1 | // Copyright (c) 2006 Xiaogang Zhang |
2 | // Copyright (c) 2017 John Maddock |
3 | // Use, modification and distribution are subject to the |
4 | // Boost Software License, Version 1.0. (See accompanying file |
5 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
6 | |
7 | #ifndef BOOST_MATH_BESSEL_K0_HPP |
8 | #define BOOST_MATH_BESSEL_K0_HPP |
9 | |
10 | #ifdef _MSC_VER |
11 | #pragma once |
12 | #pragma warning(push) |
13 | #pragma warning(disable:4702) // Unreachable code (release mode only warning) |
14 | #endif |
15 | |
16 | #include <boost/math/tools/rational.hpp> |
17 | #include <boost/math/tools/big_constant.hpp> |
18 | #include <boost/math/policies/error_handling.hpp> |
19 | #include <boost/assert.hpp> |
20 | |
21 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
22 | // |
23 | // This is the only way we can avoid |
24 | // warning: non-standard suffix on floating constant [-Wpedantic] |
25 | // when building with -Wall -pedantic. Neither __extension__ |
26 | // nor #pragma diagnostic ignored work :( |
27 | // |
28 | #pragma GCC system_header |
29 | #endif |
30 | |
31 | // Modified Bessel function of the second kind of order zero |
32 | // minimax rational approximations on intervals, see |
33 | // Russon and Blair, Chalk River Report AECL-3461, 1969, |
34 | // as revised by Pavel Holoborodko in "Rational Approximations |
35 | // for the Modified Bessel Function of the Second Kind - K0(x) |
36 | // for Computations with Double Precision", see |
37 | // http://www.advanpix.com/2015/11/25/rational-approximations-for-the-modified-bessel-function-of-the-second-kind-k0-for-computations-with-double-precision/ |
38 | // |
39 | // The actual coefficients used are our own derivation (by JM) |
40 | // since we extend to both greater and lesser precision than the |
41 | // references above. We can also improve performance WRT to |
42 | // Holoborodko without loss of precision. |
43 | |
44 | namespace boost { namespace math { namespace detail{ |
45 | |
46 | template <typename T> |
47 | T bessel_k0(const T& x); |
48 | |
49 | template <class T, class tag> |
50 | struct bessel_k0_initializer |
51 | { |
52 | struct init |
53 | { |
54 | init() |
55 | { |
56 | do_init(tag()); |
57 | } |
58 | static void do_init(const boost::integral_constant<int, 113>&) |
59 | { |
60 | bessel_k0(T(0.5)); |
61 | bessel_k0(T(1.5)); |
62 | } |
63 | static void do_init(const boost::integral_constant<int, 64>&) |
64 | { |
65 | bessel_k0(T(0.5)); |
66 | bessel_k0(T(1.5)); |
67 | } |
68 | template <class U> |
69 | static void do_init(const U&){} |
70 | void force_instantiate()const{} |
71 | }; |
72 | static const init initializer; |
73 | static void force_instantiate() |
74 | { |
75 | initializer.force_instantiate(); |
76 | } |
77 | }; |
78 | |
79 | template <class T, class tag> |
80 | const typename bessel_k0_initializer<T, tag>::init bessel_k0_initializer<T, tag>::initializer; |
81 | |
82 | |
83 | template <typename T, int N> |
84 | T bessel_k0_imp(const T& x, const boost::integral_constant<int, N>&) |
85 | { |
86 | BOOST_ASSERT(0); |
87 | return 0; |
88 | } |
89 | |
90 | template <typename T> |
91 | T bessel_k0_imp(const T& x, const boost::integral_constant<int, 24>&) |
92 | { |
93 | BOOST_MATH_STD_USING |
94 | if(x <= 1) |
95 | { |
96 | // Maximum Deviation Found : 2.358e-09 |
97 | // Expected Error Term : -2.358e-09 |
98 | // Maximum Relative Change in Control Points : 9.552e-02 |
99 | // Max Error found at float precision = Poly : 4.448220e-08 |
100 | static const T Y = 1.137250900268554688f; |
101 | static const T P[] = |
102 | { |
103 | -1.372508979104259711e-01f, |
104 | 2.622545986273687617e-01f, |
105 | 5.047103728247919836e-03f |
106 | }; |
107 | static const T Q[] = |
108 | { |
109 | 1.000000000000000000e+00f, |
110 | -8.928694018000029415e-02f, |
111 | 2.985980684180969241e-03f |
112 | }; |
113 | T a = x * x / 4; |
114 | a = (tools::evaluate_rational(P, Q, a) + Y) * a + 1; |
115 | |
116 | // Maximum Deviation Found: 1.346e-09 |
117 | // Expected Error Term : -1.343e-09 |
118 | // Maximum Relative Change in Control Points : 2.405e-02 |
119 | // Max Error found at float precision = Poly : 1.354814e-07 |
120 | static const T P2[] = { |
121 | 1.159315158e-01f, |
122 | 2.789828686e-01f, |
123 | 2.524902861e-02f, |
124 | 8.457241514e-04f, |
125 | 1.530051997e-05f |
126 | }; |
127 | return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a; |
128 | } |
129 | else |
130 | { |
131 | // Maximum Deviation Found: 1.587e-08 |
132 | // Expected Error Term : 1.531e-08 |
133 | // Maximum Relative Change in Control Points : 9.064e-02 |
134 | // Max Error found at float precision = Poly : 5.065020e-08 |
135 | |
136 | static const T P[] = |
137 | { |
138 | 2.533141220e-01f, |
139 | 5.221502603e-01f, |
140 | 6.380180669e-02f, |
141 | -5.934976547e-02f |
142 | }; |
143 | static const T Q[] = |
144 | { |
145 | 1.000000000e+00f, |
146 | 2.679722431e+00f, |
147 | 1.561635813e+00f, |
148 | 1.573660661e-01f |
149 | }; |
150 | if(x < tools::log_max_value<T>()) |
151 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + 1) * exp(-x) / sqrt(x)); |
152 | else |
153 | { |
154 | T ex = exp(-x / 2); |
155 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + 1) * ex / sqrt(x)) * ex; |
156 | } |
157 | } |
158 | } |
159 | |
160 | template <typename T> |
161 | T bessel_k0_imp(const T& x, const boost::integral_constant<int, 53>&) |
162 | { |
163 | BOOST_MATH_STD_USING |
164 | if(x <= 1) |
165 | { |
166 | // Maximum Deviation Found: 6.077e-17 |
167 | // Expected Error Term : -6.077e-17 |
168 | // Maximum Relative Change in Control Points : 7.797e-02 |
169 | // Max Error found at double precision = Poly : 1.003156e-16 |
170 | static const T Y = 1.137250900268554688; |
171 | static const T P[] = |
172 | { |
173 | -1.372509002685546267e-01, |
174 | 2.574916117833312855e-01, |
175 | 1.395474602146869316e-02, |
176 | 5.445476986653926759e-04, |
177 | 7.125159422136622118e-06 |
178 | }; |
179 | static const T Q[] = |
180 | { |
181 | 1.000000000000000000e+00, |
182 | -5.458333438017788530e-02, |
183 | 1.291052816975251298e-03, |
184 | -1.367653946978586591e-05 |
185 | }; |
186 | |
187 | T a = x * x / 4; |
188 | a = (tools::evaluate_polynomial(P, a) / tools::evaluate_polynomial(Q, a) + Y) * a + 1; |
189 | |
190 | // Maximum Deviation Found: 3.429e-18 |
191 | // Expected Error Term : 3.392e-18 |
192 | // Maximum Relative Change in Control Points : 2.041e-02 |
193 | // Max Error found at double precision = Poly : 2.513112e-16 |
194 | static const T P2[] = |
195 | { |
196 | 1.159315156584124484e-01, |
197 | 2.789828789146031732e-01, |
198 | 2.524892993216121934e-02, |
199 | 8.460350907213637784e-04, |
200 | 1.491471924309617534e-05, |
201 | 1.627106892422088488e-07, |
202 | 1.208266102392756055e-09, |
203 | 6.611686391749704310e-12 |
204 | }; |
205 | |
206 | return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a; |
207 | } |
208 | else |
209 | { |
210 | // Maximum Deviation Found: 4.316e-17 |
211 | // Expected Error Term : 9.570e-18 |
212 | // Maximum Relative Change in Control Points : 2.757e-01 |
213 | // Max Error found at double precision = Poly : 1.001560e-16 |
214 | |
215 | static const T Y = 1; |
216 | static const T P[] = |
217 | { |
218 | 2.533141373155002416e-01, |
219 | 3.628342133984595192e+00, |
220 | 1.868441889406606057e+01, |
221 | 4.306243981063412784e+01, |
222 | 4.424116209627428189e+01, |
223 | 1.562095339356220468e+01, |
224 | -1.810138978229410898e+00, |
225 | -1.414237994269995877e+00, |
226 | -9.369168119754924625e-02 |
227 | }; |
228 | static const T Q[] = |
229 | { |
230 | 1.000000000000000000e+00, |
231 | 1.494194694879908328e+01, |
232 | 8.265296455388554217e+01, |
233 | 2.162779506621866970e+02, |
234 | 2.845145155184222157e+02, |
235 | 1.851714491916334995e+02, |
236 | 5.486540717439723515e+01, |
237 | 6.118075837628957015e+00, |
238 | 1.586261269326235053e-01 |
239 | }; |
240 | if(x < tools::log_max_value<T>()) |
241 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
242 | else |
243 | { |
244 | T ex = exp(-x / 2); |
245 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex; |
246 | } |
247 | } |
248 | } |
249 | |
250 | template <typename T> |
251 | T bessel_k0_imp(const T& x, const boost::integral_constant<int, 64>&) |
252 | { |
253 | BOOST_MATH_STD_USING |
254 | if(x <= 1) |
255 | { |
256 | // Maximum Deviation Found: 2.180e-22 |
257 | // Expected Error Term : 2.180e-22 |
258 | // Maximum Relative Change in Control Points : 2.943e-01 |
259 | // Max Error found at float80 precision = Poly : 3.923207e-20 |
260 | static const T Y = 1.137250900268554687500e+00; |
261 | static const T P[] = |
262 | { |
263 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.372509002685546875002e-01), |
264 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.566481981037407600436e-01), |
265 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.551881122448948854873e-02), |
266 | BOOST_MATH_BIG_CONSTANT(T, 64, 6.646112454323276529650e-04), |
267 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.213747930378196492543e-05), |
268 | BOOST_MATH_BIG_CONSTANT(T, 64, 9.423709328020389560844e-08) |
269 | }; |
270 | static const T Q[] = |
271 | { |
272 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00), |
273 | BOOST_MATH_BIG_CONSTANT(T, 64, -4.843828412587773008342e-02), |
274 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.088484822515098936140e-03), |
275 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.374724008530702784829e-05), |
276 | BOOST_MATH_BIG_CONSTANT(T, 64, 8.452665455952581680339e-08) |
277 | }; |
278 | |
279 | |
280 | T a = x * x / 4; |
281 | a = (tools::evaluate_polynomial(P, a) / tools::evaluate_polynomial(Q, a) + Y) * a + 1; |
282 | |
283 | // Maximum Deviation Found: 2.440e-21 |
284 | // Expected Error Term : -2.434e-21 |
285 | // Maximum Relative Change in Control Points : 2.459e-02 |
286 | // Max Error found at float80 precision = Poly : 1.482487e-19 |
287 | static const T P2[] = |
288 | { |
289 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.159315156584124488110e-01), |
290 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.764832791416047889734e-01), |
291 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.926062887220923354112e-02), |
292 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.660777862036966089410e-04), |
293 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.094942446930673386849e-06) |
294 | }; |
295 | static const T Q2[] = |
296 | { |
297 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00), |
298 | BOOST_MATH_BIG_CONSTANT(T, 64, -2.156100313881251616320e-02), |
299 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.315993873344905957033e-04), |
300 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.529444499350703363451e-06), |
301 | BOOST_MATH_BIG_CONSTANT(T, 64, 5.524988589917857531177e-09) |
302 | }; |
303 | return tools::evaluate_rational(P2, Q2, T(x * x)) - log(x) * a; |
304 | } |
305 | else |
306 | { |
307 | // Maximum Deviation Found: 4.291e-20 |
308 | // Expected Error Term : 2.236e-21 |
309 | // Maximum Relative Change in Control Points : 3.021e-01 |
310 | //Max Error found at float80 precision = Poly : 8.727378e-20 |
311 | static const T Y = 1; |
312 | static const T P[] = |
313 | { |
314 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.533141373155002512056e-01), |
315 | BOOST_MATH_BIG_CONSTANT(T, 64, 5.417942070721928652715e+00), |
316 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.477464607463971754433e+01), |
317 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.838745728725943889876e+02), |
318 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.009736314927811202517e+02), |
319 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.557411293123609803452e+02), |
320 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.360222564015361268955e+02), |
321 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.385435333168505701022e+01), |
322 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.750195760942181592050e+01), |
323 | BOOST_MATH_BIG_CONSTANT(T, 64, -4.059789241612946683713e+00), |
324 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.612783121537333908889e-01) |
325 | }; |
326 | static const T Q[] = |
327 | { |
328 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00), |
329 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.200669254769325861404e+01), |
330 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.900177593527144126549e+02), |
331 | BOOST_MATH_BIG_CONSTANT(T, 64, 8.361003989965786932682e+02), |
332 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.041319870804843395893e+03), |
333 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.828491555113790345068e+03), |
334 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.190342229261529076624e+03), |
335 | BOOST_MATH_BIG_CONSTANT(T, 64, 9.003330795963812219852e+02), |
336 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.773371397243777891569e+02), |
337 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.368634935531158398439e+01), |
338 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.543310879400359967327e-01) |
339 | }; |
340 | if(x < tools::log_max_value<T>()) |
341 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
342 | else |
343 | { |
344 | T ex = exp(-x / 2); |
345 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex; |
346 | } |
347 | } |
348 | } |
349 | |
350 | template <typename T> |
351 | T bessel_k0_imp(const T& x, const boost::integral_constant<int, 113>&) |
352 | { |
353 | BOOST_MATH_STD_USING |
354 | if(x <= 1) |
355 | { |
356 | // Maximum Deviation Found: 5.682e-37 |
357 | // Expected Error Term : 5.682e-37 |
358 | // Maximum Relative Change in Control Points : 6.094e-04 |
359 | // Max Error found at float128 precision = Poly : 5.338213e-35 |
360 | static const T Y = 1.137250900268554687500000000000000000e+00f; |
361 | static const T P[] = |
362 | { |
363 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.372509002685546875000000000000000006e-01), |
364 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.556212905071072782462974351698081303e-01), |
365 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.742459135264203478530904179889103929e-02), |
366 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.077860530453688571555479526961318918e-04), |
367 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.868173911669241091399374307788635148e-05), |
368 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.496405768838992243478709145123306602e-07), |
369 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.752489221949580551692915881999762125e-09), |
370 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.243010555737173524710512824955368526e-12) |
371 | }; |
372 | static const T Q[] = |
373 | { |
374 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00), |
375 | BOOST_MATH_BIG_CONSTANT(T, 113, -4.095631064064621099785696980653193721e-02), |
376 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.313880983725212151967078809725835532e-04), |
377 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.095229912293480063501285562382835142e-05), |
378 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.022828799511943141130509410251996277e-07), |
379 | BOOST_MATH_BIG_CONSTANT(T, 113, -6.860874007419812445494782795829046836e-10), |
380 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.107297802344970725756092082686799037e-12), |
381 | BOOST_MATH_BIG_CONSTANT(T, 113, -7.460529579244623559164763757787600944e-15) |
382 | }; |
383 | T a = x * x / 4; |
384 | a = (tools::evaluate_rational(P, Q, a) + Y) * a + 1; |
385 | |
386 | // Maximum Deviation Found: 5.173e-38 |
387 | // Expected Error Term : 5.105e-38 |
388 | // Maximum Relative Change in Control Points : 9.734e-03 |
389 | // Max Error found at float128 precision = Poly : 1.688806e-34 |
390 | static const T P2[] = |
391 | { |
392 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.159315156584124488107200313757741370e-01), |
393 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.789828789146031122026800078439435369e-01), |
394 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.524892993216269451266750049024628432e-02), |
395 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.460350907082229957222453839935101823e-04), |
396 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.491471929926042875260452849503857976e-05), |
397 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.627105610481598430816014719558896866e-07), |
398 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.208426165007797264194914898538250281e-09), |
399 | BOOST_MATH_BIG_CONSTANT(T, 113, 6.508697838747354949164182457073784117e-12), |
400 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.659784680639805301101014383907273109e-14), |
401 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.531090131964391104248859415958109654e-17), |
402 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.205195117066478034260323124669936314e-19), |
403 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.692219280289030165761119775783115426e-22), |
404 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.362350161092532344171965861545860747e-25), |
405 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.277990623924628999539014980773738258e-27) |
406 | }; |
407 | |
408 | return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a; |
409 | } |
410 | else |
411 | { |
412 | // Maximum Deviation Found: 1.462e-34 |
413 | // Expected Error Term : 4.917e-40 |
414 | // Maximum Relative Change in Control Points : 3.385e-01 |
415 | // Max Error found at float128 precision = Poly : 1.567573e-34 |
416 | static const T Y = 1; |
417 | static const T P[] = |
418 | { |
419 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.533141373155002512078826424055226265e-01), |
420 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.001949740768235770078339977110749204e+01), |
421 | BOOST_MATH_BIG_CONSTANT(T, 113, 6.991516715983883248363351472378349986e+02), |
422 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.429587951594593159075690819360687720e+04), |
423 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.911933815201948768044660065771258450e+05), |
424 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.769943016204926614862175317962439875e+06), |
425 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.170866154649560750500954150401105606e+07), |
426 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.634687099724383996792011977705727661e+07), |
427 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.989524036456492581597607246664394014e+08), |
428 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.160394785715328062088529400178080360e+08), |
429 | BOOST_MATH_BIG_CONSTANT(T, 113, 9.778173054417826368076483100902201433e+08), |
430 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.335667778588806892764139643950439733e+09), |
431 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.283635100080306980206494425043706838e+09), |
432 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.300616188213640626577036321085025855e+08), |
433 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.277591957076162984986406540894621482e+08), |
434 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.564360536834214058158565361486115932e+07), |
435 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.043505161612403359098596828115690596e+07), |
436 | BOOST_MATH_BIG_CONSTANT(T, 113, -7.217035248223503605127967970903027314e+06), |
437 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.422938158797326748375799596769964430e+06), |
438 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.229125746200586805278634786674745210e+05), |
439 | BOOST_MATH_BIG_CONSTANT(T, 113, -4.201632288615609937883545928660649813e+03), |
440 | BOOST_MATH_BIG_CONSTANT(T, 113, -3.690820607338480548346746717311811406e+01) |
441 | }; |
442 | static const T Q[] = |
443 | { |
444 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00), |
445 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.964877874035741452203497983642653107e+01), |
446 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.808929943826193766839360018583294769e+03), |
447 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.814524004679994110944366890912384139e+04), |
448 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.897794522506725610540209610337355118e+05), |
449 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.456339470955813675629523617440433672e+06), |
450 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.057818717813969772198911392875127212e+07), |
451 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.513821619536852436424913886081133209e+08), |
452 | BOOST_MATH_BIG_CONSTANT(T, 113, 9.255938846873380596038513316919990776e+08), |
453 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.537077551699028079347581816919572141e+09), |
454 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.176769339768120752974843214652367321e+09), |
455 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.828722317390455845253191337207432060e+09), |
456 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.698864296569996402006511705803675890e+09), |
457 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.007803261356636409943826918468544629e+09), |
458 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.016564631288740308993071395104715469e+09), |
459 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.595893010619754750655947035567624730e+09), |
460 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.241241839120481076862742189989406856e+08), |
461 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.168778094393076220871007550235840858e+07), |
462 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.156200301360388147635052029404211109e+06), |
463 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.752130382550379886741949463587008794e+05), |
464 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.370574966987293592457152146806662562e+03), |
465 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.871254714311063594080644835895740323e+01) |
466 | }; |
467 | if(x < tools::log_max_value<T>()) |
468 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
469 | else |
470 | { |
471 | T ex = exp(-x / 2); |
472 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex; |
473 | } |
474 | } |
475 | } |
476 | |
477 | template <typename T> |
478 | T bessel_k0_imp(const T& x, const boost::integral_constant<int, 0>&) |
479 | { |
480 | if(boost::math::tools::digits<T>() <= 24) |
481 | return bessel_k0_imp(x, boost::integral_constant<int, 24>()); |
482 | else if(boost::math::tools::digits<T>() <= 53) |
483 | return bessel_k0_imp(x, boost::integral_constant<int, 53>()); |
484 | else if(boost::math::tools::digits<T>() <= 64) |
485 | return bessel_k0_imp(x, boost::integral_constant<int, 64>()); |
486 | else if(boost::math::tools::digits<T>() <= 113) |
487 | return bessel_k0_imp(x, boost::integral_constant<int, 113>()); |
488 | BOOST_ASSERT(0); |
489 | return 0; |
490 | } |
491 | |
492 | template <typename T> |
493 | inline T bessel_k0(const T& x) |
494 | { |
495 | typedef boost::integral_constant<int, |
496 | ((std::numeric_limits<T>::digits == 0) || (std::numeric_limits<T>::radix != 2)) ? |
497 | 0 : |
498 | std::numeric_limits<T>::digits <= 24 ? |
499 | 24 : |
500 | std::numeric_limits<T>::digits <= 53 ? |
501 | 53 : |
502 | std::numeric_limits<T>::digits <= 64 ? |
503 | 64 : |
504 | std::numeric_limits<T>::digits <= 113 ? |
505 | 113 : -1 |
506 | > tag_type; |
507 | |
508 | bessel_k0_initializer<T, tag_type>::force_instantiate(); |
509 | return bessel_k0_imp(x, tag_type()); |
510 | } |
511 | |
512 | }}} // namespaces |
513 | |
514 | #ifdef _MSC_VER |
515 | #pragma warning(pop) |
516 | #endif |
517 | |
518 | #endif // BOOST_MATH_BESSEL_K0_HPP |
519 | |
520 | |