1 | // Copyright (c) 2006 Xiaogang Zhang |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_BESSEL_J0_HPP |
7 | #define BOOST_MATH_BESSEL_J0_HPP |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #endif |
12 | |
13 | #include <boost/math/constants/constants.hpp> |
14 | #include <boost/math/tools/rational.hpp> |
15 | #include <boost/math/tools/big_constant.hpp> |
16 | #include <boost/assert.hpp> |
17 | |
18 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
19 | // |
20 | // This is the only way we can avoid |
21 | // warning: non-standard suffix on floating constant [-Wpedantic] |
22 | // when building with -Wall -pedantic. Neither __extension__ |
23 | // nor #pragma diagnostic ignored work :( |
24 | // |
25 | #pragma GCC system_header |
26 | #endif |
27 | |
28 | // Bessel function of the first kind of order zero |
29 | // x <= 8, minimax rational approximations on root-bracketing intervals |
30 | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 |
31 | |
32 | namespace boost { namespace math { namespace detail{ |
33 | |
34 | template <typename T> |
35 | T bessel_j0(T x); |
36 | |
37 | template <class T> |
38 | struct bessel_j0_initializer |
39 | { |
40 | struct init |
41 | { |
42 | init() |
43 | { |
44 | do_init(); |
45 | } |
46 | static void do_init() |
47 | { |
48 | bessel_j0(T(1)); |
49 | } |
50 | void force_instantiate()const{} |
51 | }; |
52 | static const init initializer; |
53 | static void force_instantiate() |
54 | { |
55 | initializer.force_instantiate(); |
56 | } |
57 | }; |
58 | |
59 | template <class T> |
60 | const typename bessel_j0_initializer<T>::init bessel_j0_initializer<T>::initializer; |
61 | |
62 | template <typename T> |
63 | T bessel_j0(T x) |
64 | { |
65 | bessel_j0_initializer<T>::force_instantiate(); |
66 | |
67 | static const T P1[] = { |
68 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.1298668500990866786e+11)), |
69 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7282507878605942706e+10)), |
70 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.2140700423540120665e+08)), |
71 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6302997904833794242e+06)), |
72 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6629814655107086448e+04)), |
73 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0344222815443188943e+02)), |
74 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2117036164593528341e-01)) |
75 | }; |
76 | static const T Q1[] = { |
77 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3883787996332290397e+12)), |
78 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.6328198300859648632e+10)), |
79 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3985097372263433271e+08)), |
80 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.5612696224219938200e+05)), |
81 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.3614022392337710626e+02)), |
82 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
83 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) |
84 | }; |
85 | static const T P2[] = { |
86 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8319397969392084011e+03)), |
87 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2254078161378989535e+04)), |
88 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.2879702464464618998e+03)), |
89 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0341910641583726701e+04)), |
90 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1725046279757103576e+04)), |
91 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4176707025325087628e+03)), |
92 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4321196680624245801e+02)), |
93 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8591703355916499363e+01)) |
94 | }; |
95 | static const T Q2[] = { |
96 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.5783478026152301072e+05)), |
97 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4599102262586308984e+05)), |
98 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4055062591169562211e+04)), |
99 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8680990008359188352e+04)), |
100 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9458766545509337327e+03)), |
101 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3307310774649071172e+02)), |
102 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5258076240801555057e+01)), |
103 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) |
104 | }; |
105 | static const T PC[] = { |
106 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)), |
107 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)), |
108 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)), |
109 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)), |
110 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)), |
111 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)) |
112 | }; |
113 | static const T QC[] = { |
114 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)), |
115 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)), |
116 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)), |
117 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)), |
118 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)), |
119 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) |
120 | }; |
121 | static const T PS[] = { |
122 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)), |
123 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)), |
124 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)), |
125 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)), |
126 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)), |
127 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)) |
128 | }; |
129 | static const T QS[] = { |
130 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)), |
131 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)), |
132 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)), |
133 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)), |
134 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)), |
135 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) |
136 | }; |
137 | static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4048255576957727686e+00)), |
138 | x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5200781102863106496e+00)), |
139 | x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.160e+02)), |
140 | x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.42444230422723137837e-03)), |
141 | x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4130e+03)), |
142 | x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.46860286310649596604e-04)); |
143 | |
144 | T value, factor, r, rc, rs; |
145 | |
146 | BOOST_MATH_STD_USING |
147 | using namespace boost::math::tools; |
148 | using namespace boost::math::constants; |
149 | |
150 | if (x < 0) |
151 | { |
152 | x = -x; // even function |
153 | } |
154 | if (x == 0) |
155 | { |
156 | return static_cast<T>(1); |
157 | } |
158 | if (x <= 4) // x in (0, 4] |
159 | { |
160 | T y = x * x; |
161 | BOOST_ASSERT(sizeof(P1) == sizeof(Q1)); |
162 | r = evaluate_rational(P1, Q1, y); |
163 | factor = (x + x1) * ((x - x11/256) - x12); |
164 | value = factor * r; |
165 | } |
166 | else if (x <= 8.0) // x in (4, 8] |
167 | { |
168 | T y = 1 - (x * x)/64; |
169 | BOOST_ASSERT(sizeof(P2) == sizeof(Q2)); |
170 | r = evaluate_rational(P2, Q2, y); |
171 | factor = (x + x2) * ((x - x21/256) - x22); |
172 | value = factor * r; |
173 | } |
174 | else // x in (8, \infty) |
175 | { |
176 | T y = 8 / x; |
177 | T y2 = y * y; |
178 | BOOST_ASSERT(sizeof(PC) == sizeof(QC)); |
179 | BOOST_ASSERT(sizeof(PS) == sizeof(QS)); |
180 | rc = evaluate_rational(PC, QC, y2); |
181 | rs = evaluate_rational(PS, QS, y2); |
182 | factor = constants::one_div_root_pi<T>() / sqrt(x); |
183 | // |
184 | // What follows is really just: |
185 | // |
186 | // T z = x - pi/4; |
187 | // value = factor * (rc * cos(z) - y * rs * sin(z)); |
188 | // |
189 | // But using the addition formulae for sin and cos, plus |
190 | // the special values for sin/cos of pi/4. |
191 | // |
192 | T sx = sin(x); |
193 | T cx = cos(x); |
194 | value = factor * (rc * (cx + sx) - y * rs * (sx - cx)); |
195 | } |
196 | |
197 | return value; |
198 | } |
199 | |
200 | }}} // namespaces |
201 | |
202 | #endif // BOOST_MATH_BESSEL_J0_HPP |
203 | |
204 | |