1 | // Copyright (C) 2022 The Qt Company Ltd. |
2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
3 | |
4 | // Based on: |
5 | // https://behreajj.medium.com/making-a-capsule-mesh-via-script-in-five-3d-environments-c2214abf02db |
6 | |
7 | #include "qcapsulegeometry_p.h" |
8 | |
9 | #include <QVector3D> |
10 | |
11 | QT_BEGIN_NAMESPACE |
12 | |
13 | /*! |
14 | \qmltype CapsuleGeometry |
15 | \inqmlmodule QtQuick3D.Physics.Helpers |
16 | \inherits Geometry |
17 | \since 6.4 |
18 | \brief A geometry for generating a capsule model. |
19 | |
20 | A geometry for generating a capsule model. |
21 | */ |
22 | |
23 | /*! \qmlproperty bool CapsuleGeometry::enableNormals |
24 | \default true |
25 | |
26 | Generate mesh face normals. |
27 | */ |
28 | |
29 | /*! \qmlproperty bool CapsuleGeometry::enableUV |
30 | \default false |
31 | |
32 | Generate mesh uv coordinates. |
33 | */ |
34 | |
35 | /*! \qmlproperty int CapsuleGeometry::longitudes |
36 | \default 32 |
37 | |
38 | Number of longitudes, or meridians, distributed by azimuth. |
39 | */ |
40 | |
41 | /*! \qmlproperty int CapsuleGeometry::latitudes |
42 | \default 16 |
43 | |
44 | Number of latitudes, distributed by inclination. Must be even. |
45 | */ |
46 | |
47 | /*! \qmlproperty int CapsuleGeometry::rings |
48 | \default 1 |
49 | |
50 | Number of sections in cylinder between hemispheres. |
51 | */ |
52 | |
53 | /*! \qmlproperty real CapsuleGeometry::height |
54 | \default 100 |
55 | |
56 | Height of the middle cylinder on the y axis, excluding the hemispheres. |
57 | */ |
58 | |
59 | /*! \qmlproperty real CapsuleGeometry::diameter |
60 | \default 100 |
61 | |
62 | Diameter on the xz plane. |
63 | */ |
64 | |
65 | CapsuleGeometry::CapsuleGeometry() |
66 | { |
67 | updateData(); |
68 | } |
69 | |
70 | void CapsuleGeometry::setEnableNormals(bool enable) |
71 | { |
72 | if (m_enableNormals == enable) |
73 | return; |
74 | |
75 | m_enableNormals = enable; |
76 | emit enableNormalsChanged(); |
77 | updateData(); |
78 | update(); |
79 | } |
80 | |
81 | void CapsuleGeometry::setEnableUV(bool enable) |
82 | { |
83 | if (m_enableUV == enable) |
84 | return; |
85 | |
86 | m_enableUV = enable; |
87 | emit enableUVChanged(); |
88 | updateData(); |
89 | update(); |
90 | } |
91 | |
92 | void CapsuleGeometry::setLongitudes(int longitudes) |
93 | { |
94 | if (m_longitudes == longitudes) |
95 | return; |
96 | |
97 | m_longitudes = longitudes; |
98 | emit longitudesChanged(); |
99 | updateData(); |
100 | update(); |
101 | } |
102 | |
103 | void CapsuleGeometry::setLatitudes(int latitudes) |
104 | { |
105 | if (m_latitudes == latitudes) |
106 | return; |
107 | |
108 | m_latitudes = latitudes; |
109 | emit latitudesChanged(); |
110 | updateData(); |
111 | update(); |
112 | } |
113 | |
114 | void CapsuleGeometry::setRings(int rings) |
115 | { |
116 | if (m_rings == rings) |
117 | return; |
118 | |
119 | m_rings = rings; |
120 | emit ringsChanged(); |
121 | updateData(); |
122 | update(); |
123 | } |
124 | |
125 | void CapsuleGeometry::setHeight(float height) |
126 | { |
127 | if (m_height == height) |
128 | return; |
129 | |
130 | m_height = height; |
131 | emit heightChanged(); |
132 | updateData(); |
133 | update(); |
134 | } |
135 | |
136 | void CapsuleGeometry::setDiameter(float diameter) |
137 | { |
138 | if (m_diameter == diameter) |
139 | return; |
140 | |
141 | m_diameter = diameter; |
142 | emit diameterChanged(); |
143 | updateData(); |
144 | update(); |
145 | } |
146 | |
147 | struct Face |
148 | { |
149 | // Coordinate index. |
150 | uint32_t vertexIdx = 0; |
151 | // Texture coordinate index. |
152 | uint32_t textureIdx = 0; |
153 | // Normal index. |
154 | uint32_t normalIdx = 0; |
155 | }; |
156 | |
157 | void CapsuleGeometry::updateData() |
158 | { |
159 | clear(); |
160 | |
161 | constexpr float EPSILON = 0.001f; |
162 | const float radius = m_diameter * 0.5f; |
163 | |
164 | // m_latitudes must be even for symmetry. |
165 | int verifLats = qMax(a: 2, b: m_latitudes); |
166 | if (verifLats % 2 != 0) { |
167 | verifLats += 1; |
168 | } |
169 | |
170 | // Validate input arguments. |
171 | uint32_t verifLons = qMax(a: 3, b: m_longitudes); |
172 | uint32_t verifRings = qMax(a: 0, b: m_rings); |
173 | float verifDepth = qMax(a: EPSILON, b: m_height); |
174 | float verifRad = qMax(a: EPSILON, b: radius); |
175 | |
176 | // Intermediary calculations. |
177 | bool calcMiddle = verifRings > 0; |
178 | uint32_t halfLats = verifLats / 2; |
179 | uint32_t halfLatsn1 = halfLats - 1; |
180 | uint32_t halfLatsn2 = halfLats - 2; |
181 | uint32_t verifRingsp1 = verifRings + 1; |
182 | uint32_t verifLonsp1 = verifLons + 1; |
183 | uint32_t lonsHalfLatn1 = halfLatsn1 * verifLons; |
184 | uint32_t lonsRingsp1 = verifRingsp1 * verifLons; |
185 | float halfDepth = verifDepth * 0.5f; |
186 | float summit = halfDepth + verifRad; |
187 | |
188 | // Index offsets for coordinates. |
189 | uint32_t idxVNEquator = verifLonsp1 + verifLons * halfLatsn2; |
190 | uint32_t idxVCyl = idxVNEquator + verifLons; |
191 | uint32_t idxVSEquator = idxVCyl; |
192 | if (calcMiddle) { |
193 | idxVSEquator += verifLons * verifRings; |
194 | } |
195 | uint32_t idxVSouth = idxVSEquator + verifLons; |
196 | uint32_t idxVSouthCap = idxVSouth + verifLons * halfLatsn2; |
197 | uint32_t idxVSouthPole = idxVSouthCap + verifLons; |
198 | |
199 | // Index offsets for texture coordinates. |
200 | uint32_t idxVtNEquator = verifLons + verifLonsp1 * halfLatsn1; |
201 | uint32_t idxVtCyl = idxVtNEquator + verifLonsp1; |
202 | uint32_t idxVtSEquator = idxVtCyl; |
203 | if (calcMiddle) { |
204 | idxVtSEquator += verifLonsp1 * verifRings; |
205 | } |
206 | uint32_t idxVtSHemi = idxVtSEquator + verifLonsp1; |
207 | uint32_t idxVtSPolar = idxVtSHemi + verifLonsp1 * halfLatsn2; |
208 | uint32_t idxVtSCap = idxVtSPolar + verifLonsp1; |
209 | |
210 | // Index offsets for normals. |
211 | uint32_t idxVnSouth = idxVNEquator + verifLons; |
212 | uint32_t idxVnSouthCap = idxVnSouth + verifLons * halfLatsn2; |
213 | uint32_t idxVnSouthPole = idxVnSouthCap + verifLons; |
214 | |
215 | // Find index offsets for face indices. |
216 | uint32_t idxFsCyl = verifLons + lonsHalfLatn1 * 2; |
217 | uint32_t idxFsSouthEquat = idxFsCyl + lonsRingsp1 * 2; |
218 | uint32_t idxFsSouthHemi = idxFsSouthEquat + lonsHalfLatn1 * 2; |
219 | |
220 | // Array lengths. |
221 | uint32_t verticesLen = idxVSouthPole + 1; |
222 | uint32_t texturesLen = idxVtSCap + verifLons; |
223 | uint32_t normalsLen = idxVnSouthPole + 1; |
224 | uint32_t facesLen = idxFsSouthHemi + verifLons; |
225 | |
226 | // Initialize arrays. |
227 | auto vertices = QList<QVector3D>(verticesLen); |
228 | auto vertexTextures = QList<QVector2D>(texturesLen); |
229 | auto vertexNormals = QList<QVector3D>(normalsLen); |
230 | |
231 | // If we plan to use only triangles, we can initialize |
232 | // the inner array to 3. |
233 | auto faces = QList<std::array<Face, 3>>(facesLen); |
234 | |
235 | // North pole. |
236 | vertices[0] = QVector3D(-summit, 0.f, 0.f); |
237 | vertexNormals[0] = QVector3D(-1.f, 0.f, 0.f); |
238 | |
239 | // South pole. |
240 | vertices[idxVSouthPole] = QVector3D(summit, 0.f, 0.f); |
241 | vertexNormals[idxVnSouthPole] = QVector3D(1.f, 0.f, 0.f); |
242 | |
243 | // Calculate polar texture coordinates, equatorial coordinates. |
244 | QList<float> sinThetaCache = QList<float>(verifLons); |
245 | QList<float> cosThetaCache = QList<float>(verifLons); |
246 | float toTheta = 2 * M_PI / verifLons; |
247 | float toPhi = M_PI / verifLats; |
248 | float toTexHorizontal = 1.f / verifLons; |
249 | float toTexVertical = 1.f / halfLats; |
250 | |
251 | for (uint32_t j = 0; j < verifLons; ++j) { |
252 | |
253 | // Coordinates. |
254 | float theta = j * toTheta; |
255 | float sinTheta = sin(x: theta); |
256 | float cosTheta = cos(x: theta); |
257 | sinThetaCache[j] = sinTheta; |
258 | cosThetaCache[j] = cosTheta; |
259 | |
260 | // Texture coordinates at North and South pole. |
261 | float sTex = (j + 0.5f) * toTexHorizontal; |
262 | vertexTextures[j] = QVector2D(sTex, 1.f); |
263 | vertexTextures[idxVtSCap + j] = QVector2D(sTex, 0.f); |
264 | |
265 | // Multiply by radius to get equatorial x and y. |
266 | float x = verifRad * cosTheta; |
267 | float z = verifRad * sinTheta; |
268 | |
269 | // Set equatorial coordinates. Offset by cylinder depth. |
270 | vertices[idxVNEquator + j] = QVector3D(-halfDepth, x, -z); |
271 | vertices[idxVSEquator + j] = QVector3D(halfDepth, x, -z); |
272 | |
273 | // Set equatorial normals. |
274 | vertexNormals[idxVNEquator + j] = QVector3D(0.f, cosTheta, -sinTheta); |
275 | |
276 | // Set polar indices. |
277 | uint32_t jNextVt = j + 1; |
278 | uint32_t jNextV = jNextVt % verifLons; |
279 | |
280 | // North triangle. |
281 | faces[j] = { Face { .vertexIdx: 0, .textureIdx: j, .normalIdx: 0 }, Face { .vertexIdx: jNextVt, .textureIdx: verifLons + j, .normalIdx: jNextVt }, |
282 | Face { .vertexIdx: 1 + jNextV, .textureIdx: verifLons + jNextVt, .normalIdx: 1 + jNextV } }; |
283 | |
284 | // South triangle. |
285 | faces[idxFsSouthHemi + j] = { |
286 | Face { .vertexIdx: idxVSouthPole, .textureIdx: idxVtSCap + j, .normalIdx: idxVnSouthPole }, |
287 | Face { .vertexIdx: idxVSouthCap + jNextV, .textureIdx: idxVtSPolar + jNextVt, .normalIdx: idxVnSouthCap + jNextV }, |
288 | Face { .vertexIdx: idxVSouthCap + j, .textureIdx: idxVtSPolar + j, .normalIdx: idxVnSouthCap + j } |
289 | }; |
290 | } |
291 | |
292 | // Determine UV aspect ratio from the profile. |
293 | float vtAspectRatio = 0.f; |
294 | switch (m_uvProfile) { |
295 | case CapsuleGeometry::UvProfile::Fixed: |
296 | vtAspectRatio = 0.33333333f; |
297 | break; |
298 | case CapsuleGeometry::UvProfile::Aspect: |
299 | vtAspectRatio = verifRad / (verifDepth + verifRad + verifRad); |
300 | break; |
301 | case CapsuleGeometry::UvProfile::Uniform: |
302 | vtAspectRatio = (float)halfLats / (verifRingsp1 + verifLats); |
303 | break; |
304 | } |
305 | float vtAspectSouth = vtAspectRatio; |
306 | float vtAspectNorth = 1.f - vtAspectRatio; |
307 | |
308 | // Cache horizontal measure. |
309 | QList<float> sTexCache = QList<float>(verifLonsp1); |
310 | |
311 | // Calculate equatorial texture coordinates. |
312 | for (uint32_t j = 0; j < verifLonsp1; ++j) { |
313 | float sTex = j * toTexHorizontal; |
314 | sTexCache[j] = sTex; |
315 | vertexTextures[idxVtNEquator + j] = QVector2D(sTex, vtAspectNorth); |
316 | vertexTextures[idxVtSEquator + j] = QVector2D(sTex, vtAspectSouth); |
317 | } |
318 | |
319 | // Divide m_latitudes into hemispheres. Start at i = 1 due to the poles. |
320 | uint32_t vHemiOffsetNorth = 1; |
321 | uint32_t vHemiOffsetSouth = idxVSouth; |
322 | uint32_t vtHemiOffsetNorth = verifLons; |
323 | uint32_t vtHemiOffsetSouth = idxVtSHemi; |
324 | uint32_t vnHemiOffsetSouth = idxVnSouth; |
325 | uint32_t fHemiOffsetNorth = verifLons; |
326 | uint32_t fHemiOffsetSouth = idxFsSouthEquat; |
327 | |
328 | for (uint32_t i = 0; i < halfLatsn1; ++i) { |
329 | uint32_t iLonsCurr = i * verifLons; |
330 | float ip1f = i + 1.f; |
331 | float phi = ip1f * toPhi; |
332 | float sinPhiSouth = sin(x: phi); |
333 | float cosPhiSouth = cos(x: phi); |
334 | |
335 | // Use trigonometric symmetries to avoid calculating another |
336 | // sine and cosine for phi North. |
337 | float cosPhiNorth = sinPhiSouth; |
338 | float sinPhiNorth = -cosPhiSouth; |
339 | |
340 | // For North coordinates, multiply by radius and offset. |
341 | float rhoCosPhiNorth = verifRad * cosPhiNorth; |
342 | float rhoSinPhiNorth = verifRad * sinPhiNorth; |
343 | float yOffsetNorth = halfDepth - rhoSinPhiNorth; |
344 | |
345 | // For South coordinates, multiply by radius and offset. |
346 | float rhoCosPhiSouth = verifRad * cosPhiSouth; |
347 | float rhoSinPhiSouth = verifRad * sinPhiSouth; |
348 | float yOffsetSouth = -halfDepth - rhoSinPhiSouth; |
349 | |
350 | // North coordinate index offset. |
351 | uint32_t vCurrLatN = 1 + iLonsCurr; |
352 | uint32_t vNextLatN = vCurrLatN + verifLons; |
353 | |
354 | // South coordinate index offset. |
355 | uint32_t vCurrLatS = idxVSEquator + iLonsCurr; |
356 | uint32_t vNextLatS = vCurrLatS + verifLons; |
357 | |
358 | // North texture coordinate index offset. |
359 | uint32_t vtCurrLatN = verifLons + i * verifLonsp1; |
360 | uint32_t vtNextLatN = vtCurrLatN + verifLonsp1; |
361 | |
362 | // South texture coordinate index offset. |
363 | uint32_t vtCurrLatS = idxVtSEquator + i * verifLonsp1; |
364 | uint32_t vtNextLatS = vtCurrLatS + verifLonsp1; |
365 | |
366 | // North normal index offset. |
367 | uint32_t vnCurrLatN = 1 + iLonsCurr; |
368 | uint32_t vnNextLatN = vnCurrLatN + verifLons; |
369 | |
370 | // South normal index offset. |
371 | uint32_t vnCurrLatS = idxVNEquator + iLonsCurr; |
372 | uint32_t vnNextLatS = vnCurrLatS + verifLons; |
373 | |
374 | // Coordinates, normals and face indices. |
375 | for (uint32_t j = 0; j < verifLons; ++j) { |
376 | float sinTheta = sinThetaCache[j]; |
377 | float cosTheta = cosThetaCache[j]; |
378 | |
379 | // North coordinate. |
380 | vertices[vHemiOffsetNorth] = |
381 | QVector3D(-yOffsetNorth, rhoCosPhiNorth * cosTheta, -rhoCosPhiNorth * sinTheta); |
382 | |
383 | // North normal. |
384 | vertexNormals[vHemiOffsetNorth] = |
385 | QVector3D(sinPhiNorth, cosPhiNorth * cosTheta, -cosPhiNorth * sinTheta); |
386 | |
387 | // South coordinate. |
388 | vertices[vHemiOffsetSouth] = |
389 | QVector3D(-yOffsetSouth, rhoCosPhiSouth * cosTheta, -rhoCosPhiSouth * sinTheta); |
390 | |
391 | // South normal. |
392 | vertexNormals[vnHemiOffsetSouth] = |
393 | QVector3D(sinPhiSouth, cosPhiSouth * cosTheta, -cosPhiSouth * sinTheta); |
394 | |
395 | ++vHemiOffsetNorth; |
396 | ++vHemiOffsetSouth; |
397 | ++vnHemiOffsetSouth; |
398 | |
399 | uint32_t jNextVt = j + 1; |
400 | uint32_t jNextV = jNextVt % verifLons; |
401 | |
402 | // North coordinate indices. |
403 | uint32_t vn00 = vCurrLatN + j; |
404 | uint32_t vn01 = vNextLatN + j; |
405 | uint32_t vn11 = vNextLatN + jNextV; |
406 | uint32_t vn10 = vCurrLatN + jNextV; |
407 | |
408 | // South coordinate indices. |
409 | uint32_t vs00 = vCurrLatS + j; |
410 | uint32_t vs01 = vNextLatS + j; |
411 | uint32_t vs11 = vNextLatS + jNextV; |
412 | uint32_t vs10 = vCurrLatS + jNextV; |
413 | |
414 | // North texture coordinate indices. |
415 | uint32_t vtn00 = vtCurrLatN + j; |
416 | uint32_t vtn01 = vtNextLatN + j; |
417 | uint32_t vtn11 = vtNextLatN + jNextVt; |
418 | uint32_t vtn10 = vtCurrLatN + jNextVt; |
419 | |
420 | // South texture coordinate indices. |
421 | uint32_t vts00 = vtCurrLatS + j; |
422 | uint32_t vts01 = vtNextLatS + j; |
423 | uint32_t vts11 = vtNextLatS + jNextVt; |
424 | uint32_t vts10 = vtCurrLatS + jNextVt; |
425 | |
426 | // North normal indices. |
427 | uint32_t vnn00 = vnCurrLatN + j; |
428 | uint32_t vnn01 = vnNextLatN + j; |
429 | uint32_t vnn11 = vnNextLatN + jNextV; |
430 | uint32_t vnn10 = vnCurrLatN + jNextV; |
431 | |
432 | // South normal indices. |
433 | uint32_t vns00 = vnCurrLatS + j; |
434 | uint32_t vns01 = vnNextLatS + j; |
435 | uint32_t vns11 = vnNextLatS + jNextV; |
436 | uint32_t vns10 = vnCurrLatS + jNextV; |
437 | |
438 | // North triangles. |
439 | faces[fHemiOffsetNorth] = { Face { .vertexIdx: vn00, .textureIdx: vtn00, .normalIdx: vnn00 }, Face { .vertexIdx: vn11, .textureIdx: vtn11, .normalIdx: vnn11 }, |
440 | Face { .vertexIdx: vn10, .textureIdx: vtn10, .normalIdx: vnn10 } }; |
441 | |
442 | faces[fHemiOffsetNorth + 1] = { Face { .vertexIdx: vn00, .textureIdx: vtn00, .normalIdx: vnn00 }, |
443 | Face { .vertexIdx: vn01, .textureIdx: vtn01, .normalIdx: vnn01 }, |
444 | Face { .vertexIdx: vn11, .textureIdx: vtn11, .normalIdx: vnn11 } }; |
445 | |
446 | // South triangles. |
447 | faces[fHemiOffsetSouth] = { Face { .vertexIdx: vs00, .textureIdx: vts00, .normalIdx: vns00 }, Face { .vertexIdx: vs11, .textureIdx: vts11, .normalIdx: vns11 }, |
448 | Face { .vertexIdx: vs10, .textureIdx: vts10, .normalIdx: vns10 } }; |
449 | |
450 | faces[fHemiOffsetSouth + 1] = { Face { .vertexIdx: vs00, .textureIdx: vts00, .normalIdx: vns00 }, |
451 | Face { .vertexIdx: vs01, .textureIdx: vts01, .normalIdx: vns01 }, |
452 | Face { .vertexIdx: vs11, .textureIdx: vts11, .normalIdx: vns11 } }; |
453 | |
454 | fHemiOffsetNorth += 2; |
455 | fHemiOffsetSouth += 2; |
456 | } |
457 | |
458 | // For UVs, linear interpolation from North pole to |
459 | // North aspect ratio; and from South pole to South |
460 | // aspect ratio. |
461 | float tTexFac = ip1f * toTexVertical; |
462 | float tTexNorth = 1.f - tTexFac + tTexFac * vtAspectNorth; |
463 | float tTexSouth = vtAspectSouth * (1.f - tTexFac); |
464 | |
465 | // Texture coordinates. |
466 | for (uint32_t j = 0; j < verifLonsp1; ++j) { |
467 | float sTex = sTexCache[j]; |
468 | |
469 | vertexTextures[vtHemiOffsetNorth] = QVector2D(sTex, tTexNorth); |
470 | vertexTextures[vtHemiOffsetSouth] = QVector2D(sTex, tTexSouth); |
471 | |
472 | ++vtHemiOffsetNorth; |
473 | ++vtHemiOffsetSouth; |
474 | } |
475 | } |
476 | |
477 | // Calculate sections of cylinder in middle. |
478 | if (calcMiddle) { |
479 | |
480 | // Linear interpolation must exclude the origin (North equator) |
481 | // and the destination (South equator), so step must never equal |
482 | // 0.0 or 1.0 . |
483 | float toFac = 1.f / verifRingsp1; |
484 | uint32_t vCylOffset = idxVCyl; |
485 | uint32_t vtCylOffset = idxVtCyl; |
486 | for (uint32_t m = 1; m < verifRingsp1; ++m) { |
487 | float fac = m * toFac; |
488 | float cmplFac = 1.f - fac; |
489 | |
490 | // Coordinates. |
491 | for (uint32_t j = 0; j < verifLons; ++j) { |
492 | QVector3D vEquatorNorth = vertices[idxVNEquator + j]; |
493 | QVector3D vEquatorSouth = vertices[idxVSEquator + j]; |
494 | |
495 | // xy should be the same for both North and South. |
496 | // North z should equal half_depth while South z |
497 | // should equal -half_depth. However this is kept as |
498 | // a linear interpolation for clarity. |
499 | vertices[vCylOffset] = |
500 | QVector3D(cmplFac * vEquatorNorth.x() + fac * vEquatorSouth.x(), |
501 | cmplFac * vEquatorNorth.y() + fac * vEquatorSouth.y(), |
502 | cmplFac * vEquatorNorth.z() + fac * vEquatorSouth.z()); |
503 | |
504 | ++vCylOffset; |
505 | } |
506 | |
507 | // Texture coordinates. |
508 | float tTex = cmplFac * vtAspectNorth + fac * vtAspectSouth; |
509 | for (uint32_t j = 0; j < verifLonsp1; ++j) { |
510 | float sTex = sTexCache[j]; |
511 | vertexTextures[vtCylOffset] = QVector2D(sTex, tTex); |
512 | ++vtCylOffset; |
513 | } |
514 | } |
515 | } |
516 | |
517 | // Cylinder face indices. |
518 | uint32_t fCylOffset = idxFsCyl; |
519 | for (uint32_t m = 0; m < verifRingsp1; ++m) { |
520 | uint32_t vCurrRing = idxVNEquator + m * verifLons; |
521 | uint32_t vNextRing = vCurrRing + verifLons; |
522 | |
523 | uint32_t vtCurrRing = idxVtNEquator + m * verifLonsp1; |
524 | uint32_t vtNextRing = vtCurrRing + verifLonsp1; |
525 | |
526 | for (uint32_t j = 0; j < verifLons; ++j) { |
527 | uint32_t jNextVt = j + 1; |
528 | uint32_t jNextV = jNextVt % verifLons; |
529 | |
530 | // Coordinate corners. |
531 | uint32_t v00 = vCurrRing + j; |
532 | uint32_t v01 = vNextRing + j; |
533 | uint32_t v11 = vNextRing + jNextV; |
534 | uint32_t v10 = vCurrRing + jNextV; |
535 | |
536 | // Texture coordinate corners. |
537 | uint32_t vt00 = vtCurrRing + j; |
538 | uint32_t vt01 = vtNextRing + j; |
539 | uint32_t vt11 = vtNextRing + jNextVt; |
540 | uint32_t vt10 = vtCurrRing + jNextVt; |
541 | |
542 | // Normal corners. |
543 | uint32_t vn0 = idxVNEquator + j; |
544 | uint32_t vn1 = idxVNEquator + jNextV; |
545 | |
546 | faces[fCylOffset] = { Face { .vertexIdx: v00, .textureIdx: vt00, .normalIdx: vn0 }, Face { .vertexIdx: v11, .textureIdx: vt11, .normalIdx: vn1 }, |
547 | Face { .vertexIdx: v10, .textureIdx: vt10, .normalIdx: vn1 } }; |
548 | |
549 | faces[fCylOffset + 1] = { Face { .vertexIdx: v00, .textureIdx: vt00, .normalIdx: vn0 }, Face { .vertexIdx: v01, .textureIdx: vt01, .normalIdx: vn0 }, |
550 | Face { .vertexIdx: v11, .textureIdx: vt11, .normalIdx: vn1 } }; |
551 | |
552 | fCylOffset += 2; |
553 | } |
554 | } |
555 | |
556 | uint32_t stride = 3 * sizeof(float); |
557 | uint32_t strideNormal = 0; |
558 | uint32_t strideUV = 0; |
559 | |
560 | if (m_enableNormals) { |
561 | strideNormal = stride; |
562 | stride += 3 * sizeof(float); |
563 | } |
564 | if (m_enableUV) { |
565 | strideUV = stride; |
566 | stride += 2 * sizeof(float); |
567 | } |
568 | |
569 | QByteArray vertexData(vertices.length() * stride, Qt::Initialization::Uninitialized); |
570 | QByteArray indexData(faces.length() * 3 * sizeof(quint32), Qt::Initialization::Uninitialized); |
571 | |
572 | const auto getVertexPtr = [&](const int vertexIdx) { |
573 | return reinterpret_cast<QVector3D *>(vertexData.data() + stride * vertexIdx); |
574 | }; |
575 | const auto getNormalPtr = [&](const int vertexIdx) { |
576 | return reinterpret_cast<QVector3D *>(vertexData.data() + stride * vertexIdx + strideNormal); |
577 | }; |
578 | const auto getTexturePtr = [&](const int vertexIdx) { |
579 | return reinterpret_cast<QVector2D *>(vertexData.data() + stride * vertexIdx + strideUV); |
580 | }; |
581 | |
582 | uint32_t *indexPtr = reinterpret_cast<uint32_t *>(indexData.data()); |
583 | |
584 | for (qsizetype i = 0; i < vertices.length(); i++) { |
585 | *getVertexPtr(i) = vertices[i]; |
586 | } |
587 | |
588 | for (qsizetype i = 0; i < faces.length(); i++) { |
589 | const auto vertexIndices = |
590 | std::array<uint32_t, 3> { faces[i][0].vertexIdx, faces[i][1].vertexIdx, |
591 | faces[i][2].vertexIdx }; |
592 | *indexPtr = vertexIndices[0]; |
593 | indexPtr++; |
594 | *indexPtr = vertexIndices[1]; |
595 | indexPtr++; |
596 | *indexPtr = vertexIndices[2]; |
597 | indexPtr++; |
598 | |
599 | if (m_enableNormals) { |
600 | const auto normalIndices = |
601 | std::array<uint32_t, 3> { faces[i][0].normalIdx, faces[i][1].normalIdx, |
602 | faces[i][2].normalIdx }; |
603 | *getNormalPtr(vertexIndices[0]) = vertexNormals[normalIndices[0]]; |
604 | *getNormalPtr(vertexIndices[1]) = vertexNormals[normalIndices[1]]; |
605 | *getNormalPtr(vertexIndices[2]) = vertexNormals[normalIndices[2]]; |
606 | } |
607 | |
608 | if (m_enableUV) { |
609 | const auto textureIndices = |
610 | std::array<uint32_t, 3> { faces[i][0].textureIdx, faces[i][1].textureIdx, |
611 | faces[i][2].textureIdx }; |
612 | *getTexturePtr(vertexIndices[0]) = vertexTextures[textureIndices[0]]; |
613 | *getTexturePtr(vertexIndices[1]) = vertexTextures[textureIndices[1]]; |
614 | *getTexturePtr(vertexIndices[2]) = vertexTextures[textureIndices[2]]; |
615 | } |
616 | } |
617 | |
618 | addAttribute(semantic: QQuick3DGeometry::Attribute::PositionSemantic, offset: 0, |
619 | componentType: QQuick3DGeometry::Attribute::ComponentType::F32Type); |
620 | if (m_enableNormals) { |
621 | addAttribute(semantic: QQuick3DGeometry::Attribute::NormalSemantic, offset: strideNormal, |
622 | componentType: QQuick3DGeometry::Attribute::ComponentType::F32Type); |
623 | } |
624 | if (m_enableUV) { |
625 | addAttribute(semantic: QQuick3DGeometry::Attribute::TexCoordSemantic, offset: strideUV, |
626 | componentType: QQuick3DGeometry::Attribute::ComponentType::F32Type); |
627 | } |
628 | addAttribute(semantic: QQuick3DGeometry::Attribute::IndexSemantic, offset: 0, |
629 | componentType: QQuick3DGeometry::Attribute::ComponentType::U32Type); |
630 | |
631 | setStride(stride); |
632 | setVertexData(vertexData); |
633 | setIndexData(indexData); |
634 | |
635 | setBounds(min: QVector3D(-radius - 0.5f * m_height, -radius, -radius), |
636 | max: QVector3D(radius + 0.5f * m_height, radius, radius)); |
637 | } |
638 | |
639 | QT_END_NAMESPACE |
640 | |