| 1 | // Copyright John Maddock 2010, 2012. |
| 2 | // Copyright Paul A. Bristow 2011, 2012. |
| 3 | |
| 4 | // Use, modification and distribution are subject to the |
| 5 | // Boost Software License, Version 1.0. (See accompanying file |
| 6 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 7 | |
| 8 | #ifndef BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED |
| 9 | #define BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED |
| 10 | |
| 11 | #include <boost/math/special_functions/trunc.hpp> |
| 12 | |
| 13 | namespace boost{ namespace math{ namespace constants{ namespace detail{ |
| 14 | |
| 15 | template <class T> |
| 16 | template<int N> |
| 17 | inline T constant_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 18 | { |
| 19 | BOOST_MATH_STD_USING |
| 20 | |
| 21 | return ldexp(acos(T(0)), 1); |
| 22 | |
| 23 | /* |
| 24 | // Although this code works well, it's usually more accurate to just call acos |
| 25 | // and access the number types own representation of PI which is usually calculated |
| 26 | // at slightly higher precision... |
| 27 | |
| 28 | T result; |
| 29 | T a = 1; |
| 30 | T b; |
| 31 | T A(a); |
| 32 | T B = 0.5f; |
| 33 | T D = 0.25f; |
| 34 | |
| 35 | T lim; |
| 36 | lim = boost::math::tools::epsilon<T>(); |
| 37 | |
| 38 | unsigned k = 1; |
| 39 | |
| 40 | do |
| 41 | { |
| 42 | result = A + B; |
| 43 | result = ldexp(result, -2); |
| 44 | b = sqrt(B); |
| 45 | a += b; |
| 46 | a = ldexp(a, -1); |
| 47 | A = a * a; |
| 48 | B = A - result; |
| 49 | B = ldexp(B, 1); |
| 50 | result = A - B; |
| 51 | bool neg = boost::math::sign(result) < 0; |
| 52 | if(neg) |
| 53 | result = -result; |
| 54 | if(result <= lim) |
| 55 | break; |
| 56 | if(neg) |
| 57 | result = -result; |
| 58 | result = ldexp(result, k - 1); |
| 59 | D -= result; |
| 60 | ++k; |
| 61 | lim = ldexp(lim, 1); |
| 62 | } |
| 63 | while(true); |
| 64 | |
| 65 | result = B / D; |
| 66 | return result; |
| 67 | */ |
| 68 | } |
| 69 | |
| 70 | template <class T> |
| 71 | template<int N> |
| 72 | inline T constant_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 73 | { |
| 74 | return 2 * pi<T, policies::policy<policies::digits2<N> > >(); |
| 75 | } |
| 76 | |
| 77 | template <class T> // 2 / pi |
| 78 | template<int N> |
| 79 | inline T constant_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 80 | { |
| 81 | return 2 / pi<T, policies::policy<policies::digits2<N> > >(); |
| 82 | } |
| 83 | |
| 84 | template <class T> // sqrt(2/pi) |
| 85 | template <int N> |
| 86 | inline T constant_root_two_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 87 | { |
| 88 | BOOST_MATH_STD_USING |
| 89 | return sqrt((2 / pi<T, policies::policy<policies::digits2<N> > >())); |
| 90 | } |
| 91 | |
| 92 | template <class T> |
| 93 | template<int N> |
| 94 | inline T constant_one_div_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 95 | { |
| 96 | return 1 / two_pi<T, policies::policy<policies::digits2<N> > >(); |
| 97 | } |
| 98 | |
| 99 | template <class T> |
| 100 | template<int N> |
| 101 | inline T constant_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 102 | { |
| 103 | BOOST_MATH_STD_USING |
| 104 | return sqrt(pi<T, policies::policy<policies::digits2<N> > >()); |
| 105 | } |
| 106 | |
| 107 | template <class T> |
| 108 | template<int N> |
| 109 | inline T constant_root_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 110 | { |
| 111 | BOOST_MATH_STD_USING |
| 112 | return sqrt(pi<T, policies::policy<policies::digits2<N> > >() / 2); |
| 113 | } |
| 114 | |
| 115 | template <class T> |
| 116 | template<int N> |
| 117 | inline T constant_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 118 | { |
| 119 | BOOST_MATH_STD_USING |
| 120 | return sqrt(two_pi<T, policies::policy<policies::digits2<N> > >()); |
| 121 | } |
| 122 | |
| 123 | template <class T> |
| 124 | template<int N> |
| 125 | inline T constant_log_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 126 | { |
| 127 | BOOST_MATH_STD_USING |
| 128 | return log(root_two_pi<T, policies::policy<policies::digits2<N> > >()); |
| 129 | } |
| 130 | |
| 131 | template <class T> |
| 132 | template<int N> |
| 133 | inline T constant_root_ln_four<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 134 | { |
| 135 | BOOST_MATH_STD_USING |
| 136 | return sqrt(log(static_cast<T>(4))); |
| 137 | } |
| 138 | |
| 139 | template <class T> |
| 140 | template<int N> |
| 141 | inline T constant_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 142 | { |
| 143 | // |
| 144 | // Although we can clearly calculate this from first principles, this hooks into |
| 145 | // T's own notion of e, which hopefully will more accurate than one calculated to |
| 146 | // a few epsilon: |
| 147 | // |
| 148 | BOOST_MATH_STD_USING |
| 149 | return exp(static_cast<T>(1)); |
| 150 | } |
| 151 | |
| 152 | template <class T> |
| 153 | template<int N> |
| 154 | inline T constant_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 155 | { |
| 156 | return static_cast<T>(1) / static_cast<T>(2); |
| 157 | } |
| 158 | |
| 159 | template <class T> |
| 160 | template<int M> |
| 161 | inline T constant_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, M>))) |
| 162 | { |
| 163 | BOOST_MATH_STD_USING |
| 164 | // |
| 165 | // This is the method described in: |
| 166 | // "Some New Algorithms for High-Precision Computation of Euler's Constant" |
| 167 | // Richard P Brent and Edwin M McMillan. |
| 168 | // Mathematics of Computation, Volume 34, Number 149, Jan 1980, pages 305-312. |
| 169 | // See equation 17 with p = 2. |
| 170 | // |
| 171 | T n = 3 + (M ? (std::min)(M, tools::digits<T>()) : tools::digits<T>()) / 4; |
| 172 | T lim = M ? ldexp(T(1), 1 - (std::min)(M, tools::digits<T>())) : tools::epsilon<T>(); |
| 173 | T lnn = log(n); |
| 174 | T term = 1; |
| 175 | T N = -lnn; |
| 176 | T D = 1; |
| 177 | T Hk = 0; |
| 178 | T one = 1; |
| 179 | |
| 180 | for(unsigned k = 1;; ++k) |
| 181 | { |
| 182 | term *= n * n; |
| 183 | term /= k * k; |
| 184 | Hk += one / k; |
| 185 | N += term * (Hk - lnn); |
| 186 | D += term; |
| 187 | |
| 188 | if(term < D * lim) |
| 189 | break; |
| 190 | } |
| 191 | return N / D; |
| 192 | } |
| 193 | |
| 194 | template <class T> |
| 195 | template<int N> |
| 196 | inline T constant_euler_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 197 | { |
| 198 | BOOST_MATH_STD_USING |
| 199 | return euler<T, policies::policy<policies::digits2<N> > >() |
| 200 | * euler<T, policies::policy<policies::digits2<N> > >(); |
| 201 | } |
| 202 | |
| 203 | template <class T> |
| 204 | template<int N> |
| 205 | inline T constant_one_div_euler<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 206 | { |
| 207 | BOOST_MATH_STD_USING |
| 208 | return static_cast<T>(1) |
| 209 | / euler<T, policies::policy<policies::digits2<N> > >(); |
| 210 | } |
| 211 | |
| 212 | |
| 213 | template <class T> |
| 214 | template<int N> |
| 215 | inline T constant_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 216 | { |
| 217 | BOOST_MATH_STD_USING |
| 218 | return sqrt(static_cast<T>(2)); |
| 219 | } |
| 220 | |
| 221 | |
| 222 | template <class T> |
| 223 | template<int N> |
| 224 | inline T constant_root_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 225 | { |
| 226 | BOOST_MATH_STD_USING |
| 227 | return sqrt(static_cast<T>(3)); |
| 228 | } |
| 229 | |
| 230 | template <class T> |
| 231 | template<int N> |
| 232 | inline T constant_half_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 233 | { |
| 234 | BOOST_MATH_STD_USING |
| 235 | return sqrt(static_cast<T>(2)) / 2; |
| 236 | } |
| 237 | |
| 238 | template <class T> |
| 239 | template<int N> |
| 240 | inline T constant_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 241 | { |
| 242 | // |
| 243 | // Although there are good ways to calculate this from scratch, this hooks into |
| 244 | // T's own notion of log(2) which will hopefully be accurate to the full precision |
| 245 | // of T: |
| 246 | // |
| 247 | BOOST_MATH_STD_USING |
| 248 | return log(static_cast<T>(2)); |
| 249 | } |
| 250 | |
| 251 | template <class T> |
| 252 | template<int N> |
| 253 | inline T constant_ln_ten<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 254 | { |
| 255 | BOOST_MATH_STD_USING |
| 256 | return log(static_cast<T>(10)); |
| 257 | } |
| 258 | |
| 259 | template <class T> |
| 260 | template<int N> |
| 261 | inline T constant_ln_ln_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 262 | { |
| 263 | BOOST_MATH_STD_USING |
| 264 | return log(log(static_cast<T>(2))); |
| 265 | } |
| 266 | |
| 267 | template <class T> |
| 268 | template<int N> |
| 269 | inline T constant_third<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 270 | { |
| 271 | BOOST_MATH_STD_USING |
| 272 | return static_cast<T>(1) / static_cast<T>(3); |
| 273 | } |
| 274 | |
| 275 | template <class T> |
| 276 | template<int N> |
| 277 | inline T constant_twothirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 278 | { |
| 279 | BOOST_MATH_STD_USING |
| 280 | return static_cast<T>(2) / static_cast<T>(3); |
| 281 | } |
| 282 | |
| 283 | template <class T> |
| 284 | template<int N> |
| 285 | inline T constant_two_thirds<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 286 | { |
| 287 | BOOST_MATH_STD_USING |
| 288 | return static_cast<T>(2) / static_cast<T>(3); |
| 289 | } |
| 290 | |
| 291 | template <class T> |
| 292 | template<int N> |
| 293 | inline T constant_three_quarters<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 294 | { |
| 295 | BOOST_MATH_STD_USING |
| 296 | return static_cast<T>(3) / static_cast<T>(4); |
| 297 | } |
| 298 | |
| 299 | template <class T> |
| 300 | template<int N> |
| 301 | inline T constant_sixth<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 302 | { |
| 303 | BOOST_MATH_STD_USING |
| 304 | return static_cast<T>(1) / static_cast<T>(6); |
| 305 | } |
| 306 | |
| 307 | // Pi and related constants. |
| 308 | template <class T> |
| 309 | template<int N> |
| 310 | inline T constant_pi_minus_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 311 | { |
| 312 | return pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(3); |
| 313 | } |
| 314 | |
| 315 | template <class T> |
| 316 | template<int N> |
| 317 | inline T constant_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 318 | { |
| 319 | return static_cast<T>(4) - pi<T, policies::policy<policies::digits2<N> > >(); |
| 320 | } |
| 321 | |
| 322 | //template <class T> |
| 323 | //template<int N> |
| 324 | //inline T constant_pow23_four_minus_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 325 | //{ |
| 326 | // BOOST_MATH_STD_USING |
| 327 | // return pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1.5)); |
| 328 | //} |
| 329 | |
| 330 | template <class T> |
| 331 | template<int N> |
| 332 | inline T constant_exp_minus_half<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 333 | { |
| 334 | BOOST_MATH_STD_USING |
| 335 | return exp(static_cast<T>(-0.5)); |
| 336 | } |
| 337 | |
| 338 | template <class T> |
| 339 | template<int N> |
| 340 | inline T constant_exp_minus_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 341 | { |
| 342 | BOOST_MATH_STD_USING |
| 343 | return exp(static_cast<T>(-1.)); |
| 344 | } |
| 345 | |
| 346 | template <class T> |
| 347 | template<int N> |
| 348 | inline T constant_one_div_root_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 349 | { |
| 350 | return static_cast<T>(1) / root_two<T, policies::policy<policies::digits2<N> > >(); |
| 351 | } |
| 352 | |
| 353 | template <class T> |
| 354 | template<int N> |
| 355 | inline T constant_one_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 356 | { |
| 357 | return static_cast<T>(1) / root_pi<T, policies::policy<policies::digits2<N> > >(); |
| 358 | } |
| 359 | |
| 360 | template <class T> |
| 361 | template<int N> |
| 362 | inline T constant_one_div_root_two_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 363 | { |
| 364 | return static_cast<T>(1) / root_two_pi<T, policies::policy<policies::digits2<N> > >(); |
| 365 | } |
| 366 | |
| 367 | template <class T> |
| 368 | template<int N> |
| 369 | inline T constant_root_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 370 | { |
| 371 | BOOST_MATH_STD_USING |
| 372 | return sqrt(static_cast<T>(1) / pi<T, policies::policy<policies::digits2<N> > >()); |
| 373 | } |
| 374 | |
| 375 | template <class T> |
| 376 | template<int N> |
| 377 | inline T constant_four_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 378 | { |
| 379 | BOOST_MATH_STD_USING |
| 380 | return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(4) / static_cast<T>(3); |
| 381 | } |
| 382 | |
| 383 | template <class T> |
| 384 | template<int N> |
| 385 | inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 386 | { |
| 387 | BOOST_MATH_STD_USING |
| 388 | return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2); |
| 389 | } |
| 390 | |
| 391 | |
| 392 | template <class T> |
| 393 | template<int N> |
| 394 | inline T constant_third_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 395 | { |
| 396 | BOOST_MATH_STD_USING |
| 397 | return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(3); |
| 398 | } |
| 399 | |
| 400 | template <class T> |
| 401 | template<int N> |
| 402 | inline T constant_sixth_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 403 | { |
| 404 | BOOST_MATH_STD_USING |
| 405 | return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(6); |
| 406 | } |
| 407 | |
| 408 | template <class T> |
| 409 | template<int N> |
| 410 | inline T constant_two_thirds_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 411 | { |
| 412 | BOOST_MATH_STD_USING |
| 413 | return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(2) / static_cast<T>(3); |
| 414 | } |
| 415 | |
| 416 | template <class T> |
| 417 | template<int N> |
| 418 | inline T constant_three_quarters_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 419 | { |
| 420 | BOOST_MATH_STD_USING |
| 421 | return pi<T, policies::policy<policies::digits2<N> > >() * static_cast<T>(3) / static_cast<T>(4); |
| 422 | } |
| 423 | |
| 424 | template <class T> |
| 425 | template<int N> |
| 426 | inline T constant_pi_pow_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 427 | { |
| 428 | BOOST_MATH_STD_USING |
| 429 | return pow(pi<T, policies::policy<policies::digits2<N> > >(), e<T, policies::policy<policies::digits2<N> > >()); // |
| 430 | } |
| 431 | |
| 432 | template <class T> |
| 433 | template<int N> |
| 434 | inline T constant_pi_sqr<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 435 | { |
| 436 | BOOST_MATH_STD_USING |
| 437 | return pi<T, policies::policy<policies::digits2<N> > >() |
| 438 | * pi<T, policies::policy<policies::digits2<N> > >() ; // |
| 439 | } |
| 440 | |
| 441 | template <class T> |
| 442 | template<int N> |
| 443 | inline T constant_pi_sqr_div_six<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 444 | { |
| 445 | BOOST_MATH_STD_USING |
| 446 | return pi<T, policies::policy<policies::digits2<N> > >() |
| 447 | * pi<T, policies::policy<policies::digits2<N> > >() |
| 448 | / static_cast<T>(6); // |
| 449 | } |
| 450 | |
| 451 | |
| 452 | template <class T> |
| 453 | template<int N> |
| 454 | inline T constant_pi_cubed<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 455 | { |
| 456 | BOOST_MATH_STD_USING |
| 457 | return pi<T, policies::policy<policies::digits2<N> > >() |
| 458 | * pi<T, policies::policy<policies::digits2<N> > >() |
| 459 | * pi<T, policies::policy<policies::digits2<N> > >() |
| 460 | ; // |
| 461 | } |
| 462 | |
| 463 | template <class T> |
| 464 | template<int N> |
| 465 | inline T constant_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 466 | { |
| 467 | BOOST_MATH_STD_USING |
| 468 | return pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3)); |
| 469 | } |
| 470 | |
| 471 | template <class T> |
| 472 | template<int N> |
| 473 | inline T constant_one_div_cbrt_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 474 | { |
| 475 | BOOST_MATH_STD_USING |
| 476 | return static_cast<T>(1) |
| 477 | / pow(pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(1)/ static_cast<T>(3)); |
| 478 | } |
| 479 | |
| 480 | // Euler's e |
| 481 | |
| 482 | template <class T> |
| 483 | template<int N> |
| 484 | inline T constant_e_pow_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 485 | { |
| 486 | BOOST_MATH_STD_USING |
| 487 | return pow(e<T, policies::policy<policies::digits2<N> > >(), pi<T, policies::policy<policies::digits2<N> > >()); // |
| 488 | } |
| 489 | |
| 490 | template <class T> |
| 491 | template<int N> |
| 492 | inline T constant_root_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 493 | { |
| 494 | BOOST_MATH_STD_USING |
| 495 | return sqrt(e<T, policies::policy<policies::digits2<N> > >()); |
| 496 | } |
| 497 | |
| 498 | template <class T> |
| 499 | template<int N> |
| 500 | inline T constant_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 501 | { |
| 502 | BOOST_MATH_STD_USING |
| 503 | return log10(e<T, policies::policy<policies::digits2<N> > >()); |
| 504 | } |
| 505 | |
| 506 | template <class T> |
| 507 | template<int N> |
| 508 | inline T constant_one_div_log10_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 509 | { |
| 510 | BOOST_MATH_STD_USING |
| 511 | return static_cast<T>(1) / |
| 512 | log10(e<T, policies::policy<policies::digits2<N> > >()); |
| 513 | } |
| 514 | |
| 515 | // Trigonometric |
| 516 | |
| 517 | template <class T> |
| 518 | template<int N> |
| 519 | inline T constant_degree<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 520 | { |
| 521 | BOOST_MATH_STD_USING |
| 522 | return pi<T, policies::policy<policies::digits2<N> > >() |
| 523 | / static_cast<T>(180) |
| 524 | ; // |
| 525 | } |
| 526 | |
| 527 | template <class T> |
| 528 | template<int N> |
| 529 | inline T constant_radian<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 530 | { |
| 531 | BOOST_MATH_STD_USING |
| 532 | return static_cast<T>(180) |
| 533 | / pi<T, policies::policy<policies::digits2<N> > >() |
| 534 | ; // |
| 535 | } |
| 536 | |
| 537 | template <class T> |
| 538 | template<int N> |
| 539 | inline T constant_sin_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 540 | { |
| 541 | BOOST_MATH_STD_USING |
| 542 | return sin(static_cast<T>(1)) ; // |
| 543 | } |
| 544 | |
| 545 | template <class T> |
| 546 | template<int N> |
| 547 | inline T constant_cos_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 548 | { |
| 549 | BOOST_MATH_STD_USING |
| 550 | return cos(static_cast<T>(1)) ; // |
| 551 | } |
| 552 | |
| 553 | template <class T> |
| 554 | template<int N> |
| 555 | inline T constant_sinh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 556 | { |
| 557 | BOOST_MATH_STD_USING |
| 558 | return sinh(static_cast<T>(1)) ; // |
| 559 | } |
| 560 | |
| 561 | template <class T> |
| 562 | template<int N> |
| 563 | inline T constant_cosh_one<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 564 | { |
| 565 | BOOST_MATH_STD_USING |
| 566 | return cosh(static_cast<T>(1)) ; // |
| 567 | } |
| 568 | |
| 569 | template <class T> |
| 570 | template<int N> |
| 571 | inline T constant_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 572 | { |
| 573 | BOOST_MATH_STD_USING |
| 574 | return (static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ; // |
| 575 | } |
| 576 | |
| 577 | template <class T> |
| 578 | template<int N> |
| 579 | inline T constant_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 580 | { |
| 581 | BOOST_MATH_STD_USING |
| 582 | //return log(phi<T, policies::policy<policies::digits2<N> > >()); // ??? |
| 583 | return log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ); |
| 584 | } |
| 585 | template <class T> |
| 586 | template<int N> |
| 587 | inline T constant_one_div_ln_phi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 588 | { |
| 589 | BOOST_MATH_STD_USING |
| 590 | return static_cast<T>(1) / |
| 591 | log((static_cast<T>(1) + sqrt(static_cast<T>(5)) )/static_cast<T>(2) ); |
| 592 | } |
| 593 | |
| 594 | // Zeta |
| 595 | |
| 596 | template <class T> |
| 597 | template<int N> |
| 598 | inline T constant_zeta_two<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 599 | { |
| 600 | BOOST_MATH_STD_USING |
| 601 | |
| 602 | return pi<T, policies::policy<policies::digits2<N> > >() |
| 603 | * pi<T, policies::policy<policies::digits2<N> > >() |
| 604 | /static_cast<T>(6); |
| 605 | } |
| 606 | |
| 607 | template <class T> |
| 608 | template<int N> |
| 609 | inline T constant_zeta_three<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 610 | { |
| 611 | // http://mathworld.wolfram.com/AperysConstant.html |
| 612 | // http://en.wikipedia.org/wiki/Mathematical_constant |
| 613 | |
| 614 | // http://oeis.org/A002117/constant |
| 615 | //T zeta3("1.20205690315959428539973816151144999076" |
| 616 | // "4986292340498881792271555341838205786313" |
| 617 | // "09018645587360933525814619915"); |
| 618 | |
| 619 | //"1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915" A002117 |
| 620 | // 1.202056903159594285399738161511449990, 76498629234049888179227155534183820578631309018645587360933525814619915780, +00); |
| 621 | //"1.2020569031595942 double |
| 622 | // http://www.spaennare.se/SSPROG/ssnum.pdf // section 11, Algorithm for Apery's constant zeta(3). |
| 623 | // Programs to Calculate some Mathematical Constants to Large Precision, Document Version 1.50 |
| 624 | |
| 625 | // by Stefan Spannare September 19, 2007 |
| 626 | // zeta(3) = 1/64 * sum |
| 627 | BOOST_MATH_STD_USING |
| 628 | T n_fact=static_cast<T>(1); // build n! for n = 0. |
| 629 | T sum = static_cast<double>(77); // Start with n = 0 case. |
| 630 | // for n = 0, (77/1) /64 = 1.203125 |
| 631 | //double lim = std::numeric_limits<double>::epsilon(); |
| 632 | T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>(); |
| 633 | for(unsigned int n = 1; n < 40; ++n) |
| 634 | { // three to five decimal digits per term, so 40 should be plenty for 100 decimal digits. |
| 635 | //cout << "n = " << n << endl; |
| 636 | n_fact *= n; // n! |
| 637 | T n_fact_p10 = n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact * n_fact; // (n!)^10 |
| 638 | T num = ((205 * n * n) + (250 * n) + 77) * n_fact_p10; // 205n^2 + 250n + 77 |
| 639 | // int nn = (2 * n + 1); |
| 640 | // T d = factorial(nn); // inline factorial. |
| 641 | T d = 1; |
| 642 | for(unsigned int i = 1; i <= (n+n + 1); ++i) // (2n + 1) |
| 643 | { |
| 644 | d *= i; |
| 645 | } |
| 646 | T den = d * d * d * d * d; // [(2n+1)!]^5 |
| 647 | //cout << "den = " << den << endl; |
| 648 | T term = num/den; |
| 649 | if (n % 2 != 0) |
| 650 | { //term *= -1; |
| 651 | sum -= term; |
| 652 | } |
| 653 | else |
| 654 | { |
| 655 | sum += term; |
| 656 | } |
| 657 | //cout << "term = " << term << endl; |
| 658 | //cout << "sum/64 = " << sum/64 << endl; |
| 659 | if(abs(term) < lim) |
| 660 | { |
| 661 | break; |
| 662 | } |
| 663 | } |
| 664 | return sum / 64; |
| 665 | } |
| 666 | |
| 667 | template <class T> |
| 668 | template<int N> |
| 669 | inline T constant_catalan<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 670 | { // http://oeis.org/A006752/constant |
| 671 | //T c("0.915965594177219015054603514932384110774" |
| 672 | //"149374281672134266498119621763019776254769479356512926115106248574"); |
| 673 | |
| 674 | // 9.159655941772190150546035149323841107, 74149374281672134266498119621763019776254769479356512926115106248574422619, -01); |
| 675 | |
| 676 | // This is equation (entry) 31 from |
| 677 | // http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm |
| 678 | // See also http://www.mpfr.org/algorithms.pdf |
| 679 | BOOST_MATH_STD_USING |
| 680 | T k_fact = 1; |
| 681 | T tk_fact = 1; |
| 682 | T sum = 1; |
| 683 | T term; |
| 684 | T lim = N ? ldexp(T(1), 1 - (std::min)(N, tools::digits<T>())) : tools::epsilon<T>(); |
| 685 | |
| 686 | for(unsigned k = 1;; ++k) |
| 687 | { |
| 688 | k_fact *= k; |
| 689 | tk_fact *= (2 * k) * (2 * k - 1); |
| 690 | term = k_fact * k_fact / (tk_fact * (2 * k + 1) * (2 * k + 1)); |
| 691 | sum += term; |
| 692 | if(term < lim) |
| 693 | { |
| 694 | break; |
| 695 | } |
| 696 | } |
| 697 | return boost::math::constants::pi<T, boost::math::policies::policy<> >() |
| 698 | * log(2 + boost::math::constants::root_three<T, boost::math::policies::policy<> >()) |
| 699 | / 8 |
| 700 | + 3 * sum / 8; |
| 701 | } |
| 702 | |
| 703 | namespace khinchin_detail{ |
| 704 | |
| 705 | template <class T> |
| 706 | T zeta_polynomial_series(T s, T sc, int digits) |
| 707 | { |
| 708 | BOOST_MATH_STD_USING |
| 709 | // |
| 710 | // This is algorithm 3 from: |
| 711 | // |
| 712 | // "An Efficient Algorithm for the Riemann Zeta Function", P. Borwein, |
| 713 | // Canadian Mathematical Society, Conference Proceedings, 2000. |
| 714 | // See: http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P155.pdf |
| 715 | // |
| 716 | BOOST_MATH_STD_USING |
| 717 | int n = (digits * 19) / 53; |
| 718 | T sum = 0; |
| 719 | T two_n = ldexp(T(1), n); |
| 720 | int ej_sign = 1; |
| 721 | for(int j = 0; j < n; ++j) |
| 722 | { |
| 723 | sum += ej_sign * -two_n / pow(T(j + 1), s); |
| 724 | ej_sign = -ej_sign; |
| 725 | } |
| 726 | T ej_sum = 1; |
| 727 | T ej_term = 1; |
| 728 | for(int j = n; j <= 2 * n - 1; ++j) |
| 729 | { |
| 730 | sum += ej_sign * (ej_sum - two_n) / pow(T(j + 1), s); |
| 731 | ej_sign = -ej_sign; |
| 732 | ej_term *= 2 * n - j; |
| 733 | ej_term /= j - n + 1; |
| 734 | ej_sum += ej_term; |
| 735 | } |
| 736 | return -sum / (two_n * (1 - pow(T(2), sc))); |
| 737 | } |
| 738 | |
| 739 | template <class T> |
| 740 | T khinchin(int digits) |
| 741 | { |
| 742 | BOOST_MATH_STD_USING |
| 743 | T sum = 0; |
| 744 | T term; |
| 745 | T lim = ldexp(T(1), 1-digits); |
| 746 | T factor = 0; |
| 747 | unsigned last_k = 1; |
| 748 | T num = 1; |
| 749 | for(unsigned n = 1;; ++n) |
| 750 | { |
| 751 | for(unsigned k = last_k; k <= 2 * n - 1; ++k) |
| 752 | { |
| 753 | factor += num / k; |
| 754 | num = -num; |
| 755 | } |
| 756 | last_k = 2 * n; |
| 757 | term = (zeta_polynomial_series(T(2 * n), T(1 - T(2 * n)), digits) - 1) * factor / n; |
| 758 | sum += term; |
| 759 | if(term < lim) |
| 760 | break; |
| 761 | } |
| 762 | return exp(sum / boost::math::constants::ln_two<T, boost::math::policies::policy<> >()); |
| 763 | } |
| 764 | |
| 765 | } |
| 766 | |
| 767 | template <class T> |
| 768 | template<int N> |
| 769 | inline T constant_khinchin<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 770 | { |
| 771 | int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>(); |
| 772 | return khinchin_detail::khinchin<T>(n); |
| 773 | } |
| 774 | |
| 775 | template <class T> |
| 776 | template<int N> |
| 777 | inline T constant_extreme_value_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 778 | { // from e_float constants.cpp |
| 779 | // Mathematica: N[12 Sqrt[6] Zeta[3]/Pi^3, 1101] |
| 780 | BOOST_MATH_STD_USING |
| 781 | T ev(12 * sqrt(static_cast<T>(6)) * zeta_three<T, policies::policy<policies::digits2<N> > >() |
| 782 | / pi_cubed<T, policies::policy<policies::digits2<N> > >() ); |
| 783 | |
| 784 | //T ev( |
| 785 | //"1.1395470994046486574927930193898461120875997958365518247216557100852480077060706857071875468869385150" |
| 786 | //"1894272048688553376986765366075828644841024041679714157616857834895702411080704529137366329462558680" |
| 787 | //"2015498788776135705587959418756809080074611906006528647805347822929577145038743873949415294942796280" |
| 788 | //"0895597703063466053535550338267721294164578901640163603544404938283861127819804918174973533694090594" |
| 789 | //"3094963822672055237678432023017824416203652657301470473548274848068762500300316769691474974950757965" |
| 790 | //"8640779777748741897542093874605477776538884083378029488863880220988107155275203245233994097178778984" |
| 791 | //"3488995668362387892097897322246698071290011857605809901090220903955815127463328974447572119951192970" |
| 792 | //"3684453635456559086126406960279692862247058250100678008419431185138019869693206366891639436908462809" |
| 793 | //"9756051372711251054914491837034685476095423926553367264355374652153595857163724698198860485357368964" |
| 794 | //"3807049634423621246870868566707915720704996296083373077647528285782964567312903914752617978405994377" |
| 795 | //"9064157147206717895272199736902453130842229559980076472936976287378945035706933650987259357729800315"); |
| 796 | |
| 797 | return ev; |
| 798 | } |
| 799 | |
| 800 | namespace detail{ |
| 801 | // |
| 802 | // Calculation of the Glaisher constant depends upon calculating the |
| 803 | // derivative of the zeta function at 2, we can then use the relation: |
| 804 | // zeta'(2) = 1/6 pi^2 [euler + ln(2pi)-12ln(A)] |
| 805 | // To get the constant A. |
| 806 | // See equation 45 at http://mathworld.wolfram.com/RiemannZetaFunction.html. |
| 807 | // |
| 808 | // The derivative of the zeta function is computed by direct differentiation |
| 809 | // of the relation: |
| 810 | // (1-2^(1-s))zeta(s) = SUM(n=0, INF){ (-n)^n / (n+1)^s } |
| 811 | // Which gives us 2 slowly converging but alternating sums to compute, |
| 812 | // for this we use Algorithm 1 from "Convergent Acceleration of Alternating Series", |
| 813 | // Henri Cohen, Fernando Rodriguez Villegas and Don Zagier, Experimental Mathematics 9:1 (1999). |
| 814 | // See http://www.math.utexas.edu/users/villegas/publications/conv-accel.pdf |
| 815 | // |
| 816 | template <class T> |
| 817 | T zeta_series_derivative_2(unsigned digits) |
| 818 | { |
| 819 | // Derivative of the series part, evaluated at 2: |
| 820 | BOOST_MATH_STD_USING |
| 821 | int n = digits * 301 * 13 / 10000; |
| 822 | boost::math::itrunc((std::numeric_limits<T>::digits10 + 1) * 1.3); |
| 823 | T d = pow(3 + sqrt(T(8)), n); |
| 824 | d = (d + 1 / d) / 2; |
| 825 | T b = -1; |
| 826 | T c = -d; |
| 827 | T s = 0; |
| 828 | for(int k = 0; k < n; ++k) |
| 829 | { |
| 830 | T a = -log(T(k+1)) / ((k+1) * (k+1)); |
| 831 | c = b - c; |
| 832 | s = s + c * a; |
| 833 | b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); |
| 834 | } |
| 835 | return s / d; |
| 836 | } |
| 837 | |
| 838 | template <class T> |
| 839 | T zeta_series_2(unsigned digits) |
| 840 | { |
| 841 | // Series part of zeta at 2: |
| 842 | BOOST_MATH_STD_USING |
| 843 | int n = digits * 301 * 13 / 10000; |
| 844 | T d = pow(3 + sqrt(T(8)), n); |
| 845 | d = (d + 1 / d) / 2; |
| 846 | T b = -1; |
| 847 | T c = -d; |
| 848 | T s = 0; |
| 849 | for(int k = 0; k < n; ++k) |
| 850 | { |
| 851 | T a = T(1) / ((k + 1) * (k + 1)); |
| 852 | c = b - c; |
| 853 | s = s + c * a; |
| 854 | b = (k + n) * (k - n) * b / ((k + T(0.5f)) * (k + 1)); |
| 855 | } |
| 856 | return s / d; |
| 857 | } |
| 858 | |
| 859 | template <class T> |
| 860 | inline T zeta_series_lead_2() |
| 861 | { |
| 862 | // lead part at 2: |
| 863 | return 2; |
| 864 | } |
| 865 | |
| 866 | template <class T> |
| 867 | inline T zeta_series_derivative_lead_2() |
| 868 | { |
| 869 | // derivative of lead part at 2: |
| 870 | return -2 * boost::math::constants::ln_two<T>(); |
| 871 | } |
| 872 | |
| 873 | template <class T> |
| 874 | inline T zeta_derivative_2(unsigned n) |
| 875 | { |
| 876 | // zeta derivative at 2: |
| 877 | return zeta_series_derivative_2<T>(n) * zeta_series_lead_2<T>() |
| 878 | + zeta_series_derivative_lead_2<T>() * zeta_series_2<T>(n); |
| 879 | } |
| 880 | |
| 881 | } // namespace detail |
| 882 | |
| 883 | template <class T> |
| 884 | template<int N> |
| 885 | inline T constant_glaisher<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 886 | { |
| 887 | |
| 888 | BOOST_MATH_STD_USING |
| 889 | typedef policies::policy<policies::digits2<N> > forwarding_policy; |
| 890 | int n = N ? (std::min)(N, tools::digits<T>()) : tools::digits<T>(); |
| 891 | T v = detail::zeta_derivative_2<T>(n); |
| 892 | v *= 6; |
| 893 | v /= boost::math::constants::pi<T, forwarding_policy>() * boost::math::constants::pi<T, forwarding_policy>(); |
| 894 | v -= boost::math::constants::euler<T, forwarding_policy>(); |
| 895 | v -= log(2 * boost::math::constants::pi<T, forwarding_policy>()); |
| 896 | v /= -12; |
| 897 | return exp(v); |
| 898 | |
| 899 | /* |
| 900 | // from http://mpmath.googlecode.com/svn/data/glaisher.txt |
| 901 | // 20,000 digits of the Glaisher-Kinkelin constant A = exp(1/2 - zeta'(-1)) |
| 902 | // Computed using A = exp((6 (-zeta'(2))/pi^2 + log 2 pi + gamma)/12) |
| 903 | // with Euler-Maclaurin summation for zeta'(2). |
| 904 | T g( |
| 905 | "1.282427129100622636875342568869791727767688927325001192063740021740406308858826" |
| 906 | "46112973649195820237439420646120399000748933157791362775280404159072573861727522" |
| 907 | "14334327143439787335067915257366856907876561146686449997784962754518174312394652" |
| 908 | "76128213808180219264516851546143919901083573730703504903888123418813674978133050" |
| 909 | "93770833682222494115874837348064399978830070125567001286994157705432053927585405" |
| 910 | "81731588155481762970384743250467775147374600031616023046613296342991558095879293" |
| 911 | "36343887288701988953460725233184702489001091776941712153569193674967261270398013" |
| 912 | "52652668868978218897401729375840750167472114895288815996668743164513890306962645" |
| 913 | "59870469543740253099606800842447417554061490189444139386196089129682173528798629" |
| 914 | "88434220366989900606980888785849587494085307347117090132667567503310523405221054" |
| 915 | "14176776156308191919997185237047761312315374135304725819814797451761027540834943" |
| 916 | "14384965234139453373065832325673954957601692256427736926358821692159870775858274" |
| 917 | "69575162841550648585890834128227556209547002918593263079373376942077522290940187"); |
| 918 | |
| 919 | return g; |
| 920 | */ |
| 921 | } |
| 922 | |
| 923 | template <class T> |
| 924 | template<int N> |
| 925 | inline T constant_rayleigh_skewness<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 926 | { // From e_float |
| 927 | // 1100 digits of the Rayleigh distribution skewness |
| 928 | // Mathematica: N[2 Sqrt[Pi] (Pi - 3)/((4 - Pi)^(3/2)), 1100] |
| 929 | |
| 930 | BOOST_MATH_STD_USING |
| 931 | T rs(2 * root_pi<T, policies::policy<policies::digits2<N> > >() |
| 932 | * pi_minus_three<T, policies::policy<policies::digits2<N> > >() |
| 933 | / pow(four_minus_pi<T, policies::policy<policies::digits2<N> > >(), static_cast<T>(3./2)) |
| 934 | ); |
| 935 | // 6.31110657818937138191899351544227779844042203134719497658094585692926819617473725459905027032537306794400047264, |
| 936 | |
| 937 | //"0.6311106578189371381918993515442277798440422031347194976580945856929268196174737254599050270325373067" |
| 938 | //"9440004726436754739597525250317640394102954301685809920213808351450851396781817932734836994829371322" |
| 939 | //"5797376021347531983451654130317032832308462278373358624120822253764532674177325950686466133508511968" |
| 940 | //"2389168716630349407238090652663422922072397393006683401992961569208109477307776249225072042971818671" |
| 941 | //"4058887072693437217879039875871765635655476241624825389439481561152126886932506682176611183750503553" |
| 942 | //"1218982627032068396407180216351425758181396562859085306247387212297187006230007438534686340210168288" |
| 943 | //"8956816965453815849613622117088096547521391672977226658826566757207615552041767516828171274858145957" |
| 944 | //"6137539156656005855905288420585194082284972984285863898582313048515484073396332610565441264220790791" |
| 945 | //"0194897267890422924599776483890102027823328602965235306539844007677157873140562950510028206251529523" |
| 946 | //"7428049693650605954398446899724157486062545281504433364675815915402937209673727753199567661561209251" |
| 947 | //"4695589950526053470201635372590001578503476490223746511106018091907936826431407434894024396366284848"); ; |
| 948 | return rs; |
| 949 | } |
| 950 | |
| 951 | template <class T> |
| 952 | template<int N> |
| 953 | inline T constant_rayleigh_kurtosis_excess<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 954 | { // - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) |
| 955 | // Might provide and calculate this using pi_minus_four. |
| 956 | BOOST_MATH_STD_USING |
| 957 | return - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >() |
| 958 | * pi<T, policies::policy<policies::digits2<N> > >()) |
| 959 | - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) ) |
| 960 | / |
| 961 | ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)) |
| 962 | * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))) |
| 963 | ); |
| 964 | } |
| 965 | |
| 966 | template <class T> |
| 967 | template<int N> |
| 968 | inline T constant_rayleigh_kurtosis<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 969 | { // 3 - (6 Pi^2 - 24 Pi + 16)/((Pi - 4)^2) |
| 970 | // Might provide and calculate this using pi_minus_four. |
| 971 | BOOST_MATH_STD_USING |
| 972 | return static_cast<T>(3) - (((static_cast<T>(6) * pi<T, policies::policy<policies::digits2<N> > >() |
| 973 | * pi<T, policies::policy<policies::digits2<N> > >()) |
| 974 | - (static_cast<T>(24) * pi<T, policies::policy<policies::digits2<N> > >()) + static_cast<T>(16) ) |
| 975 | / |
| 976 | ((pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4)) |
| 977 | * (pi<T, policies::policy<policies::digits2<N> > >() - static_cast<T>(4))) |
| 978 | ); |
| 979 | } |
| 980 | |
| 981 | template <class T> |
| 982 | template<int N> |
| 983 | inline T constant_log2_e<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 984 | { |
| 985 | return 1 / boost::math::constants::ln_two<T>(); |
| 986 | } |
| 987 | |
| 988 | template <class T> |
| 989 | template<int N> |
| 990 | inline T constant_quarter_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 991 | { |
| 992 | return boost::math::constants::pi<T>() / 4; |
| 993 | } |
| 994 | |
| 995 | template <class T> |
| 996 | template<int N> |
| 997 | inline T constant_one_div_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 998 | { |
| 999 | return 1 / boost::math::constants::pi<T>(); |
| 1000 | } |
| 1001 | |
| 1002 | template <class T> |
| 1003 | template<int N> |
| 1004 | inline T constant_two_div_root_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC((boost::integral_constant<int, N>))) |
| 1005 | { |
| 1006 | return 2 * boost::math::constants::one_div_root_pi<T>(); |
| 1007 | } |
| 1008 | |
| 1009 | } |
| 1010 | } |
| 1011 | } |
| 1012 | } // namespaces |
| 1013 | |
| 1014 | #endif // BOOST_MATH_CALCULATE_CONSTANTS_CONSTANTS_INCLUDED |
| 1015 | |