| 1 | // Copyright (C) 2022 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | |
| 4 | #include "qcansignaldescription.h" |
| 5 | #include "qcansignaldescription_p.h" |
| 6 | |
| 7 | QT_BEGIN_NAMESPACE |
| 8 | |
| 9 | /*! |
| 10 | \class QCanSignalDescription |
| 11 | \inmodule QtSerialBus |
| 12 | \since 6.5 |
| 13 | \preliminary |
| 14 | |
| 15 | \brief The QCanSignalDescription class describes the rules to extract one |
| 16 | value out of the CAN frame and represent it in an application-defined |
| 17 | format. |
| 18 | |
| 19 | The QCanSignalDescription class can be used to provide a signal description |
| 20 | and later use it to decode a received \l QCanBusFrame or encode the input |
| 21 | data into a \l QCanBusFrame that can be sent to the receiver. |
| 22 | |
| 23 | \section2 General Description |
| 24 | |
| 25 | Each CAN frame can contain multiple values. The rules to extract the values |
| 26 | from a CAN frame include the following: |
| 27 | \list |
| 28 | \li Data source (frame ID or payload). |
| 29 | \li Data endianness. See \l {Data Endianness Processing} section for |
| 30 | more details. |
| 31 | \li Data format. |
| 32 | \li Start bit position. |
| 33 | \li Data length in bits. |
| 34 | \li Multiplexing options. |
| 35 | \endlist |
| 36 | |
| 37 | Start bit position is specified relative to the selected data source. The |
| 38 | bits are counted starting from the LSB. |
| 39 | |
| 40 | Once the data is extracted, it might require conversion to an |
| 41 | application-defined format. The following parameters can be used for that: |
| 42 | \list |
| 43 | \li Various parameters for converting the extracted value to a physical |
| 44 | value (factor, offset, scale). |
| 45 | \li Expected data range. |
| 46 | \li Data units. |
| 47 | \endlist |
| 48 | |
| 49 | The QCanSignalDescription class provides methods to control all those |
| 50 | parameters. |
| 51 | |
| 52 | \section2 Data Endianness Processing |
| 53 | |
| 54 | Little endian and big endian data is encoded differently. |
| 55 | For big endian values, start bit positions are given for the most |
| 56 | significant bit. For little endian values, the start position is that of |
| 57 | the least significant bit. |
| 58 | |
| 59 | Let's consider two examples. In both examples we will encode two 12-bit |
| 60 | values in the 3-byte payload. |
| 61 | |
| 62 | \section3 Little Endian |
| 63 | |
| 64 | For the little endian case the data layout can be represented by the |
| 65 | following image: |
| 66 | |
| 67 | \image canbus_signals_le.png |
| 68 | |
| 69 | Here the columns represent bit numbers, and the rows represent byte numbers. |
| 70 | \c {LSB} marks the first (least significant) bit of the value, and \c {MSB} |
| 71 | marks the last (most significant) bit of the value. The blue color marks the |
| 72 | first value, and the orange color marks the second value. |
| 73 | |
| 74 | The information about these values will be encoded in QCanSignalDescription |
| 75 | in the following way: |
| 76 | |
| 77 | \code |
| 78 | QCanSignalDescription signal1; |
| 79 | signal1.setDataEndian(QSysInfo::Endian::LittleEndian); |
| 80 | signal1.setStartBit(0); |
| 81 | signal1.setBitLength(12); |
| 82 | // other parameters for signal1 |
| 83 | |
| 84 | QCanSignalDescription signal2; |
| 85 | signal2.setDataEndian(QSysInfo::Endian::LittleEndian); |
| 86 | signal2.setStartBit(12); |
| 87 | signal2.setBitLength(12); |
| 88 | // other parameters for signal2 |
| 89 | \endcode |
| 90 | |
| 91 | \section3 Big Endian |
| 92 | |
| 93 | The following image represents the value layout for the big endian case: |
| 94 | |
| 95 | \image canbus_signals_be.png |
| 96 | |
| 97 | The values can be represented in QCanSignalDescription in the following |
| 98 | way: |
| 99 | |
| 100 | \code |
| 101 | QCanSignalDescription signal1; |
| 102 | signal1.setDataEndian(QSysInfo::Endian::BigEndian); |
| 103 | signal1.setStartBit(7); |
| 104 | signal1.setBitLength(12); |
| 105 | // other parameters for signal1 |
| 106 | |
| 107 | QCanSignalDescription signal2; |
| 108 | signal2.setDataEndian(QSysInfo::Endian::BigEndian); |
| 109 | signal2.setStartBit(11); |
| 110 | signal2.setBitLength(12); |
| 111 | // other parameters for signal2 |
| 112 | \endcode |
| 113 | |
| 114 | Note how the start bits are different from the little endian case. Also the |
| 115 | values are aligned differently. |
| 116 | |
| 117 | \section2 Multiplexed Signals Explained |
| 118 | |
| 119 | There are two common ways to encode the data in the CAN payload: |
| 120 | \list |
| 121 | \li Each range of bits always represents the same signal. For example, |
| 122 | \c {Bytes 0-1} in a payload can represent an engine speed (in rpm), |
| 123 | and \c {Bytes 2-3} can represent the vehicle speed (in km/h). |
| 124 | \li The same range of bits can represent different data, depending on |
| 125 | the values of some other bits in the payload. For example, if |
| 126 | \c {Byte 0} has the value \c {0}, the \c {Bytes 1-2} represent an |
| 127 | engine speed (in rpm), and if \c {Byte 0} has the value \c {1}, the |
| 128 | same \c {Bytes 1-2} represent a vehicle speed (in km/h). |
| 129 | \endlist |
| 130 | |
| 131 | The second case uses signal multiplexing. In the provided example we will |
| 132 | have three signals. The first signal represents the value of \c {Byte 0} and |
| 133 | acts like a multiplexor signal. The other two signals represent an engine |
| 134 | speed and a vehicle speed respectively, but only one of them can be |
| 135 | extracted from the CAN payload at a time. Which signal should be extracted |
| 136 | is defined by the value of the multiplexor signal. |
| 137 | |
| 138 | In more complicated cases the payload can have multiple multiplexor signals. |
| 139 | In such cases the signal can be extracted from the payload only when all |
| 140 | multiplexors contain the expected values. |
| 141 | |
| 142 | \section2 Value Conversions |
| 143 | |
| 144 | In many cases the signals transferred over CAN bus cannot hold the full |
| 145 | range of the physical values that they represent. To overcome these |
| 146 | limitations, the physical values are converted to a smaller range before |
| 147 | transmission, and can be restored on the receiving end. |
| 148 | |
| 149 | The following formulas are used to convert between the physical value and |
| 150 | the signal's value: |
| 151 | |
| 152 | \badcode |
| 153 | physicalValue = scaling * (signalValue * factor + offset); |
| 154 | signalValue = (physicalValue / scaling - offset) / factor; |
| 155 | \endcode |
| 156 | |
| 157 | The factor and scaling parameters cannot be equal to \c {0}. |
| 158 | |
| 159 | If any of the parameters equals to \l qQNaN(), it is not used during the |
| 160 | conversion. If all of the parameters are equal to \l qQNaN() (which is the |
| 161 | default), the conversion is not performed. |
| 162 | */ |
| 163 | |
| 164 | /*! |
| 165 | \struct QCanSignalDescription::MultiplexValueRange |
| 166 | \inmodule QtSerialBus |
| 167 | \since 6.5 |
| 168 | |
| 169 | \brief Defines a range of values for a multiplexor signal. |
| 170 | |
| 171 | Each multiplexor signal can have several ranges of values assigned to it. |
| 172 | This type represents one range. Both minimum and maximum values are |
| 173 | included in the range. Minimum and maximum values can be equal, so a |
| 174 | MultiplexValueRange is never empty. If maximum is less than minimum, the |
| 175 | values will be swapped while doing the range check. |
| 176 | |
| 177 | \sa {Multiplexed Signals Explained} |
| 178 | */ |
| 179 | |
| 180 | /*! |
| 181 | \variable QCanSignalDescription::MultiplexValueRange::minimum |
| 182 | \brief the minimum value of the range. |
| 183 | */ |
| 184 | |
| 185 | /*! |
| 186 | \variable QCanSignalDescription::MultiplexValueRange::maximum |
| 187 | \brief the maximum value of the range. |
| 188 | */ |
| 189 | |
| 190 | /*! |
| 191 | \typealias QCanSignalDescription::MultiplexValues |
| 192 | */ |
| 193 | |
| 194 | /*! |
| 195 | \typealias QCanSignalDescription::MultiplexSignalValues |
| 196 | */ |
| 197 | |
| 198 | /*! |
| 199 | Creates an empty signal description. |
| 200 | */ |
| 201 | QCanSignalDescription::QCanSignalDescription() : d(new QCanSignalDescriptionPrivate) |
| 202 | { |
| 203 | } |
| 204 | |
| 205 | /*! |
| 206 | Creates a signal description with the values copied from \a other. |
| 207 | */ |
| 208 | QCanSignalDescription::QCanSignalDescription(const QCanSignalDescription &other) : d(other.d) |
| 209 | { |
| 210 | } |
| 211 | |
| 212 | /*! |
| 213 | \fn QCanSignalDescription::QCanSignalDescription(QCanSignalDescription &&other) noexcept |
| 214 | |
| 215 | Creates a signal description by moving from \a other. |
| 216 | |
| 217 | \note The moved-from QCanSignalDescription object can only be destroyed or |
| 218 | assigned to. The effect of calling other functions than the destructor or |
| 219 | one of the assignment operators is undefined. |
| 220 | */ |
| 221 | |
| 222 | /*! |
| 223 | \fn QCanSignalDescription::~QCanSignalDescription() |
| 224 | |
| 225 | Destroys this signal description. |
| 226 | */ |
| 227 | |
| 228 | QT_DEFINE_QESDP_SPECIALIZATION_DTOR(QCanSignalDescriptionPrivate) |
| 229 | |
| 230 | /*! |
| 231 | Assigns the values from \a other to this signal description. |
| 232 | */ |
| 233 | QCanSignalDescription &QCanSignalDescription::operator=(const QCanSignalDescription &other) |
| 234 | { |
| 235 | d = other.d; |
| 236 | return *this; |
| 237 | } |
| 238 | |
| 239 | /*! |
| 240 | \fn QCanSignalDescription &QCanSignalDescription::operator=(QCanSignalDescription &&other) noexcept |
| 241 | |
| 242 | Move-assigns the values from \a other to this signal description. |
| 243 | |
| 244 | \note The moved-from QCanSignalDescription object can only be destroyed or |
| 245 | assigned to. The effect of calling other functions than the destructor or |
| 246 | one of the assignment operators is undefined. |
| 247 | */ |
| 248 | |
| 249 | /*! |
| 250 | Returns \c true when the signal description is valid and \c false otherwise. |
| 251 | |
| 252 | A valid signal description \e must fulfill the following conditions: |
| 253 | \list |
| 254 | \li have a non-empty \l name() |
| 255 | \li have \l bitLength() \c {== 32} if the \l dataFormat() is |
| 256 | \l {QtCanBus::DataFormat::}{Float} |
| 257 | \li have \l bitLength() \c {== 64} if the \l dataFormat() is |
| 258 | \l {QtCanBus::DataFormat::}{Double} |
| 259 | \li the \l bitLength() \e must be a multiple of \c 8 if the |
| 260 | \l dataFormat() is \l {QtCanBus::DataFormat::}{AsciiString} |
| 261 | \li the \l bitLength() \e must be greater than \c 0 and less than or |
| 262 | equal to \c {64}. |
| 263 | \endlist |
| 264 | |
| 265 | \sa bitLength(), dataFormat(), name() |
| 266 | */ |
| 267 | bool QCanSignalDescription::isValid() const |
| 268 | { |
| 269 | const bool formatMatch = [this]() { |
| 270 | if (d->format == QtCanBus::DataFormat::Float) |
| 271 | return d->dataLength == 32; |
| 272 | if (d->format == QtCanBus::DataFormat::Double) |
| 273 | return d->dataLength == 64; |
| 274 | if (d->format == QtCanBus::DataFormat::AsciiString) |
| 275 | return d->dataLength % 8 == 0; |
| 276 | return d->dataLength > 0 && d->dataLength <= 64; |
| 277 | }(); |
| 278 | return !d->name.isEmpty() && formatMatch; |
| 279 | } |
| 280 | |
| 281 | /*! |
| 282 | Returns the name of the signal. |
| 283 | |
| 284 | \sa setName(), isValid() |
| 285 | */ |
| 286 | QString QCanSignalDescription::name() const |
| 287 | { |
| 288 | return d->name; |
| 289 | } |
| 290 | |
| 291 | /*! |
| 292 | Sets the name of the signal to \a name. |
| 293 | |
| 294 | The signal's name must be unique within a CAN message. |
| 295 | |
| 296 | \sa name() |
| 297 | */ |
| 298 | void QCanSignalDescription::setName(const QString &name) |
| 299 | { |
| 300 | d.detach(); |
| 301 | d->name = name; |
| 302 | } |
| 303 | |
| 304 | /*! |
| 305 | Returns the physical unit (e.g. km/h) of the signal's value or an empty |
| 306 | string if the unit is not set. |
| 307 | |
| 308 | //! [qcansignaldesc-aux-parameter] |
| 309 | This parameter is introduced only for extra description. It's not used |
| 310 | during signal processing. |
| 311 | //! [qcansignaldesc-aux-parameter] |
| 312 | |
| 313 | \sa setPhysicalUnit() |
| 314 | */ |
| 315 | QString QCanSignalDescription::physicalUnit() const |
| 316 | { |
| 317 | return d->unit; |
| 318 | } |
| 319 | |
| 320 | /*! |
| 321 | Sets the physical \a unit (e.g. km/h) of the signal's value. |
| 322 | |
| 323 | \include qcansignaldescription.cpp qcansignaldesc-aux-parameter |
| 324 | |
| 325 | \sa physicalUnit() |
| 326 | */ |
| 327 | void QCanSignalDescription::setPhysicalUnit(const QString &unit) |
| 328 | { |
| 329 | d.detach(); |
| 330 | d->unit = unit; |
| 331 | } |
| 332 | |
| 333 | /*! |
| 334 | Returns the receiver node for this signal. |
| 335 | |
| 336 | \include qcansignaldescription.cpp qcansignaldesc-aux-parameter |
| 337 | |
| 338 | \sa setReceiver() |
| 339 | */ |
| 340 | QString QCanSignalDescription::receiver() const |
| 341 | { |
| 342 | return d->receiver; |
| 343 | } |
| 344 | |
| 345 | /*! |
| 346 | Sets the \a receiver node for this signal. |
| 347 | |
| 348 | \include qcansignaldescription.cpp qcansignaldesc-aux-parameter |
| 349 | |
| 350 | \sa receiver() |
| 351 | */ |
| 352 | void QCanSignalDescription::setReceiver(const QString &receiver) |
| 353 | { |
| 354 | d.detach(); |
| 355 | d->receiver = receiver; |
| 356 | } |
| 357 | |
| 358 | /*! |
| 359 | Returns the comment for the signal. |
| 360 | |
| 361 | \include qcansignaldescription.cpp qcansignaldesc-aux-parameter |
| 362 | |
| 363 | \sa setComment() |
| 364 | */ |
| 365 | QString QCanSignalDescription::() const |
| 366 | { |
| 367 | return d->comment; |
| 368 | } |
| 369 | |
| 370 | /*! |
| 371 | Sets the comment for the signal to \a text. |
| 372 | |
| 373 | \include qcansignaldescription.cpp qcansignaldesc-aux-parameter |
| 374 | |
| 375 | \sa comment() |
| 376 | */ |
| 377 | void QCanSignalDescription::(const QString &text) |
| 378 | { |
| 379 | d.detach(); |
| 380 | d->comment = text; |
| 381 | } |
| 382 | |
| 383 | /*! |
| 384 | Returns the data source of the signal's value. |
| 385 | |
| 386 | By default, \l {QtCanBus::DataSource::}{Payload} is used. |
| 387 | |
| 388 | \sa setDataSource(), QtCanBus::DataSource |
| 389 | */ |
| 390 | QtCanBus::DataSource QCanSignalDescription::dataSource() const |
| 391 | { |
| 392 | return d->source; |
| 393 | } |
| 394 | |
| 395 | /*! |
| 396 | Sets the data source of the signal's value to \a source. |
| 397 | |
| 398 | \sa dataSource(), QtCanBus::DataSource |
| 399 | */ |
| 400 | void QCanSignalDescription::setDataSource(QtCanBus::DataSource source) |
| 401 | { |
| 402 | d.detach(); |
| 403 | d->source = source; |
| 404 | } |
| 405 | |
| 406 | /*! |
| 407 | Returns the data endian of the signal's value. |
| 408 | |
| 409 | By default, \l {QSysInfo::}{BigEndian} is used. |
| 410 | |
| 411 | \note The data endian is ignored if the \l dataFormat() is set to |
| 412 | \l {QtCanBus::DataFormat::}{AsciiString}. |
| 413 | |
| 414 | \sa setDataEndian(), QSysInfo::Endian |
| 415 | */ |
| 416 | QSysInfo::Endian QCanSignalDescription::dataEndian() const |
| 417 | { |
| 418 | return d->endian; |
| 419 | } |
| 420 | |
| 421 | /*! |
| 422 | Sets the data endian of the signal's value to \a endian. |
| 423 | |
| 424 | \sa dataEndian(), QSysInfo::Endian |
| 425 | */ |
| 426 | void QCanSignalDescription::setDataEndian(QSysInfo::Endian endian) |
| 427 | { |
| 428 | d.detach(); |
| 429 | d->endian = endian; |
| 430 | } |
| 431 | |
| 432 | /*! |
| 433 | Returns the data format of the signal's value. |
| 434 | |
| 435 | By default, \l {QtCanBus::DataFormat::}{SignedInteger} is used. |
| 436 | |
| 437 | \sa setDataFormat(), QtCanBus::DataFormat |
| 438 | */ |
| 439 | QtCanBus::DataFormat QCanSignalDescription::dataFormat() const |
| 440 | { |
| 441 | return d->format; |
| 442 | } |
| 443 | |
| 444 | /*! |
| 445 | Sets the data format of the signal's value to \a format. |
| 446 | |
| 447 | \sa dataFormat(), QtCanBus::DataFormat |
| 448 | */ |
| 449 | void QCanSignalDescription::setDataFormat(QtCanBus::DataFormat format) |
| 450 | { |
| 451 | d.detach(); |
| 452 | d->format = format; |
| 453 | } |
| 454 | |
| 455 | /*! |
| 456 | Returns the start bit of the signal's value in the \l dataSource(). |
| 457 | |
| 458 | \sa setStartBit(), bitLength(), setBitLength() |
| 459 | */ |
| 460 | quint16 QCanSignalDescription::startBit() const |
| 461 | { |
| 462 | return d->startBit; |
| 463 | } |
| 464 | |
| 465 | /*! |
| 466 | Sets the start bit of the signal's value in the \l dataSource() to \a bit. |
| 467 | |
| 468 | \sa startBit(), bitLength(), setBitLength() |
| 469 | */ |
| 470 | void QCanSignalDescription::setStartBit(quint16 bit) |
| 471 | { |
| 472 | d.detach(); |
| 473 | d->startBit = bit; |
| 474 | } |
| 475 | |
| 476 | /*! |
| 477 | Returns the bit length of the signal's value. |
| 478 | |
| 479 | \sa setBitLength(), startBit(), setStartBit() |
| 480 | */ |
| 481 | quint16 QCanSignalDescription::bitLength() const |
| 482 | { |
| 483 | return d->dataLength; |
| 484 | } |
| 485 | |
| 486 | /*! |
| 487 | Sets the bit length of the signal's value to \a length. |
| 488 | |
| 489 | \sa bitLength(), startBit(), setStartBit() |
| 490 | */ |
| 491 | void QCanSignalDescription::setBitLength(quint16 length) |
| 492 | { |
| 493 | d.detach(); |
| 494 | d->dataLength = length; |
| 495 | } |
| 496 | |
| 497 | /*! |
| 498 | Returns the factor that is used to convert the signal's value to a physical |
| 499 | value and back. |
| 500 | |
| 501 | By default the function returns \l qQNaN(), which means that a factor is not |
| 502 | used. |
| 503 | |
| 504 | The \l {Value Conversions} section explains how this parameter is used. |
| 505 | |
| 506 | \sa setFactor(), offset(), scaling() |
| 507 | */ |
| 508 | double QCanSignalDescription::factor() const |
| 509 | { |
| 510 | return d->factor; |
| 511 | } |
| 512 | |
| 513 | /*! |
| 514 | Sets the factor that is used to convert the signal's value to a physical |
| 515 | value and back to \a factor. |
| 516 | |
| 517 | Pass \l qQNaN() to this method to skip this parameter during the conversion. |
| 518 | |
| 519 | The factor cannot be 0. An attempt to set a zero factor is equivalent to |
| 520 | setting it to \l qQNaN(). |
| 521 | |
| 522 | The \l {Value Conversions} section explains how this parameter is used. |
| 523 | |
| 524 | \sa factor(), setOffset(), setScaling() |
| 525 | */ |
| 526 | void QCanSignalDescription::setFactor(double factor) |
| 527 | { |
| 528 | d.detach(); |
| 529 | if (qFuzzyIsNull(d: factor)) |
| 530 | d->factor = qQNaN(); |
| 531 | else |
| 532 | d->factor = factor; |
| 533 | } |
| 534 | |
| 535 | /*! |
| 536 | Returns the offset that is used to convert the signal's value to a physical |
| 537 | value and back. |
| 538 | |
| 539 | By default the function returns \l qQNaN(), which means that an offset is |
| 540 | not used. |
| 541 | |
| 542 | The \l {Value Conversions} section explains how this parameter is used. |
| 543 | |
| 544 | \sa setOffset(), factor(), scaling() |
| 545 | */ |
| 546 | double QCanSignalDescription::offset() const |
| 547 | { |
| 548 | return d->offset; |
| 549 | } |
| 550 | |
| 551 | /*! |
| 552 | Sets the offset that is used to convert the signal's value to a physical |
| 553 | value and back to \a offset. |
| 554 | |
| 555 | Pass \l qQNaN() to this method to skip this parameter during the conversion. |
| 556 | |
| 557 | The \l {Value Conversions} section explains how this parameter is used. |
| 558 | |
| 559 | \sa offset(), setFactor(), setScaling() |
| 560 | */ |
| 561 | void QCanSignalDescription::setOffset(double offset) |
| 562 | { |
| 563 | d.detach(); |
| 564 | d->offset = offset; |
| 565 | } |
| 566 | |
| 567 | /*! |
| 568 | Returns the scaling that is used to convert the signal's value to a physical |
| 569 | value and back. |
| 570 | |
| 571 | By default the function returns \l qQNaN(), which means that scaling is not |
| 572 | used. |
| 573 | |
| 574 | The \l {Value Conversions} section explains how this parameter is used. |
| 575 | |
| 576 | \sa setScaling(), offset(), factor() |
| 577 | */ |
| 578 | double QCanSignalDescription::scaling() const |
| 579 | { |
| 580 | return d->scaling; |
| 581 | } |
| 582 | |
| 583 | /*! |
| 584 | Sets the scaling that is used to convert the signal's value to a physical |
| 585 | value and back to \a scaling. |
| 586 | |
| 587 | Pass \l qQNaN() to this method to skip this parameter during the conversion. |
| 588 | |
| 589 | The scaling cannot be 0. An attempt to set zero scaling is equivalent to |
| 590 | setting it to \l qQNaN(). |
| 591 | |
| 592 | The \l {Value Conversions} section explains how this parameter is used. |
| 593 | |
| 594 | \sa scaling(), setOffset(), setFactor() |
| 595 | */ |
| 596 | void QCanSignalDescription::setScaling(double scaling) |
| 597 | { |
| 598 | d.detach(); |
| 599 | if (qFuzzyIsNull(d: scaling)) |
| 600 | d->scaling = qQNaN(); |
| 601 | else |
| 602 | d->scaling = scaling; |
| 603 | } |
| 604 | |
| 605 | /*! |
| 606 | Returns the minimum supported value for the signal. |
| 607 | |
| 608 | By default the function returns \l qQNaN(), which means that there is no |
| 609 | minimum value. |
| 610 | |
| 611 | \sa setRange(), maximum() |
| 612 | */ |
| 613 | double QCanSignalDescription::minimum() const |
| 614 | { |
| 615 | return d->minimum; |
| 616 | } |
| 617 | |
| 618 | /*! |
| 619 | Returns the maximum supported value for the signal. |
| 620 | |
| 621 | By default the function returns \l qQNaN(), which means that there is no |
| 622 | maximum value. |
| 623 | |
| 624 | \sa setRange(), minimum() |
| 625 | */ |
| 626 | double QCanSignalDescription::maximum() const |
| 627 | { |
| 628 | return d->maximum; |
| 629 | } |
| 630 | |
| 631 | /*! |
| 632 | Sets the \a minimum and \a maximum for the signal's value. |
| 633 | |
| 634 | Setting one or both of the parameters to \l qQNaN() means that the |
| 635 | corresponding limit will not be used. |
| 636 | |
| 637 | \sa minimum(), maximum() |
| 638 | */ |
| 639 | void QCanSignalDescription::setRange(double minimum, double maximum) |
| 640 | { |
| 641 | d.detach(); |
| 642 | if (qIsNaN(d: minimum) || qIsNaN(d: maximum) || minimum <= maximum) { |
| 643 | d->minimum = minimum; |
| 644 | d->maximum = maximum; |
| 645 | } else { |
| 646 | qWarning(msg: "Minimum value is greater than maximum. The values will be swapped." ); |
| 647 | d->minimum = maximum; |
| 648 | d->maximum = minimum; |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | /*! |
| 653 | Returns the multiplex state of the signal. |
| 654 | |
| 655 | See the \l {Multiplexed Signals Explained} section for more details on |
| 656 | multiplexed signals. |
| 657 | |
| 658 | By default this method returns \l {QtCanBus::MultiplexState::}{None}. |
| 659 | |
| 660 | \sa setMultiplexState(), QtCanBus::MultiplexState |
| 661 | */ |
| 662 | QtCanBus::MultiplexState QCanSignalDescription::multiplexState() const |
| 663 | { |
| 664 | return d->muxState; |
| 665 | } |
| 666 | |
| 667 | /*! |
| 668 | Sets the multiplex state of the signal to \a state. |
| 669 | |
| 670 | See the \l {Multiplexed Signals Explained} section for more details on |
| 671 | multiplexed signals. |
| 672 | |
| 673 | \sa multiplexState(), QtCanBus::MultiplexState |
| 674 | */ |
| 675 | void QCanSignalDescription::setMultiplexState(QtCanBus::MultiplexState state) |
| 676 | { |
| 677 | d.detach(); |
| 678 | d->muxState = state; |
| 679 | } |
| 680 | |
| 681 | /*! |
| 682 | Returns the \l {Multiplexed Signals Explained}{multiplexor signals} and |
| 683 | their desired values that are used to properly identify this signal. |
| 684 | |
| 685 | The returned hash contains signal names as keys and respective desired |
| 686 | ranges of values as values. |
| 687 | |
| 688 | This signal's value can be extracted from the payload only when all the |
| 689 | signals from the hash have the expected values. |
| 690 | |
| 691 | \sa multiplexState(), clearMultiplexSignals(), setMultiplexSignals(), |
| 692 | addMultiplexSignal() |
| 693 | */ |
| 694 | QCanSignalDescription::MultiplexSignalValues QCanSignalDescription::multiplexSignals() const |
| 695 | { |
| 696 | return d->muxSignals; |
| 697 | } |
| 698 | |
| 699 | /*! |
| 700 | Removes all \l {Multiplexed Signals Explained}{multiplexor signals} for |
| 701 | this signal. |
| 702 | |
| 703 | \sa multiplexSignals(), setMultiplexSignals(), addMultiplexSignal() |
| 704 | */ |
| 705 | void QCanSignalDescription::clearMultiplexSignals() |
| 706 | { |
| 707 | d.detach(); |
| 708 | d->muxSignals.clear(); |
| 709 | } |
| 710 | |
| 711 | /*! |
| 712 | Sets the \l {Multiplexed Signals Explained}{multiplexor signals} for this |
| 713 | signal to \a multiplexorSignals. |
| 714 | |
| 715 | The \a multiplexorSignals hash \e must contain signal names as keys and |
| 716 | respective desired value ranges as values. |
| 717 | |
| 718 | \sa multiplexState(), multiplexSignals(), clearMultiplexSignals(), |
| 719 | addMultiplexSignal() |
| 720 | */ |
| 721 | void QCanSignalDescription::setMultiplexSignals(const MultiplexSignalValues &multiplexorSignals) |
| 722 | { |
| 723 | d.detach(); |
| 724 | d->muxSignals = multiplexorSignals; |
| 725 | } |
| 726 | |
| 727 | /*! |
| 728 | Adds a new \l {Multiplexed Signals Explained}{multiplexor signal} for this |
| 729 | signal. The \a name parameter contains the name of the multiplexor signal, |
| 730 | and the \a ranges parameter contains the desired value ranges. |
| 731 | |
| 732 | If this signal already has desired value ranges for the multiplexor signal |
| 733 | \a name, the ranges are overwritten. |
| 734 | |
| 735 | \sa multiplexState(), multiplexSignals(), clearMultiplexSignals(), |
| 736 | setMultiplexSignals() |
| 737 | */ |
| 738 | void QCanSignalDescription::addMultiplexSignal(const QString &name, const MultiplexValues &ranges) |
| 739 | { |
| 740 | d.detach(); |
| 741 | d->muxSignals.insert(key: name, value: ranges); |
| 742 | } |
| 743 | |
| 744 | /*! |
| 745 | \overload |
| 746 | |
| 747 | This is a convenience overload for the case when the multiplexor signal is |
| 748 | expected to have only one specific value, not a range of values. |
| 749 | |
| 750 | The \a name parameter contains the name of the multiplexor signal, |
| 751 | and the \a value parameter contains the desired value. |
| 752 | |
| 753 | If this signal already has desired value ranges for the multiplexor signal |
| 754 | \a name, the ranges are overwritten. |
| 755 | |
| 756 | \sa multiplexState(), multiplexSignals(), clearMultiplexSignals(), |
| 757 | setMultiplexSignals() |
| 758 | */ |
| 759 | void QCanSignalDescription::addMultiplexSignal(const QString &name, const QVariant &value) |
| 760 | { |
| 761 | d.detach(); |
| 762 | d->muxSignals.insert(key: name, value: { {.minimum: value, .maximum: value} }); |
| 763 | } |
| 764 | |
| 765 | #ifndef QT_NO_DEBUG_STREAM |
| 766 | QDebug QCanSignalDescription::debugStreaming(QDebug dbg, const QCanSignalDescription &sig) |
| 767 | { |
| 768 | QDebugStateSaver saver(dbg); |
| 769 | dbg.nospace() << "QCanSignalDescription(" << sig.name() << ", Source = " << sig.dataSource() |
| 770 | << ", Format = " << sig.dataFormat() << ", Endian = " << sig.dataEndian() |
| 771 | << ", StartBit = " << sig.startBit() << ", BitLength = " << sig.bitLength(); |
| 772 | if (!sig.physicalUnit().isEmpty()) |
| 773 | dbg << ", Units = " << sig.physicalUnit(); |
| 774 | if (!sig.receiver().isEmpty()) |
| 775 | dbg << ", Receiver = " << sig.receiver(); |
| 776 | if (!sig.comment().isEmpty()) |
| 777 | dbg << ", Comment = " << sig.comment(); |
| 778 | dbg << ", Factor = " << sig.factor() << ", Offset = " << sig.offset() |
| 779 | << ", Scaling = " << sig.scaling(); |
| 780 | dbg << ", Minimum = " << sig.minimum() << ", Maximum = " << sig.maximum(); |
| 781 | dbg << ", Multiplex State = " << sig.multiplexState(); |
| 782 | const auto muxSignals = sig.multiplexSignals(); |
| 783 | if (!muxSignals.isEmpty()) { |
| 784 | dbg << ", Multiplexor Signals: {" ; |
| 785 | for (auto it = muxSignals.cbegin(); it != muxSignals.cend(); ++it) { |
| 786 | if (it != muxSignals.cbegin()) |
| 787 | dbg << ", " ; |
| 788 | dbg << "(" << it.key() << ", " << it.value() << ")" ; |
| 789 | } |
| 790 | dbg << "}" ; |
| 791 | } |
| 792 | dbg << ")" ; |
| 793 | return dbg; |
| 794 | } |
| 795 | |
| 796 | QDebug QCanSignalDescription::MultiplexValueRange::debugStreaming(QDebug dbg, |
| 797 | const MultiplexValueRange &range) |
| 798 | { |
| 799 | QDebugStateSaver saver(dbg); |
| 800 | dbg.nospace() << "MultiplexValueRange(" << range.minimum << ", " << range.maximum << ")" ; |
| 801 | return dbg; |
| 802 | } |
| 803 | #endif // QT_NO_DEBUG_STREAM |
| 804 | |
| 805 | template <typename T> |
| 806 | static bool checkValue(const QVariant &valueVar, |
| 807 | const QCanSignalDescription::MultiplexValues &ranges) |
| 808 | { |
| 809 | const T val = valueVar.value<T>(); |
| 810 | for (const auto &pair : ranges) { |
| 811 | T min = pair.minimum.value<T>(); |
| 812 | T max = pair.maximum.value<T>(); |
| 813 | if (min > max) |
| 814 | max = std::exchange(min, max); |
| 815 | if (val >= min && val <= max) |
| 816 | return true; |
| 817 | } |
| 818 | return false; |
| 819 | } |
| 820 | |
| 821 | bool QCanSignalDescriptionPrivate::muxValueInRange( |
| 822 | const QVariant &value, const QCanSignalDescription::MultiplexValues &ranges) const |
| 823 | { |
| 824 | // Use the current data format to convert QVariant values. |
| 825 | // Do we really need it for Float, Double and Ascii? |
| 826 | switch (format) { |
| 827 | case QtCanBus::DataFormat::SignedInteger: |
| 828 | return checkValue<qint64>(valueVar: value, ranges); |
| 829 | case QtCanBus::DataFormat::UnsignedInteger: |
| 830 | return checkValue<quint64>(valueVar: value, ranges); |
| 831 | case QtCanBus::DataFormat::Float: |
| 832 | return checkValue<float>(valueVar: value, ranges); |
| 833 | case QtCanBus::DataFormat::Double: |
| 834 | return checkValue<double>(valueVar: value, ranges); |
| 835 | case QtCanBus::DataFormat::AsciiString: |
| 836 | return checkValue<QByteArray>(valueVar: value, ranges); |
| 837 | } |
| 838 | |
| 839 | Q_UNREACHABLE_RETURN(false); |
| 840 | } |
| 841 | |
| 842 | QCanSignalDescriptionPrivate *QCanSignalDescriptionPrivate::get(const QCanSignalDescription &desc) |
| 843 | { |
| 844 | return desc.d.data(); |
| 845 | } |
| 846 | |
| 847 | QT_END_NAMESPACE |
| 848 | |