1 | // Copyright Nick Thompson, 2017 |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. |
4 | // (See accompanying file LICENSE_1_0.txt |
5 | // or copy at http://www.boost.org/LICENSE_1_0.txt) |
6 | |
7 | /* |
8 | * This class performs tanh-sinh quadrature on the real line. |
9 | * Tanh-sinh quadrature is exponentially convergent for integrands in Hardy spaces, |
10 | * (see https://en.wikipedia.org/wiki/Hardy_space for a formal definition), and is optimal for a random function from that class. |
11 | * |
12 | * The tanh-sinh quadrature is one of a class of so called "double exponential quadratures"-there is a large family of them, |
13 | * but this one seems to be the most commonly used. |
14 | * |
15 | * As always, there are caveats: For instance, if the function you want to integrate is not holomorphic on the unit disk, |
16 | * then the rapid convergence will be spoiled. In this case, a more appropriate quadrature is (say) Romberg, which does not |
17 | * require the function to be holomorphic, only differentiable up to some order. |
18 | * |
19 | * In addition, if you are integrating a periodic function over a period, the trapezoidal rule is better. |
20 | * |
21 | * References: |
22 | * |
23 | * 1) Mori, Masatake. "Quadrature formulas obtained by variable transformation and the DE-rule." Journal of Computational and Applied Mathematics 12 (1985): 119-130. |
24 | * 2) Bailey, David H., Karthik Jeyabalan, and Xiaoye S. Li. "A comparison of three high-precision quadrature schemes." Experimental Mathematics 14.3 (2005): 317-329. |
25 | * 3) Press, William H., et al. "Numerical recipes third edition: the art of scientific computing." Cambridge University Press 32 (2007): 10013-2473. |
26 | * |
27 | */ |
28 | |
29 | #ifndef BOOST_MATH_QUADRATURE_TANH_SINH_HPP |
30 | #define BOOST_MATH_QUADRATURE_TANH_SINH_HPP |
31 | |
32 | #include <cmath> |
33 | #include <limits> |
34 | #include <memory> |
35 | #include <boost/math/quadrature/detail/tanh_sinh_detail.hpp> |
36 | |
37 | namespace boost{ namespace math{ namespace quadrature { |
38 | |
39 | template<class Real, class Policy = policies::policy<> > |
40 | class tanh_sinh |
41 | { |
42 | public: |
43 | tanh_sinh(size_t max_refinements = 15, const Real& min_complement = tools::min_value<Real>() * 4) |
44 | : m_imp(std::make_shared<detail::tanh_sinh_detail<Real, Policy>>(max_refinements, min_complement)) {} |
45 | |
46 | template<class F> |
47 | auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>())) const; |
48 | template<class F> |
49 | auto integrate(const F f, Real a, Real b, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const; |
50 | |
51 | template<class F> |
52 | auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>())) const; |
53 | template<class F> |
54 | auto integrate(const F f, Real tolerance = tools::root_epsilon<Real>(), Real* error = nullptr, Real* L1 = nullptr, std::size_t* levels = nullptr) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const; |
55 | |
56 | private: |
57 | std::shared_ptr<detail::tanh_sinh_detail<Real, Policy>> m_imp; |
58 | }; |
59 | |
60 | template<class Real, class Policy> |
61 | template<class F> |
62 | auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>())) const |
63 | { |
64 | BOOST_MATH_STD_USING |
65 | using boost::math::constants::half; |
66 | using boost::math::quadrature::detail::tanh_sinh_detail; |
67 | |
68 | static const char* function = "tanh_sinh<%1%>::integrate" ; |
69 | |
70 | typedef decltype(std::declval<F>()(std::declval<Real>())) result_type; |
71 | |
72 | if (!(boost::math::isnan)(a) && !(boost::math::isnan)(b)) |
73 | { |
74 | |
75 | // Infinite limits: |
76 | if ((a <= -tools::max_value<Real>()) && (b >= tools::max_value<Real>())) |
77 | { |
78 | auto u = [&](const Real& t, const Real& tc)->result_type |
79 | { |
80 | Real t_sq = t*t; |
81 | Real inv; |
82 | if (t > 0.5f) |
83 | inv = 1 / ((2 - tc) * tc); |
84 | else if(t < -0.5) |
85 | inv = 1 / ((2 + tc) * -tc); |
86 | else |
87 | inv = 1 / (1 - t_sq); |
88 | return f(t*inv)*(1 + t_sq)*inv*inv; |
89 | }; |
90 | Real limit = sqrt(tools::min_value<Real>()) * 4; |
91 | return m_imp->integrate(u, error, L1, function, limit, limit, tolerance, levels); |
92 | } |
93 | |
94 | // Right limit is infinite: |
95 | if ((boost::math::isfinite)(a) && (b >= tools::max_value<Real>())) |
96 | { |
97 | auto u = [&](const Real& t, const Real& tc)->result_type |
98 | { |
99 | Real z, arg; |
100 | if (t > -0.5f) |
101 | z = 1 / (t + 1); |
102 | else |
103 | z = -1 / tc; |
104 | if (t < 0.5) |
105 | arg = 2 * z + a - 1; |
106 | else |
107 | arg = a + tc / (2 - tc); |
108 | return f(arg)*z*z; |
109 | }; |
110 | Real left_limit = sqrt(tools::min_value<Real>()) * 4; |
111 | result_type Q = Real(2) * m_imp->integrate(u, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels); |
112 | if (L1) |
113 | { |
114 | *L1 *= 2; |
115 | } |
116 | |
117 | return Q; |
118 | } |
119 | |
120 | if ((boost::math::isfinite)(b) && (a <= -tools::max_value<Real>())) |
121 | { |
122 | auto v = [&](const Real& t, const Real& tc)->result_type |
123 | { |
124 | Real z; |
125 | if (t > -0.5) |
126 | z = 1 / (t + 1); |
127 | else |
128 | z = -1 / tc; |
129 | Real arg; |
130 | if (t < 0.5) |
131 | arg = 2 * z - 1; |
132 | else |
133 | arg = tc / (2 - tc); |
134 | return f(b - arg) * z * z; |
135 | }; |
136 | |
137 | Real left_limit = sqrt(tools::min_value<Real>()) * 4; |
138 | result_type Q = Real(2) * m_imp->integrate(v, error, L1, function, left_limit, tools::min_value<Real>(), tolerance, levels); |
139 | if (L1) |
140 | { |
141 | *L1 *= 2; |
142 | } |
143 | return Q; |
144 | } |
145 | |
146 | if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b)) |
147 | { |
148 | if (a == b) |
149 | { |
150 | return result_type(0); |
151 | } |
152 | if (b < a) |
153 | { |
154 | return -this->integrate(f, b, a, tolerance, error, L1, levels); |
155 | } |
156 | Real avg = (a + b)*half<Real>(); |
157 | Real diff = (b - a)*half<Real>(); |
158 | Real avg_over_diff_m1 = a / diff; |
159 | Real avg_over_diff_p1 = b / diff; |
160 | bool have_small_left = fabs(a) < 0.5f; |
161 | bool have_small_right = fabs(b) < 0.5f; |
162 | Real left_min_complement = float_next(avg_over_diff_m1) - avg_over_diff_m1; |
163 | Real min_complement_limit = (std::max)(tools::min_value<Real>(), Real(tools::min_value<Real>() / diff)); |
164 | if (left_min_complement < min_complement_limit) |
165 | left_min_complement = min_complement_limit; |
166 | Real right_min_complement = avg_over_diff_p1 - float_prior(avg_over_diff_p1); |
167 | if (right_min_complement < min_complement_limit) |
168 | right_min_complement = min_complement_limit; |
169 | // |
170 | // These asserts will fail only if rounding errors on |
171 | // type Real have accumulated so much error that it's |
172 | // broken our internal logic. Should that prove to be |
173 | // a persistent issue, we might need to add a bit of fudge |
174 | // factor to move left_min_complement and right_min_complement |
175 | // further from the end points of the range. |
176 | // |
177 | BOOST_ASSERT((left_min_complement * diff + a) > a); |
178 | BOOST_ASSERT((b - right_min_complement * diff) < b); |
179 | auto u = [&](Real z, Real zc)->result_type |
180 | { |
181 | Real position; |
182 | if (z < -0.5) |
183 | { |
184 | if(have_small_left) |
185 | return f(diff * (avg_over_diff_m1 - zc)); |
186 | position = a - diff * zc; |
187 | } |
188 | if (z > 0.5) |
189 | { |
190 | if(have_small_right) |
191 | return f(diff * (avg_over_diff_p1 - zc)); |
192 | position = b - diff * zc; |
193 | } |
194 | else |
195 | position = avg + diff*z; |
196 | BOOST_ASSERT(position != a); |
197 | BOOST_ASSERT(position != b); |
198 | return f(position); |
199 | }; |
200 | result_type Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels); |
201 | |
202 | if (L1) |
203 | { |
204 | *L1 *= diff; |
205 | } |
206 | return Q; |
207 | } |
208 | } |
209 | return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds." , a, Policy()); |
210 | } |
211 | |
212 | template<class Real, class Policy> |
213 | template<class F> |
214 | auto tanh_sinh<Real, Policy>::integrate(const F f, Real a, Real b, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const |
215 | { |
216 | BOOST_MATH_STD_USING |
217 | using boost::math::constants::half; |
218 | using boost::math::quadrature::detail::tanh_sinh_detail; |
219 | |
220 | static const char* function = "tanh_sinh<%1%>::integrate" ; |
221 | |
222 | if ((boost::math::isfinite)(a) && (boost::math::isfinite)(b)) |
223 | { |
224 | if (b <= a) |
225 | { |
226 | return policies::raise_domain_error(function, "Arguments to integrate are in wrong order; integration over [a,b] must have b > a." , a, Policy()); |
227 | } |
228 | auto u = [&](Real z, Real zc)->Real |
229 | { |
230 | if (z < 0) |
231 | return f((a - b) * zc / 2 + a, (b - a) * zc / 2); |
232 | else |
233 | return f((a - b) * zc / 2 + b, (b - a) * zc / 2); |
234 | }; |
235 | Real diff = (b - a)*half<Real>(); |
236 | Real left_min_complement = tools::min_value<Real>() * 4; |
237 | Real right_min_complement = tools::min_value<Real>() * 4; |
238 | Real Q = diff*m_imp->integrate(u, error, L1, function, left_min_complement, right_min_complement, tolerance, levels); |
239 | |
240 | if (L1) |
241 | { |
242 | *L1 *= diff; |
243 | } |
244 | return Q; |
245 | } |
246 | return policies::raise_domain_error(function, "The domain of integration is not sensible; please check the bounds." , a, Policy()); |
247 | } |
248 | |
249 | template<class Real, class Policy> |
250 | template<class F> |
251 | auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>())) const |
252 | { |
253 | using boost::math::quadrature::detail::tanh_sinh_detail; |
254 | static const char* function = "tanh_sinh<%1%>::integrate" ; |
255 | Real min_complement = tools::epsilon<Real>(); |
256 | return m_imp->integrate([&](const Real& arg, const Real&) { return f(arg); }, error, L1, function, min_complement, min_complement, tolerance, levels); |
257 | } |
258 | |
259 | template<class Real, class Policy> |
260 | template<class F> |
261 | auto tanh_sinh<Real, Policy>::integrate(const F f, Real tolerance, Real* error, Real* L1, std::size_t* levels) ->decltype(std::declval<F>()(std::declval<Real>(), std::declval<Real>())) const |
262 | { |
263 | using boost::math::quadrature::detail::tanh_sinh_detail; |
264 | static const char* function = "tanh_sinh<%1%>::integrate" ; |
265 | Real min_complement = tools::min_value<Real>() * 4; |
266 | return m_imp->integrate(f, error, L1, function, min_complement, min_complement, tolerance, levels); |
267 | } |
268 | |
269 | } |
270 | } |
271 | } |
272 | #endif |
273 | |