1 | /** |
2 | * meshoptimizer - version 0.18 |
3 | * |
4 | * Copyright (C) 2016-2022, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com) |
5 | * Report bugs and download new versions at https://github.com/zeux/meshoptimizer |
6 | * |
7 | * This library is distributed under the MIT License. See notice at the end of this file. |
8 | */ |
9 | #pragma once |
10 | |
11 | #include <assert.h> |
12 | #include <stddef.h> |
13 | |
14 | /* Version macro; major * 1000 + minor * 10 + patch */ |
15 | #define MESHOPTIMIZER_VERSION 180 /* 0.18 */ |
16 | |
17 | /* If no API is defined, assume default */ |
18 | #ifndef MESHOPTIMIZER_API |
19 | #define MESHOPTIMIZER_API |
20 | #endif |
21 | |
22 | /* Set the calling-convention for alloc/dealloc function pointers */ |
23 | #ifndef MESHOPTIMIZER_ALLOC_CALLCONV |
24 | #ifdef _MSC_VER |
25 | #define MESHOPTIMIZER_ALLOC_CALLCONV __cdecl |
26 | #else |
27 | #define MESHOPTIMIZER_ALLOC_CALLCONV |
28 | #endif |
29 | #endif |
30 | |
31 | /* Experimental APIs have unstable interface and might have implementation that's not fully tested or optimized */ |
32 | #define MESHOPTIMIZER_EXPERIMENTAL MESHOPTIMIZER_API |
33 | |
34 | /* C interface */ |
35 | #ifdef __cplusplus |
36 | extern "C" { |
37 | #endif |
38 | |
39 | /** |
40 | * Vertex attribute stream, similar to glVertexPointer |
41 | * Each element takes size bytes, with stride controlling the spacing between successive elements. |
42 | */ |
43 | struct meshopt_Stream |
44 | { |
45 | const void* data; |
46 | size_t size; |
47 | size_t stride; |
48 | }; |
49 | |
50 | /** |
51 | * Generates a vertex remap table from the vertex buffer and an optional index buffer and returns number of unique vertices |
52 | * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. |
53 | * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. |
54 | * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. |
55 | * |
56 | * destination must contain enough space for the resulting remap table (vertex_count elements) |
57 | * indices can be NULL if the input is unindexed |
58 | */ |
59 | MESHOPTIMIZER_API size_t meshopt_generateVertexRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
60 | |
61 | /** |
62 | * Generates a vertex remap table from multiple vertex streams and an optional index buffer and returns number of unique vertices |
63 | * As a result, all vertices that are binary equivalent map to the same (new) location, with no gaps in the resulting sequence. |
64 | * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer/meshopt_remapIndexBuffer. |
65 | * To remap vertex buffers, you will need to call meshopt_remapVertexBuffer for each vertex stream. |
66 | * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. |
67 | * |
68 | * destination must contain enough space for the resulting remap table (vertex_count elements) |
69 | * indices can be NULL if the input is unindexed |
70 | */ |
71 | MESHOPTIMIZER_API size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); |
72 | |
73 | /** |
74 | * Generates vertex buffer from the source vertex buffer and remap table generated by meshopt_generateVertexRemap |
75 | * |
76 | * destination must contain enough space for the resulting vertex buffer (unique_vertex_count elements, returned by meshopt_generateVertexRemap) |
77 | * vertex_count should be the initial vertex count and not the value returned by meshopt_generateVertexRemap |
78 | */ |
79 | MESHOPTIMIZER_API void meshopt_remapVertexBuffer(void* destination, const void* vertices, size_t vertex_count, size_t vertex_size, const unsigned int* remap); |
80 | |
81 | /** |
82 | * Generate index buffer from the source index buffer and remap table generated by meshopt_generateVertexRemap |
83 | * |
84 | * destination must contain enough space for the resulting index buffer (index_count elements) |
85 | * indices can be NULL if the input is unindexed |
86 | */ |
87 | MESHOPTIMIZER_API void meshopt_remapIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const unsigned int* remap); |
88 | |
89 | /** |
90 | * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary |
91 | * All vertices that are binary equivalent (wrt first vertex_size bytes) map to the first vertex in the original vertex buffer. |
92 | * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. |
93 | * Note that binary equivalence considers all vertex_size bytes, including padding which should be zero-initialized. |
94 | * |
95 | * destination must contain enough space for the resulting index buffer (index_count elements) |
96 | */ |
97 | MESHOPTIMIZER_API void meshopt_generateShadowIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); |
98 | |
99 | /** |
100 | * Generate index buffer that can be used for more efficient rendering when only a subset of the vertex attributes is necessary |
101 | * All vertices that are binary equivalent (wrt specified streams) map to the first vertex in the original vertex buffer. |
102 | * This makes it possible to use the index buffer for Z pre-pass or shadowmap rendering, while using the original index buffer for regular rendering. |
103 | * Note that binary equivalence considers all size bytes in each stream, including padding which should be zero-initialized. |
104 | * |
105 | * destination must contain enough space for the resulting index buffer (index_count elements) |
106 | */ |
107 | MESHOPTIMIZER_API void meshopt_generateShadowIndexBufferMulti(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, const struct meshopt_Stream* streams, size_t stream_count); |
108 | |
109 | /** |
110 | * Generate index buffer that can be used as a geometry shader input with triangle adjacency topology |
111 | * Each triangle is converted into a 6-vertex patch with the following layout: |
112 | * - 0, 2, 4: original triangle vertices |
113 | * - 1, 3, 5: vertices adjacent to edges 02, 24 and 40 |
114 | * The resulting patch can be rendered with geometry shaders using e.g. VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY. |
115 | * This can be used to implement algorithms like silhouette detection/expansion and other forms of GS-driven rendering. |
116 | * |
117 | * destination must contain enough space for the resulting index buffer (index_count*2 elements) |
118 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
119 | */ |
120 | MESHOPTIMIZER_API void meshopt_generateAdjacencyIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
121 | |
122 | /** |
123 | * Generate index buffer that can be used for PN-AEN tessellation with crack-free displacement |
124 | * Each triangle is converted into a 12-vertex patch with the following layout: |
125 | * - 0, 1, 2: original triangle vertices |
126 | * - 3, 4: opposing edge for edge 0, 1 |
127 | * - 5, 6: opposing edge for edge 1, 2 |
128 | * - 7, 8: opposing edge for edge 2, 0 |
129 | * - 9, 10, 11: dominant vertices for corners 0, 1, 2 |
130 | * The resulting patch can be rendered with hardware tessellation using PN-AEN and displacement mapping. |
131 | * See "Tessellation on Any Budget" (John McDonald, GDC 2011) for implementation details. |
132 | * |
133 | * destination must contain enough space for the resulting index buffer (index_count*4 elements) |
134 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
135 | */ |
136 | MESHOPTIMIZER_API void meshopt_generateTessellationIndexBuffer(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
137 | |
138 | /** |
139 | * Vertex transform cache optimizer |
140 | * Reorders indices to reduce the number of GPU vertex shader invocations |
141 | * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. |
142 | * |
143 | * destination must contain enough space for the resulting index buffer (index_count elements) |
144 | */ |
145 | MESHOPTIMIZER_API void meshopt_optimizeVertexCache(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); |
146 | |
147 | /** |
148 | * Vertex transform cache optimizer for strip-like caches |
149 | * Produces inferior results to meshopt_optimizeVertexCache from the GPU vertex cache perspective |
150 | * However, the resulting index order is more optimal if the goal is to reduce the triangle strip length or improve compression efficiency |
151 | * |
152 | * destination must contain enough space for the resulting index buffer (index_count elements) |
153 | */ |
154 | MESHOPTIMIZER_API void meshopt_optimizeVertexCacheStrip(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); |
155 | |
156 | /** |
157 | * Vertex transform cache optimizer for FIFO caches |
158 | * Reorders indices to reduce the number of GPU vertex shader invocations |
159 | * Generally takes ~3x less time to optimize meshes but produces inferior results compared to meshopt_optimizeVertexCache |
160 | * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. |
161 | * |
162 | * destination must contain enough space for the resulting index buffer (index_count elements) |
163 | * cache_size should be less than the actual GPU cache size to avoid cache thrashing |
164 | */ |
165 | MESHOPTIMIZER_API void meshopt_optimizeVertexCacheFifo(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); |
166 | |
167 | /** |
168 | * Overdraw optimizer |
169 | * Reorders indices to reduce the number of GPU vertex shader invocations and the pixel overdraw |
170 | * If index buffer contains multiple ranges for multiple draw calls, this functions needs to be called on each range individually. |
171 | * |
172 | * destination must contain enough space for the resulting index buffer (index_count elements) |
173 | * indices must contain index data that is the result of meshopt_optimizeVertexCache (*not* the original mesh indices!) |
174 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
175 | * threshold indicates how much the overdraw optimizer can degrade vertex cache efficiency (1.05 = up to 5%) to reduce overdraw more efficiently |
176 | */ |
177 | MESHOPTIMIZER_API void meshopt_optimizeOverdraw(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); |
178 | |
179 | /** |
180 | * Vertex fetch cache optimizer |
181 | * Reorders vertices and changes indices to reduce the amount of GPU memory fetches during vertex processing |
182 | * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused |
183 | * This functions works for a single vertex stream; for multiple vertex streams, use meshopt_optimizeVertexFetchRemap + meshopt_remapVertexBuffer for each stream. |
184 | * |
185 | * destination must contain enough space for the resulting vertex buffer (vertex_count elements) |
186 | * indices is used both as an input and as an output index buffer |
187 | */ |
188 | MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetch(void* destination, unsigned int* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
189 | |
190 | /** |
191 | * Vertex fetch cache optimizer |
192 | * Generates vertex remap to reduce the amount of GPU memory fetches during vertex processing |
193 | * Returns the number of unique vertices, which is the same as input vertex count unless some vertices are unused |
194 | * The resulting remap table should be used to reorder vertex/index buffers using meshopt_remapVertexBuffer/meshopt_remapIndexBuffer |
195 | * |
196 | * destination must contain enough space for the resulting remap table (vertex_count elements) |
197 | */ |
198 | MESHOPTIMIZER_API size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count); |
199 | |
200 | /** |
201 | * Index buffer encoder |
202 | * Encodes index data into an array of bytes that is generally much smaller (<1.5 bytes/triangle) and compresses better (<1 bytes/triangle) compared to original. |
203 | * Input index buffer must represent a triangle list. |
204 | * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space |
205 | * For maximum efficiency the index buffer being encoded has to be optimized for vertex cache and vertex fetch first. |
206 | * |
207 | * buffer must contain enough space for the encoded index buffer (use meshopt_encodeIndexBufferBound to compute worst case size) |
208 | */ |
209 | MESHOPTIMIZER_API size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); |
210 | MESHOPTIMIZER_API size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count); |
211 | |
212 | /** |
213 | * Set index encoder format version |
214 | * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) and 1 (decodable by 0.14+) |
215 | */ |
216 | MESHOPTIMIZER_API void meshopt_encodeIndexVersion(int version); |
217 | |
218 | /** |
219 | * Index buffer decoder |
220 | * Decodes index data from an array of bytes generated by meshopt_encodeIndexBuffer |
221 | * Returns 0 if decoding was successful, and an error code otherwise |
222 | * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). |
223 | * |
224 | * destination must contain enough space for the resulting index buffer (index_count elements) |
225 | */ |
226 | MESHOPTIMIZER_API int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); |
227 | |
228 | /** |
229 | * Index sequence encoder |
230 | * Encodes index sequence into an array of bytes that is generally smaller and compresses better compared to original. |
231 | * Input index sequence can represent arbitrary topology; for triangle lists meshopt_encodeIndexBuffer is likely to be better. |
232 | * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space |
233 | * |
234 | * buffer must contain enough space for the encoded index sequence (use meshopt_encodeIndexSequenceBound to compute worst case size) |
235 | */ |
236 | MESHOPTIMIZER_API size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count); |
237 | MESHOPTIMIZER_API size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count); |
238 | |
239 | /** |
240 | * Index sequence decoder |
241 | * Decodes index data from an array of bytes generated by meshopt_encodeIndexSequence |
242 | * Returns 0 if decoding was successful, and an error code otherwise |
243 | * The decoder is safe to use for untrusted input, but it may produce garbage data (e.g. out of range indices). |
244 | * |
245 | * destination must contain enough space for the resulting index sequence (index_count elements) |
246 | */ |
247 | MESHOPTIMIZER_API int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size); |
248 | |
249 | /** |
250 | * Vertex buffer encoder |
251 | * Encodes vertex data into an array of bytes that is generally smaller and compresses better compared to original. |
252 | * Returns encoded data size on success, 0 on error; the only error condition is if buffer doesn't have enough space |
253 | * This function works for a single vertex stream; for multiple vertex streams, call meshopt_encodeVertexBuffer for each stream. |
254 | * Note that all vertex_size bytes of each vertex are encoded verbatim, including padding which should be zero-initialized. |
255 | * |
256 | * buffer must contain enough space for the encoded vertex buffer (use meshopt_encodeVertexBufferBound to compute worst case size) |
257 | */ |
258 | MESHOPTIMIZER_API size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size); |
259 | MESHOPTIMIZER_API size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size); |
260 | |
261 | /** |
262 | * Set vertex encoder format version |
263 | * version must specify the data format version to encode; valid values are 0 (decodable by all library versions) |
264 | */ |
265 | MESHOPTIMIZER_API void meshopt_encodeVertexVersion(int version); |
266 | |
267 | /** |
268 | * Vertex buffer decoder |
269 | * Decodes vertex data from an array of bytes generated by meshopt_encodeVertexBuffer |
270 | * Returns 0 if decoding was successful, and an error code otherwise |
271 | * The decoder is safe to use for untrusted input, but it may produce garbage data. |
272 | * |
273 | * destination must contain enough space for the resulting vertex buffer (vertex_count * vertex_size bytes) |
274 | */ |
275 | MESHOPTIMIZER_API int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size); |
276 | |
277 | /** |
278 | * Vertex buffer filters |
279 | * These functions can be used to filter output of meshopt_decodeVertexBuffer in-place. |
280 | * |
281 | * meshopt_decodeFilterOct decodes octahedral encoding of a unit vector with K-bit (K <= 16) signed X/Y as an input; Z must store 1.0f. |
282 | * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. |
283 | * |
284 | * meshopt_decodeFilterQuat decodes 3-component quaternion encoding with K-bit (4 <= K <= 16) component encoding and a 2-bit component index indicating which component to reconstruct. |
285 | * Each component is stored as an 16-bit integer; stride must be equal to 8. |
286 | * |
287 | * meshopt_decodeFilterExp decodes exponential encoding of floating-point data with 8-bit exponent and 24-bit integer mantissa as 2^E*M. |
288 | * Each 32-bit component is decoded in isolation; stride must be divisible by 4. |
289 | */ |
290 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterOct(void* buffer, size_t count, size_t stride); |
291 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterQuat(void* buffer, size_t count, size_t stride); |
292 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_decodeFilterExp(void* buffer, size_t count, size_t stride); |
293 | |
294 | /** |
295 | * Vertex buffer filter encoders |
296 | * These functions can be used to encode data in a format that meshopt_decodeFilter can decode |
297 | * |
298 | * meshopt_encodeFilterOct encodes unit vectors with K-bit (K <= 16) signed X/Y as an output. |
299 | * Each component is stored as an 8-bit or 16-bit normalized integer; stride must be equal to 4 or 8. W is preserved as is. |
300 | * Input data must contain 4 floats for every vector (count*4 total). |
301 | * |
302 | * meshopt_encodeFilterQuat encodes unit quaternions with K-bit (4 <= K <= 16) component encoding. |
303 | * Each component is stored as an 16-bit integer; stride must be equal to 8. |
304 | * Input data must contain 4 floats for every quaternion (count*4 total). |
305 | * |
306 | * meshopt_encodeFilterExp encodes arbitrary (finite) floating-point data with 8-bit exponent and K-bit integer mantissa (1 <= K <= 24). |
307 | * Mantissa is shared between all components of a given vector as defined by stride; stride must be divisible by 4. |
308 | * Input data must contain stride/4 floats for every vector (count*stride/4 total). |
309 | * When individual (scalar) encoding is desired, simply pass stride=4 and adjust count accordingly. |
310 | */ |
311 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterOct(void* destination, size_t count, size_t stride, int bits, const float* data); |
312 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterQuat(void* destination, size_t count, size_t stride, int bits, const float* data); |
313 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_encodeFilterExp(void* destination, size_t count, size_t stride, int bits, const float* data); |
314 | |
315 | /** |
316 | * Simplification options |
317 | */ |
318 | enum |
319 | { |
320 | /* Do not move vertices that are located on the topological border (vertices on triangle edges that don't have a paired triangle). Useful for simplifying portions of the larger mesh. */ |
321 | meshopt_SimplifyLockBorder = 1 << 0, |
322 | }; |
323 | |
324 | /** |
325 | * Mesh simplifier |
326 | * Reduces the number of triangles in the mesh, attempting to preserve mesh appearance as much as possible |
327 | * The algorithm tries to preserve mesh topology and can stop short of the target goal based on topology constraints or target error. |
328 | * If not all attributes from the input mesh are required, it's recommended to reindex the mesh using meshopt_generateShadowIndexBuffer prior to simplification. |
329 | * Returns the number of indices after simplification, with destination containing new index data |
330 | * The resulting index buffer references vertices from the original vertex buffer. |
331 | * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. |
332 | * |
333 | * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! |
334 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
335 | * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation |
336 | * options must be a bitmask composed of meshopt_SimplifyX options; 0 is a safe default |
337 | * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification |
338 | */ |
339 | MESHOPTIMIZER_API size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error); |
340 | |
341 | /** |
342 | * Experimental: Mesh simplifier (sloppy) |
343 | * Reduces the number of triangles in the mesh, sacrificing mesh appearance for simplification performance |
344 | * The algorithm doesn't preserve mesh topology but can stop short of the target goal based on target error. |
345 | * Returns the number of indices after simplification, with destination containing new index data |
346 | * The resulting index buffer references vertices from the original vertex buffer. |
347 | * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. |
348 | * |
349 | * destination must contain enough space for the target index buffer, worst case is index_count elements (*not* target_index_count)! |
350 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
351 | * target_error represents the error relative to mesh extents that can be tolerated, e.g. 0.01 = 1% deformation |
352 | * result_error can be NULL; when it's not NULL, it will contain the resulting (relative) error after simplification |
353 | */ |
354 | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error); |
355 | |
356 | /** |
357 | * Experimental: Point cloud simplifier |
358 | * Reduces the number of points in the cloud to reach the given target |
359 | * Returns the number of points after simplification, with destination containing new index data |
360 | * The resulting index buffer references vertices from the original vertex buffer. |
361 | * If the original vertex data isn't required, creating a compact vertex buffer using meshopt_optimizeVertexFetch is recommended. |
362 | * |
363 | * destination must contain enough space for the target index buffer (target_vertex_count elements) |
364 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
365 | */ |
366 | MESHOPTIMIZER_EXPERIMENTAL size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count); |
367 | |
368 | /** |
369 | * Returns the error scaling factor used by the simplifier to convert between absolute and relative extents |
370 | * |
371 | * Absolute error must be *divided* by the scaling factor before passing it to meshopt_simplify as target_error |
372 | * Relative error returned by meshopt_simplify via result_error must be *multiplied* by the scaling factor to get absolute error. |
373 | */ |
374 | MESHOPTIMIZER_API float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
375 | |
376 | /** |
377 | * Mesh stripifier |
378 | * Converts a previously vertex cache optimized triangle list to triangle strip, stitching strips using restart index or degenerate triangles |
379 | * Returns the number of indices in the resulting strip, with destination containing new index data |
380 | * For maximum efficiency the index buffer being converted has to be optimized for vertex cache first. |
381 | * Using restart indices can result in ~10% smaller index buffers, but on some GPUs restart indices may result in decreased performance. |
382 | * |
383 | * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_stripifyBound |
384 | * restart_index should be 0xffff or 0xffffffff depending on index size, or 0 to use degenerate triangles |
385 | */ |
386 | MESHOPTIMIZER_API size_t meshopt_stripify(unsigned int* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int restart_index); |
387 | MESHOPTIMIZER_API size_t meshopt_stripifyBound(size_t index_count); |
388 | |
389 | /** |
390 | * Mesh unstripifier |
391 | * Converts a triangle strip to a triangle list |
392 | * Returns the number of indices in the resulting list, with destination containing new index data |
393 | * |
394 | * destination must contain enough space for the target index buffer, worst case can be computed with meshopt_unstripifyBound |
395 | */ |
396 | MESHOPTIMIZER_API size_t meshopt_unstripify(unsigned int* destination, const unsigned int* indices, size_t index_count, unsigned int restart_index); |
397 | MESHOPTIMIZER_API size_t meshopt_unstripifyBound(size_t index_count); |
398 | |
399 | struct meshopt_VertexCacheStatistics |
400 | { |
401 | unsigned int vertices_transformed; |
402 | unsigned int warps_executed; |
403 | float acmr; /* transformed vertices / triangle count; best case 0.5, worst case 3.0, optimum depends on topology */ |
404 | float atvr; /* transformed vertices / vertex count; best case 1.0, worst case 6.0, optimum is 1.0 (each vertex is transformed once) */ |
405 | }; |
406 | |
407 | /** |
408 | * Vertex transform cache analyzer |
409 | * Returns cache hit statistics using a simplified FIFO model |
410 | * Results may not match actual GPU performance |
411 | */ |
412 | MESHOPTIMIZER_API struct meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size); |
413 | |
414 | struct meshopt_OverdrawStatistics |
415 | { |
416 | unsigned int pixels_covered; |
417 | unsigned int pixels_shaded; |
418 | float overdraw; /* shaded pixels / covered pixels; best case 1.0 */ |
419 | }; |
420 | |
421 | /** |
422 | * Overdraw analyzer |
423 | * Returns overdraw statistics using a software rasterizer |
424 | * Results may not match actual GPU performance |
425 | * |
426 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
427 | */ |
428 | MESHOPTIMIZER_API struct meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
429 | |
430 | struct meshopt_VertexFetchStatistics |
431 | { |
432 | unsigned int bytes_fetched; |
433 | float overfetch; /* fetched bytes / vertex buffer size; best case 1.0 (each byte is fetched once) */ |
434 | }; |
435 | |
436 | /** |
437 | * Vertex fetch cache analyzer |
438 | * Returns cache hit statistics using a simplified direct mapped model |
439 | * Results may not match actual GPU performance |
440 | */ |
441 | MESHOPTIMIZER_API struct meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size); |
442 | |
443 | struct meshopt_Meshlet |
444 | { |
445 | /* offsets within meshlet_vertices and meshlet_triangles arrays with meshlet data */ |
446 | unsigned int vertex_offset; |
447 | unsigned int triangle_offset; |
448 | |
449 | /* number of vertices and triangles used in the meshlet; data is stored in consecutive range defined by offset and count */ |
450 | unsigned int vertex_count; |
451 | unsigned int triangle_count; |
452 | }; |
453 | |
454 | /** |
455 | * Meshlet builder |
456 | * Splits the mesh into a set of meshlets where each meshlet has a micro index buffer indexing into meshlet vertices that refer to the original vertex buffer |
457 | * The resulting data can be used to render meshes using NVidia programmable mesh shading pipeline, or in other cluster-based renderers. |
458 | * When using buildMeshlets, vertex positions need to be provided to minimize the size of the resulting clusters. |
459 | * When using buildMeshletsScan, for maximum efficiency the index buffer being converted has to be optimized for vertex cache first. |
460 | * |
461 | * meshlets must contain enough space for all meshlets, worst case size can be computed with meshopt_buildMeshletsBound |
462 | * meshlet_vertices must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_vertices |
463 | * meshlet_triangles must contain enough space for all meshlets, worst case size is equal to max_meshlets * max_triangles * 3 |
464 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
465 | * max_vertices and max_triangles must not exceed implementation limits (max_vertices <= 255 - not 256!, max_triangles <= 512) |
466 | * cone_weight should be set to 0 when cone culling is not used, and a value between 0 and 1 otherwise to balance between cluster size and cone culling efficiency |
467 | */ |
468 | MESHOPTIMIZER_API size_t meshopt_buildMeshlets(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); |
469 | MESHOPTIMIZER_API size_t meshopt_buildMeshletsScan(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); |
470 | MESHOPTIMIZER_API size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles); |
471 | |
472 | struct meshopt_Bounds |
473 | { |
474 | /* bounding sphere, useful for frustum and occlusion culling */ |
475 | float center[3]; |
476 | float radius; |
477 | |
478 | /* normal cone, useful for backface culling */ |
479 | float cone_apex[3]; |
480 | float cone_axis[3]; |
481 | float cone_cutoff; /* = cos(angle/2) */ |
482 | |
483 | /* normal cone axis and cutoff, stored in 8-bit SNORM format; decode using x/127.0 */ |
484 | signed char cone_axis_s8[3]; |
485 | signed char cone_cutoff_s8; |
486 | }; |
487 | |
488 | /** |
489 | * Cluster bounds generator |
490 | * Creates bounding volumes that can be used for frustum, backface and occlusion culling. |
491 | * |
492 | * For backface culling with orthographic projection, use the following formula to reject backfacing clusters: |
493 | * dot(view, cone_axis) >= cone_cutoff |
494 | * |
495 | * For perspective projection, you can the formula that needs cone apex in addition to axis & cutoff: |
496 | * dot(normalize(cone_apex - camera_position), cone_axis) >= cone_cutoff |
497 | * |
498 | * Alternatively, you can use the formula that doesn't need cone apex and uses bounding sphere instead: |
499 | * dot(normalize(center - camera_position), cone_axis) >= cone_cutoff + radius / length(center - camera_position) |
500 | * or an equivalent formula that doesn't have a singularity at center = camera_position: |
501 | * dot(center - camera_position, cone_axis) >= cone_cutoff * length(center - camera_position) + radius |
502 | * |
503 | * The formula that uses the apex is slightly more accurate but needs the apex; if you are already using bounding sphere |
504 | * to do frustum/occlusion culling, the formula that doesn't use the apex may be preferable. |
505 | * |
506 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
507 | * index_count/3 should be less than or equal to 512 (the function assumes clusters of limited size) |
508 | */ |
509 | MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
510 | MESHOPTIMIZER_API struct meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
511 | |
512 | /** |
513 | * Experimental: Spatial sorter |
514 | * Generates a remap table that can be used to reorder points for spatial locality. |
515 | * Resulting remap table maps old vertices to new vertices and can be used in meshopt_remapVertexBuffer. |
516 | * |
517 | * destination must contain enough space for the resulting remap table (vertex_count elements) |
518 | */ |
519 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
520 | |
521 | /** |
522 | * Experimental: Spatial sorter |
523 | * Reorders triangles for spatial locality, and generates a new index buffer. The resulting index buffer can be used with other functions like optimizeVertexCache. |
524 | * |
525 | * destination must contain enough space for the resulting index buffer (index_count elements) |
526 | * vertex_positions should have float3 position in the first 12 bytes of each vertex - similar to glVertexPointer |
527 | */ |
528 | MESHOPTIMIZER_EXPERIMENTAL void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
529 | |
530 | /** |
531 | * Set allocation callbacks |
532 | * These callbacks will be used instead of the default operator new/operator delete for all temporary allocations in the library. |
533 | * Note that all algorithms only allocate memory for temporary use. |
534 | * allocate/deallocate are always called in a stack-like order - last pointer to be allocated is deallocated first. |
535 | */ |
536 | MESHOPTIMIZER_API void meshopt_setAllocator(void* (MESHOPTIMIZER_ALLOC_CALLCONV *allocate)(size_t), void (MESHOPTIMIZER_ALLOC_CALLCONV *deallocate)(void*)); |
537 | |
538 | #ifdef __cplusplus |
539 | } /* extern "C" */ |
540 | #endif |
541 | |
542 | /* Quantization into commonly supported data formats */ |
543 | #ifdef __cplusplus |
544 | /** |
545 | * Quantize a float in [0..1] range into an N-bit fixed point unorm value |
546 | * Assumes reconstruction function (q / (2^N-1)), which is the case for fixed-function normalized fixed point conversion |
547 | * Maximum reconstruction error: 1/2^(N+1) |
548 | */ |
549 | inline int meshopt_quantizeUnorm(float v, int N); |
550 | |
551 | /** |
552 | * Quantize a float in [-1..1] range into an N-bit fixed point snorm value |
553 | * Assumes reconstruction function (q / (2^(N-1)-1)), which is the case for fixed-function normalized fixed point conversion (except early OpenGL versions) |
554 | * Maximum reconstruction error: 1/2^N |
555 | */ |
556 | inline int meshopt_quantizeSnorm(float v, int N); |
557 | |
558 | /** |
559 | * Quantize a float into half-precision floating point value |
560 | * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest |
561 | * Representable magnitude range: [6e-5; 65504] |
562 | * Maximum relative reconstruction error: 5e-4 |
563 | */ |
564 | inline unsigned short meshopt_quantizeHalf(float v); |
565 | |
566 | /** |
567 | * Quantize a float into a floating point value with a limited number of significant mantissa bits |
568 | * Generates +-inf for overflow, preserves NaN, flushes denormals to zero, rounds to nearest |
569 | * Assumes N is in a valid mantissa precision range, which is 1..23 |
570 | */ |
571 | inline float meshopt_quantizeFloat(float v, int N); |
572 | #endif |
573 | |
574 | /** |
575 | * C++ template interface |
576 | * |
577 | * These functions mirror the C interface the library provides, providing template-based overloads so that |
578 | * the caller can use an arbitrary type for the index data, both for input and output. |
579 | * When the supplied type is the same size as that of unsigned int, the wrappers are zero-cost; when it's not, |
580 | * the wrappers end up allocating memory and copying index data to convert from one type to another. |
581 | */ |
582 | #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) |
583 | template <typename T> |
584 | inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
585 | template <typename T> |
586 | inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); |
587 | template <typename T> |
588 | inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap); |
589 | template <typename T> |
590 | inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride); |
591 | template <typename T> |
592 | inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count); |
593 | template <typename T> |
594 | inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
595 | template <typename T> |
596 | inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
597 | template <typename T> |
598 | inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count); |
599 | template <typename T> |
600 | inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count); |
601 | template <typename T> |
602 | inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size); |
603 | template <typename T> |
604 | inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold); |
605 | template <typename T> |
606 | inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count); |
607 | template <typename T> |
608 | inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size); |
609 | template <typename T> |
610 | inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); |
611 | template <typename T> |
612 | inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); |
613 | template <typename T> |
614 | inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count); |
615 | template <typename T> |
616 | inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size); |
617 | template <typename T> |
618 | inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options = 0, float* result_error = 0); |
619 | template <typename T> |
620 | inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error = 0); |
621 | template <typename T> |
622 | inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index); |
623 | template <typename T> |
624 | inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index); |
625 | template <typename T> |
626 | inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size); |
627 | template <typename T> |
628 | inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
629 | template <typename T> |
630 | inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size); |
631 | template <typename T> |
632 | inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight); |
633 | template <typename T> |
634 | inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles); |
635 | template <typename T> |
636 | inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
637 | template <typename T> |
638 | inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride); |
639 | #endif |
640 | |
641 | /* Inline implementation */ |
642 | #ifdef __cplusplus |
643 | inline int meshopt_quantizeUnorm(float v, int N) |
644 | { |
645 | const float scale = float((1 << N) - 1); |
646 | |
647 | v = (v >= 0) ? v : 0; |
648 | v = (v <= 1) ? v : 1; |
649 | |
650 | return int(v * scale + 0.5f); |
651 | } |
652 | |
653 | inline int meshopt_quantizeSnorm(float v, int N) |
654 | { |
655 | const float scale = float((1 << (N - 1)) - 1); |
656 | |
657 | float round = (v >= 0 ? 0.5f : -0.5f); |
658 | |
659 | v = (v >= -1) ? v : -1; |
660 | v = (v <= +1) ? v : +1; |
661 | |
662 | return int(v * scale + round); |
663 | } |
664 | |
665 | inline unsigned short meshopt_quantizeHalf(float v) |
666 | { |
667 | union { float f; unsigned int ui; } u = {.f: v}; |
668 | unsigned int ui = u.ui; |
669 | |
670 | int s = (ui >> 16) & 0x8000; |
671 | int em = ui & 0x7fffffff; |
672 | |
673 | /* bias exponent and round to nearest; 112 is relative exponent bias (127-15) */ |
674 | int h = (em - (112 << 23) + (1 << 12)) >> 13; |
675 | |
676 | /* underflow: flush to zero; 113 encodes exponent -14 */ |
677 | h = (em < (113 << 23)) ? 0 : h; |
678 | |
679 | /* overflow: infinity; 143 encodes exponent 16 */ |
680 | h = (em >= (143 << 23)) ? 0x7c00 : h; |
681 | |
682 | /* NaN; note that we convert all types of NaN to qNaN */ |
683 | h = (em > (255 << 23)) ? 0x7e00 : h; |
684 | |
685 | return (unsigned short)(s | h); |
686 | } |
687 | |
688 | inline float meshopt_quantizeFloat(float v, int N) |
689 | { |
690 | union { float f; unsigned int ui; } u = {.f: v}; |
691 | unsigned int ui = u.ui; |
692 | |
693 | const int mask = (1 << (23 - N)) - 1; |
694 | const int round = (1 << (23 - N)) >> 1; |
695 | |
696 | int e = ui & 0x7f800000; |
697 | unsigned int rui = (ui + round) & ~mask; |
698 | |
699 | /* round all numbers except inf/nan; this is important to make sure nan doesn't overflow into -0 */ |
700 | ui = e == 0x7f800000 ? ui : rui; |
701 | |
702 | /* flush denormals to zero */ |
703 | ui = e == 0 ? 0 : ui; |
704 | |
705 | u.ui = ui; |
706 | return u.f; |
707 | } |
708 | #endif |
709 | |
710 | /* Internal implementation helpers */ |
711 | #ifdef __cplusplus |
712 | class meshopt_Allocator |
713 | { |
714 | public: |
715 | template <typename T> |
716 | struct StorageT |
717 | { |
718 | static void* (MESHOPTIMIZER_ALLOC_CALLCONV *allocate)(size_t); |
719 | static void (MESHOPTIMIZER_ALLOC_CALLCONV *deallocate)(void*); |
720 | }; |
721 | |
722 | typedef StorageT<void> Storage; |
723 | |
724 | meshopt_Allocator() |
725 | : blocks() |
726 | , count(0) |
727 | { |
728 | } |
729 | |
730 | ~meshopt_Allocator() |
731 | { |
732 | for (size_t i = count; i > 0; --i) |
733 | Storage::deallocate(blocks[i - 1]); |
734 | } |
735 | |
736 | template <typename T> T* allocate(size_t size) |
737 | { |
738 | assert(count < sizeof(blocks) / sizeof(blocks[0])); |
739 | T* result = static_cast<T*>(Storage::allocate(size > size_t(-1) / sizeof(T) ? size_t(-1) : size * sizeof(T))); |
740 | blocks[count++] = result; |
741 | return result; |
742 | } |
743 | |
744 | private: |
745 | void* blocks[24]; |
746 | size_t count; |
747 | }; |
748 | |
749 | // This makes sure that allocate/deallocate are lazily generated in translation units that need them and are deduplicated by the linker |
750 | template <typename T> void* (MESHOPTIMIZER_ALLOC_CALLCONV *meshopt_Allocator::StorageT<T>::allocate)(size_t) = operator new; |
751 | template <typename T> void (MESHOPTIMIZER_ALLOC_CALLCONV *meshopt_Allocator::StorageT<T>::deallocate)(void*) = operator delete; |
752 | #endif |
753 | |
754 | /* Inline implementation for C++ templated wrappers */ |
755 | #if defined(__cplusplus) && !defined(MESHOPTIMIZER_NO_WRAPPERS) |
756 | template <typename T, bool ZeroCopy = sizeof(T) == sizeof(unsigned int)> |
757 | struct meshopt_IndexAdapter; |
758 | |
759 | template <typename T> |
760 | struct meshopt_IndexAdapter<T, false> |
761 | { |
762 | T* result; |
763 | unsigned int* data; |
764 | size_t count; |
765 | |
766 | meshopt_IndexAdapter(T* result_, const T* input, size_t count_) |
767 | : result(result_) |
768 | , data(0) |
769 | , count(count_) |
770 | { |
771 | size_t size = count > size_t(-1) / sizeof(unsigned int) ? size_t(-1) : count * sizeof(unsigned int); |
772 | |
773 | data = static_cast<unsigned int*>(meshopt_Allocator::Storage::allocate(size)); |
774 | |
775 | if (input) |
776 | { |
777 | for (size_t i = 0; i < count; ++i) |
778 | data[i] = input[i]; |
779 | } |
780 | } |
781 | |
782 | ~meshopt_IndexAdapter() |
783 | { |
784 | if (result) |
785 | { |
786 | for (size_t i = 0; i < count; ++i) |
787 | result[i] = T(data[i]); |
788 | } |
789 | |
790 | meshopt_Allocator::Storage::deallocate(data); |
791 | } |
792 | }; |
793 | |
794 | template <typename T> |
795 | struct meshopt_IndexAdapter<T, true> |
796 | { |
797 | unsigned int* data; |
798 | |
799 | meshopt_IndexAdapter(T* result, const T* input, size_t) |
800 | : data(reinterpret_cast<unsigned int*>(result ? result : const_cast<T*>(input))) |
801 | { |
802 | } |
803 | }; |
804 | |
805 | template <typename T> |
806 | inline size_t meshopt_generateVertexRemap(unsigned int* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) |
807 | { |
808 | meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); |
809 | |
810 | return meshopt_generateVertexRemap(destination, indices ? in.data : 0, index_count, vertices, vertex_count, vertex_size); |
811 | } |
812 | |
813 | template <typename T> |
814 | inline size_t meshopt_generateVertexRemapMulti(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) |
815 | { |
816 | meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); |
817 | |
818 | return meshopt_generateVertexRemapMulti(destination, indices ? in.data : 0, index_count, vertex_count, streams, stream_count); |
819 | } |
820 | |
821 | template <typename T> |
822 | inline void meshopt_remapIndexBuffer(T* destination, const T* indices, size_t index_count, const unsigned int* remap) |
823 | { |
824 | meshopt_IndexAdapter<T> in(0, indices, indices ? index_count : 0); |
825 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
826 | |
827 | meshopt_remapIndexBuffer(out.data, indices ? in.data : 0, index_count, remap); |
828 | } |
829 | |
830 | template <typename T> |
831 | inline void meshopt_generateShadowIndexBuffer(T* destination, const T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size, size_t vertex_stride) |
832 | { |
833 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
834 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
835 | |
836 | meshopt_generateShadowIndexBuffer(out.data, in.data, index_count, vertices, vertex_count, vertex_size, vertex_stride); |
837 | } |
838 | |
839 | template <typename T> |
840 | inline void meshopt_generateShadowIndexBufferMulti(T* destination, const T* indices, size_t index_count, size_t vertex_count, const meshopt_Stream* streams, size_t stream_count) |
841 | { |
842 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
843 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
844 | |
845 | meshopt_generateShadowIndexBufferMulti(out.data, in.data, index_count, vertex_count, streams, stream_count); |
846 | } |
847 | |
848 | template <typename T> |
849 | inline void meshopt_generateAdjacencyIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
850 | { |
851 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
852 | meshopt_IndexAdapter<T> out(destination, 0, index_count * 2); |
853 | |
854 | meshopt_generateAdjacencyIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
855 | } |
856 | |
857 | template <typename T> |
858 | inline void meshopt_generateTessellationIndexBuffer(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
859 | { |
860 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
861 | meshopt_IndexAdapter<T> out(destination, 0, index_count * 4); |
862 | |
863 | meshopt_generateTessellationIndexBuffer(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
864 | } |
865 | |
866 | template <typename T> |
867 | inline void meshopt_optimizeVertexCache(T* destination, const T* indices, size_t index_count, size_t vertex_count) |
868 | { |
869 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
870 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
871 | |
872 | meshopt_optimizeVertexCache(out.data, in.data, index_count, vertex_count); |
873 | } |
874 | |
875 | template <typename T> |
876 | inline void meshopt_optimizeVertexCacheStrip(T* destination, const T* indices, size_t index_count, size_t vertex_count) |
877 | { |
878 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
879 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
880 | |
881 | meshopt_optimizeVertexCacheStrip(out.data, in.data, index_count, vertex_count); |
882 | } |
883 | |
884 | template <typename T> |
885 | inline void meshopt_optimizeVertexCacheFifo(T* destination, const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size) |
886 | { |
887 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
888 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
889 | |
890 | meshopt_optimizeVertexCacheFifo(out.data, in.data, index_count, vertex_count, cache_size); |
891 | } |
892 | |
893 | template <typename T> |
894 | inline void meshopt_optimizeOverdraw(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, float threshold) |
895 | { |
896 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
897 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
898 | |
899 | meshopt_optimizeOverdraw(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, threshold); |
900 | } |
901 | |
902 | template <typename T> |
903 | inline size_t meshopt_optimizeVertexFetchRemap(unsigned int* destination, const T* indices, size_t index_count, size_t vertex_count) |
904 | { |
905 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
906 | |
907 | return meshopt_optimizeVertexFetchRemap(destination, in.data, index_count, vertex_count); |
908 | } |
909 | |
910 | template <typename T> |
911 | inline size_t meshopt_optimizeVertexFetch(void* destination, T* indices, size_t index_count, const void* vertices, size_t vertex_count, size_t vertex_size) |
912 | { |
913 | meshopt_IndexAdapter<T> inout(indices, indices, index_count); |
914 | |
915 | return meshopt_optimizeVertexFetch(destination, inout.data, index_count, vertices, vertex_count, vertex_size); |
916 | } |
917 | |
918 | template <typename T> |
919 | inline size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) |
920 | { |
921 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
922 | |
923 | return meshopt_encodeIndexBuffer(buffer, buffer_size, in.data, index_count); |
924 | } |
925 | |
926 | template <typename T> |
927 | inline int meshopt_decodeIndexBuffer(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) |
928 | { |
929 | char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; |
930 | (void)index_size_valid; |
931 | |
932 | return meshopt_decodeIndexBuffer(destination, index_count, sizeof(T), buffer, buffer_size); |
933 | } |
934 | |
935 | template <typename T> |
936 | inline size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const T* indices, size_t index_count) |
937 | { |
938 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
939 | |
940 | return meshopt_encodeIndexSequence(buffer, buffer_size, in.data, index_count); |
941 | } |
942 | |
943 | template <typename T> |
944 | inline int meshopt_decodeIndexSequence(T* destination, size_t index_count, const unsigned char* buffer, size_t buffer_size) |
945 | { |
946 | char index_size_valid[sizeof(T) == 2 || sizeof(T) == 4 ? 1 : -1]; |
947 | (void)index_size_valid; |
948 | |
949 | return meshopt_decodeIndexSequence(destination, index_count, sizeof(T), buffer, buffer_size); |
950 | } |
951 | |
952 | template <typename T> |
953 | inline size_t meshopt_simplify(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* result_error) |
954 | { |
955 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
956 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
957 | |
958 | return meshopt_simplify(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, options, result_error); |
959 | } |
960 | |
961 | template <typename T> |
962 | inline size_t meshopt_simplifySloppy(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* result_error) |
963 | { |
964 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
965 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
966 | |
967 | return meshopt_simplifySloppy(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error); |
968 | } |
969 | |
970 | template <typename T> |
971 | inline size_t meshopt_stripify(T* destination, const T* indices, size_t index_count, size_t vertex_count, T restart_index) |
972 | { |
973 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
974 | meshopt_IndexAdapter<T> out(destination, 0, (index_count / 3) * 5); |
975 | |
976 | return meshopt_stripify(out.data, in.data, index_count, vertex_count, unsigned(restart_index)); |
977 | } |
978 | |
979 | template <typename T> |
980 | inline size_t meshopt_unstripify(T* destination, const T* indices, size_t index_count, T restart_index) |
981 | { |
982 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
983 | meshopt_IndexAdapter<T> out(destination, 0, (index_count - 2) * 3); |
984 | |
985 | return meshopt_unstripify(out.data, in.data, index_count, unsigned(restart_index)); |
986 | } |
987 | |
988 | template <typename T> |
989 | inline meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const T* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int buffer_size) |
990 | { |
991 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
992 | |
993 | return meshopt_analyzeVertexCache(in.data, index_count, vertex_count, cache_size, warp_size, buffer_size); |
994 | } |
995 | |
996 | template <typename T> |
997 | inline meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
998 | { |
999 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
1000 | |
1001 | return meshopt_analyzeOverdraw(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
1002 | } |
1003 | |
1004 | template <typename T> |
1005 | inline meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const T* indices, size_t index_count, size_t vertex_count, size_t vertex_size) |
1006 | { |
1007 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
1008 | |
1009 | return meshopt_analyzeVertexFetch(in.data, index_count, vertex_count, vertex_size); |
1010 | } |
1011 | |
1012 | template <typename T> |
1013 | inline size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight) |
1014 | { |
1015 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
1016 | |
1017 | return meshopt_buildMeshlets(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, cone_weight); |
1018 | } |
1019 | |
1020 | template <typename T> |
1021 | inline size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const T* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) |
1022 | { |
1023 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
1024 | |
1025 | return meshopt_buildMeshletsScan(meshlets, meshlet_vertices, meshlet_triangles, in.data, index_count, vertex_count, max_vertices, max_triangles); |
1026 | } |
1027 | |
1028 | template <typename T> |
1029 | inline meshopt_Bounds meshopt_computeClusterBounds(const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
1030 | { |
1031 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
1032 | |
1033 | return meshopt_computeClusterBounds(in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
1034 | } |
1035 | |
1036 | template <typename T> |
1037 | inline void meshopt_spatialSortTriangles(T* destination, const T* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) |
1038 | { |
1039 | meshopt_IndexAdapter<T> in(0, indices, index_count); |
1040 | meshopt_IndexAdapter<T> out(destination, 0, index_count); |
1041 | |
1042 | meshopt_spatialSortTriangles(out.data, in.data, index_count, vertex_positions, vertex_count, vertex_positions_stride); |
1043 | } |
1044 | #endif |
1045 | |
1046 | /** |
1047 | * Copyright (c) 2016-2022 Arseny Kapoulkine |
1048 | * |
1049 | * Permission is hereby granted, free of charge, to any person |
1050 | * obtaining a copy of this software and associated documentation |
1051 | * files (the "Software"), to deal in the Software without |
1052 | * restriction, including without limitation the rights to use, |
1053 | * copy, modify, merge, publish, distribute, sublicense, and/or sell |
1054 | * copies of the Software, and to permit persons to whom the |
1055 | * Software is furnished to do so, subject to the following |
1056 | * conditions: |
1057 | * |
1058 | * The above copyright notice and this permission notice shall be |
1059 | * included in all copies or substantial portions of the Software. |
1060 | * |
1061 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
1062 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
1063 | * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
1064 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |
1065 | * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
1066 | * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
1067 | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
1068 | * OTHER DEALINGS IN THE SOFTWARE. |
1069 | */ |
1070 | |