| 1 | // Copyright (c) 2006 Xiaogang Zhang |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_BESSEL_J0_HPP |
| 7 | #define BOOST_MATH_BESSEL_J0_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/constants/constants.hpp> |
| 14 | #include <boost/math/tools/rational.hpp> |
| 15 | #include <boost/math/tools/big_constant.hpp> |
| 16 | #include <boost/assert.hpp> |
| 17 | |
| 18 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 19 | // |
| 20 | // This is the only way we can avoid |
| 21 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 22 | // when building with -Wall -pedantic. Neither __extension__ |
| 23 | // nor #pragma diagnostic ignored work :( |
| 24 | // |
| 25 | #pragma GCC system_header |
| 26 | #endif |
| 27 | |
| 28 | // Bessel function of the first kind of order zero |
| 29 | // x <= 8, minimax rational approximations on root-bracketing intervals |
| 30 | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 |
| 31 | |
| 32 | namespace boost { namespace math { namespace detail{ |
| 33 | |
| 34 | template <typename T> |
| 35 | T bessel_j0(T x); |
| 36 | |
| 37 | template <class T> |
| 38 | struct bessel_j0_initializer |
| 39 | { |
| 40 | struct init |
| 41 | { |
| 42 | init() |
| 43 | { |
| 44 | do_init(); |
| 45 | } |
| 46 | static void do_init() |
| 47 | { |
| 48 | bessel_j0(T(1)); |
| 49 | } |
| 50 | void force_instantiate()const{} |
| 51 | }; |
| 52 | static const init initializer; |
| 53 | static void force_instantiate() |
| 54 | { |
| 55 | initializer.force_instantiate(); |
| 56 | } |
| 57 | }; |
| 58 | |
| 59 | template <class T> |
| 60 | const typename bessel_j0_initializer<T>::init bessel_j0_initializer<T>::initializer; |
| 61 | |
| 62 | template <typename T> |
| 63 | T bessel_j0(T x) |
| 64 | { |
| 65 | bessel_j0_initializer<T>::force_instantiate(); |
| 66 | |
| 67 | static const T P1[] = { |
| 68 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.1298668500990866786e+11)), |
| 69 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7282507878605942706e+10)), |
| 70 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.2140700423540120665e+08)), |
| 71 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6302997904833794242e+06)), |
| 72 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.6629814655107086448e+04)), |
| 73 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0344222815443188943e+02)), |
| 74 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2117036164593528341e-01)) |
| 75 | }; |
| 76 | static const T Q1[] = { |
| 77 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3883787996332290397e+12)), |
| 78 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.6328198300859648632e+10)), |
| 79 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3985097372263433271e+08)), |
| 80 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.5612696224219938200e+05)), |
| 81 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.3614022392337710626e+02)), |
| 82 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 83 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)) |
| 84 | }; |
| 85 | static const T P2[] = { |
| 86 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8319397969392084011e+03)), |
| 87 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2254078161378989535e+04)), |
| 88 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -7.2879702464464618998e+03)), |
| 89 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0341910641583726701e+04)), |
| 90 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1725046279757103576e+04)), |
| 91 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.4176707025325087628e+03)), |
| 92 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.4321196680624245801e+02)), |
| 93 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.8591703355916499363e+01)) |
| 94 | }; |
| 95 | static const T Q2[] = { |
| 96 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.5783478026152301072e+05)), |
| 97 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4599102262586308984e+05)), |
| 98 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.4055062591169562211e+04)), |
| 99 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8680990008359188352e+04)), |
| 100 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.9458766545509337327e+03)), |
| 101 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3307310774649071172e+02)), |
| 102 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.5258076240801555057e+01)), |
| 103 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) |
| 104 | }; |
| 105 | static const T PC[] = { |
| 106 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)), |
| 107 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)), |
| 108 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)), |
| 109 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)), |
| 110 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)), |
| 111 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)) |
| 112 | }; |
| 113 | static const T QC[] = { |
| 114 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)), |
| 115 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)), |
| 116 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)), |
| 117 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)), |
| 118 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)), |
| 119 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) |
| 120 | }; |
| 121 | static const T PS[] = { |
| 122 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)), |
| 123 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)), |
| 124 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)), |
| 125 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)), |
| 126 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)), |
| 127 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)) |
| 128 | }; |
| 129 | static const T QS[] = { |
| 130 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)), |
| 131 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)), |
| 132 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)), |
| 133 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)), |
| 134 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)), |
| 135 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)) |
| 136 | }; |
| 137 | static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4048255576957727686e+00)), |
| 138 | x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5200781102863106496e+00)), |
| 139 | x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.160e+02)), |
| 140 | x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.42444230422723137837e-03)), |
| 141 | x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4130e+03)), |
| 142 | x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.46860286310649596604e-04)); |
| 143 | |
| 144 | T value, factor, r, rc, rs; |
| 145 | |
| 146 | BOOST_MATH_STD_USING |
| 147 | using namespace boost::math::tools; |
| 148 | using namespace boost::math::constants; |
| 149 | |
| 150 | if (x < 0) |
| 151 | { |
| 152 | x = -x; // even function |
| 153 | } |
| 154 | if (x == 0) |
| 155 | { |
| 156 | return static_cast<T>(1); |
| 157 | } |
| 158 | if (x <= 4) // x in (0, 4] |
| 159 | { |
| 160 | T y = x * x; |
| 161 | BOOST_ASSERT(sizeof(P1) == sizeof(Q1)); |
| 162 | r = evaluate_rational(P1, Q1, y); |
| 163 | factor = (x + x1) * ((x - x11/256) - x12); |
| 164 | value = factor * r; |
| 165 | } |
| 166 | else if (x <= 8.0) // x in (4, 8] |
| 167 | { |
| 168 | T y = 1 - (x * x)/64; |
| 169 | BOOST_ASSERT(sizeof(P2) == sizeof(Q2)); |
| 170 | r = evaluate_rational(P2, Q2, y); |
| 171 | factor = (x + x2) * ((x - x21/256) - x22); |
| 172 | value = factor * r; |
| 173 | } |
| 174 | else // x in (8, \infty) |
| 175 | { |
| 176 | T y = 8 / x; |
| 177 | T y2 = y * y; |
| 178 | BOOST_ASSERT(sizeof(PC) == sizeof(QC)); |
| 179 | BOOST_ASSERT(sizeof(PS) == sizeof(QS)); |
| 180 | rc = evaluate_rational(PC, QC, y2); |
| 181 | rs = evaluate_rational(PS, QS, y2); |
| 182 | factor = constants::one_div_root_pi<T>() / sqrt(x); |
| 183 | // |
| 184 | // What follows is really just: |
| 185 | // |
| 186 | // T z = x - pi/4; |
| 187 | // value = factor * (rc * cos(z) - y * rs * sin(z)); |
| 188 | // |
| 189 | // But using the addition formulae for sin and cos, plus |
| 190 | // the special values for sin/cos of pi/4. |
| 191 | // |
| 192 | T sx = sin(x); |
| 193 | T cx = cos(x); |
| 194 | value = factor * (rc * (cx + sx) - y * rs * (sx - cx)); |
| 195 | } |
| 196 | |
| 197 | return value; |
| 198 | } |
| 199 | |
| 200 | }}} // namespaces |
| 201 | |
| 202 | #endif // BOOST_MATH_BESSEL_J0_HPP |
| 203 | |
| 204 | |