| 1 | // Copyright (C) 2022 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | // Qt-Security score:critical reason:data-parser |
| 4 | |
| 5 | #include "qcanbusframe.h" |
| 6 | #include "qcanframeprocessor.h" |
| 7 | #include "qcanframeprocessor_p.h" |
| 8 | #include "qcanmessagedescription.h" |
| 9 | #include "qcanmessagedescription_p.h" |
| 10 | #include "qcansignaldescription.h" |
| 11 | #include "qcansignaldescription_p.h" |
| 12 | |
| 13 | #include <QtCore/QHash> |
| 14 | #include <QtCore/QMap> |
| 15 | #include <QtCore/QVariant> |
| 16 | #include <QtCore/QtEndian> |
| 17 | |
| 18 | QT_BEGIN_NAMESPACE |
| 19 | |
| 20 | // The initial revision of QCanFrameProcessor introduced the BE data processing |
| 21 | // logic which is different from what is normally done in CAN protocols. |
| 22 | // A later patch fixes the logic to be compliant with normal CAN approach |
| 23 | // (taking DBC as a reference), and introduces this define to disable the |
| 24 | // unused functions. |
| 25 | // We could completely remove the "dead code", but for now we want to get some |
| 26 | // feedback from the users to see if we need to have both approaches or not. |
| 27 | #define USE_DBC_COMPATIBLE_BE_HANDLING |
| 28 | |
| 29 | // Helper method to extract the max bit number of the signal. |
| 30 | // Note that for BE it's not the last bit of the signal. |
| 31 | static quint16 (quint16 startBit, quint16 bitLength, QSysInfo::Endian endian) |
| 32 | { |
| 33 | #ifdef USE_DBC_COMPATIBLE_BE_HANDLING |
| 34 | if (endian == QSysInfo::Endian::LittleEndian) { |
| 35 | return startBit + bitLength - 1; |
| 36 | } else { |
| 37 | const auto startByteNum = startBit / 8; |
| 38 | const auto bitsInStartByte = startBit % 8 + 1; |
| 39 | const auto leftBits = bitLength - bitsInStartByte; |
| 40 | if (leftBits <= 0) |
| 41 | return startBit; // so start bit is the largest |
| 42 | |
| 43 | const auto leftBytesRounded = (leftBits % 8 == 0) ? leftBits / 8 : leftBits / 8 + 1; |
| 44 | return (startByteNum + leftBytesRounded + 1) * 8 - 1; |
| 45 | } |
| 46 | #else |
| 47 | return startBit + bitLength - 1; |
| 48 | #endif // USE_DBC_COMPATIBLE_BE_HANDLING |
| 49 | } |
| 50 | |
| 51 | /*! |
| 52 | \class QCanFrameProcessor |
| 53 | \inmodule QtSerialBus |
| 54 | \since 6.5 |
| 55 | \preliminary |
| 56 | |
| 57 | \brief The QCanFrameProcessor class can be used to decode |
| 58 | a \l QCanBusFrame or to convert the input data into a \l QCanBusFrame that |
| 59 | is ready to be sent to the receiver. |
| 60 | |
| 61 | The QCanFrameProcessor class operates on the CAN message descriptions |
| 62 | (represented by the \l QCanMessageDescription and \l QCanSignalDescription |
| 63 | classes) and a unique identifier description (represented by |
| 64 | \l QCanUniqueIdDescription). It uses the descriptions to decode the |
| 65 | incoming \l QCanBusFrame or to encode the user-specified data into the |
| 66 | proper payload. |
| 67 | |
| 68 | Before doing any decoding or encoding, the QCanFrameProcessor instance |
| 69 | \e must be initialized properly. The following data needs to be provided: |
| 70 | |
| 71 | \list |
| 72 | \li A \l {QCanUniqueIdDescription::isValid}{valid} unique identifier |
| 73 | description. Use the \l setUniqueIdDescription() method to provide |
| 74 | a proper description. |
| 75 | \li At least one message description. Use the |
| 76 | \l addMessageDescriptions() or \l setMessageDescriptions() method |
| 77 | to provide message descriptions. |
| 78 | All message descriptions \e must have distinct unique identifiers. |
| 79 | Each message can contain multiple signal descriptions, but signal |
| 80 | names within one message \e must be unique as well. |
| 81 | \endlist |
| 82 | |
| 83 | The \l parseFrame() method can be used to process the incoming |
| 84 | \l QCanBusFrame. The method returns a \l {QCanFrameProcessor::}{ParseResult} |
| 85 | structure which contains the \l {QCanFrameProcessor::ParseResult::uniqueId} |
| 86 | {unique identifier} and the \l {QCanFrameProcessor::ParseResult::signalValues} |
| 87 | {signal values} map. The keys of the map are the |
| 88 | \l {QCanSignalDescription::name}{signal names}, and the values of the map |
| 89 | are signal values. |
| 90 | |
| 91 | The \l prepareFrame() method can be used to generate a \l QCanBusFrame |
| 92 | object for a specific unique identifier, using the provided signal names |
| 93 | and desired values. |
| 94 | |
| 95 | Errors can occur during the encoding or decoding process. In such cases |
| 96 | the \l error() and \l errorString() methods can be used to get the |
| 97 | information about the error. |
| 98 | |
| 99 | Some non-critical problems may occur as well. Such problems will be logged, |
| 100 | but the process will not be stopped. After the process is completed, the |
| 101 | \l warnings() method can be used to access the list of all the warnings. |
| 102 | |
| 103 | \note The last error and error description, as well as the warnings, are |
| 104 | reset once the decoding or encoding is started. |
| 105 | |
| 106 | \sa QCanMessageDescription, QCanSignalDescription |
| 107 | */ |
| 108 | |
| 109 | /*! |
| 110 | \enum QCanFrameProcessor::Error |
| 111 | |
| 112 | This enum represents the possible errors that can occur while |
| 113 | encoding or decoding the \l QCanBusFrame. |
| 114 | |
| 115 | \value None No error occurred. |
| 116 | \value InvalidFrame The received frame is invalid and cannot be parsed. |
| 117 | \value UnsupportedFrameFormat The format of the received frame is not |
| 118 | supported and cannot be parsed. |
| 119 | \value Decoding An error occurred during decoding. Use |
| 120 | \l errorString() to get a string representation |
| 121 | of the error. |
| 122 | \value Encoding An error occurred during encoding. Use |
| 123 | \l errorString() to get a string representation |
| 124 | of the error. |
| 125 | */ |
| 126 | |
| 127 | /*! |
| 128 | \struct QCanFrameProcessor::ParseResult |
| 129 | \inmodule QtSerialBus |
| 130 | \since 6.5 |
| 131 | |
| 132 | \brief The struct is used as a return value for the |
| 133 | \l QCanFrameProcessor::parseFrame() method. |
| 134 | */ |
| 135 | |
| 136 | /*! |
| 137 | \variable QCanFrameProcessor::ParseResult::uniqueId |
| 138 | \brief the value of the unique identifier of the parsed frame. |
| 139 | */ |
| 140 | |
| 141 | /*! |
| 142 | \variable QCanFrameProcessor::ParseResult::signalValues |
| 143 | \brief the map containing the extracted signals and their values. |
| 144 | The keys of the map are the \l {QCanSignalDescription::name}{signal names}, |
| 145 | and the values of the map are signal values. |
| 146 | */ |
| 147 | |
| 148 | /*! |
| 149 | Creates a CAN frame processor. |
| 150 | */ |
| 151 | QCanFrameProcessor::QCanFrameProcessor() |
| 152 | : d(std::make_unique<QCanFrameProcessorPrivate>()) |
| 153 | { |
| 154 | } |
| 155 | |
| 156 | /*! |
| 157 | Destroys this frame processor. |
| 158 | */ |
| 159 | QCanFrameProcessor::~QCanFrameProcessor() = default; |
| 160 | |
| 161 | /*! |
| 162 | Constructs a CAN data frame, using \a uniqueId and \a signalValues |
| 163 | and returns the constructed \l QCanBusFrame. |
| 164 | |
| 165 | The \a signalValues parameter \e must contain signal names as keys, and |
| 166 | expected signal values as values. |
| 167 | |
| 168 | The process of creating the frame is as follows: |
| 169 | |
| 170 | \list 1 |
| 171 | \li The \a uniqueId is used to find an appropriate message |
| 172 | description. |
| 173 | \li If the message description is found, a \l QCanBusFrame with |
| 174 | a payload of the specified size is created. All bytes of the |
| 175 | payload, as well as the frame id, are initialized to zeros. |
| 176 | \li The \l uniqueIdDescription() is used to encode the \a uniqueId into |
| 177 | the appropriate part of the frame (frame id or payload). |
| 178 | \li The selected message description is used to encode all the |
| 179 | \a signalValues into the frame. |
| 180 | \li The parts of the frame that are not covered by a unique id or |
| 181 | existing signal descriptions are untouched (and so still contain |
| 182 | zeros). |
| 183 | \endlist |
| 184 | |
| 185 | If an error occurred during the encoding, an invalid \l QCanBusFrame is |
| 186 | returned. In such cases, the \l error() and \l errorString() methods |
| 187 | can be used to get information about the errors. |
| 188 | |
| 189 | \note Calling this method clears all previous errors and warnings. |
| 190 | |
| 191 | \sa addMessageDescriptions(), error(), errorString(), warnings() |
| 192 | */ |
| 193 | QCanBusFrame QCanFrameProcessor::prepareFrame(QtCanBus::UniqueId uniqueId, |
| 194 | const QVariantMap &signalValues) |
| 195 | { |
| 196 | d->resetErrors(); |
| 197 | |
| 198 | if (!d->uidDescription.isValid()) { |
| 199 | d->setError(err: Error::Encoding, |
| 200 | desc: QObject::tr(s: "No valid unique identifier description is specified." )); |
| 201 | return QCanBusFrame(QCanBusFrame::InvalidFrame); |
| 202 | } |
| 203 | |
| 204 | if (!d->messages.contains(key: uniqueId)) { |
| 205 | d->setError(err: Error::Encoding, |
| 206 | desc: QObject::tr(s: "Failed to find message description for unique id %1." ). |
| 207 | arg(a: qToUnderlying(e: uniqueId))); |
| 208 | return QCanBusFrame(QCanBusFrame::InvalidFrame); |
| 209 | } |
| 210 | |
| 211 | const auto message = d->messages.value(key: uniqueId); |
| 212 | QCanBusFrame::FrameId canFrameId = 0; // may be modified by the signal values |
| 213 | QByteArray payload(message.size(), 0x00); |
| 214 | |
| 215 | // encode the uniqueId value into the frame on the proper position |
| 216 | { |
| 217 | const bool uidInPayload = d->uidDescription.source() == QtCanBus::DataSource::Payload; |
| 218 | const quint16 bitsSize = uidInPayload ? payload.size() * 8 : 29; |
| 219 | unsigned char *data = uidInPayload ? reinterpret_cast<unsigned char *>(payload.data()) |
| 220 | : reinterpret_cast<unsigned char *>(&canFrameId); |
| 221 | if (!d->fillUniqueId(data, sizeInBits: bitsSize, uniqueId)) { |
| 222 | d->setError(err: Error::Encoding, |
| 223 | desc: QObject::tr(s: "Failed to encode unique id %1 into the frame" ). |
| 224 | arg(a: qToUnderlying(e: uniqueId))); |
| 225 | return QCanBusFrame(QCanBusFrame::InvalidFrame); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | // helper function to check for multiplexor preconditions |
| 230 | auto checkMuxValues = [](const QCanSignalDescription &desc, |
| 231 | const QVariantMap &signalValues) -> bool |
| 232 | { |
| 233 | const auto muxValues = desc.multiplexSignals(); |
| 234 | if (muxValues.isEmpty()) |
| 235 | return true; |
| 236 | const auto *descPrivate = QCanSignalDescriptionPrivate::get(desc); |
| 237 | for (auto it = muxValues.cbegin(); it != muxValues.cend(); ++it) { |
| 238 | const auto &name = it.key(); |
| 239 | const auto &ranges = it.value(); |
| 240 | if (!signalValues.contains(key: name) |
| 241 | || !descPrivate->muxValueInRange(value: signalValues.value(key: name), ranges)) { |
| 242 | return false; |
| 243 | } |
| 244 | } |
| 245 | return true; |
| 246 | }; |
| 247 | |
| 248 | auto descriptionsHash = QCanMessageDescriptionPrivate::get(desc: message)->messageSignals; |
| 249 | for (auto it = signalValues.cbegin(); it != signalValues.cend(); ++it) { |
| 250 | const QString &signalName = it.key(); |
| 251 | if (!descriptionsHash.contains(key: signalName)) { |
| 252 | d->addWarning(warning: QObject::tr(s: "Skipping signal %1. It is not found in " |
| 253 | "message description for unique id %2." ). |
| 254 | arg(args: signalName, args: QString::number(qToUnderlying(e: uniqueId)))); |
| 255 | continue; |
| 256 | } |
| 257 | |
| 258 | const auto &signalDesc = descriptionsHash.value(key: signalName); |
| 259 | if (!signalDesc.isValid()) { |
| 260 | d->addWarning(warning: QObject::tr(s: "Skipping signal %1. Its description is invalid." ). |
| 261 | arg(a: signalName)); |
| 262 | continue; |
| 263 | } |
| 264 | |
| 265 | // check for multiplexor prerequisites |
| 266 | if (!checkMuxValues(signalDesc, signalValues)) { |
| 267 | d->addWarning(warning: QObject::tr(s: "Skipping signal %1. Proper multiplexor values not found." ). |
| 268 | arg(a: signalName)); |
| 269 | continue; |
| 270 | } |
| 271 | |
| 272 | const bool dataInPayload = signalDesc.dataSource() == QtCanBus::DataSource::Payload; |
| 273 | // For data in FrameId we consider max length == 29, because we do not |
| 274 | // know if the frame is extended or not. |
| 275 | const quint16 maxDataLength = dataInPayload ? payload.size() * 8 : 29; |
| 276 | const auto signalDataEnd = extractMaxBitNum(startBit: signalDesc.startBit(), bitLength: signalDesc.bitLength(), |
| 277 | endian: signalDesc.dataEndian()); |
| 278 | if (signalDataEnd >= maxDataLength) { |
| 279 | d->addWarning(warning: QObject::tr(s: "Skipping signal %1. Its length exceeds the expected " |
| 280 | "message length." ).arg(a: signalName)); |
| 281 | continue; |
| 282 | } |
| 283 | |
| 284 | unsigned char *data = dataInPayload ? reinterpret_cast<unsigned char *>(payload.data()) |
| 285 | : reinterpret_cast<unsigned char *>(&canFrameId); |
| 286 | d->encodeSignal(data, value: it.value(), signalDesc); |
| 287 | } |
| 288 | |
| 289 | return QCanBusFrame(canFrameId, payload); |
| 290 | } |
| 291 | |
| 292 | /*! |
| 293 | Returns the last error. |
| 294 | |
| 295 | \sa errorString(), prepareFrame(), parseFrame() |
| 296 | */ |
| 297 | QCanFrameProcessor::Error QCanFrameProcessor::error() const |
| 298 | { |
| 299 | return d->error; |
| 300 | } |
| 301 | |
| 302 | /*! |
| 303 | Returns the text description of the last error. |
| 304 | |
| 305 | \sa error(), prepareFrame(), parseFrame() |
| 306 | */ |
| 307 | QString QCanFrameProcessor::errorString() const |
| 308 | { |
| 309 | return d->errorString; |
| 310 | } |
| 311 | |
| 312 | /*! |
| 313 | Returns the list of warnings generated during the last encoding or decoding |
| 314 | call. |
| 315 | |
| 316 | \sa error(), errorString(), prepareFrame(), parseFrame() |
| 317 | */ |
| 318 | QStringList QCanFrameProcessor::warnings() const |
| 319 | { |
| 320 | return d->warnings; |
| 321 | } |
| 322 | |
| 323 | /*! |
| 324 | Returns all the message descriptions that are currently used by this frame |
| 325 | processor. |
| 326 | |
| 327 | \sa addMessageDescriptions(), setMessageDescriptions(), |
| 328 | clearMessageDescriptions() |
| 329 | */ |
| 330 | QList<QCanMessageDescription> QCanFrameProcessor::messageDescriptions() const |
| 331 | { |
| 332 | return QList<QCanMessageDescription>(d->messages.cbegin(), d->messages.cend()); |
| 333 | } |
| 334 | |
| 335 | /*! |
| 336 | Adds new message descriptions \a descriptions to the available message |
| 337 | descriptions. |
| 338 | |
| 339 | All message descriptions should have distinct unique ids. |
| 340 | |
| 341 | If some message descriptions have repeated unique ids, only the last |
| 342 | description will be used. |
| 343 | |
| 344 | If the parser already had a message description with the same unique id, it |
| 345 | will be overwritten. |
| 346 | |
| 347 | \sa messageDescriptions(), setMessageDescriptions(), |
| 348 | clearMessageDescriptions() |
| 349 | */ |
| 350 | void QCanFrameProcessor::addMessageDescriptions(const QList<QCanMessageDescription> &descriptions) |
| 351 | { |
| 352 | for (const auto &desc : descriptions) |
| 353 | d->messages.insert(key: desc.uniqueId(), value: desc); |
| 354 | } |
| 355 | |
| 356 | /*! |
| 357 | Replaces current message descriptions used by this frame processor with the |
| 358 | new message descriptions \a descriptions. |
| 359 | |
| 360 | \sa messageDescriptions(), addMessageDescriptions(), |
| 361 | clearMessageDescriptions() |
| 362 | */ |
| 363 | void QCanFrameProcessor::setMessageDescriptions(const QList<QCanMessageDescription> &descriptions) |
| 364 | { |
| 365 | d->messages.clear(); |
| 366 | addMessageDescriptions(descriptions); |
| 367 | } |
| 368 | |
| 369 | /*! |
| 370 | Removes all message descriptions for this frame processor. |
| 371 | |
| 372 | \sa messageDescriptions(), addMessageDescriptions(), |
| 373 | setMessageDescriptions() |
| 374 | */ |
| 375 | void QCanFrameProcessor::clearMessageDescriptions() |
| 376 | { |
| 377 | d->messages.clear(); |
| 378 | } |
| 379 | |
| 380 | /*! |
| 381 | Returns the unique identifier description. |
| 382 | |
| 383 | The unique identifier description must be valid in order to encode or decode |
| 384 | the CAN bus frames. See the \l QCanUniqueIdDescription class documentation |
| 385 | for more details. |
| 386 | |
| 387 | \sa setUniqueIdDescription(), QCanUniqueIdDescription |
| 388 | */ |
| 389 | QCanUniqueIdDescription QCanFrameProcessor::uniqueIdDescription() const |
| 390 | { |
| 391 | return d->uidDescription; |
| 392 | } |
| 393 | |
| 394 | /*! |
| 395 | Sets the unique identifier description to \a description. |
| 396 | |
| 397 | The unique identifier description must be valid in order to encode or decode |
| 398 | the CAN bus frames. See the \l QCanUniqueIdDescription class documentation |
| 399 | for more details. |
| 400 | |
| 401 | \sa uniqueIdDescription(), QCanUniqueIdDescription |
| 402 | */ |
| 403 | void QCanFrameProcessor::setUniqueIdDescription(const QCanUniqueIdDescription &description) |
| 404 | { |
| 405 | d->uidDescription = description; |
| 406 | } |
| 407 | |
| 408 | /*! |
| 409 | Parses the frame \a frame using the specified message descriptions. |
| 410 | |
| 411 | The process of parsing is as follows: |
| 412 | \list 1 |
| 413 | \li The \l uniqueIdDescription() is used to extract the unique |
| 414 | identifier of the message. |
| 415 | \li The extracted unique identifier is used to search for a suitable |
| 416 | \l QCanMessageDescription from the list of all available |
| 417 | \l messageDescriptions(). |
| 418 | \li The matching \l QCanMessageDescription is used to extract |
| 419 | the signal values from the frame. |
| 420 | \endlist |
| 421 | |
| 422 | This method returns a \l QCanFrameProcessor::ParseResult, which contains |
| 423 | both the extracted unique identifier and a \l QVariantMap with the signals |
| 424 | and their values. The keys of the map are the |
| 425 | \l {QCanSignalDescription::name}{signal names}, and the values of the map |
| 426 | are signal values. |
| 427 | |
| 428 | If an error occurred during the decoding, a result with empty |
| 429 | \l {QCanFrameProcessor::ParseResult::}{signalValues} is returned. |
| 430 | In such cases, the \l error() and \l errorString() methods can be used |
| 431 | to get information about the errors. |
| 432 | |
| 433 | \note Calling this method clears all previous errors and warnings. |
| 434 | |
| 435 | \sa addMessageDescriptions(), error(), errorString(), warnings() |
| 436 | */ |
| 437 | QCanFrameProcessor::ParseResult QCanFrameProcessor::parseFrame(const QCanBusFrame &frame) |
| 438 | { |
| 439 | d->resetErrors(); |
| 440 | |
| 441 | if (!frame.isValid()) { |
| 442 | d->setError(err: Error::InvalidFrame, desc: QObject::tr(s: "Invalid frame." )); |
| 443 | return {}; |
| 444 | } |
| 445 | if (frame.frameType() != QCanBusFrame::DataFrame) { |
| 446 | d->setError(err: Error::UnsupportedFrameFormat, desc: QObject::tr(s: "Unsupported frame format." )); |
| 447 | return {}; |
| 448 | } |
| 449 | if (!d->uidDescription.isValid()) { |
| 450 | d->setError(err: Error::Decoding, |
| 451 | desc: QObject::tr(s: "No valid unique identifier description is specified." )); |
| 452 | return {}; |
| 453 | } |
| 454 | |
| 455 | const auto uidOpt = d->extractUniqueId(frame); |
| 456 | if (!uidOpt.has_value()) { |
| 457 | d->setError(err: Error::Decoding, |
| 458 | desc: QObject::tr(s: "Failed to extract unique id from the frame." )); |
| 459 | return {}; |
| 460 | } |
| 461 | |
| 462 | const auto uniqueId = uidOpt.value(); |
| 463 | if (!d->messages.contains(key: uniqueId)) { |
| 464 | d->setError(err: Error::Decoding, |
| 465 | desc: QObject::tr(s: "Could not find a message description for unique id %1." ). |
| 466 | arg(a: qToUnderlying(e: uniqueId))); |
| 467 | return {}; |
| 468 | } |
| 469 | |
| 470 | const auto message = d->messages.value(key: uniqueId); |
| 471 | if (message.size() != frame.payload().size()) { |
| 472 | d->setError(err: Error::Decoding, |
| 473 | desc: QObject::tr(s: "Payload size does not match message description. " |
| 474 | "Actual size = %1, expected size = %2." ). |
| 475 | arg(a: frame.payload().size()).arg(a: message.size())); |
| 476 | return {}; |
| 477 | } |
| 478 | |
| 479 | QVariantMap parsedSignals; |
| 480 | // The multiplexor signals can form a complex dependency, so we can't |
| 481 | // simply iterate through the signal descriptions in a natural order. |
| 482 | // Instead, we first need to process all signals with no dependency on |
| 483 | // other multiplexors, then handle the signals that have dependency on |
| 484 | // already parsed signals, and so on, until we parse all signals. |
| 485 | // One potential problem here is that the dependencies can be specified |
| 486 | // incorrectly (for example, we can have circular dependencies, or |
| 487 | // dependencies on non-existent signal), so we need to come up with a |
| 488 | // reasonable condition to stop. |
| 489 | |
| 490 | auto seenNeededSignals = [](const QCanSignalDescription &desc, |
| 491 | const QVariantMap &parsedSignals) -> bool { |
| 492 | const auto muxSignals = desc.multiplexSignals(); |
| 493 | if (muxSignals.isEmpty()) |
| 494 | return true; |
| 495 | const auto *descPrivate = QCanSignalDescriptionPrivate::get(desc); |
| 496 | for (auto it = muxSignals.cbegin(); it != muxSignals.cend(); ++it) { |
| 497 | const auto &name = it.key(); |
| 498 | const auto &ranges = it.value(); |
| 499 | if (!parsedSignals.contains(key: name) |
| 500 | || !descPrivate->muxValueInRange(value: parsedSignals.value(key: name), ranges)) { |
| 501 | return false; |
| 502 | } |
| 503 | } |
| 504 | return true; |
| 505 | }; |
| 506 | |
| 507 | auto descriptionsHash = QCanMessageDescriptionPrivate::get(desc: message)->messageSignals; |
| 508 | while (true) { |
| 509 | QList<QString> newNames; |
| 510 | for (const auto &desc : std::as_const(t&: descriptionsHash)) { |
| 511 | if (seenNeededSignals(desc, parsedSignals)) { |
| 512 | newNames.push_back(t: desc.name()); |
| 513 | if (!desc.isValid()) { |
| 514 | d->addWarning(warning: QObject::tr(s: "Skipping signal %1 in message with unique id %2" |
| 515 | " because its description is invalid." ). |
| 516 | arg(args: desc.name(), args: QString::number(qToUnderlying(e: uniqueId)))); |
| 517 | continue; |
| 518 | } |
| 519 | const QVariant value = d->decodeSignal(frame, signalDesc: desc); |
| 520 | if (value.isValid()) |
| 521 | parsedSignals.insert(key: desc.name(), value); |
| 522 | } |
| 523 | } |
| 524 | for (const auto &name : std::as_const(t&: newNames)) |
| 525 | descriptionsHash.remove(key: name); |
| 526 | if (newNames.isEmpty() || descriptionsHash.isEmpty()) { |
| 527 | // We either processed all signals, or failed to process more during |
| 528 | // the last loop. The latter means that the multiplexor conditions |
| 529 | // do not match for the rest of the signals, which is fine and will |
| 530 | // always happen when multiplexing |
| 531 | break; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | return {.uniqueId: uniqueId, .signalValues: parsedSignals}; |
| 536 | } |
| 537 | |
| 538 | /* QCanFrameProcessorPrivate implementation */ |
| 539 | |
| 540 | void QCanFrameProcessorPrivate::resetErrors() |
| 541 | { |
| 542 | error = QCanFrameProcessor::Error::None; |
| 543 | errorString.clear(); |
| 544 | warnings.clear(); |
| 545 | } |
| 546 | |
| 547 | void QCanFrameProcessorPrivate::setError(QCanFrameProcessor::Error err, const QString &desc) |
| 548 | { |
| 549 | error = err; |
| 550 | errorString = desc; |
| 551 | } |
| 552 | |
| 553 | void QCanFrameProcessorPrivate::addWarning(const QString &warning) |
| 554 | { |
| 555 | warnings.push_back(t: warning); |
| 556 | } |
| 557 | |
| 558 | QVariant QCanFrameProcessorPrivate::decodeSignal(const QCanBusFrame &frame, |
| 559 | const QCanSignalDescription &signalDesc) |
| 560 | { |
| 561 | const auto signalDataEnd = extractMaxBitNum(startBit: signalDesc.startBit(), bitLength: signalDesc.bitLength(), |
| 562 | endian: signalDesc.dataEndian()); |
| 563 | const bool dataFromPayload = |
| 564 | signalDesc.dataSource() == QtCanBus::DataSource::Payload; |
| 565 | |
| 566 | const auto frameIdLength = frame.hasExtendedFrameFormat() ? 29 : 11; |
| 567 | const auto maxDataLength = dataFromPayload ? frame.payload().size() * 8 |
| 568 | : frameIdLength; |
| 569 | |
| 570 | if (signalDataEnd >= maxDataLength) { |
| 571 | addWarning(warning: QObject::tr(s: "Skipping signal %1 in message with unique id %2. " |
| 572 | "Its expected length exceeds the data length." ). |
| 573 | arg(args: signalDesc.name(), args: QString::number(frame.frameId()))); |
| 574 | return QVariant(); |
| 575 | } |
| 576 | |
| 577 | const QByteArray payload = frame.payload(); |
| 578 | const auto frameId = frame.frameId(); |
| 579 | const unsigned char *data = dataFromPayload |
| 580 | ? reinterpret_cast<const unsigned char *>(payload.data()) |
| 581 | : reinterpret_cast<const unsigned char *>(&frameId); |
| 582 | |
| 583 | return parseData(data, signalDesc); |
| 584 | } |
| 585 | |
| 586 | static bool needValueConversion(const QCanSignalDescription &signalDesc) |
| 587 | { |
| 588 | return !qIsNaN(d: signalDesc.factor()) || !qIsNaN(d: signalDesc.offset()) |
| 589 | || !qIsNaN(d: signalDesc.scaling()); |
| 590 | } |
| 591 | |
| 592 | template <typename T> |
| 593 | static double convertFromCanValue(T value, const QCanSignalDescription &signalDesc) |
| 594 | { |
| 595 | double result = static_cast<double>(value); |
| 596 | if (!qIsNaN(d: signalDesc.factor())) |
| 597 | result *= signalDesc.factor(); |
| 598 | |
| 599 | if (!qIsNaN(d: signalDesc.offset())) |
| 600 | result += signalDesc.offset(); |
| 601 | |
| 602 | if (!qIsNaN(d: signalDesc.scaling())) |
| 603 | result *= signalDesc.scaling(); |
| 604 | |
| 605 | return result; |
| 606 | } |
| 607 | |
| 608 | static double convertToCanValue(const QVariant &value, const QCanSignalDescription &signalDesc) |
| 609 | { |
| 610 | // Checks for 0 are done in the corresponding setters, so we can divide |
| 611 | // safely. |
| 612 | double result = value.toDouble(); |
| 613 | if (!qIsNaN(d: signalDesc.scaling())) |
| 614 | result /= signalDesc.scaling(); |
| 615 | |
| 616 | if (!qIsNaN(d: signalDesc.offset())) |
| 617 | result -= signalDesc.offset(); |
| 618 | |
| 619 | if (!qIsNaN(d: signalDesc.factor())) |
| 620 | result /= signalDesc.factor(); |
| 621 | |
| 622 | return result; |
| 623 | } |
| 624 | |
| 625 | #ifdef USE_DBC_COMPATIBLE_BE_HANDLING |
| 626 | |
| 627 | template <typename T> |
| 628 | static QVariant (const unsigned char *data, const QCanSignalDescription &signalDesc) |
| 629 | { |
| 630 | constexpr auto tBitLength = sizeof(T) * 8; |
| 631 | const auto length = signalDesc.bitLength(); |
| 632 | if constexpr (std::is_floating_point_v<T>) |
| 633 | Q_ASSERT(tBitLength == length); |
| 634 | else |
| 635 | Q_ASSERT(tBitLength >= length); |
| 636 | const auto maxBytesToRead = (length % 8 == 0) ? length / 8 : length / 8 + 1; |
| 637 | const auto start = signalDesc.startBit(); |
| 638 | T value = {}; |
| 639 | const bool isBigEndian = signalDesc.dataEndian() == QSysInfo::Endian::BigEndian; |
| 640 | if (isBigEndian) { |
| 641 | // Big Endian - start bit is MSB |
| 642 | if (start % 8 == 7 && length % 8 == 0) { |
| 643 | // The data is aligned at byte offset, we can simply memcpy |
| 644 | memcpy(&value, &data[(start - 7) / 8], maxBytesToRead); |
| 645 | } else { |
| 646 | // Data is not aligned at byte offset, we need to do some bit |
| 647 | // shifting. We cannot perform bit operations on float or double |
| 648 | // types, so we convert the value to uchar *. |
| 649 | // Because of how BE data is organized, the indices for reading |
| 650 | // would not be continuous. If we want to extract BE data from the |
| 651 | // middle 12 bits of a 2-byte payload, we will need to read bits 5-0 |
| 652 | // and 15-10: |
| 653 | // _________________________________________________________________ |
| 654 | // |7 |6 |5(MSB) |4 |3 |2 |1 |0 | |
| 655 | // ----------------------------------------------------------------- |
| 656 | // |15 |14 |13 |12 |11 |10(LSB)|9 |8 | |
| 657 | // ----------------------------------------------------------------- |
| 658 | unsigned char *valueData = reinterpret_cast<unsigned char *>(&value); |
| 659 | qsizetype bitIdx = start; |
| 660 | for (qsizetype processedBits = 0; processedBits < length; ++processedBits) { |
| 661 | const auto dataByteIdx = bitIdx / 8; |
| 662 | const auto dataBitIdx = bitIdx % 8; |
| 663 | if (data[dataByteIdx] & (0x01 << dataBitIdx)) { |
| 664 | const auto byteIdx = processedBits / 8; |
| 665 | // start filling each byte from MSB |
| 666 | const auto bitIdx = 7 - (processedBits % 8); |
| 667 | valueData[byteIdx] |= (0x01 << bitIdx); |
| 668 | } |
| 669 | // handle jump like 0 -> 15 from the example above |
| 670 | if (bitIdx % 8 == 0) |
| 671 | bitIdx += 15; |
| 672 | else |
| 673 | --bitIdx; |
| 674 | } |
| 675 | } |
| 676 | } else { |
| 677 | // Little Endian - start bit is LSB |
| 678 | if (start % 8 == 0 && length % 8 == 0) { |
| 679 | // The data is aligned at byte offset, we can simply memcpy |
| 680 | memcpy(&value, &data[start / 8], maxBytesToRead); |
| 681 | } else { |
| 682 | // Data is not aligned at byte offset, we need to do some bit |
| 683 | // shifting. We cannot perform bit operations on float or double |
| 684 | // types, so we convert the value to uchar *. |
| 685 | unsigned char *valueData = reinterpret_cast<unsigned char *>(&value); |
| 686 | quint16 valueIdx = 0; |
| 687 | for (auto i = start; i < start + length; ++i, ++valueIdx) { |
| 688 | const auto byteIdx = i / 8; |
| 689 | const auto bitIdx = i % 8; |
| 690 | if (data[byteIdx] & (0x01 << bitIdx)) |
| 691 | valueData[valueIdx / 8] |= 0x01 << (valueIdx % 8); |
| 692 | } |
| 693 | } |
| 694 | } |
| 695 | // check and convert endian |
| 696 | T convertedValue = {}; |
| 697 | if (isBigEndian) |
| 698 | convertedValue = qFromBigEndian(value); |
| 699 | else |
| 700 | convertedValue = qFromLittleEndian(value); |
| 701 | const bool endianChanged = convertedValue != value; |
| 702 | value = convertedValue; |
| 703 | // for signed & unsigned fill the most significant bits with proper values |
| 704 | if constexpr (std::is_integral_v<T>) { |
| 705 | if (tBitLength > length) { |
| 706 | if (endianChanged) { |
| 707 | // After endian conversion we have unneeded bits in the end, |
| 708 | // so we need to cut them |
| 709 | value = value >> (tBitLength - length); |
| 710 | } |
| 711 | // value has more bits than we could actually read, so we need to |
| 712 | // fill the most significant bits properly |
| 713 | const auto dataFormat = signalDesc.dataFormat(); |
| 714 | if (dataFormat == QtCanBus::DataFormat::SignedInteger) { |
| 715 | if (value & (0x01ULL << (length - 1))) { |
| 716 | // msb = 1 -> negative value, fill the rest with 1's |
| 717 | for (auto i = length; i < tBitLength; ++i) |
| 718 | value |= (0x01ULL << i); |
| 719 | } else { |
| 720 | // msb = 0 -> positive value, fill the rest with 0's |
| 721 | for (auto i = length; i < tBitLength; ++i) |
| 722 | value &= ~(0x01ULL << i); |
| 723 | } |
| 724 | } else if (dataFormat == QtCanBus::DataFormat::UnsignedInteger) { |
| 725 | // simply fill most significant bits with 0's |
| 726 | for (auto i = length; i < tBitLength; ++i) |
| 727 | value &= ~(0x01ULL << i); |
| 728 | } |
| 729 | } |
| 730 | } |
| 731 | // perform value conversions, if needed |
| 732 | if (needValueConversion(signalDesc)) |
| 733 | return QVariant::fromValue(convertFromCanValue(value, signalDesc)); |
| 734 | |
| 735 | return QVariant::fromValue(value); |
| 736 | } |
| 737 | |
| 738 | #else |
| 739 | |
| 740 | template <typename T> |
| 741 | static QVariant extractValue(const unsigned char *data, const QCanSignalDescription &signalDesc) |
| 742 | { |
| 743 | constexpr auto tBitLength = sizeof(T) * 8; |
| 744 | const auto length = signalDesc.bitLength(); |
| 745 | if constexpr (std::is_floating_point_v<T>) |
| 746 | Q_ASSERT(tBitLength == length); |
| 747 | else |
| 748 | Q_ASSERT(tBitLength >= length); |
| 749 | const auto maxBytesToRead = (length % 8 == 0) ? length / 8 : length / 8 + 1; |
| 750 | const auto start = signalDesc.startBit(); |
| 751 | T value = {}; |
| 752 | if (start % 8 == 0 && length % 8 == 0) { |
| 753 | // The data is aligned at byte offset, we can simply memcpy |
| 754 | memcpy(&value, &data[start / 8], maxBytesToRead); |
| 755 | } else { |
| 756 | // Data is not aligned at byte offset, we need to do some bit shifting |
| 757 | // We cannot perform bit operations on float or double types, so we |
| 758 | // convert the value to uchar *. |
| 759 | |
| 760 | // If the data is in big endian, and data length % 8 != 0, then the |
| 761 | // first byte is not full. So we need to read (8 - length % 8) bits |
| 762 | // from it, and then complete it properly |
| 763 | |
| 764 | unsigned char *valueData = reinterpret_cast<unsigned char *>(&value); |
| 765 | quint16 valueIdx = 0; |
| 766 | quint16 startIdx = start; |
| 767 | quint16 numToRead = length; |
| 768 | if (signalDesc.dataEndian() == QSysInfo::Endian::BigEndian) { |
| 769 | const auto readInFirstByte = length % 8; |
| 770 | // else we have round number of bytes and all these tricks are not needed |
| 771 | if (readInFirstByte) { |
| 772 | const auto missingBits = 8 - readInFirstByte; |
| 773 | bool lastBitIsOne = false; |
| 774 | for (auto i = startIdx; i < startIdx + readInFirstByte; ++i, ++valueIdx) { |
| 775 | const auto byteIdx = i / 8; |
| 776 | const auto bitIdx = i % 8; |
| 777 | lastBitIsOne = data[byteIdx] & (0x01 << bitIdx); |
| 778 | if (lastBitIsOne) |
| 779 | valueData[valueIdx / 8] |= 0x01 << (valueIdx % 8); |
| 780 | } |
| 781 | if (lastBitIsOne) { |
| 782 | for (auto i = 0; i < missingBits; ++i, ++valueIdx) |
| 783 | valueData[valueIdx / 8] |= 0x01 << (valueIdx % 8); |
| 784 | } else { |
| 785 | // We simply have zeros there, but still need to increase valueIdx |
| 786 | valueIdx += missingBits; |
| 787 | } |
| 788 | startIdx += readInFirstByte; |
| 789 | numToRead -= readInFirstByte; |
| 790 | } |
| 791 | } |
| 792 | for (auto i = startIdx; i < startIdx + numToRead; ++i, ++valueIdx) { |
| 793 | const auto byteIdx = i / 8; |
| 794 | const auto bitIdx = i % 8; |
| 795 | if (data[byteIdx] & (0x01 << bitIdx)) |
| 796 | valueData[valueIdx / 8] |= 0x01 << (valueIdx % 8); |
| 797 | } |
| 798 | } |
| 799 | // check and convert endian |
| 800 | T convertedValue = {}; |
| 801 | if (signalDesc.dataEndian() == QSysInfo::Endian::LittleEndian) |
| 802 | convertedValue = qFromLittleEndian(value); |
| 803 | else |
| 804 | convertedValue = qFromBigEndian(value); |
| 805 | const bool endianChanged = convertedValue != value; |
| 806 | value = convertedValue; |
| 807 | // for signed & unsigned fill the most significant bits with proper values |
| 808 | if constexpr (std::is_integral_v<T>) { |
| 809 | if (tBitLength > length) { |
| 810 | if (endianChanged) { |
| 811 | // After endian conversion we have unneeded bits in the end, |
| 812 | // so we need to cut them |
| 813 | value = value >> (tBitLength - maxBytesToRead * 8); |
| 814 | } |
| 815 | // value has more bits than we could actually read, so we need to |
| 816 | // fill the most significant bits properly |
| 817 | const auto dataFormat = signalDesc.dataFormat(); |
| 818 | if (dataFormat == QtCanBus::DataFormat::SignedInteger) { |
| 819 | if (value & (0x01ULL << (length - 1))) { |
| 820 | // msb = 1 -> negative value, fill the rest with 1's |
| 821 | for (auto i = length; i < tBitLength; ++i) |
| 822 | value |= (0x01ULL << i); |
| 823 | } else { |
| 824 | // msb = 0 -> positive value, fill the rest with 0's |
| 825 | for (auto i = length; i < tBitLength; ++i) |
| 826 | value &= ~(0x01ULL << i); |
| 827 | } |
| 828 | } else if (dataFormat == QtCanBus::DataFormat::UnsignedInteger) { |
| 829 | // simply fill most significant bits with 0's |
| 830 | for (auto i = length; i < tBitLength; ++i) |
| 831 | value &= ~(0x01ULL << i); |
| 832 | } |
| 833 | } |
| 834 | } |
| 835 | // perform value conversions, if needed |
| 836 | if (needValueConversion(signalDesc)) |
| 837 | return QVariant::fromValue(convertFromCanValue(value, signalDesc)); |
| 838 | |
| 839 | return QVariant::fromValue(value); |
| 840 | } |
| 841 | |
| 842 | #endif // USE_DBC_COMPATIBLE_BE_HANDLING |
| 843 | |
| 844 | static QVariant parseAscii(const unsigned char *data, const QCanSignalDescription &signalDesc) |
| 845 | { |
| 846 | Q_ASSERT(signalDesc.bitLength() % 8 == 0); |
| 847 | |
| 848 | const auto length = signalDesc.bitLength(); |
| 849 | const auto start = signalDesc.startBit(); |
| 850 | |
| 851 | QByteArray value(length / 8, 0x00); |
| 852 | |
| 853 | char *valueData = value.data(); |
| 854 | quint16 valueIdx = 0; |
| 855 | for (quint16 i = start; i < start + length; ++i, ++valueIdx) { |
| 856 | const auto byteIdx = i / 8; |
| 857 | const auto bitIdx = i % 8; |
| 858 | if (data[byteIdx] & (0x01 << bitIdx)) |
| 859 | valueData[valueIdx / 8] |= 0x01 << (valueIdx % 8); |
| 860 | } |
| 861 | |
| 862 | return QVariant(value); |
| 863 | } |
| 864 | |
| 865 | QVariant QCanFrameProcessorPrivate::parseData(const unsigned char *data, |
| 866 | const QCanSignalDescription &signalDesc) |
| 867 | { |
| 868 | // We assume that signal's length does not exceed data size. |
| 869 | // That is checked as a precondition to calling this method, so we do not |
| 870 | // pass size for the data. |
| 871 | switch (signalDesc.dataFormat()) { |
| 872 | case QtCanBus::DataFormat::SignedInteger: |
| 873 | return extractValue<qint64>(data, signalDesc); |
| 874 | case QtCanBus::DataFormat::UnsignedInteger: |
| 875 | return extractValue<quint64>(data, signalDesc); |
| 876 | case QtCanBus::DataFormat::Float: |
| 877 | return extractValue<float>(data, signalDesc); |
| 878 | case QtCanBus::DataFormat::Double: |
| 879 | return extractValue<double>(data, signalDesc); |
| 880 | case QtCanBus::DataFormat::AsciiString: |
| 881 | return parseAscii(data, signalDesc); |
| 882 | } |
| 883 | Q_UNREACHABLE(); |
| 884 | } |
| 885 | |
| 886 | #ifdef USE_DBC_COMPATIBLE_BE_HANDLING |
| 887 | |
| 888 | template <typename T> |
| 889 | static void encodeValue(unsigned char *data, const QVariant &valueVar, |
| 890 | const QCanSignalDescription &signalDesc) |
| 891 | { |
| 892 | constexpr auto tBitLength = sizeof(T) * 8; |
| 893 | const auto length = signalDesc.bitLength(); |
| 894 | if constexpr (std::is_floating_point_v<T>) |
| 895 | Q_ASSERT(tBitLength == length); |
| 896 | else |
| 897 | Q_ASSERT(tBitLength >= length); |
| 898 | |
| 899 | // Perform value conversion. |
| 900 | T value = {}; |
| 901 | if (needValueConversion(signalDesc)) |
| 902 | value = static_cast<T>(std::round(x: convertToCanValue(value: valueVar, signalDesc))); |
| 903 | else |
| 904 | value = valueVar.value<T>(); |
| 905 | |
| 906 | const bool dataLittleEndian = signalDesc.dataEndian() == QSysInfo::Endian::LittleEndian; |
| 907 | |
| 908 | const auto maxBytesToWrite = (length % 8 == 0) ? length / 8 : length / 8 + 1; |
| 909 | |
| 910 | // always treat the value-to-write as LE for simplicity |
| 911 | value = qToLittleEndian(value); |
| 912 | const quint16 start = signalDesc.startBit(); |
| 913 | if (dataLittleEndian) { |
| 914 | // Little Endian |
| 915 | if (start % 8 == 0 && length % 8 == 0) { |
| 916 | // The data is aligned at byte offset, and has a round number of |
| 917 | // bytes, so we can simply memcpy |
| 918 | memcpy(&data[start / 8], &value, maxBytesToWrite); |
| 919 | } else { |
| 920 | const uchar *valueData = reinterpret_cast<const uchar *>(&value); |
| 921 | for (quint16 i = 0; i < length; ++i) { |
| 922 | const auto valueByteIdx = i / 8; |
| 923 | const auto valueBitIdx = i % 8; |
| 924 | const auto dataByteIdx = (start + i) / 8; |
| 925 | const auto dataBitIdx = (start + i) % 8; |
| 926 | |
| 927 | if (valueData[valueByteIdx] & (0x01 << valueBitIdx)) |
| 928 | data[dataByteIdx] |= (0x01 << dataBitIdx); |
| 929 | else |
| 930 | data[dataByteIdx] &= ~(0x01 << dataBitIdx); |
| 931 | } |
| 932 | } |
| 933 | } else { |
| 934 | // Big Endian |
| 935 | if (start % 8 == 7 && length % 8 == 0) { |
| 936 | // The data is aligned at byte offset and has a round number of |
| 937 | // bytes, so we can simply memcpy. Just need to convert to BE and |
| 938 | // take the meaningful bytes (those will be the most significant |
| 939 | // bytes after switching to BE). |
| 940 | value = qToBigEndian(value); |
| 941 | const uchar *valueData = reinterpret_cast<const uchar *>(&value); |
| 942 | const auto byteIdx = sizeof(value) - maxBytesToWrite; |
| 943 | memcpy(dest: &data[(start - 7) / 8], src: &valueData[byteIdx], n: maxBytesToWrite); |
| 944 | } else { |
| 945 | // We need to start from the MSB of the valueToWrite |
| 946 | // Because of how BE data is organized, the indices for writing |
| 947 | // would not be continuous. If we want to write BE data to the |
| 948 | // middle 12 bits of a 2-byte payload, we will need to write bits |
| 949 | // 5-0 and 15-10: |
| 950 | // _________________________________________________________________ |
| 951 | // |7 |6 |5(MSB) |4 |3 |2 |1 |0 | |
| 952 | // ----------------------------------------------------------------- |
| 953 | // |15 |14 |13 |12 |11 |10(LSB)|9 |8 | |
| 954 | // ----------------------------------------------------------------- |
| 955 | const uchar *valueData = reinterpret_cast<const uchar *>(&value); |
| 956 | auto dataBit = signalDesc.startBit(); |
| 957 | for (auto valueBit = length - 1; valueBit >= 0; --valueBit) { |
| 958 | const auto valueByteIdx = valueBit / 8; |
| 959 | const auto valueBitIdx = valueBit % 8; |
| 960 | const auto dataByteIdx = dataBit / 8; |
| 961 | const auto dataBitIdx = dataBit % 8; |
| 962 | if (valueData[valueByteIdx] & (0x01 << valueBitIdx)) |
| 963 | data[dataByteIdx] |= (0x01 << dataBitIdx); |
| 964 | else |
| 965 | data[dataByteIdx] &= ~(0x01 << dataBitIdx); |
| 966 | // handle jumps like 0 -> 15 |
| 967 | if (dataBit % 8 == 0) |
| 968 | dataBit += 15; |
| 969 | else |
| 970 | --dataBit; |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | #else |
| 977 | |
| 978 | static constexpr bool isNativeLittleEndian() |
| 979 | { |
| 980 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 981 | return true; |
| 982 | #else |
| 983 | return false; |
| 984 | #endif |
| 985 | } |
| 986 | |
| 987 | template <typename T> |
| 988 | static void encodeValue(unsigned char *data, const QVariant &valueVar, |
| 989 | const QCanSignalDescription &signalDesc) |
| 990 | { |
| 991 | constexpr auto tBitLength = sizeof(T) * 8; |
| 992 | const auto length = signalDesc.bitLength(); |
| 993 | if constexpr (std::is_floating_point_v<T>) |
| 994 | Q_ASSERT(tBitLength == length); |
| 995 | else |
| 996 | Q_ASSERT(tBitLength >= length); |
| 997 | const auto maxBytesToWrite = (length % 8 == 0) ? length / 8 : length / 8 + 1; |
| 998 | |
| 999 | // Perform value conversion. |
| 1000 | T value = {}; |
| 1001 | if (needValueConversion(signalDesc)) |
| 1002 | value = static_cast<T>(std::round(convertToCanValue(valueVar, signalDesc))); |
| 1003 | else |
| 1004 | value = valueVar.value<T>(); |
| 1005 | |
| 1006 | // Check endian. |
| 1007 | // When doing endian-conversion for values with (bitSize % 8 != 0) we must |
| 1008 | // be very careful, because qTo{Little,Big}Endian swaps whole bytes. |
| 1009 | // After swapping the last byte, which could have less than 8 meaningful |
| 1010 | // bits, becomes the first byte. So we need to adjust it carefully, shifting |
| 1011 | // it in such a way that all meaningless bits are skipped. |
| 1012 | // We also need to consider that we operate on q{u}int64 values for |
| 1013 | // {un}signed integers, so we need to chop the unneeded bytes first. |
| 1014 | const bool dataLittleEndian = |
| 1015 | signalDesc.dataEndian() == QSysInfo::Endian::LittleEndian; |
| 1016 | |
| 1017 | T valueToWrite = value; |
| 1018 | quint16 writeOffset = 0; |
| 1019 | if (dataLittleEndian && !isNativeLittleEndian()) { |
| 1020 | valueToWrite = qToLittleEndian(valueToWrite); |
| 1021 | } else if (!dataLittleEndian && isNativeLittleEndian()) { |
| 1022 | valueToWrite = qToBigEndian(valueToWrite); |
| 1023 | // for floating point types we always pass the exact type, so no need |
| 1024 | // to shift extra/unneeded bits |
| 1025 | if constexpr (!std::is_floating_point_v<T>) { |
| 1026 | // get rid of the unneeded bytes |
| 1027 | valueToWrite = valueToWrite >> (tBitLength - maxBytesToWrite * 8); |
| 1028 | // skip meaningless bits in the first byte |
| 1029 | writeOffset = maxBytesToWrite * 8 - length; |
| 1030 | if (writeOffset > 0) { |
| 1031 | uchar *valueData = reinterpret_cast<uchar *>(&valueToWrite); |
| 1032 | valueData[0] = valueData[0] << writeOffset; |
| 1033 | } |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | const quint16 start = signalDesc.startBit(); |
| 1038 | if (start % 8 == 0 && length % 8 == 0) { |
| 1039 | // The data is aligned at byte offset, and has a round number of bytes, |
| 1040 | // so we can simply memcpy |
| 1041 | memcpy(&data[start / 8], &valueToWrite, maxBytesToWrite); |
| 1042 | } else { |
| 1043 | const uchar *valueData = reinterpret_cast<const uchar *>(&valueToWrite); |
| 1044 | for (quint16 i = 0; i < length; ++i) { |
| 1045 | const auto valueByteIdx = (i + writeOffset) / 8; |
| 1046 | const auto valueBitIdx = (i + writeOffset) % 8; |
| 1047 | const auto dataByteIdx = (start + i) / 8; |
| 1048 | const auto dataBitIdx = (start + i) % 8; |
| 1049 | |
| 1050 | if (valueData[valueByteIdx] & (0x01 << valueBitIdx)) |
| 1051 | data[dataByteIdx] |= 0x01 << dataBitIdx; |
| 1052 | else |
| 1053 | data[dataByteIdx] &= ~(0x01 << dataBitIdx); |
| 1054 | } |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | #endif // USE_DBC_COMPATIBLE_BE_HANDLING |
| 1059 | |
| 1060 | static void encodeAscii(unsigned char *data, const QVariant &value, |
| 1061 | const QCanSignalDescription &signalDesc) |
| 1062 | { |
| 1063 | Q_ASSERT(signalDesc.bitLength() % 8 == 0); |
| 1064 | |
| 1065 | const QByteArray ascii = value.toByteArray(); |
| 1066 | // The ascii array can have more or less bytes. Handle it. |
| 1067 | const auto length = std::min(a: ascii.size() * 8, b: static_cast<qsizetype>(signalDesc.bitLength())); |
| 1068 | |
| 1069 | const auto start = signalDesc.startBit(); |
| 1070 | for (auto i = 0; i < length; ++i) { |
| 1071 | const auto dataByteIdx = (start + i) / 8; |
| 1072 | const auto dataBitIdx = (start + i) % 8; |
| 1073 | if (ascii.data()[i / 8] & (0x01 << (i % 8))) |
| 1074 | data[dataByteIdx] |= 0x01 << dataBitIdx; |
| 1075 | else |
| 1076 | data[dataByteIdx] &= ~(0x01 << dataBitIdx); |
| 1077 | } |
| 1078 | if (length < signalDesc.bitLength()) { |
| 1079 | // fill the rest of the bits with 0's |
| 1080 | for (auto i = length; i < signalDesc.bitLength(); ++i) |
| 1081 | data[i / 8] &= ~(0x01 << (i % 8)); |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | void QCanFrameProcessorPrivate::encodeSignal(unsigned char *data, const QVariant &value, |
| 1086 | const QCanSignalDescription &signalDesc) |
| 1087 | { |
| 1088 | // We assume that signal's length does not exceed data size. |
| 1089 | // That is checked as a precondition to calling this method, so we do not |
| 1090 | // pass size for the data. |
| 1091 | switch (signalDesc.dataFormat()) { |
| 1092 | case QtCanBus::DataFormat::SignedInteger: |
| 1093 | encodeValue<qint64>(data, valueVar: value, signalDesc); |
| 1094 | break; |
| 1095 | case QtCanBus::DataFormat::UnsignedInteger: |
| 1096 | encodeValue<quint64>(data, valueVar: value, signalDesc); |
| 1097 | break; |
| 1098 | case QtCanBus::DataFormat::Float: |
| 1099 | encodeValue<float>(data, valueVar: value, signalDesc); |
| 1100 | break; |
| 1101 | case QtCanBus::DataFormat::Double: |
| 1102 | encodeValue<double>(data, valueVar: value, signalDesc); |
| 1103 | break; |
| 1104 | case QtCanBus::DataFormat::AsciiString: |
| 1105 | encodeAscii(data, value, signalDesc); |
| 1106 | break; |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | std::optional<QtCanBus::UniqueId> |
| 1111 | QCanFrameProcessorPrivate::(const QCanBusFrame &frame) const |
| 1112 | { |
| 1113 | const auto signalDataEnd = extractMaxBitNum(startBit: uidDescription.startBit(), |
| 1114 | bitLength: uidDescription.bitLength(), |
| 1115 | endian: uidDescription.endian()); |
| 1116 | const bool dataFromPayload = uidDescription.source() == QtCanBus::DataSource::Payload; |
| 1117 | |
| 1118 | // For the FrameId case we do not really care if the frame id is extended |
| 1119 | // or not, because QCanBusFrame::FrameId is anyway 32-bit unsigned. |
| 1120 | const auto maxDataLength = dataFromPayload ? frame.payload().size() * 8 : 29; |
| 1121 | |
| 1122 | if (signalDataEnd >= maxDataLength) |
| 1123 | return {}; // add a more specific error description? |
| 1124 | |
| 1125 | const QByteArray payload = frame.payload(); |
| 1126 | const auto frameId = frame.frameId(); |
| 1127 | const unsigned char *data = dataFromPayload |
| 1128 | ? reinterpret_cast<const unsigned char *>(payload.data()) |
| 1129 | : reinterpret_cast<const unsigned char *>(&frameId); |
| 1130 | |
| 1131 | // Now we need to do the same as when extracting a value for a signal, but |
| 1132 | // without additional value conversions. We have an extractValue() template |
| 1133 | // function, but it takes a QCanSignalDescription as an input parameter. |
| 1134 | // To reuse the code, we generate a dummy QCanSignalDescription based on the |
| 1135 | // values of uidDescription and call extractValue(). |
| 1136 | // This approach introduces some unneeded checks and also result conversions |
| 1137 | // to/from QVariant. If this becomes a problem, we can copy-paste the code |
| 1138 | // from extractValue() and remove the unneeded parts. |
| 1139 | |
| 1140 | QCanSignalDescription dummyDesc; |
| 1141 | dummyDesc.setDataSource(uidDescription.source()); |
| 1142 | dummyDesc.setDataEndian(uidDescription.endian()); |
| 1143 | dummyDesc.setStartBit(uidDescription.startBit()); |
| 1144 | dummyDesc.setBitLength(uidDescription.bitLength()); |
| 1145 | dummyDesc.setDataFormat(QtCanBus::DataFormat::UnsignedInteger); |
| 1146 | // other fields are unused, so default-initialized |
| 1147 | |
| 1148 | using UnderlyingType = std::underlying_type_t<QtCanBus::UniqueId>; |
| 1149 | const QVariant val = extractValue<UnderlyingType>(data, signalDesc: dummyDesc); |
| 1150 | return QtCanBus::UniqueId{val.value<UnderlyingType>()}; |
| 1151 | } |
| 1152 | |
| 1153 | bool QCanFrameProcessorPrivate::fillUniqueId(unsigned char *data, quint16 sizeInBits, |
| 1154 | QtCanBus::UniqueId uniqueId) |
| 1155 | { |
| 1156 | const auto uidDataEnd = extractMaxBitNum(startBit: uidDescription.startBit(), |
| 1157 | bitLength: uidDescription.bitLength(), |
| 1158 | endian: uidDescription.endian()); |
| 1159 | if (uidDataEnd >= sizeInBits) { |
| 1160 | return false; // add a more specific error description? |
| 1161 | } |
| 1162 | |
| 1163 | // Now we need to do the same as when encoding signal value into the frame, |
| 1164 | // but without additional value conversions. We have encodeValue() template |
| 1165 | // function, but it takes QCanSignalDescription as an input parameter. |
| 1166 | // To reuse the code, we generate a dummy QCanSignalDescription based on the |
| 1167 | // values of uidDescription, and call encodeValue(). |
| 1168 | // This approach introduces some unneeded checks and QVariant conversions. |
| 1169 | // If this becomes a problem, we can copy-paste the code from encodeValue() |
| 1170 | // and remove all the unneeded parts. |
| 1171 | |
| 1172 | QCanSignalDescription dummyDesc; |
| 1173 | dummyDesc.setDataSource(uidDescription.source()); |
| 1174 | dummyDesc.setDataEndian(uidDescription.endian()); |
| 1175 | dummyDesc.setStartBit(uidDescription.startBit()); |
| 1176 | dummyDesc.setBitLength(uidDescription.bitLength()); |
| 1177 | dummyDesc.setDataFormat(QtCanBus::DataFormat::UnsignedInteger); |
| 1178 | // other fields are unused, so default-initialized |
| 1179 | |
| 1180 | using UnderlyingType = std::underlying_type_t<QtCanBus::UniqueId>; |
| 1181 | encodeValue<UnderlyingType>(data, valueVar: QVariant::fromValue(value: qToUnderlying(e: uniqueId)), signalDesc: dummyDesc); |
| 1182 | return true; |
| 1183 | } |
| 1184 | |
| 1185 | QCanFrameProcessorPrivate *QCanFrameProcessorPrivate::get(const QCanFrameProcessor &processor) |
| 1186 | { |
| 1187 | return processor.d.get(); |
| 1188 | } |
| 1189 | |
| 1190 | QT_END_NAMESPACE |
| 1191 | |
| 1192 | #include "moc_qcanframeprocessor.cpp" |
| 1193 | |