1//
2// Copyright (C) 2015 LunarG, Inc.
3//
4// All rights reserved.
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions
8// are met:
9//
10// Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12//
13// Redistributions in binary form must reproduce the above
14// copyright notice, this list of conditions and the following
15// disclaimer in the documentation and/or other materials provided
16// with the distribution.
17//
18// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
19// contributors may be used to endorse or promote products derived
20// from this software without specific prior written permission.
21//
22// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33// POSSIBILITY OF SUCH DAMAGE.
34//
35
36#include "SPVRemapper.h"
37#include "doc.h"
38
39#include <algorithm>
40#include <cassert>
41#include "../glslang/Include/Common.h"
42
43namespace spv {
44
45 // By default, just abort on error. Can be overridden via RegisterErrorHandler
46 spirvbin_t::errorfn_t spirvbin_t::errorHandler = [](const std::string&) { exit(status: 5); };
47 // By default, eat log messages. Can be overridden via RegisterLogHandler
48 spirvbin_t::logfn_t spirvbin_t::logHandler = [](const std::string&) { };
49
50 // This can be overridden to provide other message behavior if needed
51 void spirvbin_t::msg(int minVerbosity, int indent, const std::string& txt) const
52 {
53 if (verbose >= minVerbosity)
54 logHandler(std::string(indent, ' ') + txt);
55 }
56
57 // hash opcode, with special handling for OpExtInst
58 std::uint32_t spirvbin_t::asOpCodeHash(unsigned word)
59 {
60 const spv::Op opCode = asOpCode(word);
61
62 std::uint32_t offset = 0;
63
64 switch (opCode) {
65 case spv::OpExtInst:
66 offset += asId(word: word + 4); break;
67 default:
68 break;
69 }
70
71 return opCode * 19 + offset; // 19 = small prime
72 }
73
74 spirvbin_t::range_t spirvbin_t::literalRange(spv::Op opCode) const
75 {
76 static const int maxCount = 1<<30;
77
78 switch (opCode) {
79 case spv::OpTypeFloat: // fall through...
80 case spv::OpTypePointer: return range_t(2, 3);
81 case spv::OpTypeInt: return range_t(2, 4);
82 // TODO: case spv::OpTypeImage:
83 // TODO: case spv::OpTypeSampledImage:
84 case spv::OpTypeSampler: return range_t(3, 8);
85 case spv::OpTypeVector: // fall through
86 case spv::OpTypeMatrix: // ...
87 case spv::OpTypePipe: return range_t(3, 4);
88 case spv::OpConstant: return range_t(3, maxCount);
89 default: return range_t(0, 0);
90 }
91 }
92
93 spirvbin_t::range_t spirvbin_t::typeRange(spv::Op opCode) const
94 {
95 static const int maxCount = 1<<30;
96
97 if (isConstOp(opCode))
98 return range_t(1, 2);
99
100 switch (opCode) {
101 case spv::OpTypeVector: // fall through
102 case spv::OpTypeMatrix: // ...
103 case spv::OpTypeSampler: // ...
104 case spv::OpTypeArray: // ...
105 case spv::OpTypeRuntimeArray: // ...
106 case spv::OpTypePipe: return range_t(2, 3);
107 case spv::OpTypeStruct: // fall through
108 case spv::OpTypeFunction: return range_t(2, maxCount);
109 case spv::OpTypePointer: return range_t(3, 4);
110 default: return range_t(0, 0);
111 }
112 }
113
114 spirvbin_t::range_t spirvbin_t::constRange(spv::Op opCode) const
115 {
116 static const int maxCount = 1<<30;
117
118 switch (opCode) {
119 case spv::OpTypeArray: // fall through...
120 case spv::OpTypeRuntimeArray: return range_t(3, 4);
121 case spv::OpConstantComposite: return range_t(3, maxCount);
122 default: return range_t(0, 0);
123 }
124 }
125
126 // Return the size of a type in 32-bit words. This currently only
127 // handles ints and floats, and is only invoked by queries which must be
128 // integer types. If ever needed, it can be generalized.
129 unsigned spirvbin_t::typeSizeInWords(spv::Id id) const
130 {
131 const unsigned typeStart = idPos(id);
132 const spv::Op opCode = asOpCode(word: typeStart);
133
134 if (errorLatch)
135 return 0;
136
137 switch (opCode) {
138 case spv::OpTypeInt: // fall through...
139 case spv::OpTypeFloat: return (spv[typeStart+2]+31)/32;
140 default:
141 return 0;
142 }
143 }
144
145 // Looks up the type of a given const or variable ID, and
146 // returns its size in 32-bit words.
147 unsigned spirvbin_t::idTypeSizeInWords(spv::Id id) const
148 {
149 const auto tid_it = idTypeSizeMap.find(x: id);
150 if (tid_it == idTypeSizeMap.end()) {
151 error(txt: "type size for ID not found");
152 return 0;
153 }
154
155 return tid_it->second;
156 }
157
158 // Is this an opcode we should remove when using --strip?
159 bool spirvbin_t::isStripOp(spv::Op opCode, unsigned start) const
160 {
161 switch (opCode) {
162 case spv::OpSource:
163 case spv::OpSourceExtension:
164 case spv::OpName:
165 case spv::OpMemberName:
166 case spv::OpLine :
167 {
168 const std::string name = literalString(word: start + 2);
169
170 std::vector<std::string>::const_iterator it;
171 for (it = stripWhiteList.begin(); it < stripWhiteList.end(); it++)
172 {
173 if (name.find(str: *it) != std::string::npos) {
174 return false;
175 }
176 }
177
178 return true;
179 }
180 default :
181 return false;
182 }
183 }
184
185 // Return true if this opcode is flow control
186 bool spirvbin_t::isFlowCtrl(spv::Op opCode) const
187 {
188 switch (opCode) {
189 case spv::OpBranchConditional:
190 case spv::OpBranch:
191 case spv::OpSwitch:
192 case spv::OpLoopMerge:
193 case spv::OpSelectionMerge:
194 case spv::OpLabel:
195 case spv::OpFunction:
196 case spv::OpFunctionEnd: return true;
197 default: return false;
198 }
199 }
200
201 // Return true if this opcode defines a type
202 bool spirvbin_t::isTypeOp(spv::Op opCode) const
203 {
204 switch (opCode) {
205 case spv::OpTypeVoid:
206 case spv::OpTypeBool:
207 case spv::OpTypeInt:
208 case spv::OpTypeFloat:
209 case spv::OpTypeVector:
210 case spv::OpTypeMatrix:
211 case spv::OpTypeImage:
212 case spv::OpTypeSampler:
213 case spv::OpTypeArray:
214 case spv::OpTypeRuntimeArray:
215 case spv::OpTypeStruct:
216 case spv::OpTypeOpaque:
217 case spv::OpTypePointer:
218 case spv::OpTypeFunction:
219 case spv::OpTypeEvent:
220 case spv::OpTypeDeviceEvent:
221 case spv::OpTypeReserveId:
222 case spv::OpTypeQueue:
223 case spv::OpTypeSampledImage:
224 case spv::OpTypePipe: return true;
225 default: return false;
226 }
227 }
228
229 // Return true if this opcode defines a constant
230 bool spirvbin_t::isConstOp(spv::Op opCode) const
231 {
232 switch (opCode) {
233 case spv::OpConstantSampler:
234 error(txt: "unimplemented constant type");
235 return true;
236
237 case spv::OpConstantNull:
238 case spv::OpConstantTrue:
239 case spv::OpConstantFalse:
240 case spv::OpConstantComposite:
241 case spv::OpConstant:
242 return true;
243
244 default:
245 return false;
246 }
247 }
248
249 const auto inst_fn_nop = [](spv::Op, unsigned) { return false; };
250 const auto op_fn_nop = [](spv::Id&) { };
251
252 // g++ doesn't like these defined in the class proper in an anonymous namespace.
253 // Dunno why. Also MSVC doesn't like the constexpr keyword. Also dunno why.
254 // Defining them externally seems to please both compilers, so, here they are.
255 const spv::Id spirvbin_t::unmapped = spv::Id(-10000);
256 const spv::Id spirvbin_t::unused = spv::Id(-10001);
257 const int spirvbin_t::header_size = 5;
258
259 spv::Id spirvbin_t::nextUnusedId(spv::Id id)
260 {
261 while (isNewIdMapped(newId: id)) // search for an unused ID
262 ++id;
263
264 return id;
265 }
266
267 spv::Id spirvbin_t::localId(spv::Id id, spv::Id newId)
268 {
269 //assert(id != spv::NoResult && newId != spv::NoResult);
270
271 if (id > bound()) {
272 error(txt: std::string("ID out of range: ") + std::to_string(val: id));
273 return spirvbin_t::unused;
274 }
275
276 if (id >= idMapL.size())
277 idMapL.resize(new_size: id+1, x: unused);
278
279 if (newId != unmapped && newId != unused) {
280 if (isOldIdUnused(oldId: id)) {
281 error(txt: std::string("ID unused in module: ") + std::to_string(val: id));
282 return spirvbin_t::unused;
283 }
284
285 if (!isOldIdUnmapped(oldId: id)) {
286 error(txt: std::string("ID already mapped: ") + std::to_string(val: id) + " -> "
287 + std::to_string(val: localId(id)));
288
289 return spirvbin_t::unused;
290 }
291
292 if (isNewIdMapped(newId)) {
293 error(txt: std::string("ID already used in module: ") + std::to_string(val: newId));
294 return spirvbin_t::unused;
295 }
296
297 msg(minVerbosity: 4, indent: 4, txt: std::string("map: ") + std::to_string(val: id) + " -> " + std::to_string(val: newId));
298 setMapped(newId);
299 largestNewId = std::max(a: largestNewId, b: newId);
300 }
301
302 return idMapL[id] = newId;
303 }
304
305 // Parse a literal string from the SPIR binary and return it as an std::string
306 // Due to C++11 RValue references, this doesn't copy the result string.
307 std::string spirvbin_t::literalString(unsigned word) const
308 {
309 std::string literal;
310 const spirword_t * pos = spv.data() + word;
311
312 literal.reserve(res: 16);
313
314 do {
315 spirword_t word = *pos;
316 for (int i = 0; i < 4; i++) {
317 char c = word & 0xff;
318 if (c == '\0')
319 return literal;
320 literal += c;
321 word >>= 8;
322 }
323 pos++;
324 } while (true);
325 }
326
327 void spirvbin_t::applyMap()
328 {
329 msg(minVerbosity: 3, indent: 2, txt: std::string("Applying map: "));
330
331 // Map local IDs through the ID map
332 process(inst_fn_nop, // ignore instructions
333 [this](spv::Id& id) {
334 id = localId(id);
335
336 if (errorLatch)
337 return;
338
339 assert(id != unused && id != unmapped);
340 }
341 );
342 }
343
344 // Find free IDs for anything we haven't mapped
345 void spirvbin_t::mapRemainder()
346 {
347 msg(minVerbosity: 3, indent: 2, txt: std::string("Remapping remainder: "));
348
349 spv::Id unusedId = 1; // can't use 0: that's NoResult
350 spirword_t maxBound = 0;
351
352 for (spv::Id id = 0; id < idMapL.size(); ++id) {
353 if (isOldIdUnused(oldId: id))
354 continue;
355
356 // Find a new mapping for any used but unmapped IDs
357 if (isOldIdUnmapped(oldId: id)) {
358 localId(id, newId: unusedId = nextUnusedId(id: unusedId));
359 if (errorLatch)
360 return;
361 }
362
363 if (isOldIdUnmapped(oldId: id)) {
364 error(txt: std::string("old ID not mapped: ") + std::to_string(val: id));
365 return;
366 }
367
368 // Track max bound
369 maxBound = std::max(a: maxBound, b: localId(id) + 1);
370
371 if (errorLatch)
372 return;
373 }
374
375 bound(b: maxBound); // reset header ID bound to as big as it now needs to be
376 }
377
378 // Mark debug instructions for stripping
379 void spirvbin_t::stripDebug()
380 {
381 // Strip instructions in the stripOp set: debug info.
382 process(
383 [&](spv::Op opCode, unsigned start) {
384 // remember opcodes we want to strip later
385 if (isStripOp(opCode, start))
386 stripInst(start);
387 return true;
388 },
389 op_fn_nop);
390 }
391
392 // Mark instructions that refer to now-removed IDs for stripping
393 void spirvbin_t::stripDeadRefs()
394 {
395 process(
396 [&](spv::Op opCode, unsigned start) {
397 // strip opcodes pointing to removed data
398 switch (opCode) {
399 case spv::OpName:
400 case spv::OpMemberName:
401 case spv::OpDecorate:
402 case spv::OpMemberDecorate:
403 if (idPosR.find(x: asId(word: start+1)) == idPosR.end())
404 stripInst(start);
405 break;
406 default:
407 break; // leave it alone
408 }
409
410 return true;
411 },
412 op_fn_nop);
413
414 strip();
415 }
416
417 // Update local maps of ID, type, etc positions
418 void spirvbin_t::buildLocalMaps()
419 {
420 msg(minVerbosity: 2, indent: 2, txt: std::string("build local maps: "));
421
422 mapped.clear();
423 idMapL.clear();
424// preserve nameMap, so we don't clear that.
425 fnPos.clear();
426 fnCalls.clear();
427 typeConstPos.clear();
428 idPosR.clear();
429 entryPoint = spv::NoResult;
430 largestNewId = 0;
431
432 idMapL.resize(new_size: bound(), x: unused);
433
434 int fnStart = 0;
435 spv::Id fnRes = spv::NoResult;
436
437 // build local Id and name maps
438 process(
439 [&](spv::Op opCode, unsigned start) {
440 unsigned word = start+1;
441 spv::Id typeId = spv::NoResult;
442
443 if (spv::InstructionDesc[opCode].hasType())
444 typeId = asId(word: word++);
445
446 // If there's a result ID, remember the size of its type
447 if (spv::InstructionDesc[opCode].hasResult()) {
448 const spv::Id resultId = asId(word: word++);
449 idPosR[resultId] = start;
450
451 if (typeId != spv::NoResult) {
452 const unsigned idTypeSize = typeSizeInWords(id: typeId);
453
454 if (errorLatch)
455 return false;
456
457 if (idTypeSize != 0)
458 idTypeSizeMap[resultId] = idTypeSize;
459 }
460 }
461
462 if (opCode == spv::Op::OpName) {
463 const spv::Id target = asId(word: start+1);
464 const std::string name = literalString(word: start+2);
465 nameMap[name] = target;
466
467 } else if (opCode == spv::Op::OpFunctionCall) {
468 ++fnCalls[asId(word: start + 3)];
469 } else if (opCode == spv::Op::OpEntryPoint) {
470 entryPoint = asId(word: start + 2);
471 } else if (opCode == spv::Op::OpFunction) {
472 if (fnStart != 0) {
473 error(txt: "nested function found");
474 return false;
475 }
476
477 fnStart = start;
478 fnRes = asId(word: start + 2);
479 } else if (opCode == spv::Op::OpFunctionEnd) {
480 assert(fnRes != spv::NoResult);
481 if (fnStart == 0) {
482 error(txt: "function end without function start");
483 return false;
484 }
485
486 fnPos[fnRes] = range_t(fnStart, start + asWordCount(word: start));
487 fnStart = 0;
488 } else if (isConstOp(opCode)) {
489 if (errorLatch)
490 return false;
491
492 assert(asId(start + 2) != spv::NoResult);
493 typeConstPos.insert(x: start);
494 } else if (isTypeOp(opCode)) {
495 assert(asId(start + 1) != spv::NoResult);
496 typeConstPos.insert(x: start);
497 }
498
499 return false;
500 },
501
502 [this](spv::Id& id) { localId(id, newId: unmapped); }
503 );
504 }
505
506 // Validate the SPIR header
507 void spirvbin_t::validate() const
508 {
509 msg(minVerbosity: 2, indent: 2, txt: std::string("validating: "));
510
511 if (spv.size() < header_size) {
512 error(txt: "file too short: ");
513 return;
514 }
515
516 if (magic() != spv::MagicNumber) {
517 error(txt: "bad magic number");
518 return;
519 }
520
521 // field 1 = version
522 // field 2 = generator magic
523 // field 3 = result <id> bound
524
525 if (schemaNum() != 0) {
526 error(txt: "bad schema, must be 0");
527 return;
528 }
529 }
530
531 int spirvbin_t::processInstruction(unsigned word, instfn_t instFn, idfn_t idFn)
532 {
533 const auto instructionStart = word;
534 const unsigned wordCount = asWordCount(word: instructionStart);
535 const int nextInst = word++ + wordCount;
536 spv::Op opCode = asOpCode(word: instructionStart);
537
538 if (nextInst > int(spv.size())) {
539 error(txt: "spir instruction terminated too early");
540 return -1;
541 }
542
543 // Base for computing number of operands; will be updated as more is learned
544 unsigned numOperands = wordCount - 1;
545
546 if (instFn(opCode, instructionStart))
547 return nextInst;
548
549 // Read type and result ID from instruction desc table
550 if (spv::InstructionDesc[opCode].hasType()) {
551 idFn(asId(word: word++));
552 --numOperands;
553 }
554
555 if (spv::InstructionDesc[opCode].hasResult()) {
556 idFn(asId(word: word++));
557 --numOperands;
558 }
559
560 // Extended instructions: currently, assume everything is an ID.
561 // TODO: add whatever data we need for exceptions to that
562 if (opCode == spv::OpExtInst) {
563
564 idFn(asId(word)); // Instruction set is an ID that also needs to be mapped
565
566 word += 2; // instruction set, and instruction from set
567 numOperands -= 2;
568
569 for (unsigned op=0; op < numOperands; ++op)
570 idFn(asId(word: word++)); // ID
571
572 return nextInst;
573 }
574
575 // Circular buffer so we can look back at previous unmapped values during the mapping pass.
576 static const unsigned idBufferSize = 4;
577 spv::Id idBuffer[idBufferSize];
578 unsigned idBufferPos = 0;
579
580 // Store IDs from instruction in our map
581 for (int op = 0; numOperands > 0; ++op, --numOperands) {
582 // SpecConstantOp is special: it includes the operands of another opcode which is
583 // given as a literal in the 3rd word. We will switch over to pretending that the
584 // opcode being processed is the literal opcode value of the SpecConstantOp. See the
585 // SPIRV spec for details. This way we will handle IDs and literals as appropriate for
586 // the embedded op.
587 if (opCode == spv::OpSpecConstantOp) {
588 if (op == 0) {
589 opCode = asOpCode(word: word++); // this is the opcode embedded in the SpecConstantOp.
590 --numOperands;
591 }
592 }
593
594 switch (spv::InstructionDesc[opCode].operands.getClass(op)) {
595 case spv::OperandId:
596 case spv::OperandScope:
597 case spv::OperandMemorySemantics:
598 idBuffer[idBufferPos] = asId(word);
599 idBufferPos = (idBufferPos + 1) % idBufferSize;
600 idFn(asId(word: word++));
601 break;
602
603 case spv::OperandVariableIds:
604 for (unsigned i = 0; i < numOperands; ++i)
605 idFn(asId(word: word++));
606 return nextInst;
607
608 case spv::OperandVariableLiterals:
609 // for clarity
610 // if (opCode == spv::OpDecorate && asDecoration(word - 1) == spv::DecorationBuiltIn) {
611 // ++word;
612 // --numOperands;
613 // }
614 // word += numOperands;
615 return nextInst;
616
617 case spv::OperandVariableLiteralId: {
618 if (opCode == OpSwitch) {
619 // word-2 is the position of the selector ID. OpSwitch Literals match its type.
620 // In case the IDs are currently being remapped, we get the word[-2] ID from
621 // the circular idBuffer.
622 const unsigned literalSizePos = (idBufferPos+idBufferSize-2) % idBufferSize;
623 const unsigned literalSize = idTypeSizeInWords(id: idBuffer[literalSizePos]);
624 const unsigned numLiteralIdPairs = (nextInst-word) / (1+literalSize);
625
626 if (errorLatch)
627 return -1;
628
629 for (unsigned arg=0; arg<numLiteralIdPairs; ++arg) {
630 word += literalSize; // literal
631 idFn(asId(word: word++)); // label
632 }
633 } else {
634 assert(0); // currentely, only OpSwitch uses OperandVariableLiteralId
635 }
636
637 return nextInst;
638 }
639
640 case spv::OperandLiteralString: {
641 const int stringWordCount = literalStringWords(str: literalString(word));
642 word += stringWordCount;
643 numOperands -= (stringWordCount-1); // -1 because for() header post-decrements
644 break;
645 }
646
647 case spv::OperandVariableLiteralStrings:
648 return nextInst;
649
650 // Execution mode might have extra literal operands. Skip them.
651 case spv::OperandExecutionMode:
652 return nextInst;
653
654 // Single word operands we simply ignore, as they hold no IDs
655 case spv::OperandLiteralNumber:
656 case spv::OperandSource:
657 case spv::OperandExecutionModel:
658 case spv::OperandAddressing:
659 case spv::OperandMemory:
660 case spv::OperandStorage:
661 case spv::OperandDimensionality:
662 case spv::OperandSamplerAddressingMode:
663 case spv::OperandSamplerFilterMode:
664 case spv::OperandSamplerImageFormat:
665 case spv::OperandImageChannelOrder:
666 case spv::OperandImageChannelDataType:
667 case spv::OperandImageOperands:
668 case spv::OperandFPFastMath:
669 case spv::OperandFPRoundingMode:
670 case spv::OperandLinkageType:
671 case spv::OperandAccessQualifier:
672 case spv::OperandFuncParamAttr:
673 case spv::OperandDecoration:
674 case spv::OperandBuiltIn:
675 case spv::OperandSelect:
676 case spv::OperandLoop:
677 case spv::OperandFunction:
678 case spv::OperandMemoryAccess:
679 case spv::OperandGroupOperation:
680 case spv::OperandKernelEnqueueFlags:
681 case spv::OperandKernelProfilingInfo:
682 case spv::OperandCapability:
683 case spv::OperandCooperativeMatrixOperands:
684 ++word;
685 break;
686
687 default:
688 assert(0 && "Unhandled Operand Class");
689 break;
690 }
691 }
692
693 return nextInst;
694 }
695
696 // Make a pass over all the instructions and process them given appropriate functions
697 spirvbin_t& spirvbin_t::process(instfn_t instFn, idfn_t idFn, unsigned begin, unsigned end)
698 {
699 // For efficiency, reserve name map space. It can grow if needed.
700 nameMap.reserve(n: 32);
701
702 // If begin or end == 0, use defaults
703 begin = (begin == 0 ? header_size : begin);
704 end = (end == 0 ? unsigned(spv.size()) : end);
705
706 // basic parsing and InstructionDesc table borrowed from SpvDisassemble.cpp...
707 unsigned nextInst = unsigned(spv.size());
708
709 for (unsigned word = begin; word < end; word = nextInst) {
710 nextInst = processInstruction(word, instFn, idFn);
711
712 if (errorLatch)
713 return *this;
714 }
715
716 return *this;
717 }
718
719 // Apply global name mapping to a single module
720 void spirvbin_t::mapNames()
721 {
722 static const std::uint32_t softTypeIdLimit = 3011; // small prime. TODO: get from options
723 static const std::uint32_t firstMappedID = 3019; // offset into ID space
724
725 for (const auto& name : nameMap) {
726 std::uint32_t hashval = 1911;
727 for (const char c : name.first)
728 hashval = hashval * 1009 + c;
729
730 if (isOldIdUnmapped(oldId: name.second)) {
731 localId(id: name.second, newId: nextUnusedId(id: hashval % softTypeIdLimit + firstMappedID));
732 if (errorLatch)
733 return;
734 }
735 }
736 }
737
738 // Map fn contents to IDs of similar functions in other modules
739 void spirvbin_t::mapFnBodies()
740 {
741 static const std::uint32_t softTypeIdLimit = 19071; // small prime. TODO: get from options
742 static const std::uint32_t firstMappedID = 6203; // offset into ID space
743
744 // Initial approach: go through some high priority opcodes first and assign them
745 // hash values.
746
747 spv::Id fnId = spv::NoResult;
748 std::vector<unsigned> instPos;
749 instPos.reserve(n: unsigned(spv.size()) / 16); // initial estimate; can grow if needed.
750
751 // Build local table of instruction start positions
752 process(
753 instFn: [&](spv::Op, unsigned start) { instPos.push_back(x: start); return true; },
754 idFn: op_fn_nop);
755
756 if (errorLatch)
757 return;
758
759 // Window size for context-sensitive canonicalization values
760 // Empirical best size from a single data set. TODO: Would be a good tunable.
761 // We essentially perform a little convolution around each instruction,
762 // to capture the flavor of nearby code, to hopefully match to similar
763 // code in other modules.
764 static const unsigned windowSize = 2;
765
766 for (unsigned entry = 0; entry < unsigned(instPos.size()); ++entry) {
767 const unsigned start = instPos[entry];
768 const spv::Op opCode = asOpCode(word: start);
769
770 if (opCode == spv::OpFunction)
771 fnId = asId(word: start + 2);
772
773 if (opCode == spv::OpFunctionEnd)
774 fnId = spv::NoResult;
775
776 if (fnId != spv::NoResult) { // if inside a function
777 if (spv::InstructionDesc[opCode].hasResult()) {
778 const unsigned word = start + (spv::InstructionDesc[opCode].hasType() ? 2 : 1);
779 const spv::Id resId = asId(word);
780 std::uint32_t hashval = fnId * 17; // small prime
781
782 for (unsigned i = entry-1; i >= entry-windowSize; --i) {
783 if (asOpCode(word: instPos[i]) == spv::OpFunction)
784 break;
785 hashval = hashval * 30103 + asOpCodeHash(word: instPos[i]); // 30103 = semiarbitrary prime
786 }
787
788 for (unsigned i = entry; i <= entry + windowSize; ++i) {
789 if (asOpCode(word: instPos[i]) == spv::OpFunctionEnd)
790 break;
791 hashval = hashval * 30103 + asOpCodeHash(word: instPos[i]); // 30103 = semiarbitrary prime
792 }
793
794 if (isOldIdUnmapped(oldId: resId)) {
795 localId(id: resId, newId: nextUnusedId(id: hashval % softTypeIdLimit + firstMappedID));
796 if (errorLatch)
797 return;
798 }
799
800 }
801 }
802 }
803
804 spv::Op thisOpCode(spv::OpNop);
805 std::unordered_map<int, int> opCounter;
806 int idCounter(0);
807 fnId = spv::NoResult;
808
809 process(
810 instFn: [&](spv::Op opCode, unsigned start) {
811 switch (opCode) {
812 case spv::OpFunction:
813 // Reset counters at each function
814 idCounter = 0;
815 opCounter.clear();
816 fnId = asId(word: start + 2);
817 break;
818
819 case spv::OpImageSampleImplicitLod:
820 case spv::OpImageSampleExplicitLod:
821 case spv::OpImageSampleDrefImplicitLod:
822 case spv::OpImageSampleDrefExplicitLod:
823 case spv::OpImageSampleProjImplicitLod:
824 case spv::OpImageSampleProjExplicitLod:
825 case spv::OpImageSampleProjDrefImplicitLod:
826 case spv::OpImageSampleProjDrefExplicitLod:
827 case spv::OpDot:
828 case spv::OpCompositeExtract:
829 case spv::OpCompositeInsert:
830 case spv::OpVectorShuffle:
831 case spv::OpLabel:
832 case spv::OpVariable:
833
834 case spv::OpAccessChain:
835 case spv::OpLoad:
836 case spv::OpStore:
837 case spv::OpCompositeConstruct:
838 case spv::OpFunctionCall:
839 ++opCounter[opCode];
840 idCounter = 0;
841 thisOpCode = opCode;
842 break;
843 default:
844 thisOpCode = spv::OpNop;
845 }
846
847 return false;
848 },
849
850 idFn: [&](spv::Id& id) {
851 if (thisOpCode != spv::OpNop) {
852 ++idCounter;
853 const std::uint32_t hashval =
854 // Explicitly cast operands to unsigned int to avoid integer
855 // promotion to signed int followed by integer overflow,
856 // which would result in undefined behavior.
857 static_cast<unsigned int>(opCounter[thisOpCode])
858 * thisOpCode
859 * 50047
860 + idCounter
861 + static_cast<unsigned int>(fnId) * 117;
862
863 if (isOldIdUnmapped(oldId: id))
864 localId(id, newId: nextUnusedId(id: hashval % softTypeIdLimit + firstMappedID));
865 }
866 });
867 }
868
869 // EXPERIMENTAL: forward IO and uniform load/stores into operands
870 // This produces invalid Schema-0 SPIRV
871 void spirvbin_t::forwardLoadStores()
872 {
873 idset_t fnLocalVars; // set of function local vars
874 idmap_t idMap; // Map of load result IDs to what they load
875
876 // EXPERIMENTAL: Forward input and access chain loads into consumptions
877 process(
878 instFn: [&](spv::Op opCode, unsigned start) {
879 // Add inputs and uniforms to the map
880 if ((opCode == spv::OpVariable && asWordCount(word: start) == 4) &&
881 (spv[start+3] == spv::StorageClassUniform ||
882 spv[start+3] == spv::StorageClassUniformConstant ||
883 spv[start+3] == spv::StorageClassInput))
884 fnLocalVars.insert(x: asId(word: start+2));
885
886 if (opCode == spv::OpAccessChain && fnLocalVars.count(x: asId(word: start+3)) > 0)
887 fnLocalVars.insert(x: asId(word: start+2));
888
889 if (opCode == spv::OpLoad && fnLocalVars.count(x: asId(word: start+3)) > 0) {
890 idMap[asId(word: start+2)] = asId(word: start+3);
891 stripInst(start);
892 }
893
894 return false;
895 },
896
897 idFn: [&](spv::Id& id) { if (idMap.find(x: id) != idMap.end()) id = idMap[id]; }
898 );
899
900 if (errorLatch)
901 return;
902
903 // EXPERIMENTAL: Implicit output stores
904 fnLocalVars.clear();
905 idMap.clear();
906
907 process(
908 instFn: [&](spv::Op opCode, unsigned start) {
909 // Add inputs and uniforms to the map
910 if ((opCode == spv::OpVariable && asWordCount(word: start) == 4) &&
911 (spv[start+3] == spv::StorageClassOutput))
912 fnLocalVars.insert(x: asId(word: start+2));
913
914 if (opCode == spv::OpStore && fnLocalVars.count(x: asId(word: start+1)) > 0) {
915 idMap[asId(word: start+2)] = asId(word: start+1);
916 stripInst(start);
917 }
918
919 return false;
920 },
921 idFn: op_fn_nop);
922
923 if (errorLatch)
924 return;
925
926 process(
927 instFn: inst_fn_nop,
928 idFn: [&](spv::Id& id) { if (idMap.find(x: id) != idMap.end()) id = idMap[id]; }
929 );
930
931 if (errorLatch)
932 return;
933
934 strip(); // strip out data we decided to eliminate
935 }
936
937 // optimize loads and stores
938 void spirvbin_t::optLoadStore()
939 {
940 idset_t fnLocalVars; // candidates for removal (only locals)
941 idmap_t idMap; // Map of load result IDs to what they load
942 blockmap_t blockMap; // Map of IDs to blocks they first appear in
943 int blockNum = 0; // block count, to avoid crossing flow control
944
945 // Find all the function local pointers stored at most once, and not via access chains
946 process(
947 instFn: [&](spv::Op opCode, unsigned start) {
948 const int wordCount = asWordCount(word: start);
949
950 // Count blocks, so we can avoid crossing flow control
951 if (isFlowCtrl(opCode))
952 ++blockNum;
953
954 // Add local variables to the map
955 if ((opCode == spv::OpVariable && spv[start+3] == spv::StorageClassFunction && asWordCount(word: start) == 4)) {
956 fnLocalVars.insert(x: asId(word: start+2));
957 return true;
958 }
959
960 // Ignore process vars referenced via access chain
961 if ((opCode == spv::OpAccessChain || opCode == spv::OpInBoundsAccessChain) && fnLocalVars.count(x: asId(word: start+3)) > 0) {
962 fnLocalVars.erase(x: asId(word: start+3));
963 idMap.erase(x: asId(word: start+3));
964 return true;
965 }
966
967 if (opCode == spv::OpLoad && fnLocalVars.count(x: asId(word: start+3)) > 0) {
968 const spv::Id varId = asId(word: start+3);
969
970 // Avoid loads before stores
971 if (idMap.find(x: varId) == idMap.end()) {
972 fnLocalVars.erase(x: varId);
973 idMap.erase(x: varId);
974 }
975
976 // don't do for volatile references
977 if (wordCount > 4 && (spv[start+4] & spv::MemoryAccessVolatileMask)) {
978 fnLocalVars.erase(x: varId);
979 idMap.erase(x: varId);
980 }
981
982 // Handle flow control
983 if (blockMap.find(x: varId) == blockMap.end()) {
984 blockMap[varId] = blockNum; // track block we found it in.
985 } else if (blockMap[varId] != blockNum) {
986 fnLocalVars.erase(x: varId); // Ignore if crosses flow control
987 idMap.erase(x: varId);
988 }
989
990 return true;
991 }
992
993 if (opCode == spv::OpStore && fnLocalVars.count(x: asId(word: start+1)) > 0) {
994 const spv::Id varId = asId(word: start+1);
995
996 if (idMap.find(x: varId) == idMap.end()) {
997 idMap[varId] = asId(word: start+2);
998 } else {
999 // Remove if it has more than one store to the same pointer
1000 fnLocalVars.erase(x: varId);
1001 idMap.erase(x: varId);
1002 }
1003
1004 // don't do for volatile references
1005 if (wordCount > 3 && (spv[start+3] & spv::MemoryAccessVolatileMask)) {
1006 fnLocalVars.erase(x: asId(word: start+3));
1007 idMap.erase(x: asId(word: start+3));
1008 }
1009
1010 // Handle flow control
1011 if (blockMap.find(x: varId) == blockMap.end()) {
1012 blockMap[varId] = blockNum; // track block we found it in.
1013 } else if (blockMap[varId] != blockNum) {
1014 fnLocalVars.erase(x: varId); // Ignore if crosses flow control
1015 idMap.erase(x: varId);
1016 }
1017
1018 return true;
1019 }
1020
1021 return false;
1022 },
1023
1024 // If local var id used anywhere else, don't eliminate
1025 idFn: [&](spv::Id& id) {
1026 if (fnLocalVars.count(x: id) > 0) {
1027 fnLocalVars.erase(x: id);
1028 idMap.erase(x: id);
1029 }
1030 }
1031 );
1032
1033 if (errorLatch)
1034 return;
1035
1036 process(
1037 instFn: [&](spv::Op opCode, unsigned start) {
1038 if (opCode == spv::OpLoad && fnLocalVars.count(x: asId(word: start+3)) > 0)
1039 idMap[asId(word: start+2)] = idMap[asId(word: start+3)];
1040 return false;
1041 },
1042 idFn: op_fn_nop);
1043
1044 if (errorLatch)
1045 return;
1046
1047 // Chase replacements to their origins, in case there is a chain such as:
1048 // 2 = store 1
1049 // 3 = load 2
1050 // 4 = store 3
1051 // 5 = load 4
1052 // We want to replace uses of 5 with 1.
1053 for (const auto& idPair : idMap) {
1054 spv::Id id = idPair.first;
1055 while (idMap.find(x: id) != idMap.end()) // Chase to end of chain
1056 id = idMap[id];
1057
1058 idMap[idPair.first] = id; // replace with final result
1059 }
1060
1061 // Remove the load/store/variables for the ones we've discovered
1062 process(
1063 instFn: [&](spv::Op opCode, unsigned start) {
1064 if ((opCode == spv::OpLoad && fnLocalVars.count(x: asId(word: start+3)) > 0) ||
1065 (opCode == spv::OpStore && fnLocalVars.count(x: asId(word: start+1)) > 0) ||
1066 (opCode == spv::OpVariable && fnLocalVars.count(x: asId(word: start+2)) > 0)) {
1067
1068 stripInst(start);
1069 return true;
1070 }
1071
1072 return false;
1073 },
1074
1075 idFn: [&](spv::Id& id) {
1076 if (idMap.find(x: id) != idMap.end()) id = idMap[id];
1077 }
1078 );
1079
1080 if (errorLatch)
1081 return;
1082
1083 strip(); // strip out data we decided to eliminate
1084 }
1085
1086 // remove bodies of uncalled functions
1087 void spirvbin_t::dceFuncs()
1088 {
1089 msg(minVerbosity: 3, indent: 2, txt: std::string("Removing Dead Functions: "));
1090
1091 // TODO: There are more efficient ways to do this.
1092 bool changed = true;
1093
1094 while (changed) {
1095 changed = false;
1096
1097 for (auto fn = fnPos.begin(); fn != fnPos.end(); ) {
1098 if (fn->first == entryPoint) { // don't DCE away the entry point!
1099 ++fn;
1100 continue;
1101 }
1102
1103 const auto call_it = fnCalls.find(x: fn->first);
1104
1105 if (call_it == fnCalls.end() || call_it->second == 0) {
1106 changed = true;
1107 stripRange.push_back(x: fn->second);
1108
1109 // decrease counts of called functions
1110 process(
1111 instFn: [&](spv::Op opCode, unsigned start) {
1112 if (opCode == spv::Op::OpFunctionCall) {
1113 const auto call_it = fnCalls.find(x: asId(word: start + 3));
1114 if (call_it != fnCalls.end()) {
1115 if (--call_it->second <= 0)
1116 fnCalls.erase(position: call_it);
1117 }
1118 }
1119
1120 return true;
1121 },
1122 idFn: op_fn_nop,
1123 begin: fn->second.first,
1124 end: fn->second.second);
1125
1126 if (errorLatch)
1127 return;
1128
1129 fn = fnPos.erase(position: fn);
1130 } else ++fn;
1131 }
1132 }
1133 }
1134
1135 // remove unused function variables + decorations
1136 void spirvbin_t::dceVars()
1137 {
1138 msg(minVerbosity: 3, indent: 2, txt: std::string("DCE Vars: "));
1139
1140 std::unordered_map<spv::Id, int> varUseCount;
1141
1142 // Count function variable use
1143 process(
1144 instFn: [&](spv::Op opCode, unsigned start) {
1145 if (opCode == spv::OpVariable) {
1146 ++varUseCount[asId(word: start+2)];
1147 return true;
1148 } else if (opCode == spv::OpEntryPoint) {
1149 const int wordCount = asWordCount(word: start);
1150 for (int i = 4; i < wordCount; i++) {
1151 ++varUseCount[asId(word: start+i)];
1152 }
1153 return true;
1154 } else
1155 return false;
1156 },
1157
1158 idFn: [&](spv::Id& id) { if (varUseCount[id]) ++varUseCount[id]; }
1159 );
1160
1161 if (errorLatch)
1162 return;
1163
1164 // Remove single-use function variables + associated decorations and names
1165 process(
1166 instFn: [&](spv::Op opCode, unsigned start) {
1167 spv::Id id = spv::NoResult;
1168 if (opCode == spv::OpVariable)
1169 id = asId(word: start+2);
1170 if (opCode == spv::OpDecorate || opCode == spv::OpName)
1171 id = asId(word: start+1);
1172
1173 if (id != spv::NoResult && varUseCount[id] == 1)
1174 stripInst(start);
1175
1176 return true;
1177 },
1178 idFn: op_fn_nop);
1179 }
1180
1181 // remove unused types
1182 void spirvbin_t::dceTypes()
1183 {
1184 std::vector<bool> isType(bound(), false);
1185
1186 // for speed, make O(1) way to get to type query (map is log(n))
1187 for (const auto typeStart : typeConstPos)
1188 isType[asTypeConstId(word: typeStart)] = true;
1189
1190 std::unordered_map<spv::Id, int> typeUseCount;
1191
1192 // This is not the most efficient algorithm, but this is an offline tool, and
1193 // it's easy to write this way. Can be improved opportunistically if needed.
1194 bool changed = true;
1195 while (changed) {
1196 changed = false;
1197 strip();
1198 typeUseCount.clear();
1199
1200 // Count total type usage
1201 process(instFn: inst_fn_nop,
1202 idFn: [&](spv::Id& id) { if (isType[id]) ++typeUseCount[id]; }
1203 );
1204
1205 if (errorLatch)
1206 return;
1207
1208 // Remove single reference types
1209 for (const auto typeStart : typeConstPos) {
1210 const spv::Id typeId = asTypeConstId(word: typeStart);
1211 if (typeUseCount[typeId] == 1) {
1212 changed = true;
1213 --typeUseCount[typeId];
1214 stripInst(start: typeStart);
1215 }
1216 }
1217
1218 if (errorLatch)
1219 return;
1220 }
1221 }
1222
1223#ifdef NOTDEF
1224 bool spirvbin_t::matchType(const spirvbin_t::globaltypes_t& globalTypes, spv::Id lt, spv::Id gt) const
1225 {
1226 // Find the local type id "lt" and global type id "gt"
1227 const auto lt_it = typeConstPosR.find(lt);
1228 if (lt_it == typeConstPosR.end())
1229 return false;
1230
1231 const auto typeStart = lt_it->second;
1232
1233 // Search for entry in global table
1234 const auto gtype = globalTypes.find(gt);
1235 if (gtype == globalTypes.end())
1236 return false;
1237
1238 const auto& gdata = gtype->second;
1239
1240 // local wordcount and opcode
1241 const int wordCount = asWordCount(typeStart);
1242 const spv::Op opCode = asOpCode(typeStart);
1243
1244 // no type match if opcodes don't match, or operand count doesn't match
1245 if (opCode != opOpCode(gdata[0]) || wordCount != opWordCount(gdata[0]))
1246 return false;
1247
1248 const unsigned numOperands = wordCount - 2; // all types have a result
1249
1250 const auto cmpIdRange = [&](range_t range) {
1251 for (int x=range.first; x<std::min(range.second, wordCount); ++x)
1252 if (!matchType(globalTypes, asId(typeStart+x), gdata[x]))
1253 return false;
1254 return true;
1255 };
1256
1257 const auto cmpConst = [&]() { return cmpIdRange(constRange(opCode)); };
1258 const auto cmpSubType = [&]() { return cmpIdRange(typeRange(opCode)); };
1259
1260 // Compare literals in range [start,end)
1261 const auto cmpLiteral = [&]() {
1262 const auto range = literalRange(opCode);
1263 return std::equal(spir.begin() + typeStart + range.first,
1264 spir.begin() + typeStart + std::min(range.second, wordCount),
1265 gdata.begin() + range.first);
1266 };
1267
1268 assert(isTypeOp(opCode) || isConstOp(opCode));
1269
1270 switch (opCode) {
1271 case spv::OpTypeOpaque: // TODO: disable until we compare the literal strings.
1272 case spv::OpTypeQueue: return false;
1273 case spv::OpTypeEvent: // fall through...
1274 case spv::OpTypeDeviceEvent: // ...
1275 case spv::OpTypeReserveId: return false;
1276 // for samplers, we don't handle the optional parameters yet
1277 case spv::OpTypeSampler: return cmpLiteral() && cmpConst() && cmpSubType() && wordCount == 8;
1278 default: return cmpLiteral() && cmpConst() && cmpSubType();
1279 }
1280 }
1281
1282 // Look for an equivalent type in the globalTypes map
1283 spv::Id spirvbin_t::findType(const spirvbin_t::globaltypes_t& globalTypes, spv::Id lt) const
1284 {
1285 // Try a recursive type match on each in turn, and return a match if we find one
1286 for (const auto& gt : globalTypes)
1287 if (matchType(globalTypes, lt, gt.first))
1288 return gt.first;
1289
1290 return spv::NoType;
1291 }
1292#endif // NOTDEF
1293
1294 // Return start position in SPV of given Id. error if not found.
1295 unsigned spirvbin_t::idPos(spv::Id id) const
1296 {
1297 const auto tid_it = idPosR.find(x: id);
1298 if (tid_it == idPosR.end()) {
1299 error(txt: "ID not found");
1300 return 0;
1301 }
1302
1303 return tid_it->second;
1304 }
1305
1306 // Hash types to canonical values. This can return ID collisions (it's a bit
1307 // inevitable): it's up to the caller to handle that gracefully.
1308 std::uint32_t spirvbin_t::hashType(unsigned typeStart) const
1309 {
1310 const unsigned wordCount = asWordCount(word: typeStart);
1311 const spv::Op opCode = asOpCode(word: typeStart);
1312
1313 switch (opCode) {
1314 case spv::OpTypeVoid: return 0;
1315 case spv::OpTypeBool: return 1;
1316 case spv::OpTypeInt: return 3 + (spv[typeStart+3]);
1317 case spv::OpTypeFloat: return 5;
1318 case spv::OpTypeVector:
1319 return 6 + hashType(typeStart: idPos(id: spv[typeStart+2])) * (spv[typeStart+3] - 1);
1320 case spv::OpTypeMatrix:
1321 return 30 + hashType(typeStart: idPos(id: spv[typeStart+2])) * (spv[typeStart+3] - 1);
1322 case spv::OpTypeImage:
1323 return 120 + hashType(typeStart: idPos(id: spv[typeStart+2])) +
1324 spv[typeStart+3] + // dimensionality
1325 spv[typeStart+4] * 8 * 16 + // depth
1326 spv[typeStart+5] * 4 * 16 + // arrayed
1327 spv[typeStart+6] * 2 * 16 + // multisampled
1328 spv[typeStart+7] * 1 * 16; // format
1329 case spv::OpTypeSampler:
1330 return 500;
1331 case spv::OpTypeSampledImage:
1332 return 502;
1333 case spv::OpTypeArray:
1334 return 501 + hashType(typeStart: idPos(id: spv[typeStart+2])) * spv[typeStart+3];
1335 case spv::OpTypeRuntimeArray:
1336 return 5000 + hashType(typeStart: idPos(id: spv[typeStart+2]));
1337 case spv::OpTypeStruct:
1338 {
1339 std::uint32_t hash = 10000;
1340 for (unsigned w=2; w < wordCount; ++w)
1341 hash += w * hashType(typeStart: idPos(id: spv[typeStart+w]));
1342 return hash;
1343 }
1344
1345 case spv::OpTypeOpaque: return 6000 + spv[typeStart+2];
1346 case spv::OpTypePointer: return 100000 + hashType(typeStart: idPos(id: spv[typeStart+3]));
1347 case spv::OpTypeFunction:
1348 {
1349 std::uint32_t hash = 200000;
1350 for (unsigned w=2; w < wordCount; ++w)
1351 hash += w * hashType(typeStart: idPos(id: spv[typeStart+w]));
1352 return hash;
1353 }
1354
1355 case spv::OpTypeEvent: return 300000;
1356 case spv::OpTypeDeviceEvent: return 300001;
1357 case spv::OpTypeReserveId: return 300002;
1358 case spv::OpTypeQueue: return 300003;
1359 case spv::OpTypePipe: return 300004;
1360 case spv::OpConstantTrue: return 300007;
1361 case spv::OpConstantFalse: return 300008;
1362 case spv::OpConstantComposite:
1363 {
1364 std::uint32_t hash = 300011 + hashType(typeStart: idPos(id: spv[typeStart+1]));
1365 for (unsigned w=3; w < wordCount; ++w)
1366 hash += w * hashType(typeStart: idPos(id: spv[typeStart+w]));
1367 return hash;
1368 }
1369 case spv::OpConstant:
1370 {
1371 std::uint32_t hash = 400011 + hashType(typeStart: idPos(id: spv[typeStart+1]));
1372 for (unsigned w=3; w < wordCount; ++w)
1373 hash += w * spv[typeStart+w];
1374 return hash;
1375 }
1376 case spv::OpConstantNull:
1377 {
1378 std::uint32_t hash = 500009 + hashType(typeStart: idPos(id: spv[typeStart+1]));
1379 return hash;
1380 }
1381 case spv::OpConstantSampler:
1382 {
1383 std::uint32_t hash = 600011 + hashType(typeStart: idPos(id: spv[typeStart+1]));
1384 for (unsigned w=3; w < wordCount; ++w)
1385 hash += w * spv[typeStart+w];
1386 return hash;
1387 }
1388
1389 default:
1390 error(txt: "unknown type opcode");
1391 return 0;
1392 }
1393 }
1394
1395 void spirvbin_t::mapTypeConst()
1396 {
1397 globaltypes_t globalTypeMap;
1398
1399 msg(minVerbosity: 3, indent: 2, txt: std::string("Remapping Consts & Types: "));
1400
1401 static const std::uint32_t softTypeIdLimit = 3011; // small prime. TODO: get from options
1402 static const std::uint32_t firstMappedID = 8; // offset into ID space
1403
1404 for (auto& typeStart : typeConstPos) {
1405 const spv::Id resId = asTypeConstId(word: typeStart);
1406 const std::uint32_t hashval = hashType(typeStart);
1407
1408 if (errorLatch)
1409 return;
1410
1411 if (isOldIdUnmapped(oldId: resId)) {
1412 localId(id: resId, newId: nextUnusedId(id: hashval % softTypeIdLimit + firstMappedID));
1413 if (errorLatch)
1414 return;
1415 }
1416 }
1417 }
1418
1419 // Strip a single binary by removing ranges given in stripRange
1420 void spirvbin_t::strip()
1421 {
1422 if (stripRange.empty()) // nothing to do
1423 return;
1424
1425 // Sort strip ranges in order of traversal
1426 std::sort(first: stripRange.begin(), last: stripRange.end());
1427
1428 // Allocate a new binary big enough to hold old binary
1429 // We'll step this iterator through the strip ranges as we go through the binary
1430 auto strip_it = stripRange.begin();
1431
1432 int strippedPos = 0;
1433 for (unsigned word = 0; word < unsigned(spv.size()); ++word) {
1434 while (strip_it != stripRange.end() && word >= strip_it->second)
1435 ++strip_it;
1436
1437 if (strip_it == stripRange.end() || word < strip_it->first || word >= strip_it->second)
1438 spv[strippedPos++] = spv[word];
1439 }
1440
1441 spv.resize(new_size: strippedPos);
1442 stripRange.clear();
1443
1444 buildLocalMaps();
1445 }
1446
1447 // Strip a single binary by removing ranges given in stripRange
1448 void spirvbin_t::remap(std::uint32_t opts)
1449 {
1450 options = opts;
1451
1452 // Set up opcode tables from SpvDoc
1453 spv::Parameterize();
1454
1455 validate(); // validate header
1456 buildLocalMaps(); // build ID maps
1457
1458 msg(minVerbosity: 3, indent: 4, txt: std::string("ID bound: ") + std::to_string(val: bound()));
1459
1460 if (options & STRIP) stripDebug();
1461 if (errorLatch) return;
1462
1463 strip(); // strip out data we decided to eliminate
1464 if (errorLatch) return;
1465
1466 if (options & OPT_LOADSTORE) optLoadStore();
1467 if (errorLatch) return;
1468
1469 if (options & OPT_FWD_LS) forwardLoadStores();
1470 if (errorLatch) return;
1471
1472 if (options & DCE_FUNCS) dceFuncs();
1473 if (errorLatch) return;
1474
1475 if (options & DCE_VARS) dceVars();
1476 if (errorLatch) return;
1477
1478 if (options & DCE_TYPES) dceTypes();
1479 if (errorLatch) return;
1480
1481 strip(); // strip out data we decided to eliminate
1482 if (errorLatch) return;
1483
1484 stripDeadRefs(); // remove references to things we DCEed
1485 if (errorLatch) return;
1486
1487 // after the last strip, we must clean any debug info referring to now-deleted data
1488
1489 if (options & MAP_TYPES) mapTypeConst();
1490 if (errorLatch) return;
1491
1492 if (options & MAP_NAMES) mapNames();
1493 if (errorLatch) return;
1494
1495 if (options & MAP_FUNCS) mapFnBodies();
1496 if (errorLatch) return;
1497
1498 if (options & MAP_ALL) {
1499 mapRemainder(); // map any unmapped IDs
1500 if (errorLatch) return;
1501
1502 applyMap(); // Now remap each shader to the new IDs we've come up with
1503 if (errorLatch) return;
1504 }
1505 }
1506
1507 // remap from a memory image
1508 void spirvbin_t::remap(std::vector<std::uint32_t>& in_spv, const std::vector<std::string>& whiteListStrings,
1509 std::uint32_t opts)
1510 {
1511 stripWhiteList = whiteListStrings;
1512 spv.swap(x&: in_spv);
1513 remap(opts);
1514 spv.swap(x&: in_spv);
1515 }
1516
1517 // remap from a memory image - legacy interface without white list
1518 void spirvbin_t::remap(std::vector<std::uint32_t>& in_spv, std::uint32_t opts)
1519 {
1520 stripWhiteList.clear();
1521 spv.swap(x&: in_spv);
1522 remap(opts);
1523 spv.swap(x&: in_spv);
1524 }
1525
1526} // namespace SPV
1527
1528

source code of qtshadertools/src/3rdparty/glslang/SPIRV/SPVRemapper.cpp