1 | // Copyright 2009-2021 Intel Corporation |
2 | // SPDX-License-Identifier: Apache-2.0 |
3 | |
4 | #pragma once |
5 | |
6 | #include "catmullclark_patch.h" |
7 | #include "bezier_curve.h" |
8 | |
9 | namespace embree |
10 | { |
11 | template<typename Vertex, typename Vertex_t = Vertex> |
12 | class __aligned(64) BilinearPatchT |
13 | { |
14 | typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing; |
15 | typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch; |
16 | |
17 | public: |
18 | Vertex v[4]; |
19 | |
20 | public: |
21 | |
22 | __forceinline BilinearPatchT () {} |
23 | |
24 | __forceinline BilinearPatchT (const HalfEdge* edge, const BufferView<Vertex>& vertices) { |
25 | init(edge,vertices: vertices.getPtr(),stride: vertices.getStride()); |
26 | } |
27 | |
28 | __forceinline BilinearPatchT (const HalfEdge* edge, const char* vertices, size_t stride) { |
29 | init(edge,vertices,stride); |
30 | } |
31 | |
32 | __forceinline void init (const HalfEdge* edge, const char* vertices, size_t stride) |
33 | { |
34 | v[0] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); |
35 | v[1] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); |
36 | v[2] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); |
37 | v[3] = Vertex::loadu(vertices+edge->getStartVertexIndex()*stride); edge = edge->next(); |
38 | } |
39 | |
40 | __forceinline BilinearPatchT (const CatmullClarkPatch& patch) |
41 | { |
42 | v[0] = patch.ring[0].getLimitVertex(); |
43 | v[1] = patch.ring[1].getLimitVertex(); |
44 | v[2] = patch.ring[2].getLimitVertex(); |
45 | v[3] = patch.ring[3].getLimitVertex(); |
46 | } |
47 | |
48 | __forceinline BBox<Vertex> bounds() const |
49 | { |
50 | |
51 | BBox<Vertex> bounds (v[0]); |
52 | bounds.extend(v[1]); |
53 | bounds.extend(v[2]); |
54 | bounds.extend(v[3]); |
55 | return bounds; |
56 | } |
57 | |
58 | __forceinline Vertex eval(const float uu, const float vv) const { |
59 | return lerp(lerp(v[0],v[1],uu),lerp(v[3],v[2],uu),vv); |
60 | } |
61 | |
62 | __forceinline Vertex eval_du(const float uu, const float vv) const { |
63 | return lerp(v[1]-v[0],v[2]-v[3],vv); |
64 | } |
65 | |
66 | __forceinline Vertex eval_dv(const float uu, const float vv) const { |
67 | return lerp(v[3]-v[0],v[2]-v[1],uu); |
68 | } |
69 | |
70 | __forceinline Vertex eval_dudu(const float uu, const float vv) const { |
71 | return Vertex(zero); |
72 | } |
73 | |
74 | __forceinline Vertex eval_dvdv(const float uu, const float vv) const { |
75 | return Vertex(zero); |
76 | } |
77 | |
78 | __forceinline Vertex eval_dudv(const float uu, const float vv) const { |
79 | return (v[2]-v[3]) - (v[1]-v[0]); |
80 | } |
81 | |
82 | __forceinline Vertex normal(const float uu, const float vv) const { |
83 | return cross(eval_du(uu,vv),eval_dv(uu,vv)); |
84 | } |
85 | |
86 | __forceinline void eval(const float u, const float v, |
87 | Vertex* P, Vertex* dPdu, Vertex* dPdv, Vertex* ddPdudu, Vertex* ddPdvdv, Vertex* ddPdudv, |
88 | const float dscale = 1.0f) const |
89 | { |
90 | if (P) { |
91 | *P = eval(u,v); |
92 | } |
93 | if (dPdu) { |
94 | assert(dPdu); *dPdu = eval_du(u,v)*dscale; |
95 | assert(dPdv); *dPdv = eval_dv(u,v)*dscale; |
96 | } |
97 | if (ddPdudu) { |
98 | assert(ddPdudu); *ddPdudu = eval_dudu(u,v)*sqr(x: dscale); |
99 | assert(ddPdvdv); *ddPdvdv = eval_dvdv(u,v)*sqr(x: dscale); |
100 | assert(ddPdudv); *ddPdudv = eval_dudv(u,v)*sqr(x: dscale); |
101 | } |
102 | } |
103 | |
104 | template<class vfloat> |
105 | __forceinline Vec3<vfloat> eval(const vfloat& uu, const vfloat& vv) const |
106 | { |
107 | const vfloat x = lerp(lerp(v[0].x,v[1].x,uu),lerp(v[3].x,v[2].x,uu),vv); |
108 | const vfloat y = lerp(lerp(v[0].y,v[1].y,uu),lerp(v[3].y,v[2].y,uu),vv); |
109 | const vfloat z = lerp(lerp(v[0].z,v[1].z,uu),lerp(v[3].z,v[2].z,uu),vv); |
110 | return Vec3<vfloat>(x,y,z); |
111 | } |
112 | |
113 | template<class vfloat> |
114 | __forceinline Vec3<vfloat> eval_du(const vfloat& uu, const vfloat& vv) const |
115 | { |
116 | const vfloat x = lerp(v[1].x-v[0].x,v[2].x-v[3].x,vv); |
117 | const vfloat y = lerp(v[1].y-v[0].y,v[2].y-v[3].y,vv); |
118 | const vfloat z = lerp(v[1].z-v[0].z,v[2].z-v[3].z,vv); |
119 | return Vec3<vfloat>(x,y,z); |
120 | } |
121 | |
122 | template<class vfloat> |
123 | __forceinline Vec3<vfloat> eval_dv(const vfloat& uu, const vfloat& vv) const |
124 | { |
125 | const vfloat x = lerp(v[3].x-v[0].x,v[2].x-v[1].x,uu); |
126 | const vfloat y = lerp(v[3].y-v[0].y,v[2].y-v[1].y,uu); |
127 | const vfloat z = lerp(v[3].z-v[0].z,v[2].z-v[1].z,uu); |
128 | return Vec3<vfloat>(x,y,z); |
129 | } |
130 | |
131 | template<typename vfloat> |
132 | __forceinline Vec3<vfloat> normal(const vfloat& uu, const vfloat& vv) const { |
133 | return cross(eval_du(uu,vv),eval_dv(uu,vv)); |
134 | } |
135 | |
136 | template<class vfloat> |
137 | __forceinline vfloat eval(const size_t i, const vfloat& uu, const vfloat& vv) const { |
138 | return lerp(lerp(v[0][i],v[1][i],uu),lerp(v[3][i],v[2][i],uu),vv); |
139 | } |
140 | |
141 | template<class vfloat> |
142 | __forceinline vfloat eval_du(const size_t i, const vfloat& uu, const vfloat& vv) const { |
143 | return lerp(v[1][i]-v[0][i],v[2][i]-v[3][i],vv); |
144 | } |
145 | |
146 | template<class vfloat> |
147 | __forceinline vfloat eval_dv(const size_t i, const vfloat& uu, const vfloat& vv) const { |
148 | return lerp(v[3][i]-v[0][i],v[2][i]-v[1][i],uu); |
149 | } |
150 | |
151 | template<class vfloat> |
152 | __forceinline vfloat eval_dudu(const size_t i, const vfloat& uu, const vfloat& vv) const { |
153 | return vfloat(zero); |
154 | } |
155 | |
156 | template<class vfloat> |
157 | __forceinline vfloat eval_dvdv(const size_t i, const vfloat& uu, const vfloat& vv) const { |
158 | return vfloat(zero); |
159 | } |
160 | |
161 | template<class vfloat> |
162 | __forceinline vfloat eval_dudv(const size_t i, const vfloat& uu, const vfloat& vv) const { |
163 | return (v[2][i]-v[3][i]) - (v[1][i]-v[0][i]); |
164 | } |
165 | |
166 | template<typename vbool, typename vfloat> |
167 | __forceinline void eval(const vbool& valid, const vfloat& uu, const vfloat& vv, |
168 | float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, |
169 | const float dscale, const size_t dstride, const size_t N) const |
170 | { |
171 | if (P) { |
172 | for (size_t i=0; i<N; i++) vfloat::store(valid,P+i*dstride,eval(i,uu,vv)); |
173 | } |
174 | if (dPdu) { |
175 | for (size_t i=0; i<N; i++) { |
176 | assert(dPdu); vfloat::store(valid,dPdu+i*dstride,eval_du(i,uu,vv)*dscale); |
177 | assert(dPdv); vfloat::store(valid,dPdv+i*dstride,eval_dv(i,uu,vv)*dscale); |
178 | } |
179 | } |
180 | if (ddPdudu) { |
181 | for (size_t i=0; i<N; i++) { |
182 | assert(ddPdudu); vfloat::store(valid,ddPdudu+i*dstride,eval_dudu(i,uu,vv)*sqr(x: dscale)); |
183 | assert(ddPdvdv); vfloat::store(valid,ddPdvdv+i*dstride,eval_dvdv(i,uu,vv)*sqr(x: dscale)); |
184 | assert(ddPdudv); vfloat::store(valid,ddPdudv+i*dstride,eval_dudv(i,uu,vv)*sqr(x: dscale)); |
185 | } |
186 | } |
187 | } |
188 | }; |
189 | |
190 | typedef BilinearPatchT<Vec3fa,Vec3fa_t> BilinearPatch3fa; |
191 | } |
192 | |