertex matrix[4][4], const float uu, const float vv) |
140 | { |
141 | const Vec4f Bu = BezierBasis::eval(u: uu); |
142 | const Vec4f Bv = BezierBasis::derivative(u: vv); |
143 | return bilinear(Bu,matrix,Bv); |
144 | } |
145 | |
146 | static __forceinline Vertex_t eval_dudu(const Vertex matrix[4][4], const float uu, const float vv) |
147 | { |
148 | const Vec4f Bu = BezierBasis::derivative2(u: uu); |
149 | const Vec4f Bv = BezierBasis::eval(u: vv); |
150 | return bilinear(Bu,matrix,Bv); |
151 | } |
152 | |
153 | static __forceinline Vertex_t eval_dvdv(const Vertex matrix[4][4], const float uu, const float vv) |
154 | { |
155 | const Vec4f Bu = BezierBasis::eval(u: uu); |
156 | const Vec4f Bv = BezierBasis::derivative2(u: vv); |
157 | return bilinear(Bu,matrix,Bv); |
158 | } |
159 | |
160 | static __forceinline Vertex_t eval_dudv(const Vertex matrix[4][4], const float uu, const float vv) |
161 | { |
162 | const Vec4f Bu = BezierBasis::derivative(u: uu); |
163 | const Vec4f Bv = BezierBasis::derivative(u: vv); |
164 | return bilinear(Bu,matrix,Bv); |
165 | } |
166 | |
167 | static __forceinline Vertex_t normal(const Vertex matrix[4][4], const float uu, const float vv) |
168 | { |
169 | const Vertex_t dPdu = eval_du(matrix,uu,vv); |
170 | const Vertex_t dPdv = eval_dv(matrix,uu,vv); |
171 | return cross(dPdu,dPdv); |
172 | } |
173 | |
174 | __forceinline Vertex_t normal(const float uu, const float vv) |
175 | { |
176 | const Vertex_t dPdu = eval_du(matrix,uu,vv); |
177 | const Vertex_t dPdv = eval_dv(matrix,uu,vv); |
178 | return cross(dPdu,dPdv); |
179 | } |
180 | |
181 | __forceinline Vertex_t eval(const float uu, const float vv) const { |
182 | return eval(matrix,uu,vv); |
183 | } |
184 | |
185 | __forceinline Vertex_t eval_du(const float uu, const float vv) const { |
186 | return eval_du(matrix,uu,vv); |
187 | } |
188 | |
189 | __forceinline Vertex_t eval_dv(const float uu, const float vv) const { |
190 | return eval_dv(matrix,uu,vv); |
191 | } |
192 | |
193 | __forceinline Vertex_t eval_dudu(const float uu, const float vv) const { |
194 | return eval_dudu(matrix,uu,vv); |
195 | } |
196 | |
197 | __forceinline Vertex_t eval_dvdv(const float uu, const float vv) const { |
198 | return eval_dvdv(matrix,uu,vv); |
199 | } |
200 | |
201 | __forceinline Vertex_t eval_dudv(const float uu, const float vv) const { |
202 | return eval_dudv(matrix,uu,vv); |
203 | } |
204 | |
205 | __forceinline void eval(const float u, const float v, Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, const float dscale = 1.0f) const |
206 | { |
207 | if (P) { |
208 | *P = eval(u,v); |
209 | } |
210 | if (dPdu) { |
211 | assert(dPdu); *dPdu = eval_du(u,v)*dscale; |
212 | assert(dPdv); *dPdv = eval_dv(u,v)*dscale; |
213 | } |
214 | if (ddPdudu) { |
215 | assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(x: dscale); |
216 | assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(x: dscale); |
217 | assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(x: dscale); |
218 | } |
219 | } |
220 | |
221 | template<class vfloat> |
222 | __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv, const Vec4<vfloat>& u_n, const Vec4<vfloat>& v_n) const |
223 | { |
224 | const vfloat curve0_x = v_n[0] * vfloat(matrix[0][0][i]) + v_n[1] * vfloat(matrix[1][0][i]) + v_n[2] * vfloat(matrix[2][0][i]) + v_n[3] * vfloat(matrix[3][0][i]); |
225 | const vfloat curve1_x = v_n[0] * vfloat(matrix[0][1][i]) + v_n[1] * vfloat(matrix[1][1][i]) + v_n[2] * vfloat(matrix[2][1][i]) + v_n[3] * vfloat(matrix[3][1][i]); |
226 | const vfloat curve2_x = v_n[0] * vfloat(matrix[0][2][i]) + v_n[1] * vfloat(matrix[1][2][i]) + v_n[2] * vfloat(matrix[2][2][i]) + v_n[3] * vfloat(matrix[3][2][i]); |
227 | const vfloat curve3_x = v_n[0] * vfloat(matrix[0][3][i]) + v_n[1] * vfloat(matrix[1][3][i]) + v_n[2] * vfloat(matrix[2][3][i]) + v_n[3] * vfloat(matrix[3][3][i]); |
228 | return u_n[0] * curve0_x + u_n[1] * curve1_x + u_n[2] * curve2_x + u_n[3] * curve3_x; |
229 | } |
230 | |
231 | template<typename vbool, typename vfloat> |
232 | __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv, |
233 | float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, |
234 | const float dscale, const size_t dstride, const size_t N) const |
235 | { |
236 | if (P) { |
237 | const Vec4<vfloat> u_n = BezierBasis::eval(uu); |
238 | const Vec4<vfloat> v_n = BezierBasis::eval(vv); |
239 | for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv,u_n,v_n)); |
240 | } |
241 | if (dPdu) |
242 | { |
243 | { |
244 | assert(dPdu); |
245 | const Vec4<vfloat> u_n = BezierBasis::derivative(uu); |
246 | const Vec4<vfloat> v_n = BezierBasis::eval(vv); |
247 | for (size_t i=0; i<N; i++) vfloat::store(valid,dPdu+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale); |
248 | } |
249 | { |
250 | assert(dPdv); |
251 | const Vec4<vfloat> u_n = BezierBasis::eval(uu); |
252 | const Vec4<vfloat> v_n = BezierBasis::derivative(vv); |
253 | for (size_t i=0; i<N; i++) vfloat::store(valid,dPdv+i*dstride,eval(i,uu,vv,u_n,v_n)*dscale); |
254 | } |
255 | } |
256 | if (ddPdudu) |
257 | { |
258 | { |
259 | assert(ddPdudu); |
260 | const Vec4<vfloat> u_n = BezierBasis::derivative2(uu); |
261 | const Vec4<vfloat> v_n = BezierBasis::eval(vv); |
262 | for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudu+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(x: dscale)); |
263 | } |
264 | { |
265 | assert(ddPdvdv); |
266 | const Vec4<vfloat> u_n = BezierBasis::eval(uu); |
267 | const Vec4<vfloat> v_n = BezierBasis::derivative2(vv); |
268 | for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdvdv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(x: dscale)); |
269 | } |
270 | { |
271 | assert(ddPdudv); |
272 | const Vec4<vfloat> u_n = BezierBasis::derivative(uu); |
273 | const Vec4<vfloat> v_n = BezierBasis::derivative(vv); |
274 | for (size_t i=0; i<N; i++) vfloat::store(valid,ddPdudv+i*dstride,eval(i,uu,vv,u_n,v_n)*sqr(x: dscale)); |
275 | } |
276 | } |
277 | } |
278 | |
279 | template<typename T> |
280 | static __forceinline Vec3<T> eval(const Vertex matrix[4][4], const T& uu, const T& vv) |
281 | { |
282 | const T one_minus_uu = 1.0f - uu; |
283 | const T one_minus_vv = 1.0f - vv; |
284 | |
285 | const T B0_u = one_minus_uu * one_minus_uu * one_minus_uu; |
286 | const T B0_v = one_minus_vv * one_minus_vv * one_minus_vv; |
287 | const T B1_u = 3.0f * (one_minus_uu * uu * one_minus_uu); |
288 | const T B1_v = 3.0f * (one_minus_vv * vv * one_minus_vv); |
289 | const T B2_u = 3.0f * (uu * one_minus_uu * uu); |
290 | const T B2_v = 3.0f * (vv * one_minus_vv * vv); |
291 | const T B3_u = uu * uu * uu; |
292 | const T B3_v = vv * vv * vv; |
293 | |
294 | const T x = |
295 | madd(B0_v,madd(B0_u,matrix[0][0].x,madd(B1_u,matrix[0][1].x,madd(B2_u,matrix[0][2].x,B3_u*matrix[0][3].x))), |
296 | madd(B1_v,madd(B0_u,matrix[1][0].x,madd(B1_u,matrix[1][1].x,madd(B2_u,matrix[1][2].x,B3_u*matrix[1][3].x))), |
297 | madd(B2_v,madd(B0_u,matrix[2][0].x,madd(B1_u,matrix[2][1].x,madd(B2_u,matrix[2][2].x,B3_u*matrix[2][3].x))), |
298 | B3_v*madd(B0_u,matrix[3][0].x,madd(B1_u,matrix[3][1].x,madd(B2_u,matrix[3][2].x,B3_u*matrix[3][3].x)))))); |
299 | |
300 | const T y = |
301 | madd(B0_v,madd(B0_u,matrix[0][0].y,madd(B1_u,matrix[0][1].y,madd(B2_u,matrix[0][2].y,B3_u*matrix[0][3].y))), |
302 | madd(B1_v,madd(B0_u,matrix[1][0].y,madd(B1_u,matrix[1][1].y,madd(B2_u,matrix[1][2].y,B3_u*matrix[1][3].y))), |
303 | madd(B2_v,madd(B0_u,matrix[2][0].y,madd(B1_u,matrix[2][1].y,madd(B2_u,matrix[2][2].y,B3_u*matrix[2][3].y))), |
304 | B3_v*madd(B0_u,matrix[3][0].y,madd(B1_u,matrix[3][1].y,madd(B2_u,matrix[3][2].y,B3_u*matrix[3][3].y)))))); |
305 | |
306 | const T z = |
307 | madd(B0_v,madd(B0_u,matrix[0][0].z,madd(B1_u,matrix[0][1].z,madd(B2_u,matrix[0][2].z,B3_u*matrix[0][3].z))), |
308 | madd(B1_v,madd(B0_u,matrix[1][0].z,madd(B1_u,matrix[1][1].z,madd(B2_u,matrix[1][2].z,B3_u*matrix[1][3].z))), |
309 | madd(B2_v,madd(B0_u,matrix[2][0].z,madd(B1_u,matrix[2][1].z,madd(B2_u,matrix[2][2].z,B3_u*matrix[2][3].z))), |
310 | B3_v*madd(B0_u,matrix[3][0].z,madd(B1_u,matrix[3][1].z,madd(B2_u,matrix[3][2].z,B3_u*matrix[3][3].z)))))); |
311 | |
312 | return Vec3<T>(x,y,z); |
313 | } |
314 | |
315 | template<typename vfloat> |
316 | __forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const { |
317 | return eval(matrix,uu,vv); |
318 | } |
319 | |
320 | template<class T> |
321 | static __forceinline Vec3<T> normal(const Vertex matrix[4][4], const T& uu, const T& vv) |
322 | { |
323 | |
324 | const Vec3<T> matrix_00 = Vec3<T>(matrix[0][0].x,matrix[0][0].y,matrix[0][0].z); |
325 | const Vec3<T> matrix_01 = Vec3<T>(matrix[0][1].x,matrix[0][1].y,matrix[0][1].z); |
326 | const Vec3<T> matrix_02 = Vec3<T>(matrix[0][2].x,matrix[0][2].y,matrix[0][2].z); |
327 | const Vec3<T> matrix_03 = Vec3<T>(matrix[0][3].x,matrix[0][3].y,matrix[0][3].z); |
328 | |
329 | const Vec3<T> matrix_10 = Vec3<T>(matrix[1][0].x,matrix[1][0].y,matrix[1][0].z); |
330 | const Vec3<T> matrix_11 = Vec3<T>(matrix[1][1].x,matrix[1][1].y,matrix[1][1].z); |
331 | const Vec3<T> matrix_12 = Vec3<T>(matrix[1][2].x,matrix[1][2].y,matrix[1][2].z); |
332 | const Vec3<T> matrix_13 = Vec3<T>(matrix[1][3].x,matrix[1][3].y,matrix[1][3].z); |
333 | |
334 | const Vec3<T> matrix_20 = Vec3<T>(matrix[2][0].x,matrix[2][0].y,matrix[2][0].z); |
335 | const Vec3<T> matrix_21 = Vec3<T>(matrix[2][1].x,matrix[2][1].y,matrix[2][1].z); |
336 | const Vec3<T> matrix_22 = Vec3<T>(matrix[2][2].x,matrix[2][2].y,matrix[2][2].z); |
337 | const Vec3<T> matrix_23 = Vec3<T>(matrix[2][3].x,matrix[2][3].y,matrix[2][3].z); |
338 | |
339 | const Vec3<T> matrix_30 = Vec3<T>(matrix[3][0].x,matrix[3][0].y,matrix[3][0].z); |
340 | const Vec3<T> matrix_31 = Vec3<T>(matrix[3][1].x,matrix[3][1].y,matrix[3][1].z); |
341 | const Vec3<T> matrix_32 = Vec3<T>(matrix[3][2].x,matrix[3][2].y,matrix[3][2].z); |
342 | const Vec3<T> matrix_33 = Vec3<T>(matrix[3][3].x,matrix[3][3].y,matrix[3][3].z); |
343 | |
344 | /* tangentU */ |
345 | const Vec3<T> col0 = deCasteljau(vv, matrix_00, matrix_10, matrix_20, matrix_30); |
346 | const Vec3<T> col1 = deCasteljau(vv, matrix_01, matrix_11, matrix_21, matrix_31); |
347 | const Vec3<T> col2 = deCasteljau(vv, matrix_02, matrix_12, matrix_22, matrix_32); |
348 | const Vec3<T> col3 = deCasteljau(vv, matrix_03, matrix_13, matrix_23, matrix_33); |
349 | |
350 | const Vec3<T> tangentU = deCasteljau_tangent(uu, col0, col1, col2, col3); |
351 | |
352 | /* tangentV */ |
353 | const Vec3<T> row0 = deCasteljau(uu, matrix_00, matrix_01, matrix_02, matrix_03); |
354 | const Vec3<T> row1 = deCasteljau(uu, matrix_10, matrix_11, matrix_12, matrix_13); |
355 | const Vec3<T> row2 = deCasteljau(uu, matrix_20, matrix_21, matrix_22, matrix_23); |
356 | const Vec3<T> row3 = deCasteljau(uu, matrix_30, matrix_31, matrix_32, matrix_33); |
357 | |
358 | const Vec3<T> tangentV = deCasteljau_tangent(vv, row0, row1, row2, row3); |
359 | |
360 | /* normal = tangentU x tangentV */ |
361 | const Vec3<T> n = cross(tangentU,tangentV); |
362 | return n; |
363 | } |
364 | |
365 | template<typename vfloat> |
366 | __forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const { |
367 | return normal(matrix,uu,vv); |
368 | } |
369 | }; |
370 | |
371 | typedef BezierPatchT<Vec3fa,Vec3fa_t> BezierPatch3fa; |
372 | } |
373 | |