| 1 | // Copyright (c) 2006 Xiaogang Zhang |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_BESSEL_Y1_HPP |
| 7 | #define BOOST_MATH_BESSEL_Y1_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #pragma warning(push) |
| 12 | #pragma warning(disable:4702) // Unreachable code (release mode only warning) |
| 13 | #endif |
| 14 | |
| 15 | #include <boost/math/special_functions/detail/bessel_j1.hpp> |
| 16 | #include <boost/math/constants/constants.hpp> |
| 17 | #include <boost/math/tools/rational.hpp> |
| 18 | #include <boost/math/tools/big_constant.hpp> |
| 19 | #include <boost/math/policies/error_handling.hpp> |
| 20 | #include <boost/assert.hpp> |
| 21 | |
| 22 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 23 | // |
| 24 | // This is the only way we can avoid |
| 25 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 26 | // when building with -Wall -pedantic. Neither __extension__ |
| 27 | // nor #pragma diagnostic ignored work :( |
| 28 | // |
| 29 | #pragma GCC system_header |
| 30 | #endif |
| 31 | |
| 32 | // Bessel function of the second kind of order one |
| 33 | // x <= 8, minimax rational approximations on root-bracketing intervals |
| 34 | // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968 |
| 35 | |
| 36 | namespace boost { namespace math { namespace detail{ |
| 37 | |
| 38 | template <typename T, typename Policy> |
| 39 | T bessel_y1(T x, const Policy&); |
| 40 | |
| 41 | template <class T, class Policy> |
| 42 | struct bessel_y1_initializer |
| 43 | { |
| 44 | struct init |
| 45 | { |
| 46 | init() |
| 47 | { |
| 48 | do_init(); |
| 49 | } |
| 50 | static void do_init() |
| 51 | { |
| 52 | bessel_y1(T(1), Policy()); |
| 53 | } |
| 54 | void force_instantiate()const{} |
| 55 | }; |
| 56 | static const init initializer; |
| 57 | static void force_instantiate() |
| 58 | { |
| 59 | initializer.force_instantiate(); |
| 60 | } |
| 61 | }; |
| 62 | |
| 63 | template <class T, class Policy> |
| 64 | const typename bessel_y1_initializer<T, Policy>::init bessel_y1_initializer<T, Policy>::initializer; |
| 65 | |
| 66 | template <typename T, typename Policy> |
| 67 | T bessel_y1(T x, const Policy& pol) |
| 68 | { |
| 69 | bessel_y1_initializer<T, Policy>::force_instantiate(); |
| 70 | |
| 71 | static const T P1[] = { |
| 72 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0535726612579544093e+13)), |
| 73 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4708611716525426053e+12)), |
| 74 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.7595974497819597599e+11)), |
| 75 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2144548214502560419e+09)), |
| 76 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9157479997408395984e+07)), |
| 77 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2157953222280260820e+05)), |
| 78 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -3.1714424660046133456e+02)), |
| 79 | }; |
| 80 | static const T Q1[] = { |
| 81 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0737873921079286084e+14)), |
| 82 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1272286200406461981e+12)), |
| 83 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.7800352738690585613e+10)), |
| 84 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2250435122182963220e+08)), |
| 85 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.8136470753052572164e+05)), |
| 86 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.2079908168393867438e+02)), |
| 87 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 88 | }; |
| 89 | static const T P2[] = { |
| 90 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1514276357909013326e+19)), |
| 91 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.6808094574724204577e+18)), |
| 92 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.3638408497043134724e+16)), |
| 93 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0686275289804744814e+15)), |
| 94 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.9530713129741981618e+13)), |
| 95 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7453673962438488783e+11)), |
| 96 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1957961912070617006e+09)), |
| 97 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.9153806858264202986e+06)), |
| 98 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2337180442012953128e+03)), |
| 99 | }; |
| 100 | static const T Q2[] = { |
| 101 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3321844313316185697e+20)), |
| 102 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.6968198822857178911e+18)), |
| 103 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0837179548112881950e+16)), |
| 104 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1187010065856971027e+14)), |
| 105 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.0221766852960403645e+11)), |
| 106 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.3550318087088919566e+08)), |
| 107 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0453748201934079734e+06)), |
| 108 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.2855164849321609336e+03)), |
| 109 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 110 | }; |
| 111 | static const T PC[] = { |
| 112 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278571e+06)), |
| 113 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9422465050776411957e+06)), |
| 114 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.6033732483649391093e+06)), |
| 115 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5235293511811373833e+06)), |
| 116 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0982405543459346727e+05)), |
| 117 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.6116166443246101165e+03)), |
| 118 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), |
| 119 | }; |
| 120 | static const T QC[] = { |
| 121 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -4.4357578167941278568e+06)), |
| 122 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -9.9341243899345856590e+06)), |
| 123 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.5853394797230870728e+06)), |
| 124 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.5118095066341608816e+06)), |
| 125 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0726385991103820119e+05)), |
| 126 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4550094401904961825e+03)), |
| 127 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 128 | }; |
| 129 | static const T PS[] = { |
| 130 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.3220913409857223519e+04)), |
| 131 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.5145160675335701966e+04)), |
| 132 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6178836581270835179e+04)), |
| 133 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8494262873223866797e+04)), |
| 134 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7063754290207680021e+03)), |
| 135 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5265133846636032186e+01)), |
| 136 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.0)), |
| 137 | }; |
| 138 | static const T QS[] = { |
| 139 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0871281941028743574e+05)), |
| 140 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8194580422439972989e+06)), |
| 141 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4194606696037208929e+06)), |
| 142 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0029443582266975117e+05)), |
| 143 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.7890229745772202641e+04)), |
| 144 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6383677696049909675e+02)), |
| 145 | static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)), |
| 146 | }; |
| 147 | static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1971413260310170351e+00)), |
| 148 | x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4296810407941351328e+00)), |
| 149 | x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.620e+02)), |
| 150 | x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8288260310170351490e-03)), |
| 151 | x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3900e+03)), |
| 152 | x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.4592058648672279948e-06)) |
| 153 | ; |
| 154 | T value, factor, r, rc, rs; |
| 155 | |
| 156 | BOOST_MATH_STD_USING |
| 157 | using namespace boost::math::tools; |
| 158 | using namespace boost::math::constants; |
| 159 | |
| 160 | if (x <= 0) |
| 161 | { |
| 162 | return policies::raise_domain_error<T>("boost::math::bessel_y1<%1%>(%1%,%1%)" , |
| 163 | "Got x == %1%, but x must be > 0, complex result not supported." , x, pol); |
| 164 | } |
| 165 | if (x <= 4) // x in (0, 4] |
| 166 | { |
| 167 | T y = x * x; |
| 168 | T z = 2 * log(x/x1) * bessel_j1(x) / pi<T>(); |
| 169 | r = evaluate_rational(P1, Q1, y); |
| 170 | factor = (x + x1) * ((x - x11/256) - x12) / x; |
| 171 | value = z + factor * r; |
| 172 | } |
| 173 | else if (x <= 8) // x in (4, 8] |
| 174 | { |
| 175 | T y = x * x; |
| 176 | T z = 2 * log(x/x2) * bessel_j1(x) / pi<T>(); |
| 177 | r = evaluate_rational(P2, Q2, y); |
| 178 | factor = (x + x2) * ((x - x21/256) - x22) / x; |
| 179 | value = z + factor * r; |
| 180 | } |
| 181 | else // x in (8, \infty) |
| 182 | { |
| 183 | T y = 8 / x; |
| 184 | T y2 = y * y; |
| 185 | rc = evaluate_rational(PC, QC, y2); |
| 186 | rs = evaluate_rational(PS, QS, y2); |
| 187 | factor = 1 / (sqrt(x) * root_pi<T>()); |
| 188 | // |
| 189 | // This code is really just: |
| 190 | // |
| 191 | // T z = x - 0.75f * pi<T>(); |
| 192 | // value = factor * (rc * sin(z) + y * rs * cos(z)); |
| 193 | // |
| 194 | // But using the sin/cos addition rules, plus constants for sin/cos of 3PI/4 |
| 195 | // which then cancel out with corresponding terms in "factor". |
| 196 | // |
| 197 | T sx = sin(x); |
| 198 | T cx = cos(x); |
| 199 | value = factor * (y * rs * (sx - cx) - rc * (sx + cx)); |
| 200 | } |
| 201 | |
| 202 | return value; |
| 203 | } |
| 204 | |
| 205 | }}} // namespaces |
| 206 | |
| 207 | #ifdef _MSC_VER |
| 208 | #pragma warning(pop) |
| 209 | #endif |
| 210 | |
| 211 | #endif // BOOST_MATH_BESSEL_Y1_HPP |
| 212 | |
| 213 | |