| 1 | // Copyright (c) 2015-2016 The Khronos Group Inc. | 
| 2 | // | 
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
| 4 | // you may not use this file except in compliance with the License. | 
| 5 | // You may obtain a copy of the License at | 
| 6 | // | 
| 7 | //     http://www.apache.org/licenses/LICENSE-2.0 | 
| 8 | // | 
| 9 | // Unless required by applicable law or agreed to in writing, software | 
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, | 
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
| 12 | // See the License for the specific language governing permissions and | 
| 13 | // limitations under the License. | 
| 14 |  | 
| 15 | #ifndef LIBSPIRV_UTIL_HEX_FLOAT_H_ | 
| 16 | #define LIBSPIRV_UTIL_HEX_FLOAT_H_ | 
| 17 |  | 
| 18 | #include <cassert> | 
| 19 | #include <cctype> | 
| 20 | #include <cmath> | 
| 21 | #include <cstdint> | 
| 22 | #include <iomanip> | 
| 23 | #include <limits> | 
| 24 | #include <sstream> | 
| 25 |  | 
| 26 | #include "bitutils.h" | 
| 27 |  | 
| 28 | namespace spvutils { | 
| 29 |  | 
| 30 | class Float16 { | 
| 31 |  public: | 
| 32 |   Float16(uint16_t v) : val(v) {} | 
| 33 |   Float16() {} | 
| 34 |   static bool isNan(const Float16& val) { | 
| 35 |     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); | 
| 36 |   } | 
| 37 |   // Returns true if the given value is any kind of infinity. | 
| 38 |   static bool isInfinity(const Float16& val) { | 
| 39 |     return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); | 
| 40 |   } | 
| 41 |   Float16(const Float16& other) { val = other.val; } | 
| 42 |   uint16_t get_value() const { return val; } | 
| 43 |  | 
| 44 |   // Returns the maximum normal value. | 
| 45 |   static Float16 max() { return Float16(0x7bff); } | 
| 46 |   // Returns the lowest normal value. | 
| 47 |   static Float16 lowest() { return Float16(0xfbff); } | 
| 48 |  | 
| 49 |  private: | 
| 50 |   uint16_t val; | 
| 51 | }; | 
| 52 |  | 
| 53 | // To specialize this type, you must override uint_type to define | 
| 54 | // an unsigned integer that can fit your floating point type. | 
| 55 | // You must also add a isNan function that returns true if | 
| 56 | // a value is Nan. | 
| 57 | template <typename T> | 
| 58 | struct FloatProxyTraits { | 
| 59 |   typedef void uint_type; | 
| 60 | }; | 
| 61 |  | 
| 62 | template <> | 
| 63 | struct FloatProxyTraits<float> { | 
| 64 |   typedef uint32_t uint_type; | 
| 65 |   static bool isNan(float f) { return std::isnan(x: f); } | 
| 66 |   // Returns true if the given value is any kind of infinity. | 
| 67 |   static bool isInfinity(float f) { return std::isinf(x: f); } | 
| 68 |   // Returns the maximum normal value. | 
| 69 |   static float max() { return std::numeric_limits<float>::max(); } | 
| 70 |   // Returns the lowest normal value. | 
| 71 |   static float lowest() { return std::numeric_limits<float>::lowest(); } | 
| 72 | }; | 
| 73 |  | 
| 74 | template <> | 
| 75 | struct FloatProxyTraits<double> { | 
| 76 |   typedef uint64_t uint_type; | 
| 77 |   static bool isNan(double f) { return std::isnan(x: f); } | 
| 78 |   // Returns true if the given value is any kind of infinity. | 
| 79 |   static bool isInfinity(double f) { return std::isinf(x: f); } | 
| 80 |   // Returns the maximum normal value. | 
| 81 |   static double max() { return std::numeric_limits<double>::max(); } | 
| 82 |   // Returns the lowest normal value. | 
| 83 |   static double lowest() { return std::numeric_limits<double>::lowest(); } | 
| 84 | }; | 
| 85 |  | 
| 86 | template <> | 
| 87 | struct FloatProxyTraits<Float16> { | 
| 88 |   typedef uint16_t uint_type; | 
| 89 |   static bool isNan(Float16 f) { return Float16::isNan(val: f); } | 
| 90 |   // Returns true if the given value is any kind of infinity. | 
| 91 |   static bool isInfinity(Float16 f) { return Float16::isInfinity(val: f); } | 
| 92 |   // Returns the maximum normal value. | 
| 93 |   static Float16 max() { return Float16::max(); } | 
| 94 |   // Returns the lowest normal value. | 
| 95 |   static Float16 lowest() { return Float16::lowest(); } | 
| 96 | }; | 
| 97 |  | 
| 98 | // Since copying a floating point number (especially if it is NaN) | 
| 99 | // does not guarantee that bits are preserved, this class lets us | 
| 100 | // store the type and use it as a float when necessary. | 
| 101 | template <typename T> | 
| 102 | class FloatProxy { | 
| 103 |  public: | 
| 104 |   typedef typename FloatProxyTraits<T>::uint_type uint_type; | 
| 105 |  | 
| 106 |   // Since this is to act similar to the normal floats, | 
| 107 |   // do not initialize the data by default. | 
| 108 |   FloatProxy() {} | 
| 109 |  | 
| 110 |   // Intentionally non-explicit. This is a proxy type so | 
| 111 |   // implicit conversions allow us to use it more transparently. | 
| 112 |   FloatProxy(T val) { data_ = BitwiseCast<uint_type>(val); } | 
| 113 |  | 
| 114 |   // Intentionally non-explicit. This is a proxy type so | 
| 115 |   // implicit conversions allow us to use it more transparently. | 
| 116 |   FloatProxy(uint_type val) { data_ = val; } | 
| 117 |  | 
| 118 |   // This is helpful to have and is guaranteed not to stomp bits. | 
| 119 |   FloatProxy<T> operator-() const { | 
| 120 |     return static_cast<uint_type>(data_ ^ | 
| 121 |                                   (uint_type(0x1) << (sizeof(T) * 8 - 1))); | 
| 122 |   } | 
| 123 |  | 
| 124 |   // Returns the data as a floating point value. | 
| 125 |   T getAsFloat() const { return BitwiseCast<T>(data_); } | 
| 126 |  | 
| 127 |   // Returns the raw data. | 
| 128 |   uint_type data() const { return data_; } | 
| 129 |  | 
| 130 |   // Returns true if the value represents any type of NaN. | 
| 131 |   bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } | 
| 132 |   // Returns true if the value represents any type of infinity. | 
| 133 |   bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } | 
| 134 |  | 
| 135 |   // Returns the maximum normal value. | 
| 136 |   static FloatProxy<T> max() { | 
| 137 |     return FloatProxy<T>(FloatProxyTraits<T>::max()); | 
| 138 |   } | 
| 139 |   // Returns the lowest normal value. | 
| 140 |   static FloatProxy<T> lowest() { | 
| 141 |     return FloatProxy<T>(FloatProxyTraits<T>::lowest()); | 
| 142 |   } | 
| 143 |  | 
| 144 |  private: | 
| 145 |   uint_type data_; | 
| 146 | }; | 
| 147 |  | 
| 148 | template <typename T> | 
| 149 | bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { | 
| 150 |   return first.data() == second.data(); | 
| 151 | } | 
| 152 |  | 
| 153 | // Reads a FloatProxy value as a normal float from a stream. | 
| 154 | template <typename T> | 
| 155 | std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { | 
| 156 |   T float_val; | 
| 157 |   is >> float_val; | 
| 158 |   value = FloatProxy<T>(float_val); | 
| 159 |   return is; | 
| 160 | } | 
| 161 |  | 
| 162 | // This is an example traits. It is not meant to be used in practice, but will | 
| 163 | // be the default for any non-specialized type. | 
| 164 | template <typename T> | 
| 165 | struct HexFloatTraits { | 
| 166 |   // Integer type that can store this hex-float. | 
| 167 |   typedef void uint_type; | 
| 168 |   // Signed integer type that can store this hex-float. | 
| 169 |   typedef void int_type; | 
| 170 |   // The numerical type that this HexFloat represents. | 
| 171 |   typedef void underlying_type; | 
| 172 |   // The type needed to construct the underlying type. | 
| 173 |   typedef void native_type; | 
| 174 |   // The number of bits that are actually relevant in the uint_type. | 
| 175 |   // This allows us to deal with, for example, 24-bit values in a 32-bit | 
| 176 |   // integer. | 
| 177 |   static const uint32_t num_used_bits = 0; | 
| 178 |   // Number of bits that represent the exponent. | 
| 179 |   static const uint32_t num_exponent_bits = 0; | 
| 180 |   // Number of bits that represent the fractional part. | 
| 181 |   static const uint32_t num_fraction_bits = 0; | 
| 182 |   // The bias of the exponent. (How much we need to subtract from the stored | 
| 183 |   // value to get the correct value.) | 
| 184 |   static const uint32_t exponent_bias = 0; | 
| 185 | }; | 
| 186 |  | 
| 187 | // Traits for IEEE float. | 
| 188 | // 1 sign bit, 8 exponent bits, 23 fractional bits. | 
| 189 | template <> | 
| 190 | struct HexFloatTraits<FloatProxy<float>> { | 
| 191 |   typedef uint32_t uint_type; | 
| 192 |   typedef int32_t int_type; | 
| 193 |   typedef FloatProxy<float> underlying_type; | 
| 194 |   typedef float native_type; | 
| 195 |   static const uint_type num_used_bits = 32; | 
| 196 |   static const uint_type num_exponent_bits = 8; | 
| 197 |   static const uint_type num_fraction_bits = 23; | 
| 198 |   static const uint_type exponent_bias = 127; | 
| 199 | }; | 
| 200 |  | 
| 201 | // Traits for IEEE double. | 
| 202 | // 1 sign bit, 11 exponent bits, 52 fractional bits. | 
| 203 | template <> | 
| 204 | struct HexFloatTraits<FloatProxy<double>> { | 
| 205 |   typedef uint64_t uint_type; | 
| 206 |   typedef int64_t int_type; | 
| 207 |   typedef FloatProxy<double> underlying_type; | 
| 208 |   typedef double native_type; | 
| 209 |   static const uint_type num_used_bits = 64; | 
| 210 |   static const uint_type num_exponent_bits = 11; | 
| 211 |   static const uint_type num_fraction_bits = 52; | 
| 212 |   static const uint_type exponent_bias = 1023; | 
| 213 | }; | 
| 214 |  | 
| 215 | // Traits for IEEE half. | 
| 216 | // 1 sign bit, 5 exponent bits, 10 fractional bits. | 
| 217 | template <> | 
| 218 | struct HexFloatTraits<FloatProxy<Float16>> { | 
| 219 |   typedef uint16_t uint_type; | 
| 220 |   typedef int16_t int_type; | 
| 221 |   typedef uint16_t underlying_type; | 
| 222 |   typedef uint16_t native_type; | 
| 223 |   static const uint_type num_used_bits = 16; | 
| 224 |   static const uint_type num_exponent_bits = 5; | 
| 225 |   static const uint_type num_fraction_bits = 10; | 
| 226 |   static const uint_type exponent_bias = 15; | 
| 227 | }; | 
| 228 |  | 
| 229 | enum round_direction { | 
| 230 |   kRoundToZero, | 
| 231 |   kRoundToNearestEven, | 
| 232 |   kRoundToPositiveInfinity, | 
| 233 |   kRoundToNegativeInfinity | 
| 234 | }; | 
| 235 |  | 
| 236 | // Template class that houses a floating pointer number. | 
| 237 | // It exposes a number of constants based on the provided traits to | 
| 238 | // assist in interpreting the bits of the value. | 
| 239 | template <typename T, typename Traits = HexFloatTraits<T>> | 
| 240 | class HexFloat { | 
| 241 |  public: | 
| 242 |   typedef typename Traits::uint_type uint_type; | 
| 243 |   typedef typename Traits::int_type int_type; | 
| 244 |   typedef typename Traits::underlying_type underlying_type; | 
| 245 |   typedef typename Traits::native_type native_type; | 
| 246 |  | 
| 247 |   explicit HexFloat(T f) : value_(f) {} | 
| 248 |  | 
| 249 |   T value() const { return value_; } | 
| 250 |   void set_value(T f) { value_ = f; } | 
| 251 |  | 
| 252 |   // These are all written like this because it is convenient to have | 
| 253 |   // compile-time constants for all of these values. | 
| 254 |  | 
| 255 |   // Pass-through values to save typing. | 
| 256 |   static const uint32_t num_used_bits = Traits::num_used_bits; | 
| 257 |   static const uint32_t exponent_bias = Traits::exponent_bias; | 
| 258 |   static const uint32_t num_exponent_bits = Traits::num_exponent_bits; | 
| 259 |   static const uint32_t num_fraction_bits = Traits::num_fraction_bits; | 
| 260 |  | 
| 261 |   // Number of bits to shift left to set the highest relevant bit. | 
| 262 |   static const uint32_t top_bit_left_shift = num_used_bits - 1; | 
| 263 |   // How many nibbles (hex characters) the fractional part takes up. | 
| 264 |   static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; | 
| 265 |   // If the fractional part does not fit evenly into a hex character (4-bits) | 
| 266 |   // then we have to left-shift to get rid of leading 0s. This is the amount | 
| 267 |   // we have to shift (might be 0). | 
| 268 |   static const uint32_t num_overflow_bits = | 
| 269 |       fraction_nibbles * 4 - num_fraction_bits; | 
| 270 |  | 
| 271 |   // The representation of the fraction, not the actual bits. This | 
| 272 |   // includes the leading bit that is usually implicit. | 
| 273 |   static const uint_type fraction_represent_mask = | 
| 274 |       spvutils::SetBits<uint_type, 0, | 
| 275 |                         num_fraction_bits + num_overflow_bits>::get; | 
| 276 |  | 
| 277 |   // The topmost bit in the nibble-aligned fraction. | 
| 278 |   static const uint_type fraction_top_bit = | 
| 279 |       uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); | 
| 280 |  | 
| 281 |   // The least significant bit in the exponent, which is also the bit | 
| 282 |   // immediately to the left of the significand. | 
| 283 |   static const uint_type first_exponent_bit = uint_type(1) | 
| 284 |                                               << (num_fraction_bits); | 
| 285 |  | 
| 286 |   // The mask for the encoded fraction. It does not include the | 
| 287 |   // implicit bit. | 
| 288 |   static const uint_type fraction_encode_mask = | 
| 289 |       spvutils::SetBits<uint_type, 0, num_fraction_bits>::get; | 
| 290 |  | 
| 291 |   // The bit that is used as a sign. | 
| 292 |   static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; | 
| 293 |  | 
| 294 |   // The bits that represent the exponent. | 
| 295 |   static const uint_type exponent_mask = | 
| 296 |       spvutils::SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; | 
| 297 |  | 
| 298 |   // How far left the exponent is shifted. | 
| 299 |   static const uint32_t exponent_left_shift = num_fraction_bits; | 
| 300 |  | 
| 301 |   // How far from the right edge the fraction is shifted. | 
| 302 |   static const uint32_t fraction_right_shift = | 
| 303 |       static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; | 
| 304 |  | 
| 305 |   // The maximum representable unbiased exponent. | 
| 306 |   static const int_type max_exponent = | 
| 307 |       (exponent_mask >> num_fraction_bits) - exponent_bias; | 
| 308 |   // The minimum representable exponent for normalized numbers. | 
| 309 |   static const int_type min_exponent = -static_cast<int_type>(exponent_bias); | 
| 310 |  | 
| 311 |   // Returns the bits associated with the value. | 
| 312 |   uint_type getBits() const { return spvutils::BitwiseCast<uint_type>(value_); } | 
| 313 |  | 
| 314 |   // Returns the bits associated with the value, without the leading sign bit. | 
| 315 |   uint_type getUnsignedBits() const { | 
| 316 |     return static_cast<uint_type>(spvutils::BitwiseCast<uint_type>(value_) & | 
| 317 |                                   ~sign_mask); | 
| 318 |   } | 
| 319 |  | 
| 320 |   // Returns the bits associated with the exponent, shifted to start at the | 
| 321 |   // lsb of the type. | 
| 322 |   const uint_type getExponentBits() const { | 
| 323 |     return static_cast<uint_type>((getBits() & exponent_mask) >> | 
| 324 |                                   num_fraction_bits); | 
| 325 |   } | 
| 326 |  | 
| 327 |   // Returns the exponent in unbiased form. This is the exponent in the | 
| 328 |   // human-friendly form. | 
| 329 |   const int_type getUnbiasedExponent() const { | 
| 330 |     return static_cast<int_type>(getExponentBits() - exponent_bias); | 
| 331 |   } | 
| 332 |  | 
| 333 |   // Returns just the significand bits from the value. | 
| 334 |   const uint_type getSignificandBits() const { | 
| 335 |     return getBits() & fraction_encode_mask; | 
| 336 |   } | 
| 337 |  | 
| 338 |   // If the number was normalized, returns the unbiased exponent. | 
| 339 |   // If the number was denormal, normalize the exponent first. | 
| 340 |   const int_type getUnbiasedNormalizedExponent() const { | 
| 341 |     if ((getBits() & ~sign_mask) == 0) {  // special case if everything is 0 | 
| 342 |       return 0; | 
| 343 |     } | 
| 344 |     int_type exp = getUnbiasedExponent(); | 
| 345 |     if (exp == min_exponent) {  // We are in denorm land. | 
| 346 |       uint_type significand_bits = getSignificandBits(); | 
| 347 |       while ((significand_bits & (first_exponent_bit >> 1)) == 0) { | 
| 348 |         significand_bits = static_cast<uint_type>(significand_bits << 1); | 
| 349 |         exp = static_cast<int_type>(exp - 1); | 
| 350 |       } | 
| 351 |       significand_bits &= fraction_encode_mask; | 
| 352 |     } | 
| 353 |     return exp; | 
| 354 |   } | 
| 355 |  | 
| 356 |   // Returns the signficand after it has been normalized. | 
| 357 |   const uint_type getNormalizedSignificand() const { | 
| 358 |     int_type unbiased_exponent = getUnbiasedNormalizedExponent(); | 
| 359 |     uint_type significand = getSignificandBits(); | 
| 360 |     for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { | 
| 361 |       significand = static_cast<uint_type>(significand << 1); | 
| 362 |     } | 
| 363 |     significand &= fraction_encode_mask; | 
| 364 |     return significand; | 
| 365 |   } | 
| 366 |  | 
| 367 |   // Returns true if this number represents a negative value. | 
| 368 |   bool isNegative() const { return (getBits() & sign_mask) != 0; } | 
| 369 |  | 
| 370 |   // Sets this HexFloat from the individual components. | 
| 371 |   // Note this assumes EVERY significand is normalized, and has an implicit | 
| 372 |   // leading one. This means that the only way that this method will set 0, | 
| 373 |   // is if you set a number so denormalized that it underflows. | 
| 374 |   // Do not use this method with raw bits extracted from a subnormal number, | 
| 375 |   // since subnormals do not have an implicit leading 1 in the significand. | 
| 376 |   // The significand is also expected to be in the | 
| 377 |   // lowest-most num_fraction_bits of the uint_type. | 
| 378 |   // The exponent is expected to be unbiased, meaning an exponent of | 
| 379 |   // 0 actually means 0. | 
| 380 |   // If underflow_round_up is set, then on underflow, if a number is non-0 | 
| 381 |   // and would underflow, we round up to the smallest denorm. | 
| 382 |   void setFromSignUnbiasedExponentAndNormalizedSignificand( | 
| 383 |       bool negative, int_type exponent, uint_type significand, | 
| 384 |       bool round_denorm_up) { | 
| 385 |     bool significand_is_zero = significand == 0; | 
| 386 |  | 
| 387 |     if (exponent <= min_exponent) { | 
| 388 |       // If this was denormalized, then we have to shift the bit on, meaning | 
| 389 |       // the significand is not zero. | 
| 390 |       significand_is_zero = false; | 
| 391 |       significand |= first_exponent_bit; | 
| 392 |       significand = static_cast<uint_type>(significand >> 1); | 
| 393 |     } | 
| 394 |  | 
| 395 |     while (exponent < min_exponent) { | 
| 396 |       significand = static_cast<uint_type>(significand >> 1); | 
| 397 |       ++exponent; | 
| 398 |     } | 
| 399 |  | 
| 400 |     if (exponent == min_exponent) { | 
| 401 |       if (significand == 0 && !significand_is_zero && round_denorm_up) { | 
| 402 |         significand = static_cast<uint_type>(0x1); | 
| 403 |       } | 
| 404 |     } | 
| 405 |  | 
| 406 |     uint_type new_value = 0; | 
| 407 |     if (negative) { | 
| 408 |       new_value = static_cast<uint_type>(new_value | sign_mask); | 
| 409 |     } | 
| 410 |     exponent = static_cast<int_type>(exponent + exponent_bias); | 
| 411 |     assert(exponent >= 0); | 
| 412 |  | 
| 413 |     // put it all together | 
| 414 |     exponent = static_cast<uint_type>((exponent << exponent_left_shift) & | 
| 415 |                                       exponent_mask); | 
| 416 |     significand = static_cast<uint_type>(significand & fraction_encode_mask); | 
| 417 |     new_value = static_cast<uint_type>(new_value | (exponent | significand)); | 
| 418 |     value_ = BitwiseCast<T>(new_value); | 
| 419 |   } | 
| 420 |  | 
| 421 |   // Increments the significand of this number by the given amount. | 
| 422 |   // If this would spill the significand into the implicit bit, | 
| 423 |   // carry is set to true and the significand is shifted to fit into | 
| 424 |   // the correct location, otherwise carry is set to false. | 
| 425 |   // All significands and to_increment are assumed to be within the bounds | 
| 426 |   // for a valid significand. | 
| 427 |   static uint_type incrementSignificand(uint_type significand, | 
| 428 |                                         uint_type to_increment, bool* carry) { | 
| 429 |     significand = static_cast<uint_type>(significand + to_increment); | 
| 430 |     *carry = false; | 
| 431 |     if (significand & first_exponent_bit) { | 
| 432 |       *carry = true; | 
| 433 |       // The implicit 1-bit will have carried, so we should zero-out the | 
| 434 |       // top bit and shift back. | 
| 435 |       significand = static_cast<uint_type>(significand & ~first_exponent_bit); | 
| 436 |       significand = static_cast<uint_type>(significand >> 1); | 
| 437 |     } | 
| 438 |     return significand; | 
| 439 |   } | 
| 440 |  | 
| 441 |   // These exist because MSVC throws warnings on negative right-shifts | 
| 442 |   // even if they are not going to be executed. Eg: | 
| 443 |   // constant_number < 0? 0: constant_number | 
| 444 |   // These convert the negative left-shifts into right shifts. | 
| 445 |  | 
| 446 |   template <typename int_type> | 
| 447 |   uint_type negatable_left_shift(int_type N, uint_type val) | 
| 448 |   { | 
| 449 |     if(N >= 0) | 
| 450 |       return val << N; | 
| 451 |  | 
| 452 |     return val >> -N; | 
| 453 |   } | 
| 454 |  | 
| 455 |   template <typename int_type> | 
| 456 |   uint_type negatable_right_shift(int_type N, uint_type val) | 
| 457 |   { | 
| 458 |     if(N >= 0) | 
| 459 |       return val >> N; | 
| 460 |  | 
| 461 |     return val << -N; | 
| 462 |   } | 
| 463 |  | 
| 464 |   // Returns the significand, rounded to fit in a significand in | 
| 465 |   // other_T. This is shifted so that the most significant | 
| 466 |   // bit of the rounded number lines up with the most significant bit | 
| 467 |   // of the returned significand. | 
| 468 |   template <typename other_T> | 
| 469 |   typename other_T::uint_type getRoundedNormalizedSignificand( | 
| 470 |       round_direction dir, bool* carry_bit) { | 
| 471 |     typedef typename other_T::uint_type other_uint_type; | 
| 472 |     static const int_type num_throwaway_bits = | 
| 473 |         static_cast<int_type>(num_fraction_bits) - | 
| 474 |         static_cast<int_type>(other_T::num_fraction_bits); | 
| 475 |  | 
| 476 |     static const uint_type last_significant_bit = | 
| 477 |         (num_throwaway_bits < 0) | 
| 478 |             ? 0 | 
| 479 |             : negatable_left_shift(num_throwaway_bits, 1u); | 
| 480 |     static const uint_type first_rounded_bit = | 
| 481 |         (num_throwaway_bits < 1) | 
| 482 |             ? 0 | 
| 483 |             : negatable_left_shift(num_throwaway_bits - 1, 1u); | 
| 484 |  | 
| 485 |     static const uint_type throwaway_mask_bits = | 
| 486 |         num_throwaway_bits > 0 ? num_throwaway_bits : 0; | 
| 487 |     static const uint_type throwaway_mask = | 
| 488 |         spvutils::SetBits<uint_type, 0, throwaway_mask_bits>::get; | 
| 489 |  | 
| 490 |     *carry_bit = false; | 
| 491 |     other_uint_type out_val = 0; | 
| 492 |     uint_type significand = getNormalizedSignificand(); | 
| 493 |     // If we are up-casting, then we just have to shift to the right location. | 
| 494 |     if (num_throwaway_bits <= 0) { | 
| 495 |       out_val = static_cast<other_uint_type>(significand); | 
| 496 |       uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); | 
| 497 |       out_val = static_cast<other_uint_type>(out_val << shift_amount); | 
| 498 |       return out_val; | 
| 499 |     } | 
| 500 |  | 
| 501 |     // If every non-representable bit is 0, then we don't have any casting to | 
| 502 |     // do. | 
| 503 |     if ((significand & throwaway_mask) == 0) { | 
| 504 |       return static_cast<other_uint_type>( | 
| 505 |           negatable_right_shift(num_throwaway_bits, significand)); | 
| 506 |     } | 
| 507 |  | 
| 508 |     bool round_away_from_zero = false; | 
| 509 |     // We actually have to narrow the significand here, so we have to follow the | 
| 510 |     // rounding rules. | 
| 511 |     switch (dir) { | 
| 512 |       case kRoundToZero: | 
| 513 |         break; | 
| 514 |       case kRoundToPositiveInfinity: | 
| 515 |         round_away_from_zero = !isNegative(); | 
| 516 |         break; | 
| 517 |       case kRoundToNegativeInfinity: | 
| 518 |         round_away_from_zero = isNegative(); | 
| 519 |         break; | 
| 520 |       case kRoundToNearestEven: | 
| 521 |         // Have to round down, round bit is 0 | 
| 522 |         if ((first_rounded_bit & significand) == 0) { | 
| 523 |           break; | 
| 524 |         } | 
| 525 |         if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { | 
| 526 |           // If any subsequent bit of the rounded portion is non-0 then we round | 
| 527 |           // up. | 
| 528 |           round_away_from_zero = true; | 
| 529 |           break; | 
| 530 |         } | 
| 531 |         // We are exactly half-way between 2 numbers, pick even. | 
| 532 |         if ((significand & last_significant_bit) != 0) { | 
| 533 |           // 1 for our last bit, round up. | 
| 534 |           round_away_from_zero = true; | 
| 535 |           break; | 
| 536 |         } | 
| 537 |         break; | 
| 538 |     } | 
| 539 |  | 
| 540 |     if (round_away_from_zero) { | 
| 541 |       return static_cast<other_uint_type>( | 
| 542 |           negatable_right_shift(num_throwaway_bits, incrementSignificand( | 
| 543 |               significand, to_increment: last_significant_bit, carry: carry_bit))); | 
| 544 |     } else { | 
| 545 |       return static_cast<other_uint_type>( | 
| 546 |           negatable_right_shift(num_throwaway_bits, significand)); | 
| 547 |     } | 
| 548 |   } | 
| 549 |  | 
| 550 |   // Casts this value to another HexFloat. If the cast is widening, | 
| 551 |   // then round_dir is ignored. If the cast is narrowing, then | 
| 552 |   // the result is rounded in the direction specified. | 
| 553 |   // This number will retain Nan and Inf values. | 
| 554 |   // It will also saturate to Inf if the number overflows, and | 
| 555 |   // underflow to (0 or min depending on rounding) if the number underflows. | 
| 556 |   template <typename other_T> | 
| 557 |   void castTo(other_T& other, round_direction round_dir) { | 
| 558 |     other = other_T(static_cast<typename other_T::native_type>(0)); | 
| 559 |     bool negate = isNegative(); | 
| 560 |     if (getUnsignedBits() == 0) { | 
| 561 |       if (negate) { | 
| 562 |         other.set_value(-other.value()); | 
| 563 |       } | 
| 564 |       return; | 
| 565 |     } | 
| 566 |     uint_type significand = getSignificandBits(); | 
| 567 |     bool carried = false; | 
| 568 |     typename other_T::uint_type rounded_significand = | 
| 569 |         getRoundedNormalizedSignificand<other_T>(round_dir, &carried); | 
| 570 |  | 
| 571 |     int_type exponent = getUnbiasedExponent(); | 
| 572 |     if (exponent == min_exponent) { | 
| 573 |       // If we are denormal, normalize the exponent, so that we can encode | 
| 574 |       // easily. | 
| 575 |       exponent = static_cast<int_type>(exponent + 1); | 
| 576 |       for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; | 
| 577 |            check_bit = static_cast<uint_type>(check_bit >> 1)) { | 
| 578 |         exponent = static_cast<int_type>(exponent - 1); | 
| 579 |         if (check_bit & significand) break; | 
| 580 |       } | 
| 581 |     } | 
| 582 |  | 
| 583 |     bool is_nan = | 
| 584 |         (getBits() & exponent_mask) == exponent_mask && significand != 0; | 
| 585 |     bool is_inf = | 
| 586 |         !is_nan && | 
| 587 |         ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) || | 
| 588 |          (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); | 
| 589 |  | 
| 590 |     // If we are Nan or Inf we should pass that through. | 
| 591 |     if (is_inf) { | 
| 592 |       other.set_value(BitwiseCast<typename other_T::underlying_type>( | 
| 593 |           static_cast<typename other_T::uint_type>( | 
| 594 |               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); | 
| 595 |       return; | 
| 596 |     } | 
| 597 |     if (is_nan) { | 
| 598 |       typename other_T::uint_type shifted_significand; | 
| 599 |       shifted_significand = static_cast<typename other_T::uint_type>( | 
| 600 |           negatable_left_shift( | 
| 601 |               static_cast<int_type>(other_T::num_fraction_bits) - | 
| 602 |               static_cast<int_type>(num_fraction_bits), significand)); | 
| 603 |  | 
| 604 |       // We are some sort of Nan. We try to keep the bit-pattern of the Nan | 
| 605 |       // as close as possible. If we had to shift off bits so we are 0, then we | 
| 606 |       // just set the last bit. | 
| 607 |       other.set_value(BitwiseCast<typename other_T::underlying_type>( | 
| 608 |           static_cast<typename other_T::uint_type>( | 
| 609 |               (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | | 
| 610 |               (shifted_significand == 0 ? 0x1 : shifted_significand)))); | 
| 611 |       return; | 
| 612 |     } | 
| 613 |  | 
| 614 |     bool round_underflow_up = | 
| 615 |         isNegative() ? round_dir == kRoundToNegativeInfinity | 
| 616 |                      : round_dir == kRoundToPositiveInfinity; | 
| 617 |     typedef typename other_T::int_type other_int_type; | 
| 618 |     // setFromSignUnbiasedExponentAndNormalizedSignificand will | 
| 619 |     // zero out any underflowing value (but retain the sign). | 
| 620 |     other.setFromSignUnbiasedExponentAndNormalizedSignificand( | 
| 621 |         negate, static_cast<other_int_type>(exponent), rounded_significand, | 
| 622 |         round_underflow_up); | 
| 623 |     return; | 
| 624 |   } | 
| 625 |  | 
| 626 |  private: | 
| 627 |   T value_; | 
| 628 |  | 
| 629 |   static_assert(num_used_bits == | 
| 630 |                     Traits::num_exponent_bits + Traits::num_fraction_bits + 1, | 
| 631 |                 "The number of bits do not fit" ); | 
| 632 |   static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match" ); | 
| 633 | }; | 
| 634 |  | 
| 635 | // Returns 4 bits represented by the hex character. | 
| 636 | inline uint8_t get_nibble_from_character(int character) { | 
| 637 |   const char* dec = "0123456789" ; | 
| 638 |   const char* lower = "abcdef" ; | 
| 639 |   const char* upper = "ABCDEF" ; | 
| 640 |   const char* p = nullptr; | 
| 641 |   if ((p = strchr(s: dec, c: character))) { | 
| 642 |     return static_cast<uint8_t>(p - dec); | 
| 643 |   } else if ((p = strchr(s: lower, c: character))) { | 
| 644 |     return static_cast<uint8_t>(p - lower + 0xa); | 
| 645 |   } else if ((p = strchr(s: upper, c: character))) { | 
| 646 |     return static_cast<uint8_t>(p - upper + 0xa); | 
| 647 |   } | 
| 648 |  | 
| 649 |   assert(false && "This was called with a non-hex character" ); | 
| 650 |   return 0; | 
| 651 | } | 
| 652 |  | 
| 653 | // Outputs the given HexFloat to the stream. | 
| 654 | template <typename T, typename Traits> | 
| 655 | std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { | 
| 656 |   typedef HexFloat<T, Traits> HF; | 
| 657 |   typedef typename HF::uint_type uint_type; | 
| 658 |   typedef typename HF::int_type int_type; | 
| 659 |  | 
| 660 |   static_assert(HF::num_used_bits != 0, | 
| 661 |                 "num_used_bits must be non-zero for a valid float" ); | 
| 662 |   static_assert(HF::num_exponent_bits != 0, | 
| 663 |                 "num_exponent_bits must be non-zero for a valid float" ); | 
| 664 |   static_assert(HF::num_fraction_bits != 0, | 
| 665 |                 "num_fractin_bits must be non-zero for a valid float" ); | 
| 666 |  | 
| 667 |   const uint_type bits = spvutils::BitwiseCast<uint_type>(value.value()); | 
| 668 |   const char* const sign = (bits & HF::sign_mask) ? "-"  : "" ; | 
| 669 |   const uint_type exponent = static_cast<uint_type>( | 
| 670 |       (bits & HF::exponent_mask) >> HF::num_fraction_bits); | 
| 671 |  | 
| 672 |   uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) | 
| 673 |                                               << HF::num_overflow_bits); | 
| 674 |  | 
| 675 |   const bool is_zero = exponent == 0 && fraction == 0; | 
| 676 |   const bool is_denorm = exponent == 0 && !is_zero; | 
| 677 |  | 
| 678 |   // exponent contains the biased exponent we have to convert it back into | 
| 679 |   // the normal range. | 
| 680 |   int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); | 
| 681 |   // If the number is all zeros, then we actually have to NOT shift the | 
| 682 |   // exponent. | 
| 683 |   int_exponent = is_zero ? 0 : int_exponent; | 
| 684 |  | 
| 685 |   // If we are denorm, then start shifting, and decreasing the exponent until | 
| 686 |   // our leading bit is 1. | 
| 687 |  | 
| 688 |   if (is_denorm) { | 
| 689 |     while ((fraction & HF::fraction_top_bit) == 0) { | 
| 690 |       fraction = static_cast<uint_type>(fraction << 1); | 
| 691 |       int_exponent = static_cast<int_type>(int_exponent - 1); | 
| 692 |     } | 
| 693 |     // Since this is denormalized, we have to consume the leading 1 since it | 
| 694 |     // will end up being implicit. | 
| 695 |     fraction = static_cast<uint_type>(fraction << 1);  // eat the leading 1 | 
| 696 |     fraction &= HF::fraction_represent_mask; | 
| 697 |   } | 
| 698 |  | 
| 699 |   uint_type fraction_nibbles = HF::fraction_nibbles; | 
| 700 |   // We do not have to display any trailing 0s, since this represents the | 
| 701 |   // fractional part. | 
| 702 |   while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { | 
| 703 |     // Shift off any trailing values; | 
| 704 |     fraction = static_cast<uint_type>(fraction >> 4); | 
| 705 |     --fraction_nibbles; | 
| 706 |   } | 
| 707 |  | 
| 708 |   const auto saved_flags = os.flags(); | 
| 709 |   const auto saved_fill = os.fill(); | 
| 710 |  | 
| 711 |   os << sign << "0x"  << (is_zero ? '0' : '1'); | 
| 712 |   if (fraction_nibbles) { | 
| 713 |     // Make sure to keep the leading 0s in place, since this is the fractional | 
| 714 |     // part. | 
| 715 |     os << "."  << std::setw(static_cast<int>(fraction_nibbles)) | 
| 716 |        << std::setfill('0') << std::hex << fraction; | 
| 717 |   } | 
| 718 |   os << "p"  << std::dec << (int_exponent >= 0 ? "+"  : "" ) << int_exponent; | 
| 719 |  | 
| 720 |   os.flags(fmtfl: saved_flags); | 
| 721 |   os.fill(ch: saved_fill); | 
| 722 |  | 
| 723 |   return os; | 
| 724 | } | 
| 725 |  | 
| 726 | // Returns true if negate_value is true and the next character on the | 
| 727 | // input stream is a plus or minus sign.  In that case we also set the fail bit | 
| 728 | // on the stream and set the value to the zero value for its type. | 
| 729 | template <typename T, typename Traits> | 
| 730 | inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, | 
| 731 |                                         HexFloat<T, Traits>& value) { | 
| 732 |   if (negate_value) { | 
| 733 |     auto next_char = is.peek(); | 
| 734 |     if (next_char == '-' || next_char == '+') { | 
| 735 |       // Fail the parse.  Emulate standard behaviour by setting the value to | 
| 736 |       // the zero value, and set the fail bit on the stream. | 
| 737 |       value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); | 
| 738 |       is.setstate(std::ios_base::failbit); | 
| 739 |       return true; | 
| 740 |     } | 
| 741 |   } | 
| 742 |   return false; | 
| 743 | } | 
| 744 |  | 
| 745 | // Parses a floating point number from the given stream and stores it into the | 
| 746 | // value parameter. | 
| 747 | // If negate_value is true then the number may not have a leading minus or | 
| 748 | // plus, and if it successfully parses, then the number is negated before | 
| 749 | // being stored into the value parameter. | 
| 750 | // If the value cannot be correctly parsed or overflows the target floating | 
| 751 | // point type, then set the fail bit on the stream. | 
| 752 | // TODO(dneto): Promise C++11 standard behavior in how the value is set in | 
| 753 | // the error case, but only after all target platforms implement it correctly. | 
| 754 | // In particular, the Microsoft C++ runtime appears to be out of spec. | 
| 755 | template <typename T, typename Traits> | 
| 756 | inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, | 
| 757 |                                       HexFloat<T, Traits>& value) { | 
| 758 |   if (RejectParseDueToLeadingSign(is, negate_value, value)) { | 
| 759 |     return is; | 
| 760 |   } | 
| 761 |   T val; | 
| 762 |   is >> val; | 
| 763 |   if (negate_value) { | 
| 764 |     val = -val; | 
| 765 |   } | 
| 766 |   value.set_value(val); | 
| 767 |   // In the failure case, map -0.0 to 0.0. | 
| 768 |   if (is.fail() && value.getUnsignedBits() == 0u) { | 
| 769 |     value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type(0)); | 
| 770 |   } | 
| 771 |   if (val.isInfinity()) { | 
| 772 |     // Fail the parse.  Emulate standard behaviour by setting the value to | 
| 773 |     // the closest normal value, and set the fail bit on the stream. | 
| 774 |     value.set_value((value.isNegative() || negate_value) ? T::lowest() | 
| 775 |                                                          : T::max()); | 
| 776 |     is.setstate(std::ios_base::failbit); | 
| 777 |   } | 
| 778 |   return is; | 
| 779 | } | 
| 780 |  | 
| 781 | // Specialization of ParseNormalFloat for FloatProxy<Float16> values. | 
| 782 | // This will parse the float as it were a 32-bit floating point number, | 
| 783 | // and then round it down to fit into a Float16 value. | 
| 784 | // The number is rounded towards zero. | 
| 785 | // If negate_value is true then the number may not have a leading minus or | 
| 786 | // plus, and if it successfully parses, then the number is negated before | 
| 787 | // being stored into the value parameter. | 
| 788 | // If the value cannot be correctly parsed or overflows the target floating | 
| 789 | // point type, then set the fail bit on the stream. | 
| 790 | // TODO(dneto): Promise C++11 standard behavior in how the value is set in | 
| 791 | // the error case, but only after all target platforms implement it correctly. | 
| 792 | // In particular, the Microsoft C++ runtime appears to be out of spec. | 
| 793 | template <> | 
| 794 | inline std::istream& | 
| 795 | ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( | 
| 796 |     std::istream& is, bool negate_value, | 
| 797 |     HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { | 
| 798 |   // First parse as a 32-bit float. | 
| 799 |   HexFloat<FloatProxy<float>> float_val(0.0f); | 
| 800 |   ParseNormalFloat(is, negate_value, value&: float_val); | 
| 801 |  | 
| 802 |   // Then convert to 16-bit float, saturating at infinities, and | 
| 803 |   // rounding toward zero. | 
| 804 |   float_val.castTo(other&: value, round_dir: kRoundToZero); | 
| 805 |  | 
| 806 |   // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the | 
| 807 |   // fail bit and set the lowest or highest value. | 
| 808 |   if (Float16::isInfinity(val: value.value().getAsFloat())) { | 
| 809 |     value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); | 
| 810 |     is.setstate(std::ios_base::failbit); | 
| 811 |   } | 
| 812 |   return is; | 
| 813 | } | 
| 814 |  | 
| 815 | // Reads a HexFloat from the given stream. | 
| 816 | // If the float is not encoded as a hex-float then it will be parsed | 
| 817 | // as a regular float. | 
| 818 | // This may fail if your stream does not support at least one unget. | 
| 819 | // Nan values can be encoded with "0x1.<not zero>p+exponent_bias". | 
| 820 | // This would normally overflow a float and round to | 
| 821 | // infinity but this special pattern is the exact representation for a NaN, | 
| 822 | // and therefore is actually encoded as the correct NaN. To encode inf, | 
| 823 | // either 0x0p+exponent_bias can be specified or any exponent greater than | 
| 824 | // exponent_bias. | 
| 825 | // Examples using IEEE 32-bit float encoding. | 
| 826 | //    0x1.0p+128 (+inf) | 
| 827 | //    -0x1.0p-128 (-inf) | 
| 828 | // | 
| 829 | //    0x1.1p+128 (+Nan) | 
| 830 | //    -0x1.1p+128 (-Nan) | 
| 831 | // | 
| 832 | //    0x1p+129 (+inf) | 
| 833 | //    -0x1p+129 (-inf) | 
| 834 | template <typename T, typename Traits> | 
| 835 | std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { | 
| 836 |   using HF = HexFloat<T, Traits>; | 
| 837 |   using uint_type = typename HF::uint_type; | 
| 838 |   using int_type = typename HF::int_type; | 
| 839 |  | 
| 840 |   value.set_value(static_cast<typename HF::native_type>(0.f)); | 
| 841 |  | 
| 842 |   if (is.flags() & std::ios::skipws) { | 
| 843 |     // If the user wants to skip whitespace , then we should obey that. | 
| 844 |     while (std::isspace(is.peek())) { | 
| 845 |       is.get(); | 
| 846 |     } | 
| 847 |   } | 
| 848 |  | 
| 849 |   auto next_char = is.peek(); | 
| 850 |   bool negate_value = false; | 
| 851 |  | 
| 852 |   if (next_char != '-' && next_char != '0') { | 
| 853 |     return ParseNormalFloat(is, negate_value, value); | 
| 854 |   } | 
| 855 |  | 
| 856 |   if (next_char == '-') { | 
| 857 |     negate_value = true; | 
| 858 |     is.get(); | 
| 859 |     next_char = is.peek(); | 
| 860 |   } | 
| 861 |  | 
| 862 |   if (next_char == '0') { | 
| 863 |     is.get();  // We may have to unget this. | 
| 864 |     auto maybe_hex_start = is.peek(); | 
| 865 |     if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { | 
| 866 |       is.unget(); | 
| 867 |       return ParseNormalFloat(is, negate_value, value); | 
| 868 |     } else { | 
| 869 |       is.get();  // Throw away the 'x'; | 
| 870 |     } | 
| 871 |   } else { | 
| 872 |     return ParseNormalFloat(is, negate_value, value); | 
| 873 |   } | 
| 874 |  | 
| 875 |   // This "looks" like a hex-float so treat it as one. | 
| 876 |   bool seen_p = false; | 
| 877 |   bool seen_dot = false; | 
| 878 |   uint_type fraction_index = 0; | 
| 879 |  | 
| 880 |   uint_type fraction = 0; | 
| 881 |   int_type exponent = HF::exponent_bias; | 
| 882 |  | 
| 883 |   // Strip off leading zeros so we don't have to special-case them later. | 
| 884 |   while ((next_char = is.peek()) == '0') { | 
| 885 |     is.get(); | 
| 886 |   } | 
| 887 |  | 
| 888 |   bool is_denorm = | 
| 889 |       true;  // Assume denorm "representation" until we hear otherwise. | 
| 890 |              // NB: This does not mean the value is actually denorm, | 
| 891 |              // it just means that it was written 0. | 
| 892 |   bool bits_written = false;  // Stays false until we write a bit. | 
| 893 |   while (!seen_p && !seen_dot) { | 
| 894 |     // Handle characters that are left of the fractional part. | 
| 895 |     if (next_char == '.') { | 
| 896 |       seen_dot = true; | 
| 897 |     } else if (next_char == 'p') { | 
| 898 |       seen_p = true; | 
| 899 |     } else if (::isxdigit(next_char)) { | 
| 900 |       // We know this is not denormalized since we have stripped all leading | 
| 901 |       // zeroes and we are not a ".". | 
| 902 |       is_denorm = false; | 
| 903 |       int number = get_nibble_from_character(character: next_char); | 
| 904 |       for (int i = 0; i < 4; ++i, number <<= 1) { | 
| 905 |         uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; | 
| 906 |         if (bits_written) { | 
| 907 |           // If we are here the bits represented belong in the fractional | 
| 908 |           // part of the float, and we have to adjust the exponent accordingly. | 
| 909 |           fraction = static_cast<uint_type>( | 
| 910 |               fraction | | 
| 911 |               static_cast<uint_type>( | 
| 912 |                   write_bit << (HF::top_bit_left_shift - fraction_index++))); | 
| 913 |           exponent = static_cast<int_type>(exponent + 1); | 
| 914 |         } | 
| 915 |         bits_written |= write_bit != 0; | 
| 916 |       } | 
| 917 |     } else { | 
| 918 |       // We have not found our exponent yet, so we have to fail. | 
| 919 |       is.setstate(std::ios::failbit); | 
| 920 |       return is; | 
| 921 |     } | 
| 922 |     is.get(); | 
| 923 |     next_char = is.peek(); | 
| 924 |   } | 
| 925 |   bits_written = false; | 
| 926 |   while (seen_dot && !seen_p) { | 
| 927 |     // Handle only fractional parts now. | 
| 928 |     if (next_char == 'p') { | 
| 929 |       seen_p = true; | 
| 930 |     } else if (::isxdigit(next_char)) { | 
| 931 |       int number = get_nibble_from_character(character: next_char); | 
| 932 |       for (int i = 0; i < 4; ++i, number <<= 1) { | 
| 933 |         uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; | 
| 934 |         bits_written |= write_bit != 0; | 
| 935 |         if (is_denorm && !bits_written) { | 
| 936 |           // Handle modifying the exponent here this way we can handle | 
| 937 |           // an arbitrary number of hex values without overflowing our | 
| 938 |           // integer. | 
| 939 |           exponent = static_cast<int_type>(exponent - 1); | 
| 940 |         } else { | 
| 941 |           fraction = static_cast<uint_type>( | 
| 942 |               fraction | | 
| 943 |               static_cast<uint_type>( | 
| 944 |                   write_bit << (HF::top_bit_left_shift - fraction_index++))); | 
| 945 |         } | 
| 946 |       } | 
| 947 |     } else { | 
| 948 |       // We still have not found our 'p' exponent yet, so this is not a valid | 
| 949 |       // hex-float. | 
| 950 |       is.setstate(std::ios::failbit); | 
| 951 |       return is; | 
| 952 |     } | 
| 953 |     is.get(); | 
| 954 |     next_char = is.peek(); | 
| 955 |   } | 
| 956 |  | 
| 957 |   bool seen_sign = false; | 
| 958 |   int8_t exponent_sign = 1; | 
| 959 |   int_type written_exponent = 0; | 
| 960 |   while (true) { | 
| 961 |     if ((next_char == '-' || next_char == '+')) { | 
| 962 |       if (seen_sign) { | 
| 963 |         is.setstate(std::ios::failbit); | 
| 964 |         return is; | 
| 965 |       } | 
| 966 |       seen_sign = true; | 
| 967 |       exponent_sign = (next_char == '-') ? -1 : 1; | 
| 968 |     } else if (::isdigit(next_char)) { | 
| 969 |       // Hex-floats express their exponent as decimal. | 
| 970 |       written_exponent = static_cast<int_type>(written_exponent * 10); | 
| 971 |       written_exponent = | 
| 972 |           static_cast<int_type>(written_exponent + (next_char - '0')); | 
| 973 |     } else { | 
| 974 |       break; | 
| 975 |     } | 
| 976 |     is.get(); | 
| 977 |     next_char = is.peek(); | 
| 978 |   } | 
| 979 |  | 
| 980 |   written_exponent = static_cast<int_type>(written_exponent * exponent_sign); | 
| 981 |   exponent = static_cast<int_type>(exponent + written_exponent); | 
| 982 |  | 
| 983 |   bool is_zero = is_denorm && (fraction == 0); | 
| 984 |   if (is_denorm && !is_zero) { | 
| 985 |     fraction = static_cast<uint_type>(fraction << 1); | 
| 986 |     exponent = static_cast<int_type>(exponent - 1); | 
| 987 |   } else if (is_zero) { | 
| 988 |     exponent = 0; | 
| 989 |   } | 
| 990 |  | 
| 991 |   if (exponent <= 0 && !is_zero) { | 
| 992 |     fraction = static_cast<uint_type>(fraction >> 1); | 
| 993 |     fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; | 
| 994 |   } | 
| 995 |  | 
| 996 |   fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; | 
| 997 |  | 
| 998 |   const int_type max_exponent = | 
| 999 |       SetBits<uint_type, 0, HF::num_exponent_bits>::get; | 
| 1000 |  | 
| 1001 |   // Handle actual denorm numbers | 
| 1002 |   while (exponent < 0 && !is_zero) { | 
| 1003 |     fraction = static_cast<uint_type>(fraction >> 1); | 
| 1004 |     exponent = static_cast<int_type>(exponent + 1); | 
| 1005 |  | 
| 1006 |     fraction &= HF::fraction_encode_mask; | 
| 1007 |     if (fraction == 0) { | 
| 1008 |       // We have underflowed our fraction. We should clamp to zero. | 
| 1009 |       is_zero = true; | 
| 1010 |       exponent = 0; | 
| 1011 |     } | 
| 1012 |   } | 
| 1013 |  | 
| 1014 |   // We have overflowed so we should be inf/-inf. | 
| 1015 |   if (exponent > max_exponent) { | 
| 1016 |     exponent = max_exponent; | 
| 1017 |     fraction = 0; | 
| 1018 |   } | 
| 1019 |  | 
| 1020 |   uint_type output_bits = static_cast<uint_type>( | 
| 1021 |       static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); | 
| 1022 |   output_bits |= fraction; | 
| 1023 |  | 
| 1024 |   uint_type shifted_exponent = static_cast<uint_type>( | 
| 1025 |       static_cast<uint_type>(exponent << HF::exponent_left_shift) & | 
| 1026 |       HF::exponent_mask); | 
| 1027 |   output_bits |= shifted_exponent; | 
| 1028 |  | 
| 1029 |   T output_float = spvutils::BitwiseCast<T>(output_bits); | 
| 1030 |   value.set_value(output_float); | 
| 1031 |  | 
| 1032 |   return is; | 
| 1033 | } | 
| 1034 |  | 
| 1035 | // Writes a FloatProxy value to a stream. | 
| 1036 | // Zero and normal numbers are printed in the usual notation, but with | 
| 1037 | // enough digits to fully reproduce the value.  Other values (subnormal, | 
| 1038 | // NaN, and infinity) are printed as a hex float. | 
| 1039 | template <typename T> | 
| 1040 | std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { | 
| 1041 |   auto float_val = value.getAsFloat(); | 
| 1042 |   switch (std::fpclassify(float_val)) { | 
| 1043 |     case FP_ZERO: | 
| 1044 |     case FP_NORMAL: { | 
| 1045 |       auto saved_precision = os.precision(); | 
| 1046 |       os.precision(std::numeric_limits<T>::digits10); | 
| 1047 |       os << float_val; | 
| 1048 |       os.precision(prec: saved_precision); | 
| 1049 |     } break; | 
| 1050 |     default: | 
| 1051 |       os << HexFloat<FloatProxy<T>>(value); | 
| 1052 |       break; | 
| 1053 |   } | 
| 1054 |   return os; | 
| 1055 | } | 
| 1056 |  | 
| 1057 | template <> | 
| 1058 | inline std::ostream& operator<<<Float16>(std::ostream& os, | 
| 1059 |                                          const FloatProxy<Float16>& value) { | 
| 1060 |   os << HexFloat<FloatProxy<Float16>>(value); | 
| 1061 |   return os; | 
| 1062 | } | 
| 1063 | } | 
| 1064 |  | 
| 1065 | #endif  // LIBSPIRV_UTIL_HEX_FLOAT_H_ | 
| 1066 |  |