1 | // Copyright John Maddock 2010, 2012. |
2 | // Copyright Paul A. Bristow 2011, 2012. |
3 | |
4 | // Use, modification and distribution are subject to the |
5 | // Boost Software License, Version 1.0. (See accompanying file |
6 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
7 | |
8 | #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED |
9 | #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED |
10 | |
11 | #include <boost/math/special_functions/trunc.hpp> |
12 | |
13 | namespace boost{ namespace math{ namespace constants{ namespace detail{ |
14 | |
15 | template <class T> |
16 | template<int N> |
17 | inline T constant_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
18 | { |
19 | BOOST_MATH_STD_USING |
20 | |
21 | return ldexp(acos(T(0)), 1); |
22 | |
23 | /* |
24 | // Although this code works well, it's usually more accurate to just call acos |
25 | // and access the number types own representation of PI which is usually calculated |
26 | // at slightly higher precision... |
27 | |
28 | T result; |
29 | T a = 1; |
30 | T b; |
31 | T A(a); |
32 | T B = 0.5f; |
33 | T D = 0.25f; |
34 | |
35 | T lim; |
36 | lim = boost::math::tools::epsilon<T>(); |
37 | |
38 | unsigned k = 1; |
39 | |
40 | do |
41 | { |
42 | result = A + B; |
43 | result = ldexp(result, -2); |
44 | b = sqrt(B); |
45 | a += b; |
46 | a = ldexp(a, -1); |
47 | A = a * a; |
48 | B = A - result; |
49 | B = ldexp(B, 1); |
50 | result = A - B; |
51 | bool neg = boost::math::sign(result) < 0; |
52 | if(neg) |
53 | result = -result; |
54 | if(result <= lim) |
55 | break; |
56 | if(neg) |
57 | result = -result; |
58 | result = ldexp(result, k - 1); |
59 | D -= result; |
60 | ++k; |
61 | lim = ldexp(lim, 1); |
62 | } |
63 | while(true); |
64 | |
65 | result = B / D; |
66 | return result; |
67 | */ |
68 | } |
69 | |
70 | template <class T> |
71 | template<int N> |
72 | inline T constant_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
73 | { |
74 | return 2 * pi<T, policies::policy<policies::digits2<N> > >(); |
75 | } |
76 | |
77 | template <class T> // 2 / pi |
78 | template<int N> |
79 | inline T constant_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
80 | { |
81 | return 2 / pi<T, policies::policy<policies::digits2<N> > >(); |
82 | } |
83 | |
84 | template <class T> // sqrt(2/pi) |
85 | template <int N> |
86 | inline T constant_root_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
87 | { |
88 | BOOST_MATH_STD_USING |
89 | return sqrt((2 / pi<T, policies::policy<policies::digits2<N> > >())); |
90 | } |
91 | |
92 | template <class T> |
93 | template<int N> |
94 | inline T constant_one_div_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
95 | { |
96 | return 1 / two_pi<T, policies::policy<policies::digits2<N> > >(); |
97 | } |
98 | |
99 | template <class T> |
100 | template<int N> |
101 | inline T constant_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
102 | { |
103 | BOOST_MATH_STD_USING |
104 | return sqrt(pi<T, policies::policy<policies::digits2<N> > >()); |
105 | } |
106 | |
107 | template <class T> |
108 | template<int N> |
109 | inline T constant_root_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
110 | { |
111 | BOOST_MATH_STD_USING |
112 | return sqrt(pi<T, policies::policy<policies::digits2<N> > >() / 2); |
113 | } |
114 | |
115 | template <class T> |
116 | template<int N> |
117 | inline T constant_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
118 | { |
119 | BOOST_MATH_STD_USING |
120 | return sqrt(two_pi<T, policies::policy<policies::digits2<N> > >()); |
121 | } |
122 | |
123 | template <class T> |
124 | template<int N> |
125 | inline T constant_log_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
126 | { |
127 | BOOST_MATH_STD_USING |
128 | return log(root_two_pi<T, policies::policy<policies::digits2<N> > >()); |
129 | } |
130 | |
131 | template <class T> |
132 | template<int N> |
133 | inline T constant_root_ln_four<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
134 | { |
135 | BOOST_MATH_STD_USING |
136 | return sqrt(log(static_cast<T>(4))); |
137 | } |
138 | |
139 | template <class T> |
140 | template<int N> |
141 | inline T constant_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
142 | { |
143 | // |
144 | // Although we can clearly calculate this from first principles, this hooks into |
145 | // T's own notion of e, which hopefully will more accurate than one calculated to |
146 | // a few epsilon: |
147 | // |
148 | BOOST_MATH_STD_USING |
149 | return exp(static_cast<T>(1)); |
150 | } |
151 | |
152 | template <class T> |
153 | template<int N> |
154 | inline T constant_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
155 | { |
156 | return static_cast<T>(1) / static_cast<T>(2); |
157 | } |
158 | |
159 | template <class T> |
160 | template<int M> |
161 | inline T constant_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, M>))) |
162 | { |
163 | BOOST_MATH_STD_USING |
164 | // |
165 | // This is the method described in: |
166 | // "Some New Algorithms for High-Precision Computation of Euler's Constant" |
167 | // Richard P Brent and Edwin M McMillan. |
168 | // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312. |
169 | // See equation 17 with p = 2. |
170 | // |
171 | T n = 3 + (M ? (std::min)(M, tools::digits<T>()) : tools::digits<T>()) / 4; |
172 | T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits<T>())) : tools::epsilon<T>(); |
173 | T lnn = log(n); |
174 | T term = 1; |
175 | T N = -lnn; |
176 | T D = 1; |
177 | T Hk = 0; |
178 | T one = 1; |
179 | |
180 | for(unsigned k = 1;; ++k) |
181 | { |
182 | term *= n * n; |
183 | term /= k * k; |
184 | Hk += one / k; |
185 | N += term * (Hk - lnn); |
186 | D += term; |
187 | |
188 | if(term < D * lim) |
189 | break; |
190 | } |
191 | return N / D; |
192 | } |
193 | |
194 | template <class T> |
195 | template<int N> |
196 | inline T constant_euler_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
197 | { |
198 | BOOST_MATH_STD_USING |
199 | return euler<T, policies::policy<policies::digits2<N> > >() |
200 | * euler<T, policies::policy<policies::digits2<N> > >(); |
201 | } |
202 | |
203 | template <class T> |
204 | template<int N> |
205 | inline T constant_one_div_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
206 | { |
207 | BOOST_MATH_STD_USING |
208 | return static_cast<T>(1) |
209 | / euler<T, policies::policy<policies::digits2<N> > >(); |
210 | } |
211 | |
212 | |
213 | template <class T> |
214 | template<int N> |
215 | inline T constant_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
216 | { |
217 | BOOST_MATH_STD_USING |
218 | return sqrt(static_cast<T>(2)); |
219 | } |
220 | |
221 | |
222 | template <class T> |
223 | template<int N> |
224 | inline T constant_root_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
225 | { |
226 | BOOST_MATH_STD_USING |
227 | return sqrt(static_cast<T>(3)); |
228 | } |
229 | |
230 | template <class T> |
231 | template<int N> |
232 | inline T constant_half_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
233 | { |
234 | BOOST_MATH_STD_USING |
235 | return sqrt(static_cast<T>(2)) / 2; |
236 | } |
237 | |
238 | template <class T> |
239 | template<int N> |
240 | inline T constant_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
241 | { |
242 | // |
243 | // Although there are good ways to calculate this from scratch, this hooks into |
244 | // T's own notion of log(2) which will hopefully be accurate to the full precision |
245 | // of T: |
246 | // |
247 | BOOST_MATH_STD_USING |
248 | return log(static_cast<T>(2)); |
249 | } |
250 | |
251 | template <class T> |
252 | template<int N> |
253 | inline T constant_ln_ten<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
254 | { |
255 | BOOST_MATH_STD_USING |
256 | return log(static_cast<T>(10)); |
257 | } |
258 | |
259 | template <class T> |
260 | template<int N> |
261 | inline T constant_ln_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
262 | { |
263 | BOOST_MATH_STD_USING |
264 | return log(log(static_cast<T>(2))); |
265 | } |
266 | |
267 | template <class T> |
268 | template<int N> |
269 | inline T constant_third<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
270 | { |
271 | BOOST_MATH_STD_USING |
272 | return static_cast<T>(1) / static_cast<T>(3); |
273 | } |
274 | |
275 | template <class T> |
276 | template<int N> |
277 | inline T constant_twothirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
278 | { |
279 | BOOST_MATH_STD_USING |
280 | return static_cast<T>(2) / static_cast<T>(3); |
281 | } |
282 | |
283 | template <class T> |
284 | template<int N> |
285 | inline T constant_two_thirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
286 | { |
287 | BOOST_MATH_STD_USING |
288 | return static_cast<T>(2) / static_cast<T>(3); |
289 | } |
290 | |
291 | template <class T> |
292 | template<int N> |
293 | inline T constant_three_quarters<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
294 | { |
295 | BOOST_MATH_STD_USING |
296 | return static_cast<T>(3) / static_cast<T>(4); |
297 | } |
298 | |
299 | template <class T> |
300 | template<int N> |
301 | inline T constant_sixth<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
302 | { |
303 | BOOST_MATH_STD_USING |
304 | return static_cast<T>(1) / static_cast<T>(6); |
305 | } |
306 | |
307 | // Pi and related constants. |
308 | template <class T> |
309 | template<int N> |
310 | inline T constant_pi_minus_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
311 | { |
312 | return pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(3); |
313 | } |
314 | |
315 | template <class T> |
316 | template<int N> |
317 | inline T constant_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
318 | { |
319 | return static_cast<T>(4) - pi<T, policies::policy<policies::digits2<N> > >(); |
320 | } |
321 | |
322 | //template <class T> |
323 | //template<int N> |
324 | //inline T constant_pow23_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
325 | //{ |
326 | // BOOST_MATH_STD_USING |
327 | // return pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1.5)); |
328 | //} |
329 | |
330 | template <class T> |
331 | template<int N> |
332 | inline T constant_exp_minus_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
333 | { |
334 | BOOST_MATH_STD_USING |
335 | return exp(static_cast<T>(-0.5)); |
336 | } |
337 | |
338 | template <class T> |
339 | template<int N> |
340 | inline T constant_exp_minus_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
341 | { |
342 | BOOST_MATH_STD_USING |
343 | return exp(static_cast<T>(-1.)); |
344 | } |
345 | |
346 | template <class T> |
347 | template<int N> |
348 | inline T constant_one_div_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
349 | { |
350 | return static_cast<T>(1) / root_two<T, policies::policy<policies::digits2<N> > >(); |
351 | } |
352 | |
353 | template <class T> |
354 | template<int N> |
355 | inline T constant_one_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
356 | { |
357 | return static_cast<T>(1) / root_pi<T, policies::policy<policies::digits2<N> > >(); |
358 | } |
359 | |
360 | template <class T> |
361 | template<int N> |
362 | inline T constant_one_div_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
363 | { |
364 | return static_cast<T>(1) / root_two_pi<T, policies::policy<policies::digits2<N> > >(); |
365 | } |
366 | |
367 | template <class T> |
368 | template<int N> |
369 | inline T constant_root_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
370 | { |
371 | BOOST_MATH_STD_USING |
372 | return sqrt(static_cast<T>(1) / pi<T, policies::policy<policies::digits2<N> > >()); |
373 | } |
374 | |
375 | template <class T> |
376 | template<int N> |
377 | inline T constant_four_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
378 | { |
379 | BOOST_MATH_STD_USING |
380 | return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(4) / static_cast<T>(3); |
381 | } |
382 | |
383 | template <class T> |
384 | template<int N> |
385 | inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
386 | { |
387 | BOOST_MATH_STD_USING |
388 | return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2); |
389 | } |
390 | |
391 | |
392 | template <class T> |
393 | template<int N> |
394 | inline T constant_third_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
395 | { |
396 | BOOST_MATH_STD_USING |
397 | return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(3); |
398 | } |
399 | |
400 | template <class T> |
401 | template<int N> |
402 | inline T constant_sixth_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
403 | { |
404 | BOOST_MATH_STD_USING |
405 | return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(6); |
406 | } |
407 | |
408 | template <class T> |
409 | template<int N> |
410 | inline T constant_two_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
411 | { |
412 | BOOST_MATH_STD_USING |
413 | return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(2) / static_cast<T>(3); |
414 | } |
415 | |
416 | template <class T> |
417 | template<int N> |
418 | inline T constant_three_quarters_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
419 | { |
420 | BOOST_MATH_STD_USING |
421 | return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(3) / static_cast<T>(4); |
422 | } |
423 | |
424 | template <class T> |
425 | template<int N> |
426 | inline T constant_pi_pow_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
427 | { |
428 | BOOST_MATH_STD_USING |
429 | return pow(pi<T, policies::policy<policies::digits2<N> > >(), e<T, policies::policy<policies::digits2<N> > >()); // |
430 | } |
431 | |
432 | template <class T> |
433 | template<int N> |
434 | inline T constant_pi_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
435 | { |
436 | BOOST_MATH_STD_USING |
437 | return pi<T, policies::policy<policies::digits2<N> > >() |
438 | * pi<T, policies::policy<policies::digits2<N> > >() ; // |
439 | } |
440 | |
441 | template <class T> |
442 | template<int N> |
443 | inline T constant_pi_sqr_div_six<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
444 | { |
445 | BOOST_MATH_STD_USING |
446 | return pi<T, policies::policy<policies::digits2<N> > >() |
447 | * pi<T, policies::policy<policies::digits2<N> > >() |
448 | / static_cast<T>(6); // |
449 | } |
450 | |
451 | |
452 | template <class T> |
453 | template<int N> |
454 | inline T constant_pi_cubed<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
455 | { |
456 | BOOST_MATH_STD_USING |
457 | return pi<T, policies::policy<policies::digits2<N> > >() |
458 | * pi<T, policies::policy<policies::digits2<N> > >() |
459 | * pi<T, policies::policy<policies::digits2<N> > >() |
460 | ; // |
461 | } |
462 | |
463 | template <class T> |
464 | template<int N> |
465 | inline T constant_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
466 | { |
467 | BOOST_MATH_STD_USING |
468 | return pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3)); |
469 | } |
470 | |
471 | template <class T> |
472 | template<int N> |
473 | inline T constant_one_div_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
474 | { |
475 | BOOST_MATH_STD_USING |
476 | return static_cast<T>(1) |
477 | / pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3)); |
478 | } |
479 | |
480 | // Euler's e |
481 | |
482 | template <class T> |
483 | template<int N> |
484 | inline T constant_e_pow_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
485 | { |
486 | BOOST_MATH_STD_USING |
487 | return pow(e<T, policies::policy<policies::digits2<N> > >(), pi<T, policies::policy<policies::digits2<N> > >()); // |
488 | } |
489 | |
490 | template <class T> |
491 | template<int N> |
492 | inline T constant_root_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
493 | { |
494 | BOOST_MATH_STD_USING |
495 | return sqrt(e<T, policies::policy<policies::digits2<N> > >()); |
496 | } |
497 | |
498 | template <class T> |
499 | template<int N> |
500 | inline T constant_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
501 | { |
502 | BOOST_MATH_STD_USING |
503 | return log10(e<T, policies::policy<policies::digits2<N> > >()); |
504 | } |
505 | |
506 | template <class T> |
507 | template<int N> |
508 | inline T constant_one_div_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
509 | { |
510 | BOOST_MATH_STD_USING |
511 | return static_cast<T>(1) / |
512 | log10(e<T, policies::policy<policies::digits2<N> > >()); |
513 | } |
514 | |
515 | // Trigonometric |
516 | |
517 | template <class T> |
518 | template<int N> |
519 | inline T constant_degree<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
520 | { |
521 | BOOST_MATH_STD_USING |
522 | return pi<T, policies::policy<policies::digits2<N> > >() |
523 | / static_cast<T>(180) |
524 | ; // |
525 | } |
526 | |
527 | template <class T> |
528 | template<int N> |
529 | inline T constant_radian<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
530 | { |
531 | BOOST_MATH_STD_USING |
532 | return static_cast<T>(180) |
533 | / pi<T, policies::policy<policies::digits2<N> > >() |
534 | ; // |
535 | } |
536 | |
537 | template <class T> |
538 | template<int N> |
539 | inline T constant_sin_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
540 | { |
541 | BOOST_MATH_STD_USING |
542 | return sin(static_cast<T>(1)) ; // |
543 | } |
544 | |
545 | template <class T> |
546 | template<int N> |
547 | inline T constant_cos_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
548 | { |
549 | BOOST_MATH_STD_USING |
550 | return cos(static_cast<T>(1)) ; // |
551 | } |
552 | |
553 | template <class T> |
554 | template<int N> |
555 | inline T constant_sinh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
556 | { |
557 | BOOST_MATH_STD_USING |
558 | return sinh(static_cast<T>(1)) ; // |
559 | } |
560 | |
561 | template <class T> |
562 | template<int N> |
563 | inline T constant_cosh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
564 | { |
565 | BOOST_MATH_STD_USING |
566 | return cosh(static_cast<T>(1)) ; // |
567 | } |
568 | |
569 | template <class T> |
570 | template<int N> |
571 | inline T constant_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
572 | { |
573 | BOOST_MATH_STD_USING |
574 | return (static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ; // |
575 | } |
576 | |
577 | template <class T> |
578 | template<int N> |
579 | inline T constant_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
580 | { |
581 | BOOST_MATH_STD_USING |
582 | //return log(phi<T, policies::policy<policies::digits2<N> > >()); // ??? |
583 | return log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ); |
584 | } |
585 | template <class T> |
586 | template<int N> |
587 | inline T constant_one_div_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
588 | { |
589 | BOOST_MATH_STD_USING |
590 | return static_cast<T>(1) / |
591 | log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ); |
592 | } |
593 | |
594 | // Zeta |
595 | |
596 | template <class T> |
597 | template<int N> |
598 | inline T constant_zeta_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
599 | { |
600 | BOOST_MATH_STD_USING |
601 | |
602 | return pi<T, policies::policy<policies::digits2<N> > >() |
603 | * pi<T, policies::policy<policies::digits2<N> > >() |
604 | /static_cast<T>(6); |
605 | } |
606 | |
607 | template <class T> |
608 | template<int N> |
609 | inline T constant_zeta_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
610 | { |
611 | // http://mathworld.wolfram.com/AperysConstant.html |
612 | // http://en.wikipedia.org/wiki/Mathematical_constant |
613 | |
614 | // http://oeis.org/A002117/constant |
615 | //T zeta3("1.20205690315959428539973816151144999076" |
616 | // "4986292340498881792271555341838205786313" |
617 | // "09018645587360933525814619915"); |
618 | |
619 | //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117 |
620 | // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00); |
621 | //"1.2020569031595942 double |
622 | // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithm for Apery's constant zeta(3). |
623 | // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50 |
624 | |
625 | // by Stefan Spannare September 19, 2007 |
626 | // zeta(3) = 1/64 * sum |
627 | BOOST_MATH_STD_USING |
628 | T n_fact=static_cast<T>(1); // build n! for n = 0. |
629 | T sum = static_cast<double>(77); // Start with n = 0 case. |
630 | // for n = 0, (77/1) /64 = 1.203125 |
631 | //double lim = std::numeric_limits<double>::epsilon(); |
632 | T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>(); |
633 | for(unsigned int n = 1; n < 40; ++n) |
634 | { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits. |
635 | //cout << "n = " << n << endl; |
636 | n_fact *= n; // n! |
637 | T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10 |
638 | T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77 |
639 | // int nn = (2 * n + 1); |
640 | // T d = factorial(nn); // inline factorial. |
641 | T d = 1; |
642 | for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1) |
643 | { |
644 | d *= i; |
645 | } |
646 | T den = d * d * d * d * d; // [(2n+1)!]^5 |
647 | //cout << "den = " << den << endl; |
648 | T term = num/den; |
649 | if (n % 2 != 0) |
650 | { //term *= -1; |
651 | sum -= term; |
652 | } |
653 | else |
654 | { |
655 | sum += term; |
656 | } |
657 | //cout << "term = " << term << endl; |
658 | //cout << "sum/64 = " << sum/64 << endl; |
659 | if(abs(term) < lim) |
660 | { |
661 | break; |
662 | } |
663 | } |
664 | return sum / 64; |
665 | } |
666 | |
667 | template <class T> |
668 | template<int N> |
669 | inline T constant_catalan<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
670 | { // http://oeis.org/A006752/constant |
671 | //T c("0.915965594177219015054603514932384110774" |
672 | //"149374281672134266498119621763019776254769479356512926115106248574"); |
673 | |
674 | // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01); |
675 | |
676 | // This is equation (entry) 31 from |
677 | // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm |
678 | // See also http://www.mpfr.org/algorithms.pdf |
679 | BOOST_MATH_STD_USING |
680 | T k_fact = 1; |
681 | T tk_fact = 1; |
682 | T sum = 1; |
683 | T term; |
684 | T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>(); |
685 | |
686 | for(unsigned k = 1;; ++k) |
687 | { |
688 | k_fact *= k; |
689 | tk_fact *= (2 * k) * (2 * k - 1); |
690 | term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1)); |
691 | sum += term; |
692 | if(term < lim) |
693 | { |
694 | break; |
695 | } |
696 | } |
697 | return boost::math::constants::pi<T, boost::math::policies::policy<> >() |
698 | * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >()) |
699 | / 8 |
700 | + 3 * sum / 8; |
701 | } |
702 | |
703 | namespace khinchin_detail{ |
704 | |
705 | template <class T> |
706 | T zeta_polynomial_series(T s, T sc, int digits) |
707 | { |
708 | BOOST_MATH_STD_USING |
709 | // |
710 | // This is algorithm 3 from: |
711 | // |
712 | // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein, |
713 | // Canadian Mathematical Society, Conference Proceedings, 2000. |
714 | // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf |
715 | // |
716 | BOOST_MATH_STD_USING |
717 | int n = (digits * 19) / 53; |
718 | T sum = 0; |
719 | T two_n = ldexp(T(1), n); |
720 | int ej_sign = 1; |
721 | for(int j = 0; j < n; ++j) |
722 | { |
723 | sum += ej_sign * -two_n / pow(T(j + 1), s); |
724 | ej_sign = -ej_sign; |
725 | } |
726 | T ej_sum = 1; |
727 | T ej_term = 1; |
728 | for(int j = n; j <= 2 * n - 1; ++j) |
729 | { |
730 | sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s); |
731 | ej_sign = -ej_sign; |
732 | ej_term *= 2 * n - j; |
733 | ej_term /= j - n + 1; |
734 | ej_sum += ej_term; |
735 | } |
736 | return -sum / (two_n * (1 - pow(T(2), sc))); |
737 | } |
738 | |
739 | template <class T> |
740 | T khinchin(int digits) |
741 | { |
742 | BOOST_MATH_STD_USING |
743 | T sum = 0; |
744 | T term; |
745 | T lim = ldexp(T(1), 1-digits); |
746 | T factor = 0; |
747 | unsigned last_k = 1; |
748 | T num = 1; |
749 | for(unsigned n = 1;; ++n) |
750 | { |
751 | for(unsigned k = last_k; k <= 2 * n - 1; ++k) |
752 | { |
753 | factor += num / k; |
754 | num = -num; |
755 | } |
756 | last_k = 2 * n; |
757 | term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n; |
758 | sum += term; |
759 | if(term < lim) |
760 | break; |
761 | } |
762 | return exp(sum / boost::math::constants::ln_two<T, boost::math::policies::policy<> >()); |
763 | } |
764 | |
765 | } |
766 | |
767 | template <class T> |
768 | template<int N> |
769 | inline T constant_khinchin<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
770 | { |
771 | int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>(); |
772 | return khinchin_detail::khinchin<T>(n); |
773 | } |
774 | |
775 | template <class T> |
776 | template<int N> |
777 | inline T constant_extreme_value_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
778 | { // from e_float constants.cpp |
779 | // Mathematica: N[12 Sqrt[6] Zeta[3]/Pi^3, 1101] |
780 | BOOST_MATH_STD_USING |
781 | T ev(12 * sqrt(static_cast<T>(6)) * zeta_three<T, policies::policy<policies::digits2<N> > >() |
782 | / pi_cubed<T, policies::policy<policies::digits2<N> > >() ); |
783 | |
784 | //T ev( |
785 | //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150" |
786 | //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680" |
787 | //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280" |
788 | //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594" |
789 | //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965" |
790 | //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984" |
791 | //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970" |
792 | //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809" |
793 | //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964" |
794 | //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377" |
795 | //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315"); |
796 | |
797 | return ev; |
798 | } |
799 | |
800 | namespace detail{ |
801 | // |
802 | // Calculation of the Glaisher constant depends upon calculating the |
803 | // derivative of the zeta function at 2, we can then use the relation: |
804 | // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)] |
805 | // To get the constant A. |
806 | // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html. |
807 | // |
808 | // The derivative of the zeta function is computed by direct differentiation |
809 | // of the relation: |
810 | // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s } |
811 | // Which gives us 2 slowly converging but alternating sums to compute, |
812 | // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series", |
813 | // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999). |
814 | // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf |
815 | // |
816 | template <class T> |
817 | T zeta_series_derivative_2(unsigned digits) |
818 | { |
819 | // Derivative of the series part, evaluated at 2: |
820 | BOOST_MATH_STD_USING |
821 | int n = digits * 301 * 13 / 10000; |
822 | boost::math::itrunc((std::numeric_limits<T>::digits10 + 1) * 1.3); |
823 | T d = pow(3 + sqrt(T(8)), n); |
824 | d = (d + 1 / d) / 2; |
825 | T b = -1; |
826 | T c = -d; |
827 | T s = 0; |
828 | for(int k = 0; k < n; ++k) |
829 | { |
830 | T a = -log(T(k+1)) / ((k+1) * (k+1)); |
831 | c = b - c; |
832 | s = s + c * a; |
833 | b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); |
834 | } |
835 | return s / d; |
836 | } |
837 | |
838 | template <class T> |
839 | T zeta_series_2(unsigned digits) |
840 | { |
841 | // Series part of zeta at 2: |
842 | BOOST_MATH_STD_USING |
843 | int n = digits * 301 * 13 / 10000; |
844 | T d = pow(3 + sqrt(T(8)), n); |
845 | d = (d + 1 / d) / 2; |
846 | T b = -1; |
847 | T c = -d; |
848 | T s = 0; |
849 | for(int k = 0; k < n; ++k) |
850 | { |
851 | T a = T(1) / ((k + 1) * (k + 1)); |
852 | c = b - c; |
853 | s = s + c * a; |
854 | b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); |
855 | } |
856 | return s / d; |
857 | } |
858 | |
859 | template <class T> |
860 | inline T zeta_series_lead_2() |
861 | { |
862 | // lead part at 2: |
863 | return 2; |
864 | } |
865 | |
866 | template <class T> |
867 | inline T zeta_series_derivative_lead_2() |
868 | { |
869 | // derivative of lead part at 2: |
870 | return -2 * boost::math::constants::ln_two<T>(); |
871 | } |
872 | |
873 | template <class T> |
874 | inline T zeta_derivative_2(unsigned n) |
875 | { |
876 | // zeta derivative at 2: |
877 | return zeta_series_derivative_2<T>(n) * zeta_series_lead_2<T>() |
878 | + zeta_series_derivative_lead_2<T>() * zeta_series_2<T>(n); |
879 | } |
880 | |
881 | } // namespace detail |
882 | |
883 | template <class T> |
884 | template<int N> |
885 | inline T constant_glaisher<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
886 | { |
887 | |
888 | BOOST_MATH_STD_USING |
889 | typedef policies::policy<policies::digits2<N> > forwarding_policy; |
890 | int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>(); |
891 | T v = detail::zeta_derivative_2<T>(n); |
892 | v *= 6; |
893 | v /= boost::math::constants::pi<T, forwarding_policy>() * boost::math::constants::pi<T, forwarding_policy>(); |
894 | v -= boost::math::constants::euler<T, forwarding_policy>(); |
895 | v -= log(2 * boost::math::constants::pi<T, forwarding_policy>()); |
896 | v /= -12; |
897 | return exp(v); |
898 | |
899 | /* |
900 | // from http://mpmath.googlecode.com/svn/data/glaisher.txt |
901 | // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1)) |
902 | // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12) |
903 | // with Euler-Maclaurin summation for zeta'(2). |
904 | T g( |
905 | "1.282427129100622636875342568869791727767688927325001192063740021740406308858826" |
906 | "46112973649195820237439420646120399000748933157791362775280404159072573861727522" |
907 | "14334327143439787335067915257366856907876561146686449997784962754518174312394652" |
908 | "76128213808180219264516851546143919901083573730703504903888123418813674978133050" |
909 | "93770833682222494115874837348064399978830070125567001286994157705432053927585405" |
910 | "81731588155481762970384743250467775147374600031616023046613296342991558095879293" |
911 | "36343887288701988953460725233184702489001091776941712153569193674967261270398013" |
912 | "52652668868978218897401729375840750167472114895288815996668743164513890306962645" |
913 | "59870469543740253099606800842447417554061490189444139386196089129682173528798629" |
914 | "88434220366989900606980888785849587494085307347117090132667567503310523405221054" |
915 | "14176776156308191919997185237047761312315374135304725819814797451761027540834943" |
916 | "14384965234139453373065832325673954957601692256427736926358821692159870775858274" |
917 | "69575162841550648585890834128227556209547002918593263079373376942077522290940187"); |
918 | |
919 | return g; |
920 | */ |
921 | } |
922 | |
923 | template <class T> |
924 | template<int N> |
925 | inline T constant_rayleigh_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
926 | { // From e_float |
927 | // 1100 digits of the Rayleigh distribution skewness |
928 | // Mathematica: N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100] |
929 | |
930 | BOOST_MATH_STD_USING |
931 | T rs(2 * root_pi<T, policies::policy<policies::digits2<N> > >() |
932 | * pi_minus_three<T, policies::policy<policies::digits2<N> > >() |
933 | / pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(3./2)) |
934 | ); |
935 | // 6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264, |
936 | |
937 | //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067" |
938 | //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322" |
939 | //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968" |
940 | //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671" |
941 | //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553" |
942 | //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288" |
943 | //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957" |
944 | //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791" |
945 | //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523" |
946 | //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251" |
947 | //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848"); ; |
948 | return rs; |
949 | } |
950 | |
951 | template <class T> |
952 | template<int N> |
953 | inline T constant_rayleigh_kurtosis_excess<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
954 | { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) |
955 | // Might provide and calculate this using pi_minus_four. |
956 | BOOST_MATH_STD_USING |
957 | return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >() |
958 | * pi<T, policies::policy<policies::digits2<N> > >()) |
959 | - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) ) |
960 | / |
961 | ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)) |
962 | * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))) |
963 | ); |
964 | } |
965 | |
966 | template <class T> |
967 | template<int N> |
968 | inline T constant_rayleigh_kurtosis<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
969 | { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) |
970 | // Might provide and calculate this using pi_minus_four. |
971 | BOOST_MATH_STD_USING |
972 | return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >() |
973 | * pi<T, policies::policy<policies::digits2<N> > >()) |
974 | - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) ) |
975 | / |
976 | ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)) |
977 | * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))) |
978 | ); |
979 | } |
980 | |
981 | template <class T> |
982 | template<int N> |
983 | inline T constant_log2_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
984 | { |
985 | return 1 / boost::math::constants::ln_two<T>(); |
986 | } |
987 | |
988 | template <class T> |
989 | template<int N> |
990 | inline T constant_quarter_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
991 | { |
992 | return boost::math::constants::pi<T>() / 4; |
993 | } |
994 | |
995 | template <class T> |
996 | template<int N> |
997 | inline T constant_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
998 | { |
999 | return 1 / boost::math::constants::pi<T>(); |
1000 | } |
1001 | |
1002 | template <class T> |
1003 | template<int N> |
1004 | inline T constant_two_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
1005 | { |
1006 | return 2 * boost::math::constants::one_div_root_pi<T>(); |
1007 | } |
1008 | |
1009 | } |
1010 | } |
1011 | } |
1012 | } // namespaces |
1013 | |
1014 | #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED |
1015 | |