| 1 | // Copyright (c) 2013 Christopher Kormanyos |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | // |
| 6 | // This work is based on an earlier work: |
| 7 | // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations", |
| 8 | // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469 |
| 9 | // |
| 10 | // This header contains implementation details for estimating the zeros |
| 11 | // of cylindrical Bessel and Neumann functions on the positive real axis. |
| 12 | // Support is included for both positive as well as negative order. |
| 13 | // Various methods are used to estimate the roots. These include |
| 14 | // empirical curve fitting and McMahon's asymptotic approximation |
| 15 | // for small order, uniform asymptotic expansion for large order, |
| 16 | // and iteration and root interlacing for negative order. |
| 17 | // |
| 18 | #ifndef BOOST_MATH_BESSEL_JY_ZERO_2013_01_18_HPP_ |
| 19 | #define BOOST_MATH_BESSEL_JY_ZERO_2013_01_18_HPP_ |
| 20 | |
| 21 | #include <algorithm> |
| 22 | #include <boost/math/constants/constants.hpp> |
| 23 | #include <boost/math/special_functions/math_fwd.hpp> |
| 24 | #include <boost/math/special_functions/cbrt.hpp> |
| 25 | #include <boost/math/special_functions/detail/airy_ai_bi_zero.hpp> |
| 26 | |
| 27 | namespace boost { namespace math { |
| 28 | namespace detail |
| 29 | { |
| 30 | namespace bessel_zero |
| 31 | { |
| 32 | template<class T> |
| 33 | T equation_nist_10_21_19(const T& v, const T& a) |
| 34 | { |
| 35 | // Get the initial estimate of the m'th root of Jv or Yv. |
| 36 | // This subroutine is used for the order m with m > 1. |
| 37 | // The order m has been used to create the input parameter a. |
| 38 | |
| 39 | // This is Eq. 10.21.19 in the NIST Handbook. |
| 40 | const T mu = (v * v) * 4U; |
| 41 | const T mu_minus_one = mu - T(1); |
| 42 | const T eight_a_inv = T(1) / (a * 8U); |
| 43 | const T eight_a_inv_squared = eight_a_inv * eight_a_inv; |
| 44 | |
| 45 | const T term3 = ((mu_minus_one * 4U) * ((mu * 7U) - T(31U) )) / 3U; |
| 46 | const T term5 = ((mu_minus_one * 32U) * ((((mu * 83U) - T(982U) ) * mu) + T(3779U) )) / 15U; |
| 47 | const T term7 = ((mu_minus_one * 64U) * ((((((mu * 6949U) - T(153855UL)) * mu) + T(1585743UL)) * mu) - T(6277237UL))) / 105U; |
| 48 | |
| 49 | return a + (((( - term7 |
| 50 | * eight_a_inv_squared - term5) |
| 51 | * eight_a_inv_squared - term3) |
| 52 | * eight_a_inv_squared - mu_minus_one) |
| 53 | * eight_a_inv); |
| 54 | } |
| 55 | |
| 56 | template<typename T> |
| 57 | class equation_as_9_3_39_and_its_derivative |
| 58 | { |
| 59 | public: |
| 60 | equation_as_9_3_39_and_its_derivative(const T& zt) : zeta(zt) { } |
| 61 | |
| 62 | boost::math::tuple<T, T> operator()(const T& z) const |
| 63 | { |
| 64 | BOOST_MATH_STD_USING // ADL of std names, needed for acos, sqrt. |
| 65 | |
| 66 | // Return the function of zeta that is implicitly defined |
| 67 | // in A&S Eq. 9.3.39 as a function of z. The function is |
| 68 | // returned along with its derivative with respect to z. |
| 69 | |
| 70 | const T zsq_minus_one_sqrt = sqrt((z * z) - T(1)); |
| 71 | |
| 72 | const T the_function( |
| 73 | zsq_minus_one_sqrt |
| 74 | - ( acos(T(1) / z) + ((T(2) / 3U) * (zeta * sqrt(zeta))))); |
| 75 | |
| 76 | const T its_derivative(zsq_minus_one_sqrt / z); |
| 77 | |
| 78 | return boost::math::tuple<T, T>(the_function, its_derivative); |
| 79 | } |
| 80 | |
| 81 | private: |
| 82 | const equation_as_9_3_39_and_its_derivative& operator=(const equation_as_9_3_39_and_its_derivative&); |
| 83 | const T zeta; |
| 84 | }; |
| 85 | |
| 86 | template<class T> |
| 87 | static T equation_as_9_5_26(const T& v, const T& ai_bi_root) |
| 88 | { |
| 89 | BOOST_MATH_STD_USING // ADL of std names, needed for log, sqrt. |
| 90 | |
| 91 | // Obtain the estimate of the m'th zero of Jv or Yv. |
| 92 | // The order m has been used to create the input parameter ai_bi_root. |
| 93 | // Here, v is larger than about 2.2. The estimate is computed |
| 94 | // from Abramowitz and Stegun Eqs. 9.5.22 and 9.5.26, page 371. |
| 95 | // |
| 96 | // The inversion of z as a function of zeta is mentioned in the text |
| 97 | // following A&S Eq. 9.5.26. Here, we accomplish the inversion by |
| 98 | // performing a Taylor expansion of Eq. 9.3.39 for large z to order 2 |
| 99 | // and solving the resulting quadratic equation, thereby taking |
| 100 | // the positive root of the quadratic. |
| 101 | // In other words: (2/3)(-zeta)^(3/2) approx = z + 1/(2z) - pi/2. |
| 102 | // This leads to: z^2 - [(2/3)(-zeta)^(3/2) + pi/2]z + 1/2 = 0. |
| 103 | // |
| 104 | // With this initial estimate, Newton-Raphson iteration is used |
| 105 | // to refine the value of the estimate of the root of z |
| 106 | // as a function of zeta. |
| 107 | |
| 108 | const T v_pow_third(boost::math::cbrt(v)); |
| 109 | const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third)); |
| 110 | |
| 111 | // Obtain zeta using the order v combined with the m'th root of |
| 112 | // an airy function, as shown in A&S Eq. 9.5.22. |
| 113 | const T zeta = v_pow_minus_two_thirds * (-ai_bi_root); |
| 114 | |
| 115 | const T zeta_sqrt = sqrt(zeta); |
| 116 | |
| 117 | // Set up a quadratic equation based on the Taylor series |
| 118 | // expansion mentioned above. |
| 119 | const T b = -((((zeta * zeta_sqrt) * 2U) / 3U) + boost::math::constants::half_pi<T>()); |
| 120 | |
| 121 | // Solve the quadratic equation, taking the positive root. |
| 122 | const T z_estimate = (-b + sqrt((b * b) - T(2))) / 2U; |
| 123 | |
| 124 | // Establish the range, the digits, and the iteration limit |
| 125 | // for the upcoming root-finding. |
| 126 | const T range_zmin = (std::max<T>)(z_estimate - T(1), T(1)); |
| 127 | const T range_zmax = z_estimate + T(1); |
| 128 | |
| 129 | const int my_digits10 = static_cast<int>(static_cast<float>(boost::math::tools::digits<T>() * 0.301F)); |
| 130 | |
| 131 | // Select the maximum allowed iterations based on the number |
| 132 | // of decimal digits in the numeric type T, being at least 12. |
| 133 | const boost::uintmax_t iterations_allowed = static_cast<boost::uintmax_t>((std::max)(a: 12, b: my_digits10 * 2)); |
| 134 | |
| 135 | boost::uintmax_t iterations_used = iterations_allowed; |
| 136 | |
| 137 | // Calculate the root of z as a function of zeta. |
| 138 | const T z = boost::math::tools::newton_raphson_iterate( |
| 139 | boost::math::detail::bessel_zero::equation_as_9_3_39_and_its_derivative<T>(zeta), |
| 140 | z_estimate, |
| 141 | range_zmin, |
| 142 | range_zmax, |
| 143 | (std::min)(boost::math::tools::digits<T>(), boost::math::tools::digits<float>()), |
| 144 | iterations_used); |
| 145 | |
| 146 | static_cast<void>(iterations_used); |
| 147 | |
| 148 | // Continue with the implementation of A&S Eq. 9.3.39. |
| 149 | const T zsq_minus_one = (z * z) - T(1); |
| 150 | const T zsq_minus_one_sqrt = sqrt(zsq_minus_one); |
| 151 | |
| 152 | // This is A&S Eq. 9.3.42. |
| 153 | const T b0_term_5_24 = T(5) / ((zsq_minus_one * zsq_minus_one_sqrt) * 24U); |
| 154 | const T b0_term_1_8 = T(1) / ( zsq_minus_one_sqrt * 8U); |
| 155 | const T b0_term_5_48 = T(5) / ((zeta * zeta) * 48U); |
| 156 | |
| 157 | const T b0 = -b0_term_5_48 + ((b0_term_5_24 + b0_term_1_8) / zeta_sqrt); |
| 158 | |
| 159 | // This is the second line of A&S Eq. 9.5.26 for f_k with k = 1. |
| 160 | const T f1 = ((z * zeta_sqrt) * b0) / zsq_minus_one_sqrt; |
| 161 | |
| 162 | // This is A&S Eq. 9.5.22 expanded to k = 1 (i.e., one term in the series). |
| 163 | return (v * z) + (f1 / v); |
| 164 | } |
| 165 | |
| 166 | namespace cyl_bessel_j_zero_detail |
| 167 | { |
| 168 | template<class T> |
| 169 | T equation_nist_10_21_40_a(const T& v) |
| 170 | { |
| 171 | const T v_pow_third(boost::math::cbrt(v)); |
| 172 | const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third)); |
| 173 | |
| 174 | return v * ((((( + T(0.043) |
| 175 | * v_pow_minus_two_thirds - T(0.0908)) |
| 176 | * v_pow_minus_two_thirds - T(0.00397)) |
| 177 | * v_pow_minus_two_thirds + T(1.033150)) |
| 178 | * v_pow_minus_two_thirds + T(1.8557571)) |
| 179 | * v_pow_minus_two_thirds + T(1)); |
| 180 | } |
| 181 | |
| 182 | template<class T, class Policy> |
| 183 | class function_object_jv |
| 184 | { |
| 185 | public: |
| 186 | function_object_jv(const T& v, |
| 187 | const Policy& pol) : my_v(v), |
| 188 | my_pol(pol) { } |
| 189 | |
| 190 | T operator()(const T& x) const |
| 191 | { |
| 192 | return boost::math::cyl_bessel_j(my_v, x, my_pol); |
| 193 | } |
| 194 | |
| 195 | private: |
| 196 | const T my_v; |
| 197 | const Policy& my_pol; |
| 198 | const function_object_jv& operator=(const function_object_jv&); |
| 199 | }; |
| 200 | |
| 201 | template<class T, class Policy> |
| 202 | class function_object_jv_and_jv_prime |
| 203 | { |
| 204 | public: |
| 205 | function_object_jv_and_jv_prime(const T& v, |
| 206 | const bool order_is_zero, |
| 207 | const Policy& pol) : my_v(v), |
| 208 | my_order_is_zero(order_is_zero), |
| 209 | my_pol(pol) { } |
| 210 | |
| 211 | boost::math::tuple<T, T> operator()(const T& x) const |
| 212 | { |
| 213 | // Obtain Jv(x) and Jv'(x). |
| 214 | // Chris's original code called the Bessel function implementation layer direct, |
| 215 | // but that circumvented optimizations for integer-orders. Call the documented |
| 216 | // top level functions instead, and let them sort out which implementation to use. |
| 217 | T j_v; |
| 218 | T j_v_prime; |
| 219 | |
| 220 | if(my_order_is_zero) |
| 221 | { |
| 222 | j_v = boost::math::cyl_bessel_j(0, x, my_pol); |
| 223 | j_v_prime = -boost::math::cyl_bessel_j(1, x, my_pol); |
| 224 | } |
| 225 | else |
| 226 | { |
| 227 | j_v = boost::math::cyl_bessel_j( my_v, x, my_pol); |
| 228 | const T j_v_m1 (boost::math::cyl_bessel_j(T(my_v - 1), x, my_pol)); |
| 229 | j_v_prime = j_v_m1 - ((my_v * j_v) / x); |
| 230 | } |
| 231 | |
| 232 | // Return a tuple containing both Jv(x) and Jv'(x). |
| 233 | return boost::math::make_tuple(j_v, j_v_prime); |
| 234 | } |
| 235 | |
| 236 | private: |
| 237 | const T my_v; |
| 238 | const bool my_order_is_zero; |
| 239 | const Policy& my_pol; |
| 240 | const function_object_jv_and_jv_prime& operator=(const function_object_jv_and_jv_prime&); |
| 241 | }; |
| 242 | |
| 243 | template<class T> bool my_bisection_unreachable_tolerance(const T&, const T&) { return false; } |
| 244 | |
| 245 | template<class T, class Policy> |
| 246 | T initial_guess(const T& v, const int m, const Policy& pol) |
| 247 | { |
| 248 | BOOST_MATH_STD_USING // ADL of std names, needed for floor. |
| 249 | |
| 250 | // Compute an estimate of the m'th root of cyl_bessel_j. |
| 251 | |
| 252 | T guess; |
| 253 | |
| 254 | // There is special handling for negative order. |
| 255 | if(v < 0) |
| 256 | { |
| 257 | if((m == 1) && (v > -0.5F)) |
| 258 | { |
| 259 | // For small, negative v, use the results of empirical curve fitting. |
| 260 | // Mathematica(R) session for the coefficients: |
| 261 | // Table[{n, BesselJZero[n, 1]}, {n, -(1/2), 0, 1/10}] |
| 262 | // N[%, 20] |
| 263 | // Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n] |
| 264 | guess = ((((( - T(0.2321156900729) |
| 265 | * v - T(0.1493247777488)) |
| 266 | * v - T(0.15205419167239)) |
| 267 | * v + T(0.07814930561249)) |
| 268 | * v - T(0.17757573537688)) |
| 269 | * v + T(1.542805677045663)) |
| 270 | * v + T(2.40482555769577277); |
| 271 | |
| 272 | return guess; |
| 273 | } |
| 274 | |
| 275 | // Create the positive order and extract its positive floor integer part. |
| 276 | const T vv(-v); |
| 277 | const T vv_floor(floor(vv)); |
| 278 | |
| 279 | // The to-be-found root is bracketed by the roots of the |
| 280 | // Bessel function whose reflected, positive integer order |
| 281 | // is less than, but nearest to vv. |
| 282 | |
| 283 | T root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(vv_floor, m, pol); |
| 284 | T root_lo; |
| 285 | |
| 286 | if(m == 1) |
| 287 | { |
| 288 | // The estimate of the first root for negative order is found using |
| 289 | // an adaptive range-searching algorithm. |
| 290 | root_lo = T(root_hi - 0.1F); |
| 291 | |
| 292 | const bool hi_end_of_bracket_is_negative = (boost::math::cyl_bessel_j(v, root_hi, pol) < 0); |
| 293 | |
| 294 | while((root_lo > boost::math::tools::epsilon<T>())) |
| 295 | { |
| 296 | const bool lo_end_of_bracket_is_negative = (boost::math::cyl_bessel_j(v, root_lo, pol) < 0); |
| 297 | |
| 298 | if(hi_end_of_bracket_is_negative != lo_end_of_bracket_is_negative) |
| 299 | { |
| 300 | break; |
| 301 | } |
| 302 | |
| 303 | root_hi = root_lo; |
| 304 | |
| 305 | // Decrease the lower end of the bracket using an adaptive algorithm. |
| 306 | if(root_lo > 0.5F) |
| 307 | { |
| 308 | root_lo -= 0.5F; |
| 309 | } |
| 310 | else |
| 311 | { |
| 312 | root_lo *= 0.75F; |
| 313 | } |
| 314 | } |
| 315 | } |
| 316 | else |
| 317 | { |
| 318 | root_lo = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(vv_floor, m - 1, pol); |
| 319 | } |
| 320 | |
| 321 | // Perform several steps of bisection iteration to refine the guess. |
| 322 | boost::uintmax_t number_of_iterations(12U); |
| 323 | |
| 324 | // Do the bisection iteration. |
| 325 | const boost::math::tuple<T, T> guess_pair = |
| 326 | boost::math::tools::bisect( |
| 327 | boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::function_object_jv<T, Policy>(v, pol), |
| 328 | root_lo, |
| 329 | root_hi, |
| 330 | boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::my_bisection_unreachable_tolerance<T>, |
| 331 | number_of_iterations); |
| 332 | |
| 333 | return (boost::math::get<0>(guess_pair) + boost::math::get<1>(guess_pair)) / 2U; |
| 334 | } |
| 335 | |
| 336 | if(m == 1U) |
| 337 | { |
| 338 | // Get the initial estimate of the first root. |
| 339 | |
| 340 | if(v < 2.2F) |
| 341 | { |
| 342 | // For small v, use the results of empirical curve fitting. |
| 343 | // Mathematica(R) session for the coefficients: |
| 344 | // Table[{n, BesselJZero[n, 1]}, {n, 0, 22/10, 1/10}] |
| 345 | // N[%, 20] |
| 346 | // Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n] |
| 347 | guess = ((((( - T(0.0008342379046010) |
| 348 | * v + T(0.007590035637410)) |
| 349 | * v - T(0.030640914772013)) |
| 350 | * v + T(0.078232088020106)) |
| 351 | * v - T(0.169668712590620)) |
| 352 | * v + T(1.542187960073750)) |
| 353 | * v + T(2.4048359915254634); |
| 354 | } |
| 355 | else |
| 356 | { |
| 357 | // For larger v, use the first line of Eqs. 10.21.40 in the NIST Handbook. |
| 358 | guess = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::equation_nist_10_21_40_a(v); |
| 359 | } |
| 360 | } |
| 361 | else |
| 362 | { |
| 363 | if(v < 2.2F) |
| 364 | { |
| 365 | // Use Eq. 10.21.19 in the NIST Handbook. |
| 366 | const T a(((v + T(m * 2U)) - T(0.5)) * boost::math::constants::half_pi<T>()); |
| 367 | |
| 368 | guess = boost::math::detail::bessel_zero::equation_nist_10_21_19(v, a); |
| 369 | } |
| 370 | else |
| 371 | { |
| 372 | // Get an estimate of the m'th root of airy_ai. |
| 373 | const T airy_ai_root(boost::math::detail::airy_zero::airy_ai_zero_detail::initial_guess<T>(m)); |
| 374 | |
| 375 | // Use Eq. 9.5.26 in the A&S Handbook. |
| 376 | guess = boost::math::detail::bessel_zero::equation_as_9_5_26(v, airy_ai_root); |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | return guess; |
| 381 | } |
| 382 | } // namespace cyl_bessel_j_zero_detail |
| 383 | |
| 384 | namespace cyl_neumann_zero_detail |
| 385 | { |
| 386 | template<class T> |
| 387 | T equation_nist_10_21_40_b(const T& v) |
| 388 | { |
| 389 | const T v_pow_third(boost::math::cbrt(v)); |
| 390 | const T v_pow_minus_two_thirds(T(1) / (v_pow_third * v_pow_third)); |
| 391 | |
| 392 | return v * ((((( - T(0.001) |
| 393 | * v_pow_minus_two_thirds - T(0.0060)) |
| 394 | * v_pow_minus_two_thirds + T(0.01198)) |
| 395 | * v_pow_minus_two_thirds + T(0.260351)) |
| 396 | * v_pow_minus_two_thirds + T(0.9315768)) |
| 397 | * v_pow_minus_two_thirds + T(1)); |
| 398 | } |
| 399 | |
| 400 | template<class T, class Policy> |
| 401 | class function_object_yv |
| 402 | { |
| 403 | public: |
| 404 | function_object_yv(const T& v, |
| 405 | const Policy& pol) : my_v(v), |
| 406 | my_pol(pol) { } |
| 407 | |
| 408 | T operator()(const T& x) const |
| 409 | { |
| 410 | return boost::math::cyl_neumann(my_v, x, my_pol); |
| 411 | } |
| 412 | |
| 413 | private: |
| 414 | const T my_v; |
| 415 | const Policy& my_pol; |
| 416 | const function_object_yv& operator=(const function_object_yv&); |
| 417 | }; |
| 418 | |
| 419 | template<class T, class Policy> |
| 420 | class function_object_yv_and_yv_prime |
| 421 | { |
| 422 | public: |
| 423 | function_object_yv_and_yv_prime(const T& v, |
| 424 | const Policy& pol) : my_v(v), |
| 425 | my_pol(pol) { } |
| 426 | |
| 427 | boost::math::tuple<T, T> operator()(const T& x) const |
| 428 | { |
| 429 | const T half_epsilon(boost::math::tools::epsilon<T>() / 2U); |
| 430 | |
| 431 | const bool order_is_zero = ((my_v > -half_epsilon) && (my_v < +half_epsilon)); |
| 432 | |
| 433 | // Obtain Yv(x) and Yv'(x). |
| 434 | // Chris's original code called the Bessel function implementation layer direct, |
| 435 | // but that circumvented optimizations for integer-orders. Call the documented |
| 436 | // top level functions instead, and let them sort out which implementation to use. |
| 437 | T y_v; |
| 438 | T y_v_prime; |
| 439 | |
| 440 | if(order_is_zero) |
| 441 | { |
| 442 | y_v = boost::math::cyl_neumann(0, x, my_pol); |
| 443 | y_v_prime = -boost::math::cyl_neumann(1, x, my_pol); |
| 444 | } |
| 445 | else |
| 446 | { |
| 447 | y_v = boost::math::cyl_neumann( my_v, x, my_pol); |
| 448 | const T y_v_m1 (boost::math::cyl_neumann(T(my_v - 1), x, my_pol)); |
| 449 | y_v_prime = y_v_m1 - ((my_v * y_v) / x); |
| 450 | } |
| 451 | |
| 452 | // Return a tuple containing both Yv(x) and Yv'(x). |
| 453 | return boost::math::make_tuple(y_v, y_v_prime); |
| 454 | } |
| 455 | |
| 456 | private: |
| 457 | const T my_v; |
| 458 | const Policy& my_pol; |
| 459 | const function_object_yv_and_yv_prime& operator=(const function_object_yv_and_yv_prime&); |
| 460 | }; |
| 461 | |
| 462 | template<class T> bool my_bisection_unreachable_tolerance(const T&, const T&) { return false; } |
| 463 | |
| 464 | template<class T, class Policy> |
| 465 | T initial_guess(const T& v, const int m, const Policy& pol) |
| 466 | { |
| 467 | BOOST_MATH_STD_USING // ADL of std names, needed for floor. |
| 468 | |
| 469 | // Compute an estimate of the m'th root of cyl_neumann. |
| 470 | |
| 471 | T guess; |
| 472 | |
| 473 | // There is special handling for negative order. |
| 474 | if(v < 0) |
| 475 | { |
| 476 | // Create the positive order and extract its positive floor and ceiling integer parts. |
| 477 | const T vv(-v); |
| 478 | const T vv_floor(floor(vv)); |
| 479 | |
| 480 | // The to-be-found root is bracketed by the roots of the |
| 481 | // Bessel function whose reflected, positive integer order |
| 482 | // is less than, but nearest to vv. |
| 483 | |
| 484 | // The special case of negative, half-integer order uses |
| 485 | // the relation between Yv and spherical Bessel functions |
| 486 | // in order to obtain the bracket for the root. |
| 487 | // In these special cases, cyl_neumann(-n/2, x) = sph_bessel_j(+n/2, x) |
| 488 | // for v = -n/2. |
| 489 | |
| 490 | T root_hi; |
| 491 | T root_lo; |
| 492 | |
| 493 | if(m == 1) |
| 494 | { |
| 495 | // The estimate of the first root for negative order is found using |
| 496 | // an adaptive range-searching algorithm. |
| 497 | // Take special precautions for the discontinuity at negative, |
| 498 | // half-integer orders and use different brackets above and below these. |
| 499 | if(T(vv - vv_floor) < 0.5F) |
| 500 | { |
| 501 | root_hi = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m, pol); |
| 502 | } |
| 503 | else |
| 504 | { |
| 505 | root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m, pol); |
| 506 | } |
| 507 | |
| 508 | root_lo = T(root_hi - 0.1F); |
| 509 | |
| 510 | const bool hi_end_of_bracket_is_negative = (boost::math::cyl_neumann(v, root_hi, pol) < 0); |
| 511 | |
| 512 | while((root_lo > boost::math::tools::epsilon<T>())) |
| 513 | { |
| 514 | const bool lo_end_of_bracket_is_negative = (boost::math::cyl_neumann(v, root_lo, pol) < 0); |
| 515 | |
| 516 | if(hi_end_of_bracket_is_negative != lo_end_of_bracket_is_negative) |
| 517 | { |
| 518 | break; |
| 519 | } |
| 520 | |
| 521 | root_hi = root_lo; |
| 522 | |
| 523 | // Decrease the lower end of the bracket using an adaptive algorithm. |
| 524 | if(root_lo > 0.5F) |
| 525 | { |
| 526 | root_lo -= 0.5F; |
| 527 | } |
| 528 | else |
| 529 | { |
| 530 | root_lo *= 0.75F; |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | else |
| 535 | { |
| 536 | if(T(vv - vv_floor) < 0.5F) |
| 537 | { |
| 538 | root_lo = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m - 1, pol); |
| 539 | root_hi = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::initial_guess(vv_floor, m, pol); |
| 540 | root_lo += 0.01F; |
| 541 | root_hi += 0.01F; |
| 542 | } |
| 543 | else |
| 544 | { |
| 545 | root_lo = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m - 1, pol); |
| 546 | root_hi = boost::math::detail::bessel_zero::cyl_bessel_j_zero_detail::initial_guess(T(vv_floor + 0.5F), m, pol); |
| 547 | root_lo += 0.01F; |
| 548 | root_hi += 0.01F; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | // Perform several steps of bisection iteration to refine the guess. |
| 553 | boost::uintmax_t number_of_iterations(12U); |
| 554 | |
| 555 | // Do the bisection iteration. |
| 556 | const boost::math::tuple<T, T> guess_pair = |
| 557 | boost::math::tools::bisect( |
| 558 | boost::math::detail::bessel_zero::cyl_neumann_zero_detail::function_object_yv<T, Policy>(v, pol), |
| 559 | root_lo, |
| 560 | root_hi, |
| 561 | boost::math::detail::bessel_zero::cyl_neumann_zero_detail::my_bisection_unreachable_tolerance<T>, |
| 562 | number_of_iterations); |
| 563 | |
| 564 | return (boost::math::get<0>(guess_pair) + boost::math::get<1>(guess_pair)) / 2U; |
| 565 | } |
| 566 | |
| 567 | if(m == 1U) |
| 568 | { |
| 569 | // Get the initial estimate of the first root. |
| 570 | |
| 571 | if(v < 2.2F) |
| 572 | { |
| 573 | // For small v, use the results of empirical curve fitting. |
| 574 | // Mathematica(R) session for the coefficients: |
| 575 | // Table[{n, BesselYZero[n, 1]}, {n, 0, 22/10, 1/10}] |
| 576 | // N[%, 20] |
| 577 | // Fit[%, {n^0, n^1, n^2, n^3, n^4, n^5, n^6}, n] |
| 578 | guess = ((((( - T(0.0025095909235652) |
| 579 | * v + T(0.021291887049053)) |
| 580 | * v - T(0.076487785486526)) |
| 581 | * v + T(0.159110268115362)) |
| 582 | * v - T(0.241681668765196)) |
| 583 | * v + T(1.4437846310885244)) |
| 584 | * v + T(0.89362115190200490); |
| 585 | } |
| 586 | else |
| 587 | { |
| 588 | // For larger v, use the second line of Eqs. 10.21.40 in the NIST Handbook. |
| 589 | guess = boost::math::detail::bessel_zero::cyl_neumann_zero_detail::equation_nist_10_21_40_b(v); |
| 590 | } |
| 591 | } |
| 592 | else |
| 593 | { |
| 594 | if(v < 2.2F) |
| 595 | { |
| 596 | // Use Eq. 10.21.19 in the NIST Handbook. |
| 597 | const T a(((v + T(m * 2U)) - T(1.5)) * boost::math::constants::half_pi<T>()); |
| 598 | |
| 599 | guess = boost::math::detail::bessel_zero::equation_nist_10_21_19(v, a); |
| 600 | } |
| 601 | else |
| 602 | { |
| 603 | // Get an estimate of the m'th root of airy_bi. |
| 604 | const T airy_bi_root(boost::math::detail::airy_zero::airy_bi_zero_detail::initial_guess<T>(m)); |
| 605 | |
| 606 | // Use Eq. 9.5.26 in the A&S Handbook. |
| 607 | guess = boost::math::detail::bessel_zero::equation_as_9_5_26(v, airy_bi_root); |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | return guess; |
| 612 | } |
| 613 | } // namespace cyl_neumann_zero_detail |
| 614 | } // namespace bessel_zero |
| 615 | } } } // namespace boost::math::detail |
| 616 | |
| 617 | #endif // BOOST_MATH_BESSEL_JY_ZERO_2013_01_18_HPP_ |
| 618 | |