| 1 | // Copyright (C) 2022 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only |
| 3 | |
| 4 | // Based on: |
| 5 | // https://behreajj.medium.com/making-a-capsule-mesh-via-script-in-five-3d-environments-c2214abf02db |
| 6 | |
| 7 | #include "qcapsulegeometry_p.h" |
| 8 | |
| 9 | #include <QVector3D> |
| 10 | |
| 11 | QT_BEGIN_NAMESPACE |
| 12 | |
| 13 | /*! |
| 14 | \qmltype CapsuleGeometry |
| 15 | \inqmlmodule QtQuick3D.Physics.Helpers |
| 16 | \inherits Geometry |
| 17 | \since 6.4 |
| 18 | \brief A geometry for generating a capsule model. |
| 19 | |
| 20 | A geometry for generating a capsule model. |
| 21 | */ |
| 22 | |
| 23 | /*! \qmlproperty bool CapsuleGeometry::enableNormals |
| 24 | \default true |
| 25 | |
| 26 | Generate mesh face normals. |
| 27 | */ |
| 28 | |
| 29 | /*! \qmlproperty bool CapsuleGeometry::enableUV |
| 30 | \default false |
| 31 | |
| 32 | Generate mesh uv coordinates. |
| 33 | */ |
| 34 | |
| 35 | /*! \qmlproperty int CapsuleGeometry::longitudes |
| 36 | \default 32 |
| 37 | |
| 38 | Number of longitudes, or meridians, distributed by azimuth. |
| 39 | */ |
| 40 | |
| 41 | /*! \qmlproperty int CapsuleGeometry::latitudes |
| 42 | \default 16 |
| 43 | |
| 44 | Number of latitudes, distributed by inclination. Must be even. |
| 45 | */ |
| 46 | |
| 47 | /*! \qmlproperty int CapsuleGeometry::rings |
| 48 | \default 1 |
| 49 | |
| 50 | Number of sections in cylinder between hemispheres. |
| 51 | */ |
| 52 | |
| 53 | /*! \qmlproperty real CapsuleGeometry::height |
| 54 | \default 100 |
| 55 | |
| 56 | Height of the middle cylinder on the y axis, excluding the hemispheres. |
| 57 | */ |
| 58 | |
| 59 | /*! \qmlproperty real CapsuleGeometry::diameter |
| 60 | \default 100 |
| 61 | |
| 62 | Diameter on the xz plane. |
| 63 | */ |
| 64 | |
| 65 | CapsuleGeometry::CapsuleGeometry() |
| 66 | { |
| 67 | updateData(); |
| 68 | } |
| 69 | |
| 70 | void CapsuleGeometry::setEnableNormals(bool enable) |
| 71 | { |
| 72 | if (m_enableNormals == enable) |
| 73 | return; |
| 74 | |
| 75 | m_enableNormals = enable; |
| 76 | emit enableNormalsChanged(); |
| 77 | updateData(); |
| 78 | update(); |
| 79 | } |
| 80 | |
| 81 | void CapsuleGeometry::setEnableUV(bool enable) |
| 82 | { |
| 83 | if (m_enableUV == enable) |
| 84 | return; |
| 85 | |
| 86 | m_enableUV = enable; |
| 87 | emit enableUVChanged(); |
| 88 | updateData(); |
| 89 | update(); |
| 90 | } |
| 91 | |
| 92 | void CapsuleGeometry::setLongitudes(int longitudes) |
| 93 | { |
| 94 | if (m_longitudes == longitudes) |
| 95 | return; |
| 96 | |
| 97 | m_longitudes = longitudes; |
| 98 | emit longitudesChanged(); |
| 99 | updateData(); |
| 100 | update(); |
| 101 | } |
| 102 | |
| 103 | void CapsuleGeometry::setLatitudes(int latitudes) |
| 104 | { |
| 105 | if (m_latitudes == latitudes) |
| 106 | return; |
| 107 | |
| 108 | m_latitudes = latitudes; |
| 109 | emit latitudesChanged(); |
| 110 | updateData(); |
| 111 | update(); |
| 112 | } |
| 113 | |
| 114 | void CapsuleGeometry::setRings(int rings) |
| 115 | { |
| 116 | if (m_rings == rings) |
| 117 | return; |
| 118 | |
| 119 | m_rings = rings; |
| 120 | emit ringsChanged(); |
| 121 | updateData(); |
| 122 | update(); |
| 123 | } |
| 124 | |
| 125 | void CapsuleGeometry::setHeight(float height) |
| 126 | { |
| 127 | if (m_height == height) |
| 128 | return; |
| 129 | |
| 130 | m_height = height; |
| 131 | emit heightChanged(); |
| 132 | updateData(); |
| 133 | update(); |
| 134 | } |
| 135 | |
| 136 | void CapsuleGeometry::setDiameter(float diameter) |
| 137 | { |
| 138 | if (m_diameter == diameter) |
| 139 | return; |
| 140 | |
| 141 | m_diameter = diameter; |
| 142 | emit diameterChanged(); |
| 143 | updateData(); |
| 144 | update(); |
| 145 | } |
| 146 | |
| 147 | struct Face |
| 148 | { |
| 149 | // Coordinate index. |
| 150 | uint32_t vertexIdx = 0; |
| 151 | // Texture coordinate index. |
| 152 | uint32_t textureIdx = 0; |
| 153 | // Normal index. |
| 154 | uint32_t normalIdx = 0; |
| 155 | }; |
| 156 | |
| 157 | void CapsuleGeometry::updateData() |
| 158 | { |
| 159 | clear(); |
| 160 | |
| 161 | constexpr float EPSILON = 0.001f; |
| 162 | const float radius = m_diameter * 0.5f; |
| 163 | |
| 164 | // m_latitudes must be even for symmetry. |
| 165 | int verifLats = qMax(a: 2, b: m_latitudes); |
| 166 | if (verifLats % 2 != 0) { |
| 167 | verifLats += 1; |
| 168 | } |
| 169 | |
| 170 | // Validate input arguments. |
| 171 | uint32_t verifLons = qMax(a: 3, b: m_longitudes); |
| 172 | uint32_t verifRings = qMax(a: 0, b: m_rings); |
| 173 | float verifDepth = qMax(a: EPSILON, b: m_height); |
| 174 | float verifRad = qMax(a: EPSILON, b: radius); |
| 175 | |
| 176 | // Intermediary calculations. |
| 177 | bool calcMiddle = verifRings > 0; |
| 178 | uint32_t halfLats = verifLats / 2; |
| 179 | uint32_t halfLatsn1 = halfLats - 1; |
| 180 | uint32_t halfLatsn2 = halfLats - 2; |
| 181 | uint32_t verifRingsp1 = verifRings + 1; |
| 182 | uint32_t verifLonsp1 = verifLons + 1; |
| 183 | uint32_t lonsHalfLatn1 = halfLatsn1 * verifLons; |
| 184 | uint32_t lonsRingsp1 = verifRingsp1 * verifLons; |
| 185 | float halfDepth = verifDepth * 0.5f; |
| 186 | float summit = halfDepth + verifRad; |
| 187 | |
| 188 | // Index offsets for coordinates. |
| 189 | uint32_t idxVNEquator = verifLonsp1 + verifLons * halfLatsn2; |
| 190 | uint32_t idxVCyl = idxVNEquator + verifLons; |
| 191 | uint32_t idxVSEquator = idxVCyl; |
| 192 | if (calcMiddle) { |
| 193 | idxVSEquator += verifLons * verifRings; |
| 194 | } |
| 195 | uint32_t idxVSouth = idxVSEquator + verifLons; |
| 196 | uint32_t idxVSouthCap = idxVSouth + verifLons * halfLatsn2; |
| 197 | uint32_t idxVSouthPole = idxVSouthCap + verifLons; |
| 198 | |
| 199 | // Index offsets for texture coordinates. |
| 200 | uint32_t idxVtNEquator = verifLons + verifLonsp1 * halfLatsn1; |
| 201 | uint32_t idxVtCyl = idxVtNEquator + verifLonsp1; |
| 202 | uint32_t idxVtSEquator = idxVtCyl; |
| 203 | if (calcMiddle) { |
| 204 | idxVtSEquator += verifLonsp1 * verifRings; |
| 205 | } |
| 206 | uint32_t idxVtSHemi = idxVtSEquator + verifLonsp1; |
| 207 | uint32_t idxVtSPolar = idxVtSHemi + verifLonsp1 * halfLatsn2; |
| 208 | uint32_t idxVtSCap = idxVtSPolar + verifLonsp1; |
| 209 | |
| 210 | // Index offsets for normals. |
| 211 | uint32_t idxVnSouth = idxVNEquator + verifLons; |
| 212 | uint32_t idxVnSouthCap = idxVnSouth + verifLons * halfLatsn2; |
| 213 | uint32_t idxVnSouthPole = idxVnSouthCap + verifLons; |
| 214 | |
| 215 | // Find index offsets for face indices. |
| 216 | uint32_t idxFsCyl = verifLons + lonsHalfLatn1 * 2; |
| 217 | uint32_t idxFsSouthEquat = idxFsCyl + lonsRingsp1 * 2; |
| 218 | uint32_t idxFsSouthHemi = idxFsSouthEquat + lonsHalfLatn1 * 2; |
| 219 | |
| 220 | // Array lengths. |
| 221 | uint32_t verticesLen = idxVSouthPole + 1; |
| 222 | uint32_t texturesLen = idxVtSCap + verifLons; |
| 223 | uint32_t normalsLen = idxVnSouthPole + 1; |
| 224 | uint32_t facesLen = idxFsSouthHemi + verifLons; |
| 225 | |
| 226 | // Initialize arrays. |
| 227 | auto vertices = QList<QVector3D>(verticesLen); |
| 228 | auto vertexTextures = QList<QVector2D>(texturesLen); |
| 229 | auto vertexNormals = QList<QVector3D>(normalsLen); |
| 230 | |
| 231 | // If we plan to use only triangles, we can initialize |
| 232 | // the inner array to 3. |
| 233 | auto faces = QList<std::array<Face, 3>>(facesLen); |
| 234 | |
| 235 | // North pole. |
| 236 | vertices[0] = QVector3D(-summit, 0.f, 0.f); |
| 237 | vertexNormals[0] = QVector3D(-1.f, 0.f, 0.f); |
| 238 | |
| 239 | // South pole. |
| 240 | vertices[idxVSouthPole] = QVector3D(summit, 0.f, 0.f); |
| 241 | vertexNormals[idxVnSouthPole] = QVector3D(1.f, 0.f, 0.f); |
| 242 | |
| 243 | // Calculate polar texture coordinates, equatorial coordinates. |
| 244 | QList<float> sinThetaCache = QList<float>(verifLons); |
| 245 | QList<float> cosThetaCache = QList<float>(verifLons); |
| 246 | float toTheta = 2 * M_PI / verifLons; |
| 247 | float toPhi = M_PI / verifLats; |
| 248 | float toTexHorizontal = 1.f / verifLons; |
| 249 | float toTexVertical = 1.f / halfLats; |
| 250 | |
| 251 | for (uint32_t j = 0; j < verifLons; ++j) { |
| 252 | |
| 253 | // Coordinates. |
| 254 | float theta = j * toTheta; |
| 255 | float sinTheta = sin(x: theta); |
| 256 | float cosTheta = cos(x: theta); |
| 257 | sinThetaCache[j] = sinTheta; |
| 258 | cosThetaCache[j] = cosTheta; |
| 259 | |
| 260 | // Texture coordinates at North and South pole. |
| 261 | float sTex = (j + 0.5f) * toTexHorizontal; |
| 262 | vertexTextures[j] = QVector2D(sTex, 1.f); |
| 263 | vertexTextures[idxVtSCap + j] = QVector2D(sTex, 0.f); |
| 264 | |
| 265 | // Multiply by radius to get equatorial x and y. |
| 266 | float x = verifRad * cosTheta; |
| 267 | float z = verifRad * sinTheta; |
| 268 | |
| 269 | // Set equatorial coordinates. Offset by cylinder depth. |
| 270 | vertices[idxVNEquator + j] = QVector3D(-halfDepth, x, -z); |
| 271 | vertices[idxVSEquator + j] = QVector3D(halfDepth, x, -z); |
| 272 | |
| 273 | // Set equatorial normals. |
| 274 | vertexNormals[idxVNEquator + j] = QVector3D(0.f, cosTheta, -sinTheta); |
| 275 | |
| 276 | // Set polar indices. |
| 277 | uint32_t jNextVt = j + 1; |
| 278 | uint32_t jNextV = jNextVt % verifLons; |
| 279 | |
| 280 | // North triangle. |
| 281 | faces[j] = { Face { .vertexIdx: 0, .textureIdx: j, .normalIdx: 0 }, Face { .vertexIdx: jNextVt, .textureIdx: verifLons + j, .normalIdx: jNextVt }, |
| 282 | Face { .vertexIdx: 1 + jNextV, .textureIdx: verifLons + jNextVt, .normalIdx: 1 + jNextV } }; |
| 283 | |
| 284 | // South triangle. |
| 285 | faces[idxFsSouthHemi + j] = { |
| 286 | Face { .vertexIdx: idxVSouthPole, .textureIdx: idxVtSCap + j, .normalIdx: idxVnSouthPole }, |
| 287 | Face { .vertexIdx: idxVSouthCap + jNextV, .textureIdx: idxVtSPolar + jNextVt, .normalIdx: idxVnSouthCap + jNextV }, |
| 288 | Face { .vertexIdx: idxVSouthCap + j, .textureIdx: idxVtSPolar + j, .normalIdx: idxVnSouthCap + j } |
| 289 | }; |
| 290 | } |
| 291 | |
| 292 | // Determine UV aspect ratio from the profile. |
| 293 | float vtAspectRatio = 0.f; |
| 294 | switch (m_uvProfile) { |
| 295 | case CapsuleGeometry::UvProfile::Fixed: |
| 296 | vtAspectRatio = 0.33333333f; |
| 297 | break; |
| 298 | case CapsuleGeometry::UvProfile::Aspect: |
| 299 | vtAspectRatio = verifRad / (verifDepth + verifRad + verifRad); |
| 300 | break; |
| 301 | case CapsuleGeometry::UvProfile::Uniform: |
| 302 | vtAspectRatio = (float)halfLats / (verifRingsp1 + verifLats); |
| 303 | break; |
| 304 | } |
| 305 | float vtAspectSouth = vtAspectRatio; |
| 306 | float vtAspectNorth = 1.f - vtAspectRatio; |
| 307 | |
| 308 | // Cache horizontal measure. |
| 309 | QList<float> sTexCache = QList<float>(verifLonsp1); |
| 310 | |
| 311 | // Calculate equatorial texture coordinates. |
| 312 | for (uint32_t j = 0; j < verifLonsp1; ++j) { |
| 313 | float sTex = j * toTexHorizontal; |
| 314 | sTexCache[j] = sTex; |
| 315 | vertexTextures[idxVtNEquator + j] = QVector2D(sTex, vtAspectNorth); |
| 316 | vertexTextures[idxVtSEquator + j] = QVector2D(sTex, vtAspectSouth); |
| 317 | } |
| 318 | |
| 319 | // Divide m_latitudes into hemispheres. Start at i = 1 due to the poles. |
| 320 | uint32_t vHemiOffsetNorth = 1; |
| 321 | uint32_t vHemiOffsetSouth = idxVSouth; |
| 322 | uint32_t vtHemiOffsetNorth = verifLons; |
| 323 | uint32_t vtHemiOffsetSouth = idxVtSHemi; |
| 324 | uint32_t vnHemiOffsetSouth = idxVnSouth; |
| 325 | uint32_t fHemiOffsetNorth = verifLons; |
| 326 | uint32_t fHemiOffsetSouth = idxFsSouthEquat; |
| 327 | |
| 328 | for (uint32_t i = 0; i < halfLatsn1; ++i) { |
| 329 | uint32_t iLonsCurr = i * verifLons; |
| 330 | float ip1f = i + 1.f; |
| 331 | float phi = ip1f * toPhi; |
| 332 | float sinPhiSouth = sin(x: phi); |
| 333 | float cosPhiSouth = cos(x: phi); |
| 334 | |
| 335 | // Use trigonometric symmetries to avoid calculating another |
| 336 | // sine and cosine for phi North. |
| 337 | float cosPhiNorth = sinPhiSouth; |
| 338 | float sinPhiNorth = -cosPhiSouth; |
| 339 | |
| 340 | // For North coordinates, multiply by radius and offset. |
| 341 | float rhoCosPhiNorth = verifRad * cosPhiNorth; |
| 342 | float rhoSinPhiNorth = verifRad * sinPhiNorth; |
| 343 | float yOffsetNorth = halfDepth - rhoSinPhiNorth; |
| 344 | |
| 345 | // For South coordinates, multiply by radius and offset. |
| 346 | float rhoCosPhiSouth = verifRad * cosPhiSouth; |
| 347 | float rhoSinPhiSouth = verifRad * sinPhiSouth; |
| 348 | float yOffsetSouth = -halfDepth - rhoSinPhiSouth; |
| 349 | |
| 350 | // North coordinate index offset. |
| 351 | uint32_t vCurrLatN = 1 + iLonsCurr; |
| 352 | uint32_t vNextLatN = vCurrLatN + verifLons; |
| 353 | |
| 354 | // South coordinate index offset. |
| 355 | uint32_t vCurrLatS = idxVSEquator + iLonsCurr; |
| 356 | uint32_t vNextLatS = vCurrLatS + verifLons; |
| 357 | |
| 358 | // North texture coordinate index offset. |
| 359 | uint32_t vtCurrLatN = verifLons + i * verifLonsp1; |
| 360 | uint32_t vtNextLatN = vtCurrLatN + verifLonsp1; |
| 361 | |
| 362 | // South texture coordinate index offset. |
| 363 | uint32_t vtCurrLatS = idxVtSEquator + i * verifLonsp1; |
| 364 | uint32_t vtNextLatS = vtCurrLatS + verifLonsp1; |
| 365 | |
| 366 | // North normal index offset. |
| 367 | uint32_t vnCurrLatN = 1 + iLonsCurr; |
| 368 | uint32_t vnNextLatN = vnCurrLatN + verifLons; |
| 369 | |
| 370 | // South normal index offset. |
| 371 | uint32_t vnCurrLatS = idxVNEquator + iLonsCurr; |
| 372 | uint32_t vnNextLatS = vnCurrLatS + verifLons; |
| 373 | |
| 374 | // Coordinates, normals and face indices. |
| 375 | for (uint32_t j = 0; j < verifLons; ++j) { |
| 376 | float sinTheta = sinThetaCache[j]; |
| 377 | float cosTheta = cosThetaCache[j]; |
| 378 | |
| 379 | // North coordinate. |
| 380 | vertices[vHemiOffsetNorth] = |
| 381 | QVector3D(-yOffsetNorth, rhoCosPhiNorth * cosTheta, -rhoCosPhiNorth * sinTheta); |
| 382 | |
| 383 | // North normal. |
| 384 | vertexNormals[vHemiOffsetNorth] = |
| 385 | QVector3D(sinPhiNorth, cosPhiNorth * cosTheta, -cosPhiNorth * sinTheta); |
| 386 | |
| 387 | // South coordinate. |
| 388 | vertices[vHemiOffsetSouth] = |
| 389 | QVector3D(-yOffsetSouth, rhoCosPhiSouth * cosTheta, -rhoCosPhiSouth * sinTheta); |
| 390 | |
| 391 | // South normal. |
| 392 | vertexNormals[vnHemiOffsetSouth] = |
| 393 | QVector3D(sinPhiSouth, cosPhiSouth * cosTheta, -cosPhiSouth * sinTheta); |
| 394 | |
| 395 | ++vHemiOffsetNorth; |
| 396 | ++vHemiOffsetSouth; |
| 397 | ++vnHemiOffsetSouth; |
| 398 | |
| 399 | uint32_t jNextVt = j + 1; |
| 400 | uint32_t jNextV = jNextVt % verifLons; |
| 401 | |
| 402 | // North coordinate indices. |
| 403 | uint32_t vn00 = vCurrLatN + j; |
| 404 | uint32_t vn01 = vNextLatN + j; |
| 405 | uint32_t vn11 = vNextLatN + jNextV; |
| 406 | uint32_t vn10 = vCurrLatN + jNextV; |
| 407 | |
| 408 | // South coordinate indices. |
| 409 | uint32_t vs00 = vCurrLatS + j; |
| 410 | uint32_t vs01 = vNextLatS + j; |
| 411 | uint32_t vs11 = vNextLatS + jNextV; |
| 412 | uint32_t vs10 = vCurrLatS + jNextV; |
| 413 | |
| 414 | // North texture coordinate indices. |
| 415 | uint32_t vtn00 = vtCurrLatN + j; |
| 416 | uint32_t vtn01 = vtNextLatN + j; |
| 417 | uint32_t vtn11 = vtNextLatN + jNextVt; |
| 418 | uint32_t vtn10 = vtCurrLatN + jNextVt; |
| 419 | |
| 420 | // South texture coordinate indices. |
| 421 | uint32_t vts00 = vtCurrLatS + j; |
| 422 | uint32_t vts01 = vtNextLatS + j; |
| 423 | uint32_t vts11 = vtNextLatS + jNextVt; |
| 424 | uint32_t vts10 = vtCurrLatS + jNextVt; |
| 425 | |
| 426 | // North normal indices. |
| 427 | uint32_t vnn00 = vnCurrLatN + j; |
| 428 | uint32_t vnn01 = vnNextLatN + j; |
| 429 | uint32_t vnn11 = vnNextLatN + jNextV; |
| 430 | uint32_t vnn10 = vnCurrLatN + jNextV; |
| 431 | |
| 432 | // South normal indices. |
| 433 | uint32_t vns00 = vnCurrLatS + j; |
| 434 | uint32_t vns01 = vnNextLatS + j; |
| 435 | uint32_t vns11 = vnNextLatS + jNextV; |
| 436 | uint32_t vns10 = vnCurrLatS + jNextV; |
| 437 | |
| 438 | // North triangles. |
| 439 | faces[fHemiOffsetNorth] = { Face { .vertexIdx: vn00, .textureIdx: vtn00, .normalIdx: vnn00 }, Face { .vertexIdx: vn11, .textureIdx: vtn11, .normalIdx: vnn11 }, |
| 440 | Face { .vertexIdx: vn10, .textureIdx: vtn10, .normalIdx: vnn10 } }; |
| 441 | |
| 442 | faces[fHemiOffsetNorth + 1] = { Face { .vertexIdx: vn00, .textureIdx: vtn00, .normalIdx: vnn00 }, |
| 443 | Face { .vertexIdx: vn01, .textureIdx: vtn01, .normalIdx: vnn01 }, |
| 444 | Face { .vertexIdx: vn11, .textureIdx: vtn11, .normalIdx: vnn11 } }; |
| 445 | |
| 446 | // South triangles. |
| 447 | faces[fHemiOffsetSouth] = { Face { .vertexIdx: vs00, .textureIdx: vts00, .normalIdx: vns00 }, Face { .vertexIdx: vs11, .textureIdx: vts11, .normalIdx: vns11 }, |
| 448 | Face { .vertexIdx: vs10, .textureIdx: vts10, .normalIdx: vns10 } }; |
| 449 | |
| 450 | faces[fHemiOffsetSouth + 1] = { Face { .vertexIdx: vs00, .textureIdx: vts00, .normalIdx: vns00 }, |
| 451 | Face { .vertexIdx: vs01, .textureIdx: vts01, .normalIdx: vns01 }, |
| 452 | Face { .vertexIdx: vs11, .textureIdx: vts11, .normalIdx: vns11 } }; |
| 453 | |
| 454 | fHemiOffsetNorth += 2; |
| 455 | fHemiOffsetSouth += 2; |
| 456 | } |
| 457 | |
| 458 | // For UVs, linear interpolation from North pole to |
| 459 | // North aspect ratio; and from South pole to South |
| 460 | // aspect ratio. |
| 461 | float tTexFac = ip1f * toTexVertical; |
| 462 | float tTexNorth = 1.f - tTexFac + tTexFac * vtAspectNorth; |
| 463 | float tTexSouth = vtAspectSouth * (1.f - tTexFac); |
| 464 | |
| 465 | // Texture coordinates. |
| 466 | for (uint32_t j = 0; j < verifLonsp1; ++j) { |
| 467 | float sTex = sTexCache[j]; |
| 468 | |
| 469 | vertexTextures[vtHemiOffsetNorth] = QVector2D(sTex, tTexNorth); |
| 470 | vertexTextures[vtHemiOffsetSouth] = QVector2D(sTex, tTexSouth); |
| 471 | |
| 472 | ++vtHemiOffsetNorth; |
| 473 | ++vtHemiOffsetSouth; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | // Calculate sections of cylinder in middle. |
| 478 | if (calcMiddle) { |
| 479 | |
| 480 | // Linear interpolation must exclude the origin (North equator) |
| 481 | // and the destination (South equator), so step must never equal |
| 482 | // 0.0 or 1.0 . |
| 483 | float toFac = 1.f / verifRingsp1; |
| 484 | uint32_t vCylOffset = idxVCyl; |
| 485 | uint32_t vtCylOffset = idxVtCyl; |
| 486 | for (uint32_t m = 1; m < verifRingsp1; ++m) { |
| 487 | float fac = m * toFac; |
| 488 | float cmplFac = 1.f - fac; |
| 489 | |
| 490 | // Coordinates. |
| 491 | for (uint32_t j = 0; j < verifLons; ++j) { |
| 492 | QVector3D vEquatorNorth = vertices[idxVNEquator + j]; |
| 493 | QVector3D vEquatorSouth = vertices[idxVSEquator + j]; |
| 494 | |
| 495 | // xy should be the same for both North and South. |
| 496 | // North z should equal half_depth while South z |
| 497 | // should equal -half_depth. However this is kept as |
| 498 | // a linear interpolation for clarity. |
| 499 | vertices[vCylOffset] = |
| 500 | QVector3D(cmplFac * vEquatorNorth.x() + fac * vEquatorSouth.x(), |
| 501 | cmplFac * vEquatorNorth.y() + fac * vEquatorSouth.y(), |
| 502 | cmplFac * vEquatorNorth.z() + fac * vEquatorSouth.z()); |
| 503 | |
| 504 | ++vCylOffset; |
| 505 | } |
| 506 | |
| 507 | // Texture coordinates. |
| 508 | float tTex = cmplFac * vtAspectNorth + fac * vtAspectSouth; |
| 509 | for (uint32_t j = 0; j < verifLonsp1; ++j) { |
| 510 | float sTex = sTexCache[j]; |
| 511 | vertexTextures[vtCylOffset] = QVector2D(sTex, tTex); |
| 512 | ++vtCylOffset; |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | // Cylinder face indices. |
| 518 | uint32_t fCylOffset = idxFsCyl; |
| 519 | for (uint32_t m = 0; m < verifRingsp1; ++m) { |
| 520 | uint32_t vCurrRing = idxVNEquator + m * verifLons; |
| 521 | uint32_t vNextRing = vCurrRing + verifLons; |
| 522 | |
| 523 | uint32_t vtCurrRing = idxVtNEquator + m * verifLonsp1; |
| 524 | uint32_t vtNextRing = vtCurrRing + verifLonsp1; |
| 525 | |
| 526 | for (uint32_t j = 0; j < verifLons; ++j) { |
| 527 | uint32_t jNextVt = j + 1; |
| 528 | uint32_t jNextV = jNextVt % verifLons; |
| 529 | |
| 530 | // Coordinate corners. |
| 531 | uint32_t v00 = vCurrRing + j; |
| 532 | uint32_t v01 = vNextRing + j; |
| 533 | uint32_t v11 = vNextRing + jNextV; |
| 534 | uint32_t v10 = vCurrRing + jNextV; |
| 535 | |
| 536 | // Texture coordinate corners. |
| 537 | uint32_t vt00 = vtCurrRing + j; |
| 538 | uint32_t vt01 = vtNextRing + j; |
| 539 | uint32_t vt11 = vtNextRing + jNextVt; |
| 540 | uint32_t vt10 = vtCurrRing + jNextVt; |
| 541 | |
| 542 | // Normal corners. |
| 543 | uint32_t vn0 = idxVNEquator + j; |
| 544 | uint32_t vn1 = idxVNEquator + jNextV; |
| 545 | |
| 546 | faces[fCylOffset] = { Face { .vertexIdx: v00, .textureIdx: vt00, .normalIdx: vn0 }, Face { .vertexIdx: v11, .textureIdx: vt11, .normalIdx: vn1 }, |
| 547 | Face { .vertexIdx: v10, .textureIdx: vt10, .normalIdx: vn1 } }; |
| 548 | |
| 549 | faces[fCylOffset + 1] = { Face { .vertexIdx: v00, .textureIdx: vt00, .normalIdx: vn0 }, Face { .vertexIdx: v01, .textureIdx: vt01, .normalIdx: vn0 }, |
| 550 | Face { .vertexIdx: v11, .textureIdx: vt11, .normalIdx: vn1 } }; |
| 551 | |
| 552 | fCylOffset += 2; |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | uint32_t stride = 3 * sizeof(float); |
| 557 | uint32_t strideNormal = 0; |
| 558 | uint32_t strideUV = 0; |
| 559 | |
| 560 | if (m_enableNormals) { |
| 561 | strideNormal = stride; |
| 562 | stride += 3 * sizeof(float); |
| 563 | } |
| 564 | if (m_enableUV) { |
| 565 | strideUV = stride; |
| 566 | stride += 2 * sizeof(float); |
| 567 | } |
| 568 | |
| 569 | QByteArray vertexData(vertices.length() * stride, Qt::Initialization::Uninitialized); |
| 570 | QByteArray indexData(faces.length() * 3 * sizeof(quint32), Qt::Initialization::Uninitialized); |
| 571 | |
| 572 | const auto getVertexPtr = [&](const int vertexIdx) { |
| 573 | return reinterpret_cast<QVector3D *>(vertexData.data() + stride * vertexIdx); |
| 574 | }; |
| 575 | const auto getNormalPtr = [&](const int vertexIdx) { |
| 576 | return reinterpret_cast<QVector3D *>(vertexData.data() + stride * vertexIdx + strideNormal); |
| 577 | }; |
| 578 | const auto getTexturePtr = [&](const int vertexIdx) { |
| 579 | return reinterpret_cast<QVector2D *>(vertexData.data() + stride * vertexIdx + strideUV); |
| 580 | }; |
| 581 | |
| 582 | uint32_t *indexPtr = reinterpret_cast<uint32_t *>(indexData.data()); |
| 583 | |
| 584 | for (qsizetype i = 0; i < vertices.length(); i++) { |
| 585 | *getVertexPtr(i) = vertices[i]; |
| 586 | } |
| 587 | |
| 588 | for (qsizetype i = 0; i < faces.length(); i++) { |
| 589 | const auto vertexIndices = |
| 590 | std::array<uint32_t, 3> { faces[i][0].vertexIdx, faces[i][1].vertexIdx, |
| 591 | faces[i][2].vertexIdx }; |
| 592 | *indexPtr = vertexIndices[0]; |
| 593 | indexPtr++; |
| 594 | *indexPtr = vertexIndices[1]; |
| 595 | indexPtr++; |
| 596 | *indexPtr = vertexIndices[2]; |
| 597 | indexPtr++; |
| 598 | |
| 599 | if (m_enableNormals) { |
| 600 | const auto normalIndices = |
| 601 | std::array<uint32_t, 3> { faces[i][0].normalIdx, faces[i][1].normalIdx, |
| 602 | faces[i][2].normalIdx }; |
| 603 | *getNormalPtr(vertexIndices[0]) = vertexNormals[normalIndices[0]]; |
| 604 | *getNormalPtr(vertexIndices[1]) = vertexNormals[normalIndices[1]]; |
| 605 | *getNormalPtr(vertexIndices[2]) = vertexNormals[normalIndices[2]]; |
| 606 | } |
| 607 | |
| 608 | if (m_enableUV) { |
| 609 | const auto textureIndices = |
| 610 | std::array<uint32_t, 3> { faces[i][0].textureIdx, faces[i][1].textureIdx, |
| 611 | faces[i][2].textureIdx }; |
| 612 | *getTexturePtr(vertexIndices[0]) = vertexTextures[textureIndices[0]]; |
| 613 | *getTexturePtr(vertexIndices[1]) = vertexTextures[textureIndices[1]]; |
| 614 | *getTexturePtr(vertexIndices[2]) = vertexTextures[textureIndices[2]]; |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | addAttribute(semantic: QQuick3DGeometry::Attribute::PositionSemantic, offset: 0, |
| 619 | componentType: QQuick3DGeometry::Attribute::ComponentType::F32Type); |
| 620 | if (m_enableNormals) { |
| 621 | addAttribute(semantic: QQuick3DGeometry::Attribute::NormalSemantic, offset: strideNormal, |
| 622 | componentType: QQuick3DGeometry::Attribute::ComponentType::F32Type); |
| 623 | } |
| 624 | if (m_enableUV) { |
| 625 | addAttribute(semantic: QQuick3DGeometry::Attribute::TexCoordSemantic, offset: strideUV, |
| 626 | componentType: QQuick3DGeometry::Attribute::ComponentType::F32Type); |
| 627 | } |
| 628 | addAttribute(semantic: QQuick3DGeometry::Attribute::IndexSemantic, offset: 0, |
| 629 | componentType: QQuick3DGeometry::Attribute::ComponentType::U32Type); |
| 630 | |
| 631 | setStride(stride); |
| 632 | setVertexData(vertexData); |
| 633 | setIndexData(indexData); |
| 634 | |
| 635 | setBounds(min: QVector3D(-radius - 0.5f * m_height, -radius, -radius), |
| 636 | max: QVector3D(radius + 0.5f * m_height, radius, radius)); |
| 637 | } |
| 638 | |
| 639 | QT_END_NAMESPACE |
| 640 | |