| 1 | // | 
| 2 | // Redistribution and use in source and binary forms, with or without | 
| 3 | // modification, are permitted provided that the following conditions | 
| 4 | // are met: | 
| 5 | //  * Redistributions of source code must retain the above copyright | 
| 6 | //    notice, this list of conditions and the following disclaimer. | 
| 7 | //  * Redistributions in binary form must reproduce the above copyright | 
| 8 | //    notice, this list of conditions and the following disclaimer in the | 
| 9 | //    documentation and/or other materials provided with the distribution. | 
| 10 | //  * Neither the name of NVIDIA CORPORATION nor the names of its | 
| 11 | //    contributors may be used to endorse or promote products derived | 
| 12 | //    from this software without specific prior written permission. | 
| 13 | // | 
| 14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY | 
| 15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
| 17 | // PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR | 
| 18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
| 19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
| 20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
| 22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
| 23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
| 24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 25 | // | 
| 26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. | 
| 27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. | 
| 28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. | 
| 29 |  | 
| 30 | #ifndef PXFOUNDATION_PXMATH_H | 
| 31 | #define PXFOUNDATION_PXMATH_H | 
| 32 |  | 
| 33 | /** \addtogroup foundation | 
| 34 | @{ | 
| 35 | */ | 
| 36 |  | 
| 37 | #include "foundation/PxPreprocessor.h" | 
| 38 |  | 
| 39 | #if PX_VC | 
| 40 | #pragma warning(push) | 
| 41 | #pragma warning(disable : 4985) // 'symbol name': attributes not present on previous declaration | 
| 42 | #endif | 
| 43 | #include <math.h> | 
| 44 | #if PX_VC | 
| 45 | #pragma warning(pop) | 
| 46 | #endif | 
| 47 |  | 
| 48 | #include <float.h> | 
| 49 | #include "foundation/PxIntrinsics.h" | 
| 50 | #include "foundation/PxSharedAssert.h" | 
| 51 |  | 
| 52 | #if !PX_DOXYGEN | 
| 53 | namespace physx | 
| 54 | { | 
| 55 | #endif | 
| 56 |  | 
| 57 | // constants | 
| 58 | static const float PxPi = float(3.141592653589793); | 
| 59 | static const float PxHalfPi = float(1.57079632679489661923); | 
| 60 | static const float PxTwoPi = float(6.28318530717958647692); | 
| 61 | static const float PxInvPi = float(0.31830988618379067154); | 
| 62 | static const float PxInvTwoPi = float(0.15915494309189533577); | 
| 63 | static const float PxPiDivTwo = float(1.57079632679489661923); | 
| 64 | static const float PxPiDivFour = float(0.78539816339744830962); | 
| 65 |  | 
| 66 | /** | 
| 67 | \brief The return value is the greater of the two specified values. | 
| 68 | */ | 
| 69 | template <class T> | 
| 70 | PX_CUDA_CALLABLE PX_FORCE_INLINE T PxMax(T a, T b) | 
| 71 | { | 
| 72 | 	return a < b ? b : a; | 
| 73 | } | 
| 74 |  | 
| 75 | //! overload for float to use fsel on xbox | 
| 76 | template <> | 
| 77 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxMax(float a, float b) | 
| 78 | { | 
| 79 | 	return intrinsics::selectMax(a, b); | 
| 80 | } | 
| 81 |  | 
| 82 | /** | 
| 83 | \brief The return value is the lesser of the two specified values. | 
| 84 | */ | 
| 85 | template <class T> | 
| 86 | PX_CUDA_CALLABLE PX_FORCE_INLINE T PxMin(T a, T b) | 
| 87 | { | 
| 88 | 	return a < b ? a : b; | 
| 89 | } | 
| 90 |  | 
| 91 | template <> | 
| 92 | //! overload for float to use fsel on xbox | 
| 93 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxMin(float a, float b) | 
| 94 | { | 
| 95 | 	return intrinsics::selectMin(a, b); | 
| 96 | } | 
| 97 |  | 
| 98 | /* | 
| 99 | Many of these are just implemented as PX_CUDA_CALLABLE PX_FORCE_INLINE calls to the C lib right now, | 
| 100 | but later we could replace some of them with some approximations or more | 
| 101 | clever stuff. | 
| 102 | */ | 
| 103 |  | 
| 104 | /** | 
| 105 | \brief abs returns the absolute value of its argument. | 
| 106 | */ | 
| 107 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAbs(float a) | 
| 108 | { | 
| 109 | 	return intrinsics::abs(a); | 
| 110 | } | 
| 111 |  | 
| 112 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool PxEquals(float a, float b, float eps) | 
| 113 | { | 
| 114 | 	return (PxAbs(a: a - b) < eps); | 
| 115 | } | 
| 116 |  | 
| 117 | /** | 
| 118 | \brief abs returns the absolute value of its argument. | 
| 119 | */ | 
| 120 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAbs(double a) | 
| 121 | { | 
| 122 | 	return ::fabs(x: a); | 
| 123 | } | 
| 124 |  | 
| 125 | /** | 
| 126 | \brief abs returns the absolute value of its argument. | 
| 127 | */ | 
| 128 | PX_CUDA_CALLABLE PX_FORCE_INLINE int32_t PxAbs(int32_t a) | 
| 129 | { | 
| 130 | 	return ::abs(x: a); | 
| 131 | } | 
| 132 |  | 
| 133 | /** | 
| 134 | \brief Clamps v to the range [hi,lo] | 
| 135 | */ | 
| 136 | template <class T> | 
| 137 | PX_CUDA_CALLABLE PX_FORCE_INLINE T PxClamp(T v, T lo, T hi) | 
| 138 | { | 
| 139 | 	PX_SHARED_ASSERT(lo <= hi); | 
| 140 | 	return PxMin(hi, PxMax(lo, v)); | 
| 141 | } | 
| 142 |  | 
| 143 | //!	\brief Square root. | 
| 144 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSqrt(float a) | 
| 145 | { | 
| 146 | 	return intrinsics::sqrt(a); | 
| 147 | } | 
| 148 |  | 
| 149 | //!	\brief Square root. | 
| 150 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxSqrt(double a) | 
| 151 | { | 
| 152 | 	return ::sqrt(x: a); | 
| 153 | } | 
| 154 |  | 
| 155 | //!	\brief reciprocal square root. | 
| 156 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxRecipSqrt(float a) | 
| 157 | { | 
| 158 | 	return intrinsics::recipSqrt(a); | 
| 159 | } | 
| 160 |  | 
| 161 | //!	\brief reciprocal square root. | 
| 162 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxRecipSqrt(double a) | 
| 163 | { | 
| 164 | 	return 1 / ::sqrt(x: a); | 
| 165 | } | 
| 166 |  | 
| 167 | //! trigonometry -- all angles are in radians. | 
| 168 |  | 
| 169 | //!	\brief Sine of an angle ( <b>Unit:</b> Radians ) | 
| 170 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSin(float a) | 
| 171 | { | 
| 172 | 	return intrinsics::sin(a); | 
| 173 | } | 
| 174 |  | 
| 175 | //!	\brief Sine of an angle ( <b>Unit:</b> Radians ) | 
| 176 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxSin(double a) | 
| 177 | { | 
| 178 | 	return ::sin(x: a); | 
| 179 | } | 
| 180 |  | 
| 181 | //!	\brief Cosine of an angle (<b>Unit:</b> Radians) | 
| 182 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxCos(float a) | 
| 183 | { | 
| 184 | 	return intrinsics::cos(a); | 
| 185 | } | 
| 186 |  | 
| 187 | //!	\brief Cosine of an angle (<b>Unit:</b> Radians) | 
| 188 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxCos(double a) | 
| 189 | { | 
| 190 | 	return ::cos(x: a); | 
| 191 | } | 
| 192 |  | 
| 193 | /** | 
| 194 | \brief Tangent of an angle. | 
| 195 | <b>Unit:</b> Radians | 
| 196 | */ | 
| 197 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxTan(float a) | 
| 198 | { | 
| 199 | 	return ::tanf(x: a); | 
| 200 | } | 
| 201 |  | 
| 202 | /** | 
| 203 | \brief Tangent of an angle. | 
| 204 | <b>Unit:</b> Radians | 
| 205 | */ | 
| 206 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxTan(double a) | 
| 207 | { | 
| 208 | 	return ::tan(x: a); | 
| 209 | } | 
| 210 |  | 
| 211 | /** | 
| 212 | \brief Arcsine. | 
| 213 | Returns angle between -PI/2 and PI/2 in radians | 
| 214 | <b>Unit:</b> Radians | 
| 215 | */ | 
| 216 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAsin(float f) | 
| 217 | { | 
| 218 | 	return ::asinf(x: PxClamp(v: f, lo: -1.0f, hi: 1.0f)); | 
| 219 | } | 
| 220 |  | 
| 221 | /** | 
| 222 | \brief Arcsine. | 
| 223 | Returns angle between -PI/2 and PI/2 in radians | 
| 224 | <b>Unit:</b> Radians | 
| 225 | */ | 
| 226 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAsin(double f) | 
| 227 | { | 
| 228 | 	return ::asin(x: PxClamp(v: f, lo: -1.0, hi: 1.0)); | 
| 229 | } | 
| 230 |  | 
| 231 | /** | 
| 232 | \brief Arccosine. | 
| 233 | Returns angle between 0 and PI in radians | 
| 234 | <b>Unit:</b> Radians | 
| 235 | */ | 
| 236 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAcos(float f) | 
| 237 | { | 
| 238 | 	return ::acosf(x: PxClamp(v: f, lo: -1.0f, hi: 1.0f)); | 
| 239 | } | 
| 240 |  | 
| 241 | /** | 
| 242 | \brief Arccosine. | 
| 243 | Returns angle between 0 and PI in radians | 
| 244 | <b>Unit:</b> Radians | 
| 245 | */ | 
| 246 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAcos(double f) | 
| 247 | { | 
| 248 | 	return ::acos(x: PxClamp(v: f, lo: -1.0, hi: 1.0)); | 
| 249 | } | 
| 250 |  | 
| 251 | /** | 
| 252 | \brief ArcTangent. | 
| 253 | Returns angle between -PI/2 and PI/2 in radians | 
| 254 | <b>Unit:</b> Radians | 
| 255 | */ | 
| 256 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAtan(float a) | 
| 257 | { | 
| 258 | 	return ::atanf(x: a); | 
| 259 | } | 
| 260 |  | 
| 261 | /** | 
| 262 | \brief ArcTangent. | 
| 263 | Returns angle between -PI/2 and PI/2 in radians | 
| 264 | <b>Unit:</b> Radians | 
| 265 | */ | 
| 266 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAtan(double a) | 
| 267 | { | 
| 268 | 	return ::atan(x: a); | 
| 269 | } | 
| 270 |  | 
| 271 | /** | 
| 272 | \brief Arctangent of (x/y) with correct sign. | 
| 273 | Returns angle between -PI and PI in radians | 
| 274 | <b>Unit:</b> Radians | 
| 275 | */ | 
| 276 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxAtan2(float x, float y) | 
| 277 | { | 
| 278 | 	return ::atan2f(y: x, x: y); | 
| 279 | } | 
| 280 |  | 
| 281 | /** | 
| 282 | \brief Arctangent of (x/y) with correct sign. | 
| 283 | Returns angle between -PI and PI in radians | 
| 284 | <b>Unit:</b> Radians | 
| 285 | */ | 
| 286 | PX_CUDA_CALLABLE PX_FORCE_INLINE double PxAtan2(double x, double y) | 
| 287 | { | 
| 288 | 	return ::atan2(y: x, x: y); | 
| 289 | } | 
| 290 |  | 
| 291 | //!	\brief returns true if the passed number is a finite floating point number as opposed to INF, NAN, etc. | 
| 292 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool PxIsFinite(float f) | 
| 293 | { | 
| 294 | 	return intrinsics::isFinite(a: f); | 
| 295 | } | 
| 296 |  | 
| 297 | //!	\brief returns true if the passed number is a finite floating point number as opposed to INF, NAN, etc. | 
| 298 | PX_CUDA_CALLABLE PX_FORCE_INLINE bool PxIsFinite(double f) | 
| 299 | { | 
| 300 | 	return intrinsics::isFinite(a: f); | 
| 301 | } | 
| 302 |  | 
| 303 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxFloor(float a) | 
| 304 | { | 
| 305 | 	return ::floorf(x: a); | 
| 306 | } | 
| 307 |  | 
| 308 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxExp(float a) | 
| 309 | { | 
| 310 | 	return ::expf(x: a); | 
| 311 | } | 
| 312 |  | 
| 313 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxCeil(float a) | 
| 314 | { | 
| 315 | 	return ::ceilf(x: a); | 
| 316 | } | 
| 317 |  | 
| 318 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxSign(float a) | 
| 319 | { | 
| 320 | 	return physx::intrinsics::sign(a); | 
| 321 | } | 
| 322 |  | 
| 323 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxPow(float x, float y) | 
| 324 | { | 
| 325 | 	return ::powf(x: x, y: y); | 
| 326 | } | 
| 327 |  | 
| 328 | PX_CUDA_CALLABLE PX_FORCE_INLINE float PxLog(float x) | 
| 329 | { | 
| 330 | 	return ::logf(x: x); | 
| 331 | } | 
| 332 |  | 
| 333 | #if !PX_DOXYGEN | 
| 334 | } // namespace physx | 
| 335 | #endif | 
| 336 |  | 
| 337 | /** @} */ | 
| 338 | #endif // #ifndef PXFOUNDATION_PXMATH_H | 
| 339 |  |