| 1 | // Copyright (c) 2006 Xiaogang Zhang |
| 2 | // Copyright (c) 2017 John Maddock |
| 3 | // Use, modification and distribution are subject to the |
| 4 | // Boost Software License, Version 1.0. (See accompanying file |
| 5 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 6 | |
| 7 | #ifndef BOOST_MATH_BESSEL_K1_HPP |
| 8 | #define BOOST_MATH_BESSEL_K1_HPP |
| 9 | |
| 10 | #ifdef _MSC_VER |
| 11 | #pragma once |
| 12 | #pragma warning(push) |
| 13 | #pragma warning(disable:4702) // Unreachable code (release mode only warning) |
| 14 | #endif |
| 15 | |
| 16 | #include <boost/math/tools/rational.hpp> |
| 17 | #include <boost/math/tools/big_constant.hpp> |
| 18 | #include <boost/math/policies/error_handling.hpp> |
| 19 | #include <boost/assert.hpp> |
| 20 | |
| 21 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 22 | // |
| 23 | // This is the only way we can avoid |
| 24 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 25 | // when building with -Wall -pedantic. Neither __extension__ |
| 26 | // nor #pragma diagnostic ignored work :( |
| 27 | // |
| 28 | #pragma GCC system_header |
| 29 | #endif |
| 30 | |
| 31 | // Modified Bessel function of the second kind of order zero |
| 32 | // minimax rational approximations on intervals, see |
| 33 | // Russon and Blair, Chalk River Report AECL-3461, 1969, |
| 34 | // as revised by Pavel Holoborodko in "Rational Approximations |
| 35 | // for the Modified Bessel Function of the Second Kind - K0(x) |
| 36 | // for Computations with Double Precision", see |
| 37 | // http://www.advanpix.com/2016/01/05/rational-approximations-for-the-modified-bessel-function-of-the-second-kind-k1-for-computations-with-double-precision/ |
| 38 | // |
| 39 | // The actual coefficients used are our own derivation (by JM) |
| 40 | // since we extend to both greater and lesser precision than the |
| 41 | // references above. We can also improve performance WRT to |
| 42 | // Holoborodko without loss of precision. |
| 43 | |
| 44 | namespace boost { namespace math { namespace detail{ |
| 45 | |
| 46 | template <typename T> |
| 47 | T bessel_k1(const T& x); |
| 48 | |
| 49 | template <class T, class tag> |
| 50 | struct bessel_k1_initializer |
| 51 | { |
| 52 | struct init |
| 53 | { |
| 54 | init() |
| 55 | { |
| 56 | do_init(tag()); |
| 57 | } |
| 58 | static void do_init(const boost::integral_constant<int, 113>&) |
| 59 | { |
| 60 | bessel_k1(T(0.5)); |
| 61 | bessel_k1(T(2)); |
| 62 | bessel_k1(T(6)); |
| 63 | } |
| 64 | static void do_init(const boost::integral_constant<int, 64>&) |
| 65 | { |
| 66 | bessel_k1(T(0.5)); |
| 67 | bessel_k1(T(6)); |
| 68 | } |
| 69 | template <class U> |
| 70 | static void do_init(const U&) {} |
| 71 | void force_instantiate()const {} |
| 72 | }; |
| 73 | static const init initializer; |
| 74 | static void force_instantiate() |
| 75 | { |
| 76 | initializer.force_instantiate(); |
| 77 | } |
| 78 | }; |
| 79 | |
| 80 | template <class T, class tag> |
| 81 | const typename bessel_k1_initializer<T, tag>::init bessel_k1_initializer<T, tag>::initializer; |
| 82 | |
| 83 | |
| 84 | template <typename T, int N> |
| 85 | inline T bessel_k1_imp(const T& x, const boost::integral_constant<int, N>&) |
| 86 | { |
| 87 | BOOST_ASSERT(0); |
| 88 | return 0; |
| 89 | } |
| 90 | |
| 91 | template <typename T> |
| 92 | T bessel_k1_imp(const T& x, const boost::integral_constant<int, 24>&) |
| 93 | { |
| 94 | BOOST_MATH_STD_USING |
| 95 | if(x <= 1) |
| 96 | { |
| 97 | // Maximum Deviation Found: 3.090e-12 |
| 98 | // Expected Error Term : -3.053e-12 |
| 99 | // Maximum Relative Change in Control Points : 4.927e-02 |
| 100 | // Max Error found at float precision = Poly : 7.918347e-10 |
| 101 | static const T Y = 8.695471287e-02f; |
| 102 | static const T P[] = |
| 103 | { |
| 104 | -3.621379531e-03f, |
| 105 | 7.131781976e-03f, |
| 106 | -1.535278300e-05f |
| 107 | }; |
| 108 | static const T Q[] = |
| 109 | { |
| 110 | 1.000000000e+00f, |
| 111 | -5.173102701e-02f, |
| 112 | 9.203530671e-04f |
| 113 | }; |
| 114 | |
| 115 | T a = x * x / 4; |
| 116 | a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2; |
| 117 | |
| 118 | // Maximum Deviation Found: 3.556e-08 |
| 119 | // Expected Error Term : -3.541e-08 |
| 120 | // Maximum Relative Change in Control Points : 8.203e-02 |
| 121 | static const T P2[] = |
| 122 | { |
| 123 | -3.079657469e-01f, |
| 124 | -8.537108913e-02f, |
| 125 | -4.640275408e-03f, |
| 126 | -1.156442414e-04f |
| 127 | }; |
| 128 | |
| 129 | return tools::evaluate_polynomial(P2, T(x * x)) * x + 1 / x + log(x) * a; |
| 130 | } |
| 131 | else |
| 132 | { |
| 133 | // Maximum Deviation Found: 3.369e-08 |
| 134 | // Expected Error Term : -3.227e-08 |
| 135 | // Maximum Relative Change in Control Points : 9.917e-02 |
| 136 | // Max Error found at float precision = Poly : 6.084411e-08 |
| 137 | static const T Y = 1.450342178f; |
| 138 | static const T P[] = |
| 139 | { |
| 140 | -1.970280088e-01f, |
| 141 | 2.188747807e-02f, |
| 142 | 7.270394756e-01f, |
| 143 | 2.490678196e-01f |
| 144 | }; |
| 145 | static const T Q[] = |
| 146 | { |
| 147 | 1.000000000e+00f, |
| 148 | 2.274292882e+00f, |
| 149 | 9.904984851e-01f, |
| 150 | 4.585534549e-02f |
| 151 | }; |
| 152 | if(x < tools::log_max_value<T>()) |
| 153 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
| 154 | else |
| 155 | { |
| 156 | T ex = exp(-x / 2); |
| 157 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex; |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | template <typename T> |
| 163 | T bessel_k1_imp(const T& x, const boost::integral_constant<int, 53>&) |
| 164 | { |
| 165 | BOOST_MATH_STD_USING |
| 166 | if(x <= 1) |
| 167 | { |
| 168 | // Maximum Deviation Found: 1.922e-17 |
| 169 | // Expected Error Term : 1.921e-17 |
| 170 | // Maximum Relative Change in Control Points : 5.287e-03 |
| 171 | // Max Error found at double precision = Poly : 2.004747e-17 |
| 172 | static const T Y = 8.69547128677368164e-02f; |
| 173 | static const T P[] = |
| 174 | { |
| 175 | -3.62137953440350228e-03, |
| 176 | 7.11842087490330300e-03, |
| 177 | 1.00302560256614306e-05, |
| 178 | 1.77231085381040811e-06 |
| 179 | }; |
| 180 | static const T Q[] = |
| 181 | { |
| 182 | 1.00000000000000000e+00, |
| 183 | -4.80414794429043831e-02, |
| 184 | 9.85972641934416525e-04, |
| 185 | -8.91196859397070326e-06 |
| 186 | }; |
| 187 | |
| 188 | T a = x * x / 4; |
| 189 | a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2; |
| 190 | |
| 191 | // Maximum Deviation Found: 4.053e-17 |
| 192 | // Expected Error Term : -4.053e-17 |
| 193 | // Maximum Relative Change in Control Points : 3.103e-04 |
| 194 | // Max Error found at double precision = Poly : 1.246698e-16 |
| 195 | |
| 196 | static const T P2[] = |
| 197 | { |
| 198 | -3.07965757829206184e-01, |
| 199 | -7.80929703673074907e-02, |
| 200 | -2.70619343754051620e-03, |
| 201 | -2.49549522229072008e-05 |
| 202 | }; |
| 203 | static const T Q2[] = |
| 204 | { |
| 205 | 1.00000000000000000e+00, |
| 206 | -2.36316836412163098e-02, |
| 207 | 2.64524577525962719e-04, |
| 208 | -1.49749618004162787e-06 |
| 209 | }; |
| 210 | |
| 211 | return tools::evaluate_rational(P2, Q2, T(x * x)) * x + 1 / x + log(x) * a; |
| 212 | } |
| 213 | else |
| 214 | { |
| 215 | // Maximum Deviation Found: 8.883e-17 |
| 216 | // Expected Error Term : -1.641e-17 |
| 217 | // Maximum Relative Change in Control Points : 2.786e-01 |
| 218 | // Max Error found at double precision = Poly : 1.258798e-16 |
| 219 | |
| 220 | static const T Y = 1.45034217834472656f; |
| 221 | static const T P[] = |
| 222 | { |
| 223 | -1.97028041029226295e-01, |
| 224 | -2.32408961548087617e+00, |
| 225 | -7.98269784507699938e+00, |
| 226 | -2.39968410774221632e+00, |
| 227 | 3.28314043780858713e+01, |
| 228 | 5.67713761158496058e+01, |
| 229 | 3.30907788466509823e+01, |
| 230 | 6.62582288933739787e+00, |
| 231 | 3.08851840645286691e-01 |
| 232 | }; |
| 233 | static const T Q[] = |
| 234 | { |
| 235 | 1.00000000000000000e+00, |
| 236 | 1.41811409298826118e+01, |
| 237 | 7.35979466317556420e+01, |
| 238 | 1.77821793937080859e+02, |
| 239 | 2.11014501598705982e+02, |
| 240 | 1.19425262951064454e+02, |
| 241 | 2.88448064302447607e+01, |
| 242 | 2.27912927104139732e+00, |
| 243 | 2.50358186953478678e-02 |
| 244 | }; |
| 245 | if(x < tools::log_max_value<T>()) |
| 246 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
| 247 | else |
| 248 | { |
| 249 | T ex = exp(-x / 2); |
| 250 | return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex; |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | template <typename T> |
| 256 | T bessel_k1_imp(const T& x, const boost::integral_constant<int, 64>&) |
| 257 | { |
| 258 | BOOST_MATH_STD_USING |
| 259 | if(x <= 1) |
| 260 | { |
| 261 | // Maximum Deviation Found: 5.549e-23 |
| 262 | // Expected Error Term : -5.548e-23 |
| 263 | // Maximum Relative Change in Control Points : 2.002e-03 |
| 264 | // Max Error found at float80 precision = Poly : 9.352785e-22 |
| 265 | static const T Y = 8.695471286773681640625e-02f; |
| 266 | static const T P[] = |
| 267 | { |
| 268 | BOOST_MATH_BIG_CONSTANT(T, 64, -3.621379534403483072861e-03), |
| 269 | BOOST_MATH_BIG_CONSTANT(T, 64, 7.102135866103952705932e-03), |
| 270 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.167545240236717601167e-05), |
| 271 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.537484002571894870830e-06), |
| 272 | BOOST_MATH_BIG_CONSTANT(T, 64, 6.603228256820000135990e-09) |
| 273 | }; |
| 274 | static const T Q[] = |
| 275 | { |
| 276 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00), |
| 277 | BOOST_MATH_BIG_CONSTANT(T, 64, -4.354457194045068370363e-02), |
| 278 | BOOST_MATH_BIG_CONSTANT(T, 64, 8.709137201220209072820e-04), |
| 279 | BOOST_MATH_BIG_CONSTANT(T, 64, -9.676151796359590545143e-06), |
| 280 | BOOST_MATH_BIG_CONSTANT(T, 64, 5.162715192766245311659e-08) |
| 281 | }; |
| 282 | |
| 283 | T a = x * x / 4; |
| 284 | a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2; |
| 285 | |
| 286 | // Maximum Deviation Found: 1.995e-23 |
| 287 | // Expected Error Term : 1.995e-23 |
| 288 | // Maximum Relative Change in Control Points : 8.174e-04 |
| 289 | // Max Error found at float80 precision = Poly : 4.137325e-20 |
| 290 | static const T P2[] = |
| 291 | { |
| 292 | BOOST_MATH_BIG_CONSTANT(T, 64, -3.079657578292062244054e-01), |
| 293 | BOOST_MATH_BIG_CONSTANT(T, 64, -7.963049154965966503231e-02), |
| 294 | BOOST_MATH_BIG_CONSTANT(T, 64, -3.103277523735639924895e-03), |
| 295 | BOOST_MATH_BIG_CONSTANT(T, 64, -4.023052834702215699504e-05), |
| 296 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.719459155018493821839e-07) |
| 297 | }; |
| 298 | static const T Q2[] = |
| 299 | { |
| 300 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00), |
| 301 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.863917670410152669768e-02), |
| 302 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.699367098849735298090e-04), |
| 303 | BOOST_MATH_BIG_CONSTANT(T, 64, -9.309358790546076298429e-07), |
| 304 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.708893480271612711933e-09) |
| 305 | }; |
| 306 | |
| 307 | return tools::evaluate_rational(P2, Q2, T(x * x)) * x + 1 / x + log(x) * a; |
| 308 | } |
| 309 | else |
| 310 | { |
| 311 | // Maximum Deviation Found: 9.785e-20 |
| 312 | // Expected Error Term : -3.302e-21 |
| 313 | // Maximum Relative Change in Control Points : 3.432e-01 |
| 314 | // Max Error found at float80 precision = Poly : 1.083755e-19 |
| 315 | static const T Y = 1.450342178344726562500e+00f; |
| 316 | static const T P[] = |
| 317 | { |
| 318 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.970280410292263112917e-01), |
| 319 | BOOST_MATH_BIG_CONSTANT(T, 64, -4.058564803062959169322e+00), |
| 320 | BOOST_MATH_BIG_CONSTANT(T, 64, -3.036658174194917777473e+01), |
| 321 | BOOST_MATH_BIG_CONSTANT(T, 64, -9.576825392332820142173e+01), |
| 322 | BOOST_MATH_BIG_CONSTANT(T, 64, -6.706969489248020941949e+01), |
| 323 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.264572499406168221382e+02), |
| 324 | BOOST_MATH_BIG_CONSTANT(T, 64, 8.584972047303151034100e+02), |
| 325 | BOOST_MATH_BIG_CONSTANT(T, 64, 8.422082733280017909550e+02), |
| 326 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.738005441471368178383e+02), |
| 327 | BOOST_MATH_BIG_CONSTANT(T, 64, 7.016938390144121276609e+01), |
| 328 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.319614662598089438939e+00), |
| 329 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.710715864316521856193e-02) |
| 330 | }; |
| 331 | static const T Q[] = |
| 332 | { |
| 333 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00), |
| 334 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.298433045824439052398e+01), |
| 335 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.082047745067709230037e+02), |
| 336 | BOOST_MATH_BIG_CONSTANT(T, 64, 9.662367854250262046592e+02), |
| 337 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.504148628460454004686e+03), |
| 338 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.712730364911389908905e+03), |
| 339 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.108002081150068641112e+03), |
| 340 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.400149940532448553143e+03), |
| 341 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.083303048095846226299e+02), |
| 342 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.748706060530351833346e+01), |
| 343 | BOOST_MATH_BIG_CONSTANT(T, 64, 6.321900849331506946977e-01), |
| 344 | }; |
| 345 | if(x < tools::log_max_value<T>()) |
| 346 | return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
| 347 | else |
| 348 | { |
| 349 | T ex = exp(-x / 2); |
| 350 | return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex; |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | template <typename T> |
| 356 | T bessel_k1_imp(const T& x, const boost::integral_constant<int, 113>&) |
| 357 | { |
| 358 | BOOST_MATH_STD_USING |
| 359 | if(x <= 1) |
| 360 | { |
| 361 | // Maximum Deviation Found: 7.120e-35 |
| 362 | // Expected Error Term : -7.119e-35 |
| 363 | // Maximum Relative Change in Control Points : 1.207e-03 |
| 364 | // Max Error found at float128 precision = Poly : 7.143688e-35 |
| 365 | static const T Y = 8.695471286773681640625000000000000000e-02f; |
| 366 | static const T P[] = |
| 367 | { |
| 368 | BOOST_MATH_BIG_CONSTANT(T, 113, -3.621379534403483072916666666666595475e-03), |
| 369 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.074117676930975433219826471336547627e-03), |
| 370 | BOOST_MATH_BIG_CONSTANT(T, 113, 9.631337631362776369069668419033041661e-05), |
| 371 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.468935967870048731821071646104412775e-06), |
| 372 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.956705020559599861444492614737168261e-08), |
| 373 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.347140307321161346703214099534250263e-10), |
| 374 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.569608494081482873946791086435679661e-13) |
| 375 | }; |
| 376 | static const T Q[] = |
| 377 | { |
| 378 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00), |
| 379 | BOOST_MATH_BIG_CONSTANT(T, 113, -3.580768910152105375615558920428350204e-02), |
| 380 | BOOST_MATH_BIG_CONSTANT(T, 113, 6.197467671701485365363068445534557369e-04), |
| 381 | BOOST_MATH_BIG_CONSTANT(T, 113, -6.707466533308630411966030561446666237e-06), |
| 382 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.846687802282250112624373388491123527e-08), |
| 383 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.248493131151981569517383040323900343e-10), |
| 384 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.319279786372775264555728921709381080e-13) |
| 385 | }; |
| 386 | |
| 387 | T a = x * x / 4; |
| 388 | a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2; |
| 389 | |
| 390 | // Maximum Deviation Found: 4.473e-37 |
| 391 | // Expected Error Term : 4.473e-37 |
| 392 | // Maximum Relative Change in Control Points : 8.550e-04 |
| 393 | // Max Error found at float128 precision = Poly : 8.167701e-35 |
| 394 | static const T P2[] = |
| 395 | { |
| 396 | BOOST_MATH_BIG_CONSTANT(T, 113, -3.079657578292062244053600156878870690e-01), |
| 397 | BOOST_MATH_BIG_CONSTANT(T, 113, -8.133183745732467770755578848987414875e-02), |
| 398 | BOOST_MATH_BIG_CONSTANT(T, 113, -3.548968792764174773125420229299431951e-03), |
| 399 | BOOST_MATH_BIG_CONSTANT(T, 113, -5.886125468718182876076972186152445490e-05), |
| 400 | BOOST_MATH_BIG_CONSTANT(T, 113, -4.506712111733707245745396404449639865e-07), |
| 401 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.632502325880313239698965376754406011e-09), |
| 402 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.311973065898784812266544485665624227e-12) |
| 403 | }; |
| 404 | static const T Q2[] = |
| 405 | { |
| 406 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00), |
| 407 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.311471216733781016657962995723287450e-02), |
| 408 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.571876054797365417068164018709472969e-05), |
| 409 | BOOST_MATH_BIG_CONSTANT(T, 113, -3.630181215268238731442496851497901293e-07), |
| 410 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.070176111227805048604885986867484807e-09), |
| 411 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.129046580769872602793220056461084761e-12), |
| 412 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.294906469421390890762001971790074432e-15) |
| 413 | }; |
| 414 | |
| 415 | return tools::evaluate_rational(P2, Q2, T(x * x)) * x + 1 / x + log(x) * a; |
| 416 | } |
| 417 | else if(x < 4) |
| 418 | { |
| 419 | // Max error in interpolated form: 5.307e-37 |
| 420 | // Max Error found at float128 precision = Poly: 7.087862e-35 |
| 421 | static const T Y = 1.5023040771484375f; |
| 422 | static const T P[] = |
| 423 | { |
| 424 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.489899398329369710528254347931380044e-01), |
| 425 | BOOST_MATH_BIG_CONSTANT(T, 113, -6.819080211203854781858815596508456873e+00), |
| 426 | BOOST_MATH_BIG_CONSTANT(T, 113, -7.599915699069767382647695624952723034e+01), |
| 427 | BOOST_MATH_BIG_CONSTANT(T, 113, -4.450211910821295507926582231071300718e+02), |
| 428 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.451374687870925175794150513723956533e+03), |
| 429 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.405805746895098802803503988539098226e+03), |
| 430 | BOOST_MATH_BIG_CONSTANT(T, 113, -5.638808326778389656403861103277220518e+02), |
| 431 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.513958744081268456191778822780865708e+03), |
| 432 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.121301640926540743072258116122834804e+04), |
| 433 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.080094900175649541266613109971296190e+04), |
| 434 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.896531083639613332407534434915552429e+03), |
| 435 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.856602122319645694042555107114028437e+03), |
| 436 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.237121918853145421414003823957537419e+02), |
| 437 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.842072954561323076230238664623893504e+01), |
| 438 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.039705646510167437971862966128055524e+00), |
| 439 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.008418100718254816100425022904039530e-02) |
| 440 | }; |
| 441 | static const T Q[] = |
| 442 | { |
| 443 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00), |
| 444 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.927456835239137986889227412815459529e+01), |
| 445 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.598985593265577043711382994516531273e+02), |
| 446 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.449897377085510281395819892689690579e+03), |
| 447 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.025555887684561913263090023158085327e+04), |
| 448 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.774140447181062463181892531100679195e+04), |
| 449 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.962055507843204417243602332246120418e+04), |
| 450 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.908269326976180183216954452196772931e+04), |
| 451 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.655160454422016855911700790722577942e+04), |
| 452 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.383586885019548163464418964577684608e+04), |
| 453 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.679920375586960324298491662159976419e+03), |
| 454 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.478586421028842906987799049804565008e+03), |
| 455 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.565384974896746094224942654383537090e+02), |
| 456 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.902617937084010911005732488607114511e+00), |
| 457 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.429293010387921526110949911029094926e-01), |
| 458 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.880342607911083143560111853491047663e-04) |
| 459 | }; |
| 460 | return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
| 461 | } |
| 462 | else |
| 463 | { |
| 464 | // Maximum Deviation Found: 4.359e-37 |
| 465 | // Expected Error Term : -6.565e-40 |
| 466 | // Maximum Relative Change in Control Points : 1.880e-01 |
| 467 | // Max Error found at float128 precision = Poly : 2.943572e-35 |
| 468 | static const T Y = 1.308816909790039062500000000000000000f; |
| 469 | static const T P[] = |
| 470 | { |
| 471 | BOOST_MATH_BIG_CONSTANT(T, 113, -5.550277247453881129211735759447737350e-02), |
| 472 | BOOST_MATH_BIG_CONSTANT(T, 113, -3.485883080219574328217554864956175929e+00), |
| 473 | BOOST_MATH_BIG_CONSTANT(T, 113, -8.903760658131484239300875153154881958e+01), |
| 474 | BOOST_MATH_BIG_CONSTANT(T, 113, -1.144813672213626237418235110712293337e+03), |
| 475 | BOOST_MATH_BIG_CONSTANT(T, 113, -6.498400501156131446691826557494158173e+03), |
| 476 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.573531831870363502604119835922166116e+04), |
| 477 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.417416550054632009958262596048841154e+05), |
| 478 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.271266450613557412825896604269130661e+06), |
| 479 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.898386013314389952534433455681107783e+07), |
| 480 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.353798784656436259250791761023512750e+07), |
| 481 | BOOST_MATH_BIG_CONSTANT(T, 113, 9.839619195427352438957774052763490067e+07), |
| 482 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.169246368651532232388152442538005637e+08), |
| 483 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.696368884166831199967845883371116431e+07), |
| 484 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.810226630422736458064005843327500169e+07), |
| 485 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.854996610560406127438950635716757614e+06), |
| 486 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.981057433937398731355768088809437625e+05), |
| 487 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.519440069856232098711793483639792952e+04) |
| 488 | }; |
| 489 | static const T Q[] = |
| 490 | { |
| 491 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00), |
| 492 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.127348248283623146544565916604103560e+01), |
| 493 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.205092684176906740104488180754982065e+03), |
| 494 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.911249195069050636298346469740075758e+04), |
| 495 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.426103406579046249654548481377792614e+05), |
| 496 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.365861555422488771286500241966208541e+06), |
| 497 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.765377714160383676864913709252529840e+07), |
| 498 | BOOST_MATH_BIG_CONSTANT(T, 113, 6.453822726931857253365138260720815246e+07), |
| 499 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.643207885048369990391975749439783892e+08), |
| 500 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.882540678243694621895816336640877878e+08), |
| 501 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.410120808992380266174106812005338148e+08), |
| 502 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.628138016559335882019310900426773027e+08), |
| 503 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.250794693811010646965360198541047961e+08), |
| 504 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.378723408195485594610593014072950078e+07), |
| 505 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.488253856312453816451380319061865560e+06), |
| 506 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.202167197882689873967723350537104582e+05), |
| 507 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.673233230356966539460728211412989843e+03) |
| 508 | }; |
| 509 | if(x < tools::log_max_value<T>()) |
| 510 | return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * exp(-x) / sqrt(x)); |
| 511 | else |
| 512 | { |
| 513 | T ex = exp(-x / 2); |
| 514 | return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex; |
| 515 | } |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | template <typename T> |
| 520 | T bessel_k1_imp(const T& x, const boost::integral_constant<int, 0>&) |
| 521 | { |
| 522 | if(boost::math::tools::digits<T>() <= 24) |
| 523 | return bessel_k1_imp(x, boost::integral_constant<int, 24>()); |
| 524 | else if(boost::math::tools::digits<T>() <= 53) |
| 525 | return bessel_k1_imp(x, boost::integral_constant<int, 53>()); |
| 526 | else if(boost::math::tools::digits<T>() <= 64) |
| 527 | return bessel_k1_imp(x, boost::integral_constant<int, 64>()); |
| 528 | else if(boost::math::tools::digits<T>() <= 113) |
| 529 | return bessel_k1_imp(x, boost::integral_constant<int, 113>()); |
| 530 | BOOST_ASSERT(0); |
| 531 | return 0; |
| 532 | } |
| 533 | |
| 534 | template <typename T> |
| 535 | inline T bessel_k1(const T& x) |
| 536 | { |
| 537 | typedef boost::integral_constant<int, |
| 538 | ((std::numeric_limits<T>::digits == 0) || (std::numeric_limits<T>::radix != 2)) ? |
| 539 | 0 : |
| 540 | std::numeric_limits<T>::digits <= 24 ? |
| 541 | 24 : |
| 542 | std::numeric_limits<T>::digits <= 53 ? |
| 543 | 53 : |
| 544 | std::numeric_limits<T>::digits <= 64 ? |
| 545 | 64 : |
| 546 | std::numeric_limits<T>::digits <= 113 ? |
| 547 | 113 : -1 |
| 548 | > tag_type; |
| 549 | |
| 550 | bessel_k1_initializer<T, tag_type>::force_instantiate(); |
| 551 | return bessel_k1_imp(x, tag_type()); |
| 552 | } |
| 553 | |
| 554 | }}} // namespaces |
| 555 | |
| 556 | #ifdef _MSC_VER |
| 557 | #pragma warning(pop) |
| 558 | #endif |
| 559 | |
| 560 | #endif // BOOST_MATH_BESSEL_K1_HPP |
| 561 | |
| 562 | |