1 | // Copyright (c) 2006 Xiaogang Zhang |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_BESSEL_Y1_HPP |
7 | #define BOOST_MATH_BESSEL_Y1_HPP |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #pragma warning(push) |
12 | #pragma warning(disable:4702) // Unreachable code (release mode only warning) |
13 | #endif |
14 | |
15 | #include <boost/math/special_functions/detail/bessel_j1.hpp> |
16 | #include <boost/math/constants/constants.hpp> |
17 | #include <boost/math/tools/rational.hpp> |
18 | #include <boost/math/tools/big_constant.hpp> |
19 | #include <boost/math/policies/error_handling.hpp> |
20 | #include <boost/assert.hpp> |
21 | |
22 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
23 | // |
24 | // This is the only way we can avoid |
25 | // warning: non-standard suffix on floating constant [-Wpedantic] |
26 | // when building with -Wall -pedantic. Neither __extension__ |
27 | // nor #pragma diagnostic ignored work :( |
28 | // |
29 | #pragma GCC system_header |
30 | #endif |
31 | |
32 | // Bessel function of the second kind of order one |
33 | // x <= 8, minimax rational approximations on root-bracketing intervals |
34 | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 |
35 | |
36 | namespace boost { namespace math { namespace detail{ |
37 | |
38 | template <typename T, typename Policy> |
39 | T bessel_y1(T x, const Policy&); |
40 | |
41 | template <class T, class Policy> |
42 | struct bessel_y1_initializer |
43 | { |
44 | struct init |
45 | { |
46 | init() |
47 | { |
48 | do_init(); |
49 | } |
50 | static void do_init() |
51 | { |
52 | bessel_y1(T(1), Policy()); |
53 | } |
54 | void force_instantiate()const{} |
55 | }; |
56 | static const init initializer; |
57 | static void force_instantiate() |
58 | { |
59 | initializer.force_instantiate(); |
60 | } |
61 | }; |
62 | |
63 | template <class T, class Policy> |
64 | const typename bessel_y1_initializer<T, Policy>::init bessel_y1_initializer<T, Policy>::initializer; |
65 | |
66 | template <typename T, typename Policy> |
67 | T bessel_y1(T x, const Policy& pol) |
68 | { |
69 | bessel_y1_initializer<T, Policy>::force_instantiate(); |
70 | |
71 | static const T P1[] = { |
72 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0535726612579544093e+13)), |
73 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4708611716525426053e+12)), |
74 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7595974497819597599e+11)), |
75 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2144548214502560419e+09)), |
76 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9157479997408395984e+07)), |
77 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2157953222280260820e+05)), |
78 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1714424660046133456e+02)), |
79 | }; |
80 | static const T Q1[] = { |
81 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0737873921079286084e+14)), |
82 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1272286200406461981e+12)), |
83 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7800352738690585613e+10)), |
84 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2250435122182963220e+08)), |
85 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8136470753052572164e+05)), |
86 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.2079908168393867438e+02)), |
87 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
88 | }; |
89 | static const T P2[] = { |
90 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1514276357909013326e+19)), |
91 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.6808094574724204577e+18)), |
92 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3638408497043134724e+16)), |
93 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0686275289804744814e+15)), |
94 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9530713129741981618e+13)), |
95 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7453673962438488783e+11)), |
96 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1957961912070617006e+09)), |
97 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9153806858264202986e+06)), |
98 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2337180442012953128e+03)), |
99 | }; |
100 | static const T Q2[] = { |
101 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3321844313316185697e+20)), |
102 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.6968198822857178911e+18)), |
103 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0837179548112881950e+16)), |
104 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1187010065856971027e+14)), |
105 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0221766852960403645e+11)), |
106 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.3550318087088919566e+08)), |
107 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0453748201934079734e+06)), |
108 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2855164849321609336e+03)), |
109 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
110 | }; |
111 | static const T PC[] = { |
112 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)), |
113 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)), |
114 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)), |
115 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)), |
116 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)), |
117 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)), |
118 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), |
119 | }; |
120 | static const T QC[] = { |
121 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)), |
122 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)), |
123 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)), |
124 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)), |
125 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)), |
126 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)), |
127 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
128 | }; |
129 | static const T PS[] = { |
130 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)), |
131 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)), |
132 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)), |
133 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)), |
134 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)), |
135 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)), |
136 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), |
137 | }; |
138 | static const T QS[] = { |
139 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)), |
140 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)), |
141 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)), |
142 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)), |
143 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)), |
144 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)), |
145 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
146 | }; |
147 | static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1971413260310170351e+00)), |
148 | x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4296810407941351328e+00)), |
149 | x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.620e+02)), |
150 | x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8288260310170351490e-03)), |
151 | x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3900e+03)), |
152 | x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.4592058648672279948e-06)) |
153 | ; |
154 | T value, factor, r, rc, rs; |
155 | |
156 | BOOST_MATH_STD_USING |
157 | using namespace boost::math::tools; |
158 | using namespace boost::math::constants; |
159 | |
160 | if (x <= 0) |
161 | { |
162 | return policies::raise_domain_error<T>("boost::math::bessel_y1<%1%>(%1%,%1%)" , |
163 | "Got x == %1%, but x must be > 0, complex result not supported." , x, pol); |
164 | } |
165 | if (x <= 4) // x in (0, 4] |
166 | { |
167 | T y = x * x; |
168 | T z = 2 * log(x/x1) * bessel_j1(x) / pi<T>(); |
169 | r = evaluate_rational(P1, Q1, y); |
170 | factor = (x + x1) * ((x - x11/256) - x12) / x; |
171 | value = z + factor * r; |
172 | } |
173 | else if (x <= 8) // x in (4, 8] |
174 | { |
175 | T y = x * x; |
176 | T z = 2 * log(x/x2) * bessel_j1(x) / pi<T>(); |
177 | r = evaluate_rational(P2, Q2, y); |
178 | factor = (x + x2) * ((x - x21/256) - x22) / x; |
179 | value = z + factor * r; |
180 | } |
181 | else // x in (8, \infty) |
182 | { |
183 | T y = 8 / x; |
184 | T y2 = y * y; |
185 | rc = evaluate_rational(PC, QC, y2); |
186 | rs = evaluate_rational(PS, QS, y2); |
187 | factor = 1 / (sqrt(x) * root_pi<T>()); |
188 | // |
189 | // This code is really just: |
190 | // |
191 | // T z = x - 0.75f * pi<T>(); |
192 | // value = factor * (rc * sin(z) + y * rs * cos(z)); |
193 | // |
194 | // But using the sin/cos addition rules, plus constants for sin/cos of 3PI/4 |
195 | // which then cancel out with corresponding terms in "factor". |
196 | // |
197 | T sx = sin(x); |
198 | T cx = cos(x); |
199 | value = factor * (y * rs * (sx - cx) - rc * (sx + cx)); |
200 | } |
201 | |
202 | return value; |
203 | } |
204 | |
205 | }}} // namespaces |
206 | |
207 | #ifdef _MSC_VER |
208 | #pragma warning(pop) |
209 | #endif |
210 | |
211 | #endif // BOOST_MATH_BESSEL_Y1_HPP |
212 | |
213 | |