| 1 | // Copyright (c) 2015-2016 The Khronos Group Inc. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_ |
| 16 | #define LIBSPIRV_UTIL_HEX_FLOAT_H_ |
| 17 | |
| 18 | #include <cassert> |
| 19 | #include <cctype> |
| 20 | #include <cmath> |
| 21 | #include <cstdint> |
| 22 | #include <iomanip> |
| 23 | #include <limits> |
| 24 | #include <sstream> |
| 25 | |
| 26 | #include "bitutils.h" |
| 27 | |
| 28 | namespace spvutils { |
| 29 | |
| 30 | class Float16 { |
| 31 | public: |
| 32 | Float16(uint16_t v) : val(v) {} |
| 33 | Float16() {} |
| 34 | static bool isNan(const Float16& val) { |
| 35 | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); |
| 36 | } |
| 37 | // Returns true if the given value is any kind of infinity. |
| 38 | static bool isInfinity(const Float16& val) { |
| 39 | return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); |
| 40 | } |
| 41 | Float16(const Float16& other) { val = other.val; } |
| 42 | uint16_t get_value() const { return val; } |
| 43 | |
| 44 | // Returns the maximum normal value. |
| 45 | static Float16 max() { return Float16(0x7bff); } |
| 46 | // Returns the lowest normal value. |
| 47 | static Float16 lowest() { return Float16(0xfbff); } |
| 48 | |
| 49 | private: |
| 50 | uint16_t val; |
| 51 | }; |
| 52 | |
| 53 | // To specialize this type, you must override uint_type to define |
| 54 | // an unsigned integer that can fit your floating point type. |
| 55 | // You must also add a isNan function that returns true if |
| 56 | // a value is Nan. |
| 57 | template <typename T> |
| 58 | struct FloatProxyTraits { |
| 59 | typedef void uint_type; |
| 60 | }; |
| 61 | |
| 62 | template <> |
| 63 | struct FloatProxyTraits<float> { |
| 64 | typedef uint32_t uint_type; |
| 65 | static bool isNan(float f) { return std::isnan(x: f); } |
| 66 | // Returns true if the given value is any kind of infinity. |
| 67 | static bool isInfinity(float f) { return std::isinf(x: f); } |
| 68 | // Returns the maximum normal value. |
| 69 | static float max() { return std::numeric_limits<float>::max(); } |
| 70 | // Returns the lowest normal value. |
| 71 | static float lowest() { return std::numeric_limits<float>::lowest(); } |
| 72 | }; |
| 73 | |
| 74 | template <> |
| 75 | struct FloatProxyTraits<double> { |
| 76 | typedef uint64_t uint_type; |
| 77 | static bool isNan(double f) { return std::isnan(x: f); } |
| 78 | // Returns true if the given value is any kind of infinity. |
| 79 | static bool isInfinity(double f) { return std::isinf(x: f); } |
| 80 | // Returns the maximum normal value. |
| 81 | static double max() { return std::numeric_limits<double>::max(); } |
| 82 | // Returns the lowest normal value. |
| 83 | static double lowest() { return std::numeric_limits<double>::lowest(); } |
| 84 | }; |
| 85 | |
| 86 | template <> |
| 87 | struct FloatProxyTraits<Float16> { |
| 88 | typedef uint16_t uint_type; |
| 89 | static bool isNan(Float16 f) { return Float16::isNan(val: f); } |
| 90 | // Returns true if the given value is any kind of infinity. |
| 91 | static bool isInfinity(Float16 f) { return Float16::isInfinity(val: f); } |
| 92 | // Returns the maximum normal value. |
| 93 | static Float16 max() { return Float16::max(); } |
| 94 | // Returns the lowest normal value. |
| 95 | static Float16 lowest() { return Float16::lowest(); } |
| 96 | }; |
| 97 | |
| 98 | // Since copying a floating point number (especially if it is NaN) |
| 99 | // does not guarantee that bits are preserved, this class lets us |
| 100 | // store the type and use it as a float when necessary. |
| 101 | template <typename T> |
| 102 | class FloatProxy { |
| 103 | public: |
| 104 | typedef typename FloatProxyTraits<T>::uint_type uint_type; |
| 105 | |
| 106 | // Since this is to act similar to the normal floats, |
| 107 | // do not initialize the data by default. |
| 108 | FloatProxy() {} |
| 109 | |
| 110 | // Intentionally non-explicit. This is a proxy type so |
| 111 | // implicit conversions allow us to use it more transparently. |
| 112 | FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); } |
| 113 | |
| 114 | // Intentionally non-explicit. This is a proxy type so |
| 115 | // implicit conversions allow us to use it more transparently. |
| 116 | FloatProxy(uint_type val) { data_ = val; } |
| 117 | |
| 118 | // This is helpful to have and is guaranteed not to stomp bits. |
| 119 | FloatProxy<T> operator-() const { |
| 120 | return static_cast<uint_type>(data_ ^ |
| 121 | (uint_type(0x1) << (sizeof(T) * 8 - 1))); |
| 122 | } |
| 123 | |
| 124 | // Returns the data as a floating point value. |
| 125 | T getAsFloat() const { return BitwiseCast<T>(data_); } |
| 126 | |
| 127 | // Returns the raw data. |
| 128 | uint_type data() const { return data_; } |
| 129 | |
| 130 | // Returns true if the value represents any type of NaN. |
| 131 | bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } |
| 132 | // Returns true if the value represents any type of infinity. |
| 133 | bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } |
| 134 | |
| 135 | // Returns the maximum normal value. |
| 136 | static FloatProxy<T> max() { |
| 137 | return FloatProxy<T>(FloatProxyTraits<T>::max()); |
| 138 | } |
| 139 | // Returns the lowest normal value. |
| 140 | static FloatProxy<T> lowest() { |
| 141 | return FloatProxy<T>(FloatProxyTraits<T>::lowest()); |
| 142 | } |
| 143 | |
| 144 | private: |
| 145 | uint_type data_; |
| 146 | }; |
| 147 | |
| 148 | template <typename T> |
| 149 | bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { |
| 150 | return first.data() == second.data(); |
| 151 | } |
| 152 | |
| 153 | // Reads a FloatProxy value as a normal float from a stream. |
| 154 | template <typename T> |
| 155 | std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { |
| 156 | T float_val; |
| 157 | is >> float_val; |
| 158 | value = FloatProxy<T>(float_val); |
| 159 | return is; |
| 160 | } |
| 161 | |
| 162 | // This is an example traits. It is not meant to be used in practice, but will |
| 163 | // be the default for any non-specialized type. |
| 164 | template <typename T> |
| 165 | struct HexFloatTraits { |
| 166 | // Integer type that can store this hex-float. |
| 167 | typedef void uint_type; |
| 168 | // Signed integer type that can store this hex-float. |
| 169 | typedef void int_type; |
| 170 | // The numerical type that this HexFloat represents. |
| 171 | typedef void underlying_type; |
| 172 | // The type needed to construct the underlying type. |
| 173 | typedef void native_type; |
| 174 | // The number of bits that are actually relevant in the uint_type. |
| 175 | // This allows us to deal with, for example, 24-bit values in a 32-bit |
| 176 | // integer. |
| 177 | static const uint32_t num_used_bits = 0; |
| 178 | // Number of bits that represent the exponent. |
| 179 | static const uint32_t num_exponent_bits = 0; |
| 180 | // Number of bits that represent the fractional part. |
| 181 | static const uint32_t num_fraction_bits = 0; |
| 182 | // The bias of the exponent. (How much we need to subtract from the stored |
| 183 | // value to get the correct value.) |
| 184 | static const uint32_t exponent_bias = 0; |
| 185 | }; |
| 186 | |
| 187 | // Traits for IEEE float. |
| 188 | // 1 sign bit, 8 exponent bits, 23 fractional bits. |
| 189 | template <> |
| 190 | struct HexFloatTraits<FloatProxy<float>> { |
| 191 | typedef uint32_t uint_type; |
| 192 | typedef int32_t int_type; |
| 193 | typedef FloatProxy<float> underlying_type; |
| 194 | typedef float native_type; |
| 195 | static const uint_type num_used_bits = 32; |
| 196 | static const uint_type num_exponent_bits = 8; |
| 197 | static const uint_type num_fraction_bits = 23; |
| 198 | static const uint_type exponent_bias = 127; |
| 199 | }; |
| 200 | |
| 201 | // Traits for IEEE double. |
| 202 | // 1 sign bit, 11 exponent bits, 52 fractional bits. |
| 203 | template <> |
| 204 | struct HexFloatTraits<FloatProxy<double>> { |
| 205 | typedef uint64_t uint_type; |
| 206 | typedef int64_t int_type; |
| 207 | typedef FloatProxy<double> underlying_type; |
| 208 | typedef double native_type; |
| 209 | static const uint_type num_used_bits = 64; |
| 210 | static const uint_type num_exponent_bits = 11; |
| 211 | static const uint_type num_fraction_bits = 52; |
| 212 | static const uint_type exponent_bias = 1023; |
| 213 | }; |
| 214 | |
| 215 | // Traits for IEEE half. |
| 216 | // 1 sign bit, 5 exponent bits, 10 fractional bits. |
| 217 | template <> |
| 218 | struct HexFloatTraits<FloatProxy<Float16>> { |
| 219 | typedef uint16_t uint_type; |
| 220 | typedef int16_t int_type; |
| 221 | typedef uint16_t underlying_type; |
| 222 | typedef uint16_t native_type; |
| 223 | static const uint_type num_used_bits = 16; |
| 224 | static const uint_type num_exponent_bits = 5; |
| 225 | static const uint_type num_fraction_bits = 10; |
| 226 | static const uint_type exponent_bias = 15; |
| 227 | }; |
| 228 | |
| 229 | enum round_direction { |
| 230 | kRoundToZero, |
| 231 | kRoundToNearestEven, |
| 232 | kRoundToPositiveInfinity, |
| 233 | kRoundToNegativeInfinity |
| 234 | }; |
| 235 | |
| 236 | // Template class that houses a floating pointer number. |
| 237 | // It exposes a number of constants based on the provided traits to |
| 238 | // assist in interpreting the bits of the value. |
| 239 | template <typename T, typename Traits = HexFloatTraits<T>> |
| 240 | class HexFloat { |
| 241 | public: |
| 242 | typedef typename Traits::uint_type uint_type; |
| 243 | typedef typename Traits::int_type int_type; |
| 244 | typedef typename Traits::underlying_type underlying_type; |
| 245 | typedef typename Traits::native_type native_type; |
| 246 | |
| 247 | explicit HexFloat(T f) : value_(f) {} |
| 248 | |
| 249 | T value() const { return value_; } |
| 250 | void set_value(T f) { value_ = f; } |
| 251 | |
| 252 | // These are all written like this because it is convenient to have |
| 253 | // compile-time constants for all of these values. |
| 254 | |
| 255 | // Pass-through values to save typing. |
| 256 | static const uint32_t num_used_bits = Traits::num_used_bits; |
| 257 | static const uint32_t exponent_bias = Traits::exponent_bias; |
| 258 | static const uint32_t num_exponent_bits = Traits::num_exponent_bits; |
| 259 | static const uint32_t num_fraction_bits = Traits::num_fraction_bits; |
| 260 | |
| 261 | // Number of bits to shift left to set the highest relevant bit. |
| 262 | static const uint32_t top_bit_left_shift = num_used_bits - 1; |
| 263 | // How many nibbles (hex characters) the fractional part takes up. |
| 264 | static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; |
| 265 | // If the fractional part does not fit evenly into a hex character (4-bits) |
| 266 | // then we have to left-shift to get rid of leading 0s. This is the amount |
| 267 | // we have to shift (might be 0). |
| 268 | static const uint32_t num_overflow_bits = |
| 269 | fraction_nibbles * 4 - num_fraction_bits; |
| 270 | |
| 271 | // The representation of the fraction, not the actual bits. This |
| 272 | // includes the leading bit that is usually implicit. |
| 273 | static const uint_type fraction_represent_mask = |
| 274 | spvutils::SetBits<uint_type, 0, |
| 275 | num_fraction_bits + num_overflow_bits>::get; |
| 276 | |
| 277 | // The topmost bit in the nibble-aligned fraction. |
| 278 | static const uint_type fraction_top_bit = |
| 279 | uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); |
| 280 | |
| 281 | // The least significant bit in the exponent, which is also the bit |
| 282 | // immediately to the left of the significand. |
| 283 | static const uint_type first_exponent_bit = uint_type(1) |
| 284 | << (num_fraction_bits); |
| 285 | |
| 286 | // The mask for the encoded fraction. It does not include the |
| 287 | // implicit bit. |
| 288 | static const uint_type fraction_encode_mask = |
| 289 | spvutils::SetBits<uint_type, 0, num_fraction_bits>::get; |
| 290 | |
| 291 | // The bit that is used as a sign. |
| 292 | static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; |
| 293 | |
| 294 | // The bits that represent the exponent. |
| 295 | static const uint_type exponent_mask = |
| 296 | spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; |
| 297 | |
| 298 | // How far left the exponent is shifted. |
| 299 | static const uint32_t exponent_left_shift = num_fraction_bits; |
| 300 | |
| 301 | // How far from the right edge the fraction is shifted. |
| 302 | static const uint32_t fraction_right_shift = |
| 303 | static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; |
| 304 | |
| 305 | // The maximum representable unbiased exponent. |
| 306 | static const int_type max_exponent = |
| 307 | (exponent_mask >> num_fraction_bits) - exponent_bias; |
| 308 | // The minimum representable exponent for normalized numbers. |
| 309 | static const int_type min_exponent = -static_cast<int_type>(exponent_bias); |
| 310 | |
| 311 | // Returns the bits associated with the value. |
| 312 | uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); } |
| 313 | |
| 314 | // Returns the bits associated with the value, without the leading sign bit. |
| 315 | uint_type getUnsignedBits() const { |
| 316 | return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) & |
| 317 | ~sign_mask); |
| 318 | } |
| 319 | |
| 320 | // Returns the bits associated with the exponent, shifted to start at the |
| 321 | // lsb of the type. |
| 322 | const uint_type getExponentBits() const { |
| 323 | return static_cast<uint_type>((getBits() & exponent_mask) >> |
| 324 | num_fraction_bits); |
| 325 | } |
| 326 | |
| 327 | // Returns the exponent in unbiased form. This is the exponent in the |
| 328 | // human-friendly form. |
| 329 | const int_type getUnbiasedExponent() const { |
| 330 | return static_cast<int_type>(getExponentBits() - exponent_bias); |
| 331 | } |
| 332 | |
| 333 | // Returns just the significand bits from the value. |
| 334 | const uint_type getSignificandBits() const { |
| 335 | return getBits() & fraction_encode_mask; |
| 336 | } |
| 337 | |
| 338 | // If the number was normalized, returns the unbiased exponent. |
| 339 | // If the number was denormal, normalize the exponent first. |
| 340 | const int_type getUnbiasedNormalizedExponent() const { |
| 341 | if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0 |
| 342 | return 0; |
| 343 | } |
| 344 | int_type exp = getUnbiasedExponent(); |
| 345 | if (exp == min_exponent) { // We are in denorm land. |
| 346 | uint_type significand_bits = getSignificandBits(); |
| 347 | while ((significand_bits & (first_exponent_bit >> 1)) == 0) { |
| 348 | significand_bits = static_cast<uint_type>(significand_bits << 1); |
| 349 | exp = static_cast<int_type>(exp - 1); |
| 350 | } |
| 351 | significand_bits &= fraction_encode_mask; |
| 352 | } |
| 353 | return exp; |
| 354 | } |
| 355 | |
| 356 | // Returns the signficand after it has been normalized. |
| 357 | const uint_type getNormalizedSignificand() const { |
| 358 | int_type unbiased_exponent = getUnbiasedNormalizedExponent(); |
| 359 | uint_type significand = getSignificandBits(); |
| 360 | for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { |
| 361 | significand = static_cast<uint_type>(significand << 1); |
| 362 | } |
| 363 | significand &= fraction_encode_mask; |
| 364 | return significand; |
| 365 | } |
| 366 | |
| 367 | // Returns true if this number represents a negative value. |
| 368 | bool isNegative() const { return (getBits() & sign_mask) != 0; } |
| 369 | |
| 370 | // Sets this HexFloat from the individual components. |
| 371 | // Note this assumes EVERY significand is normalized, and has an implicit |
| 372 | // leading one. This means that the only way that this method will set 0, |
| 373 | // is if you set a number so denormalized that it underflows. |
| 374 | // Do not use this method with raw bits extracted from a subnormal number, |
| 375 | // since subnormals do not have an implicit leading 1 in the significand. |
| 376 | // The significand is also expected to be in the |
| 377 | // lowest-most num_fraction_bits of the uint_type. |
| 378 | // The exponent is expected to be unbiased, meaning an exponent of |
| 379 | // 0 actually means 0. |
| 380 | // If underflow_round_up is set, then on underflow, if a number is non-0 |
| 381 | // and would underflow, we round up to the smallest denorm. |
| 382 | void setFromSignUnbiasedExponentAndNormalizedSignificand( |
| 383 | bool negative, int_type exponent, uint_type significand, |
| 384 | bool round_denorm_up) { |
| 385 | bool significand_is_zero = significand == 0; |
| 386 | |
| 387 | if (exponent <= min_exponent) { |
| 388 | // If this was denormalized, then we have to shift the bit on, meaning |
| 389 | // the significand is not zero. |
| 390 | significand_is_zero = false; |
| 391 | significand |= first_exponent_bit; |
| 392 | significand = static_cast<uint_type>(significand >> 1); |
| 393 | } |
| 394 | |
| 395 | while (exponent < min_exponent) { |
| 396 | significand = static_cast<uint_type>(significand >> 1); |
| 397 | ++exponent; |
| 398 | } |
| 399 | |
| 400 | if (exponent == min_exponent) { |
| 401 | if (significand == 0 && !significand_is_zero && round_denorm_up) { |
| 402 | significand = static_cast<uint_type>(0x1); |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | uint_type new_value = 0; |
| 407 | if (negative) { |
| 408 | new_value = static_cast<uint_type>(new_value | sign_mask); |
| 409 | } |
| 410 | exponent = static_cast<int_type>(exponent + exponent_bias); |
| 411 | assert(exponent >= 0); |
| 412 | |
| 413 | // put it all together |
| 414 | exponent = static_cast<uint_type>((exponent << exponent_left_shift) & |
| 415 | exponent_mask); |
| 416 | significand = static_cast<uint_type>(significand & fraction_encode_mask); |
| 417 | new_value = static_cast<uint_type>(new_value | (exponent | significand)); |
| 418 | value_ = BitwiseCast<T>(new_value); |
| 419 | } |
| 420 | |
| 421 | // Increments the significand of this number by the given amount. |
| 422 | // If this would spill the significand into the implicit bit, |
| 423 | // carry is set to true and the significand is shifted to fit into |
| 424 | // the correct location, otherwise carry is set to false. |
| 425 | // All significands and to_increment are assumed to be within the bounds |
| 426 | // for a valid significand. |
| 427 | static uint_type incrementSignificand(uint_type significand, |
| 428 | uint_type to_increment, bool* carry) { |
| 429 | significand = static_cast<uint_type>(significand + to_increment); |
| 430 | *carry = false; |
| 431 | if (significand & first_exponent_bit) { |
| 432 | *carry = true; |
| 433 | // The implicit 1-bit will have carried, so we should zero-out the |
| 434 | // top bit and shift back. |
| 435 | significand = static_cast<uint_type>(significand & ~first_exponent_bit); |
| 436 | significand = static_cast<uint_type>(significand >> 1); |
| 437 | } |
| 438 | return significand; |
| 439 | } |
| 440 | |
| 441 | // These exist because MSVC throws warnings on negative right-shifts |
| 442 | // even if they are not going to be executed. Eg: |
| 443 | // constant_number < 0? 0: constant_number |
| 444 | // These convert the negative left-shifts into right shifts. |
| 445 | |
| 446 | template <typename int_type> |
| 447 | uint_type negatable_left_shift(int_type N, uint_type val) |
| 448 | { |
| 449 | if(N >= 0) |
| 450 | return val << N; |
| 451 | |
| 452 | return val >> -N; |
| 453 | } |
| 454 | |
| 455 | template <typename int_type> |
| 456 | uint_type negatable_right_shift(int_type N, uint_type val) |
| 457 | { |
| 458 | if(N >= 0) |
| 459 | return val >> N; |
| 460 | |
| 461 | return val << -N; |
| 462 | } |
| 463 | |
| 464 | // Returns the significand, rounded to fit in a significand in |
| 465 | // other_T. This is shifted so that the most significant |
| 466 | // bit of the rounded number lines up with the most significant bit |
| 467 | // of the returned significand. |
| 468 | template <typename other_T> |
| 469 | typename other_T::uint_type getRoundedNormalizedSignificand( |
| 470 | round_direction dir, bool* carry_bit) { |
| 471 | typedef typename other_T::uint_type other_uint_type; |
| 472 | static const int_type num_throwaway_bits = |
| 473 | static_cast<int_type>(num_fraction_bits) - |
| 474 | static_cast<int_type>(other_T::num_fraction_bits); |
| 475 | |
| 476 | static const uint_type last_significant_bit = |
| 477 | (num_throwaway_bits < 0) |
| 478 | ? 0 |
| 479 | : negatable_left_shift(num_throwaway_bits, 1u); |
| 480 | static const uint_type first_rounded_bit = |
| 481 | (num_throwaway_bits < 1) |
| 482 | ? 0 |
| 483 | : negatable_left_shift(num_throwaway_bits - 1, 1u); |
| 484 | |
| 485 | static const uint_type throwaway_mask_bits = |
| 486 | num_throwaway_bits > 0 ? num_throwaway_bits : 0; |
| 487 | static const uint_type throwaway_mask = |
| 488 | spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get; |
| 489 | |
| 490 | *carry_bit = false; |
| 491 | other_uint_type out_val = 0; |
| 492 | uint_type significand = getNormalizedSignificand(); |
| 493 | // If we are up-casting, then we just have to shift to the right location. |
| 494 | if (num_throwaway_bits <= 0) { |
| 495 | out_val = static_cast<other_uint_type>(significand); |
| 496 | uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); |
| 497 | out_val = static_cast<other_uint_type>(out_val << shift_amount); |
| 498 | return out_val; |
| 499 | } |
| 500 | |
| 501 | // If every non-representable bit is 0, then we don't have any casting to |
| 502 | // do. |
| 503 | if ((significand & throwaway_mask) == 0) { |
| 504 | return static_cast<other_uint_type>( |
| 505 | negatable_right_shift(num_throwaway_bits, significand)); |
| 506 | } |
| 507 | |
| 508 | bool round_away_from_zero = false; |
| 509 | // We actually have to narrow the significand here, so we have to follow the |
| 510 | // rounding rules. |
| 511 | switch (dir) { |
| 512 | case kRoundToZero: |
| 513 | break; |
| 514 | case kRoundToPositiveInfinity: |
| 515 | round_away_from_zero = !isNegative(); |
| 516 | break; |
| 517 | case kRoundToNegativeInfinity: |
| 518 | round_away_from_zero = isNegative(); |
| 519 | break; |
| 520 | case kRoundToNearestEven: |
| 521 | // Have to round down, round bit is 0 |
| 522 | if ((first_rounded_bit & significand) == 0) { |
| 523 | break; |
| 524 | } |
| 525 | if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { |
| 526 | // If any subsequent bit of the rounded portion is non-0 then we round |
| 527 | // up. |
| 528 | round_away_from_zero = true; |
| 529 | break; |
| 530 | } |
| 531 | // We are exactly half-way between 2 numbers, pick even. |
| 532 | if ((significand & last_significant_bit) != 0) { |
| 533 | // 1 for our last bit, round up. |
| 534 | round_away_from_zero = true; |
| 535 | break; |
| 536 | } |
| 537 | break; |
| 538 | } |
| 539 | |
| 540 | if (round_away_from_zero) { |
| 541 | return static_cast<other_uint_type>( |
| 542 | negatable_right_shift(num_throwaway_bits, incrementSignificand( |
| 543 | significand, to_increment: last_significant_bit, carry: carry_bit))); |
| 544 | } else { |
| 545 | return static_cast<other_uint_type>( |
| 546 | negatable_right_shift(num_throwaway_bits, significand)); |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | // Casts this value to another HexFloat. If the cast is widening, |
| 551 | // then round_dir is ignored. If the cast is narrowing, then |
| 552 | // the result is rounded in the direction specified. |
| 553 | // This number will retain Nan and Inf values. |
| 554 | // It will also saturate to Inf if the number overflows, and |
| 555 | // underflow to (0 or min depending on rounding) if the number underflows. |
| 556 | template <typename other_T> |
| 557 | void castTo(other_T& other, round_direction round_dir) { |
| 558 | other = other_T(static_cast<typename other_T::native_type>(0)); |
| 559 | bool negate = isNegative(); |
| 560 | if (getUnsignedBits() == 0) { |
| 561 | if (negate) { |
| 562 | other.set_value(-other.value()); |
| 563 | } |
| 564 | return; |
| 565 | } |
| 566 | uint_type significand = getSignificandBits(); |
| 567 | bool carried = false; |
| 568 | typename other_T::uint_type rounded_significand = |
| 569 | getRoundedNormalizedSignificand<other_T>(round_dir, &carried); |
| 570 | |
| 571 | int_type exponent = getUnbiasedExponent(); |
| 572 | if (exponent == min_exponent) { |
| 573 | // If we are denormal, normalize the exponent, so that we can encode |
| 574 | // easily. |
| 575 | exponent = static_cast<int_type>(exponent + 1); |
| 576 | for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; |
| 577 | check_bit = static_cast<uint_type>(check_bit >> 1)) { |
| 578 | exponent = static_cast<int_type>(exponent - 1); |
| 579 | if (check_bit & significand) break; |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | bool is_nan = |
| 584 | (getBits() & exponent_mask) == exponent_mask && significand != 0; |
| 585 | bool is_inf = |
| 586 | !is_nan && |
| 587 | ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) || |
| 588 | (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); |
| 589 | |
| 590 | // If we are Nan or Inf we should pass that through. |
| 591 | if (is_inf) { |
| 592 | other.set_value(BitwiseCast<typename other_T::underlying_type>( |
| 593 | static_cast<typename other_T::uint_type>( |
| 594 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); |
| 595 | return; |
| 596 | } |
| 597 | if (is_nan) { |
| 598 | typename other_T::uint_type shifted_significand; |
| 599 | shifted_significand = static_cast<typename other_T::uint_type>( |
| 600 | negatable_left_shift( |
| 601 | static_cast<int_type>(other_T::num_fraction_bits) - |
| 602 | static_cast<int_type>(num_fraction_bits), significand)); |
| 603 | |
| 604 | // We are some sort of Nan. We try to keep the bit-pattern of the Nan |
| 605 | // as close as possible. If we had to shift off bits so we are 0, then we |
| 606 | // just set the last bit. |
| 607 | other.set_value(BitwiseCast<typename other_T::underlying_type>( |
| 608 | static_cast<typename other_T::uint_type>( |
| 609 | (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | |
| 610 | (shifted_significand == 0 ? 0x1 : shifted_significand)))); |
| 611 | return; |
| 612 | } |
| 613 | |
| 614 | bool round_underflow_up = |
| 615 | isNegative() ? round_dir == kRoundToNegativeInfinity |
| 616 | : round_dir == kRoundToPositiveInfinity; |
| 617 | typedef typename other_T::int_type other_int_type; |
| 618 | // setFromSignUnbiasedExponentAndNormalizedSignificand will |
| 619 | // zero out any underflowing value (but retain the sign). |
| 620 | other.setFromSignUnbiasedExponentAndNormalizedSignificand( |
| 621 | negate, static_cast<other_int_type>(exponent), rounded_significand, |
| 622 | round_underflow_up); |
| 623 | return; |
| 624 | } |
| 625 | |
| 626 | private: |
| 627 | T value_; |
| 628 | |
| 629 | static_assert(num_used_bits == |
| 630 | Traits::num_exponent_bits + Traits::num_fraction_bits + 1, |
| 631 | "The number of bits do not fit" ); |
| 632 | static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match" ); |
| 633 | }; |
| 634 | |
| 635 | // Returns 4 bits represented by the hex character. |
| 636 | inline uint8_t get_nibble_from_character(int character) { |
| 637 | const char* dec = "0123456789" ; |
| 638 | const char* lower = "abcdef" ; |
| 639 | const char* upper = "ABCDEF" ; |
| 640 | const char* p = nullptr; |
| 641 | if ((p = strchr(s: dec, c: character))) { |
| 642 | return static_cast<uint8_t>(p - dec); |
| 643 | } else if ((p = strchr(s: lower, c: character))) { |
| 644 | return static_cast<uint8_t>(p - lower + 0xa); |
| 645 | } else if ((p = strchr(s: upper, c: character))) { |
| 646 | return static_cast<uint8_t>(p - upper + 0xa); |
| 647 | } |
| 648 | |
| 649 | assert(false && "This was called with a non-hex character" ); |
| 650 | return 0; |
| 651 | } |
| 652 | |
| 653 | // Outputs the given HexFloat to the stream. |
| 654 | template <typename T, typename Traits> |
| 655 | std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { |
| 656 | typedef HexFloat<T, Traits> HF; |
| 657 | typedef typename HF::uint_type uint_type; |
| 658 | typedef typename HF::int_type int_type; |
| 659 | |
| 660 | static_assert(HF::num_used_bits != 0, |
| 661 | "num_used_bits must be non-zero for a valid float" ); |
| 662 | static_assert(HF::num_exponent_bits != 0, |
| 663 | "num_exponent_bits must be non-zero for a valid float" ); |
| 664 | static_assert(HF::num_fraction_bits != 0, |
| 665 | "num_fractin_bits must be non-zero for a valid float" ); |
| 666 | |
| 667 | const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value()); |
| 668 | const char* const sign = (bits & HF::sign_mask) ? "-" : "" ; |
| 669 | const uint_type exponent = static_cast<uint_type>( |
| 670 | (bits & HF::exponent_mask) >> HF::num_fraction_bits); |
| 671 | |
| 672 | uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) |
| 673 | << HF::num_overflow_bits); |
| 674 | |
| 675 | const bool is_zero = exponent == 0 && fraction == 0; |
| 676 | const bool is_denorm = exponent == 0 && !is_zero; |
| 677 | |
| 678 | // exponent contains the biased exponent we have to convert it back into |
| 679 | // the normal range. |
| 680 | int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); |
| 681 | // If the number is all zeros, then we actually have to NOT shift the |
| 682 | // exponent. |
| 683 | int_exponent = is_zero ? 0 : int_exponent; |
| 684 | |
| 685 | // If we are denorm, then start shifting, and decreasing the exponent until |
| 686 | // our leading bit is 1. |
| 687 | |
| 688 | if (is_denorm) { |
| 689 | while ((fraction & HF::fraction_top_bit) == 0) { |
| 690 | fraction = static_cast<uint_type>(fraction << 1); |
| 691 | int_exponent = static_cast<int_type>(int_exponent - 1); |
| 692 | } |
| 693 | // Since this is denormalized, we have to consume the leading 1 since it |
| 694 | // will end up being implicit. |
| 695 | fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1 |
| 696 | fraction &= HF::fraction_represent_mask; |
| 697 | } |
| 698 | |
| 699 | uint_type fraction_nibbles = HF::fraction_nibbles; |
| 700 | // We do not have to display any trailing 0s, since this represents the |
| 701 | // fractional part. |
| 702 | while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { |
| 703 | // Shift off any trailing values; |
| 704 | fraction = static_cast<uint_type>(fraction >> 4); |
| 705 | --fraction_nibbles; |
| 706 | } |
| 707 | |
| 708 | const auto saved_flags = os.flags(); |
| 709 | const auto saved_fill = os.fill(); |
| 710 | |
| 711 | os << sign << "0x" << (is_zero ? '0' : '1'); |
| 712 | if (fraction_nibbles) { |
| 713 | // Make sure to keep the leading 0s in place, since this is the fractional |
| 714 | // part. |
| 715 | os << "." << std::setw(static_cast<int>(fraction_nibbles)) |
| 716 | << std::setfill('0') << std::hex << fraction; |
| 717 | } |
| 718 | os << "p" << std::dec << (int_exponent >= 0 ? "+" : "" ) << int_exponent; |
| 719 | |
| 720 | os.flags(fmtfl: saved_flags); |
| 721 | os.fill(ch: saved_fill); |
| 722 | |
| 723 | return os; |
| 724 | } |
| 725 | |
| 726 | // Returns true if negate_value is true and the next character on the |
| 727 | // input stream is a plus or minus sign. In that case we also set the fail bit |
| 728 | // on the stream and set the value to the zero value for its type. |
| 729 | template <typename T, typename Traits> |
| 730 | inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, |
| 731 | HexFloat<T, Traits>& value) { |
| 732 | if (negate_value) { |
| 733 | auto next_char = is.peek(); |
| 734 | if (next_char == '-' || next_char == '+') { |
| 735 | // Fail the parse. Emulate standard behaviour by setting the value to |
| 736 | // the zero value, and set the fail bit on the stream. |
| 737 | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); |
| 738 | is.setstate(std::ios_base::failbit); |
| 739 | return true; |
| 740 | } |
| 741 | } |
| 742 | return false; |
| 743 | } |
| 744 | |
| 745 | // Parses a floating point number from the given stream and stores it into the |
| 746 | // value parameter. |
| 747 | // If negate_value is true then the number may not have a leading minus or |
| 748 | // plus, and if it successfully parses, then the number is negated before |
| 749 | // being stored into the value parameter. |
| 750 | // If the value cannot be correctly parsed or overflows the target floating |
| 751 | // point type, then set the fail bit on the stream. |
| 752 | // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
| 753 | // the error case, but only after all target platforms implement it correctly. |
| 754 | // In particular, the Microsoft C++ runtime appears to be out of spec. |
| 755 | template <typename T, typename Traits> |
| 756 | inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, |
| 757 | HexFloat<T, Traits>& value) { |
| 758 | if (RejectParseDueToLeadingSign(is, negate_value, value)) { |
| 759 | return is; |
| 760 | } |
| 761 | T val; |
| 762 | is >> val; |
| 763 | if (negate_value) { |
| 764 | val = -val; |
| 765 | } |
| 766 | value.set_value(val); |
| 767 | // In the failure case, map -0.0 to 0.0. |
| 768 | if (is.fail() && value.getUnsignedBits() == 0u) { |
| 769 | value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); |
| 770 | } |
| 771 | if (val.isInfinity()) { |
| 772 | // Fail the parse. Emulate standard behaviour by setting the value to |
| 773 | // the closest normal value, and set the fail bit on the stream. |
| 774 | value.set_value((value.isNegative() || negate_value) ? T::lowest() |
| 775 | : T::max()); |
| 776 | is.setstate(std::ios_base::failbit); |
| 777 | } |
| 778 | return is; |
| 779 | } |
| 780 | |
| 781 | // Specialization of ParseNormalFloat for FloatProxy<Float16> values. |
| 782 | // This will parse the float as it were a 32-bit floating point number, |
| 783 | // and then round it down to fit into a Float16 value. |
| 784 | // The number is rounded towards zero. |
| 785 | // If negate_value is true then the number may not have a leading minus or |
| 786 | // plus, and if it successfully parses, then the number is negated before |
| 787 | // being stored into the value parameter. |
| 788 | // If the value cannot be correctly parsed or overflows the target floating |
| 789 | // point type, then set the fail bit on the stream. |
| 790 | // TODO(dneto): Promise C++11 standard behavior in how the value is set in |
| 791 | // the error case, but only after all target platforms implement it correctly. |
| 792 | // In particular, the Microsoft C++ runtime appears to be out of spec. |
| 793 | template <> |
| 794 | inline std::istream& |
| 795 | ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( |
| 796 | std::istream& is, bool negate_value, |
| 797 | HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { |
| 798 | // First parse as a 32-bit float. |
| 799 | HexFloat<FloatProxy<float>> float_val(0.0f); |
| 800 | ParseNormalFloat(is, negate_value, value&: float_val); |
| 801 | |
| 802 | // Then convert to 16-bit float, saturating at infinities, and |
| 803 | // rounding toward zero. |
| 804 | float_val.castTo(other&: value, round_dir: kRoundToZero); |
| 805 | |
| 806 | // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the |
| 807 | // fail bit and set the lowest or highest value. |
| 808 | if (Float16::isInfinity(val: value.value().getAsFloat())) { |
| 809 | value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); |
| 810 | is.setstate(std::ios_base::failbit); |
| 811 | } |
| 812 | return is; |
| 813 | } |
| 814 | |
| 815 | // Reads a HexFloat from the given stream. |
| 816 | // If the float is not encoded as a hex-float then it will be parsed |
| 817 | // as a regular float. |
| 818 | // This may fail if your stream does not support at least one unget. |
| 819 | // Nan values can be encoded with "0x1.<not zero>p+exponent_bias". |
| 820 | // This would normally overflow a float and round to |
| 821 | // infinity but this special pattern is the exact representation for a NaN, |
| 822 | // and therefore is actually encoded as the correct NaN. To encode inf, |
| 823 | // either 0x0p+exponent_bias can be specified or any exponent greater than |
| 824 | // exponent_bias. |
| 825 | // Examples using IEEE 32-bit float encoding. |
| 826 | // 0x1.0p+128 (+inf) |
| 827 | // -0x1.0p-128 (-inf) |
| 828 | // |
| 829 | // 0x1.1p+128 (+Nan) |
| 830 | // -0x1.1p+128 (-Nan) |
| 831 | // |
| 832 | // 0x1p+129 (+inf) |
| 833 | // -0x1p+129 (-inf) |
| 834 | template <typename T, typename Traits> |
| 835 | std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { |
| 836 | using HF = HexFloat<T, Traits>; |
| 837 | using uint_type = typename HF::uint_type; |
| 838 | using int_type = typename HF::int_type; |
| 839 | |
| 840 | value.set_value(static_cast<typename HF::native_type>(0.f)); |
| 841 | |
| 842 | if (is.flags() & std::ios::skipws) { |
| 843 | // If the user wants to skip whitespace , then we should obey that. |
| 844 | while (std::isspace(is.peek())) { |
| 845 | is.get(); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | auto next_char = is.peek(); |
| 850 | bool negate_value = false; |
| 851 | |
| 852 | if (next_char != '-' && next_char != '0') { |
| 853 | return ParseNormalFloat(is, negate_value, value); |
| 854 | } |
| 855 | |
| 856 | if (next_char == '-') { |
| 857 | negate_value = true; |
| 858 | is.get(); |
| 859 | next_char = is.peek(); |
| 860 | } |
| 861 | |
| 862 | if (next_char == '0') { |
| 863 | is.get(); // We may have to unget this. |
| 864 | auto maybe_hex_start = is.peek(); |
| 865 | if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { |
| 866 | is.unget(); |
| 867 | return ParseNormalFloat(is, negate_value, value); |
| 868 | } else { |
| 869 | is.get(); // Throw away the 'x'; |
| 870 | } |
| 871 | } else { |
| 872 | return ParseNormalFloat(is, negate_value, value); |
| 873 | } |
| 874 | |
| 875 | // This "looks" like a hex-float so treat it as one. |
| 876 | bool seen_p = false; |
| 877 | bool seen_dot = false; |
| 878 | uint_type fraction_index = 0; |
| 879 | |
| 880 | uint_type fraction = 0; |
| 881 | int_type exponent = HF::exponent_bias; |
| 882 | |
| 883 | // Strip off leading zeros so we don't have to special-case them later. |
| 884 | while ((next_char = is.peek()) == '0') { |
| 885 | is.get(); |
| 886 | } |
| 887 | |
| 888 | bool is_denorm = |
| 889 | true; // Assume denorm "representation" until we hear otherwise. |
| 890 | // NB: This does not mean the value is actually denorm, |
| 891 | // it just means that it was written 0. |
| 892 | bool bits_written = false; // Stays false until we write a bit. |
| 893 | while (!seen_p && !seen_dot) { |
| 894 | // Handle characters that are left of the fractional part. |
| 895 | if (next_char == '.') { |
| 896 | seen_dot = true; |
| 897 | } else if (next_char == 'p') { |
| 898 | seen_p = true; |
| 899 | } else if (::isxdigit(next_char)) { |
| 900 | // We know this is not denormalized since we have stripped all leading |
| 901 | // zeroes and we are not a ".". |
| 902 | is_denorm = false; |
| 903 | int number = get_nibble_from_character(character: next_char); |
| 904 | for (int i = 0; i < 4; ++i, number <<= 1) { |
| 905 | uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; |
| 906 | if (bits_written) { |
| 907 | // If we are here the bits represented belong in the fractional |
| 908 | // part of the float, and we have to adjust the exponent accordingly. |
| 909 | fraction = static_cast<uint_type>( |
| 910 | fraction | |
| 911 | static_cast<uint_type>( |
| 912 | write_bit << (HF::top_bit_left_shift - fraction_index++))); |
| 913 | exponent = static_cast<int_type>(exponent + 1); |
| 914 | } |
| 915 | bits_written |= write_bit != 0; |
| 916 | } |
| 917 | } else { |
| 918 | // We have not found our exponent yet, so we have to fail. |
| 919 | is.setstate(std::ios::failbit); |
| 920 | return is; |
| 921 | } |
| 922 | is.get(); |
| 923 | next_char = is.peek(); |
| 924 | } |
| 925 | bits_written = false; |
| 926 | while (seen_dot && !seen_p) { |
| 927 | // Handle only fractional parts now. |
| 928 | if (next_char == 'p') { |
| 929 | seen_p = true; |
| 930 | } else if (::isxdigit(next_char)) { |
| 931 | int number = get_nibble_from_character(character: next_char); |
| 932 | for (int i = 0; i < 4; ++i, number <<= 1) { |
| 933 | uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; |
| 934 | bits_written |= write_bit != 0; |
| 935 | if (is_denorm && !bits_written) { |
| 936 | // Handle modifying the exponent here this way we can handle |
| 937 | // an arbitrary number of hex values without overflowing our |
| 938 | // integer. |
| 939 | exponent = static_cast<int_type>(exponent - 1); |
| 940 | } else { |
| 941 | fraction = static_cast<uint_type>( |
| 942 | fraction | |
| 943 | static_cast<uint_type>( |
| 944 | write_bit << (HF::top_bit_left_shift - fraction_index++))); |
| 945 | } |
| 946 | } |
| 947 | } else { |
| 948 | // We still have not found our 'p' exponent yet, so this is not a valid |
| 949 | // hex-float. |
| 950 | is.setstate(std::ios::failbit); |
| 951 | return is; |
| 952 | } |
| 953 | is.get(); |
| 954 | next_char = is.peek(); |
| 955 | } |
| 956 | |
| 957 | bool seen_sign = false; |
| 958 | int8_t exponent_sign = 1; |
| 959 | int_type written_exponent = 0; |
| 960 | while (true) { |
| 961 | if ((next_char == '-' || next_char == '+')) { |
| 962 | if (seen_sign) { |
| 963 | is.setstate(std::ios::failbit); |
| 964 | return is; |
| 965 | } |
| 966 | seen_sign = true; |
| 967 | exponent_sign = (next_char == '-') ? -1 : 1; |
| 968 | } else if (::isdigit(next_char)) { |
| 969 | // Hex-floats express their exponent as decimal. |
| 970 | written_exponent = static_cast<int_type>(written_exponent * 10); |
| 971 | written_exponent = |
| 972 | static_cast<int_type>(written_exponent + (next_char - '0')); |
| 973 | } else { |
| 974 | break; |
| 975 | } |
| 976 | is.get(); |
| 977 | next_char = is.peek(); |
| 978 | } |
| 979 | |
| 980 | written_exponent = static_cast<int_type>(written_exponent * exponent_sign); |
| 981 | exponent = static_cast<int_type>(exponent + written_exponent); |
| 982 | |
| 983 | bool is_zero = is_denorm && (fraction == 0); |
| 984 | if (is_denorm && !is_zero) { |
| 985 | fraction = static_cast<uint_type>(fraction << 1); |
| 986 | exponent = static_cast<int_type>(exponent - 1); |
| 987 | } else if (is_zero) { |
| 988 | exponent = 0; |
| 989 | } |
| 990 | |
| 991 | if (exponent <= 0 && !is_zero) { |
| 992 | fraction = static_cast<uint_type>(fraction >> 1); |
| 993 | fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; |
| 994 | } |
| 995 | |
| 996 | fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; |
| 997 | |
| 998 | const int_type max_exponent = |
| 999 | SetBits<uint_type, 0, HF::num_exponent_bits>::get; |
| 1000 | |
| 1001 | // Handle actual denorm numbers |
| 1002 | while (exponent < 0 && !is_zero) { |
| 1003 | fraction = static_cast<uint_type>(fraction >> 1); |
| 1004 | exponent = static_cast<int_type>(exponent + 1); |
| 1005 | |
| 1006 | fraction &= HF::fraction_encode_mask; |
| 1007 | if (fraction == 0) { |
| 1008 | // We have underflowed our fraction. We should clamp to zero. |
| 1009 | is_zero = true; |
| 1010 | exponent = 0; |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | // We have overflowed so we should be inf/-inf. |
| 1015 | if (exponent > max_exponent) { |
| 1016 | exponent = max_exponent; |
| 1017 | fraction = 0; |
| 1018 | } |
| 1019 | |
| 1020 | uint_type output_bits = static_cast<uint_type>( |
| 1021 | static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); |
| 1022 | output_bits |= fraction; |
| 1023 | |
| 1024 | uint_type shifted_exponent = static_cast<uint_type>( |
| 1025 | static_cast<uint_type>(exponent << HF::exponent_left_shift) & |
| 1026 | HF::exponent_mask); |
| 1027 | output_bits |= shifted_exponent; |
| 1028 | |
| 1029 | T output_float = spvutils::BitwiseCast<T>(output_bits); |
| 1030 | value.set_value(output_float); |
| 1031 | |
| 1032 | return is; |
| 1033 | } |
| 1034 | |
| 1035 | // Writes a FloatProxy value to a stream. |
| 1036 | // Zero and normal numbers are printed in the usual notation, but with |
| 1037 | // enough digits to fully reproduce the value. Other values (subnormal, |
| 1038 | // NaN, and infinity) are printed as a hex float. |
| 1039 | template <typename T> |
| 1040 | std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { |
| 1041 | auto float_val = value.getAsFloat(); |
| 1042 | switch (std::fpclassify(float_val)) { |
| 1043 | case FP_ZERO: |
| 1044 | case FP_NORMAL: { |
| 1045 | auto saved_precision = os.precision(); |
| 1046 | os.precision(std::numeric_limits<T>::digits10); |
| 1047 | os << float_val; |
| 1048 | os.precision(prec: saved_precision); |
| 1049 | } break; |
| 1050 | default: |
| 1051 | os << HexFloat<FloatProxy<T>>(value); |
| 1052 | break; |
| 1053 | } |
| 1054 | return os; |
| 1055 | } |
| 1056 | |
| 1057 | template <> |
| 1058 | inline std::ostream& operator<<<Float16>(std::ostream& os, |
| 1059 | const FloatProxy<Float16>& value) { |
| 1060 | os << HexFloat<FloatProxy<Float16>>(value); |
| 1061 | return os; |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | #endif // LIBSPIRV_UTIL_HEX_FLOAT_H_ |
| 1066 | |