| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_SF_ERF_INV_HPP |
| 7 | #define BOOST_MATH_SF_ERF_INV_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #pragma warning(push) |
| 12 | #pragma warning(disable:4127) // Conditional expression is constant |
| 13 | #pragma warning(disable:4702) // Unreachable code: optimization warning |
| 14 | #endif |
| 15 | |
| 16 | namespace boost{ namespace math{ |
| 17 | |
| 18 | namespace detail{ |
| 19 | // |
| 20 | // The inverse erf and erfc functions share a common implementation, |
| 21 | // this version is for 80-bit long double's and smaller: |
| 22 | // |
| 23 | template <class T, class Policy> |
| 24 | T erf_inv_imp(const T& p, const T& q, const Policy&, const boost::integral_constant<int, 64>*) |
| 25 | { |
| 26 | BOOST_MATH_STD_USING // for ADL of std names. |
| 27 | |
| 28 | T result = 0; |
| 29 | |
| 30 | if(p <= 0.5) |
| 31 | { |
| 32 | // |
| 33 | // Evaluate inverse erf using the rational approximation: |
| 34 | // |
| 35 | // x = p(p+10)(Y+R(p)) |
| 36 | // |
| 37 | // Where Y is a constant, and R(p) is optimised for a low |
| 38 | // absolute error compared to |Y|. |
| 39 | // |
| 40 | // double: Max error found: 2.001849e-18 |
| 41 | // long double: Max error found: 1.017064e-20 |
| 42 | // Maximum Deviation Found (actual error term at infinite precision) 8.030e-21 |
| 43 | // |
| 44 | static const float Y = 0.0891314744949340820313f; |
| 45 | static const T P[] = { |
| 46 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000508781949658280665617), |
| 47 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00836874819741736770379), |
| 48 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0334806625409744615033), |
| 49 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0126926147662974029034), |
| 50 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0365637971411762664006), |
| 51 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0219878681111168899165), |
| 52 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00822687874676915743155), |
| 53 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00538772965071242932965) |
| 54 | }; |
| 55 | static const T Q[] = { |
| 56 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 57 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.970005043303290640362), |
| 58 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.56574558234175846809), |
| 59 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.56221558398423026363), |
| 60 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.662328840472002992063), |
| 61 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.71228902341542847553), |
| 62 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0527396382340099713954), |
| 63 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0795283687341571680018), |
| 64 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00233393759374190016776), |
| 65 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000886216390456424707504) |
| 66 | }; |
| 67 | T g = p * (p + 10); |
| 68 | T r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p); |
| 69 | result = g * Y + g * r; |
| 70 | } |
| 71 | else if(q >= 0.25) |
| 72 | { |
| 73 | // |
| 74 | // Rational approximation for 0.5 > q >= 0.25 |
| 75 | // |
| 76 | // x = sqrt(-2*log(q)) / (Y + R(q)) |
| 77 | // |
| 78 | // Where Y is a constant, and R(q) is optimised for a low |
| 79 | // absolute error compared to Y. |
| 80 | // |
| 81 | // double : Max error found: 7.403372e-17 |
| 82 | // long double : Max error found: 6.084616e-20 |
| 83 | // Maximum Deviation Found (error term) 4.811e-20 |
| 84 | // |
| 85 | static const float Y = 2.249481201171875f; |
| 86 | static const T P[] = { |
| 87 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.202433508355938759655), |
| 88 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.105264680699391713268), |
| 89 | BOOST_MATH_BIG_CONSTANT(T, 64, 8.37050328343119927838), |
| 90 | BOOST_MATH_BIG_CONSTANT(T, 64, 17.6447298408374015486), |
| 91 | BOOST_MATH_BIG_CONSTANT(T, 64, -18.8510648058714251895), |
| 92 | BOOST_MATH_BIG_CONSTANT(T, 64, -44.6382324441786960818), |
| 93 | BOOST_MATH_BIG_CONSTANT(T, 64, 17.445385985570866523), |
| 94 | BOOST_MATH_BIG_CONSTANT(T, 64, 21.1294655448340526258), |
| 95 | BOOST_MATH_BIG_CONSTANT(T, 64, -3.67192254707729348546) |
| 96 | }; |
| 97 | static const T Q[] = { |
| 98 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 99 | BOOST_MATH_BIG_CONSTANT(T, 64, 6.24264124854247537712), |
| 100 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.9713437953343869095), |
| 101 | BOOST_MATH_BIG_CONSTANT(T, 64, -28.6608180499800029974), |
| 102 | BOOST_MATH_BIG_CONSTANT(T, 64, -20.1432634680485188801), |
| 103 | BOOST_MATH_BIG_CONSTANT(T, 64, 48.5609213108739935468), |
| 104 | BOOST_MATH_BIG_CONSTANT(T, 64, 10.8268667355460159008), |
| 105 | BOOST_MATH_BIG_CONSTANT(T, 64, -22.6436933413139721736), |
| 106 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.72114765761200282724) |
| 107 | }; |
| 108 | T g = sqrt(-2 * log(q)); |
| 109 | T xs = q - 0.25f; |
| 110 | T r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); |
| 111 | result = g / (Y + r); |
| 112 | } |
| 113 | else |
| 114 | { |
| 115 | // |
| 116 | // For q < 0.25 we have a series of rational approximations all |
| 117 | // of the general form: |
| 118 | // |
| 119 | // let: x = sqrt(-log(q)) |
| 120 | // |
| 121 | // Then the result is given by: |
| 122 | // |
| 123 | // x(Y+R(x-B)) |
| 124 | // |
| 125 | // where Y is a constant, B is the lowest value of x for which |
| 126 | // the approximation is valid, and R(x-B) is optimised for a low |
| 127 | // absolute error compared to Y. |
| 128 | // |
| 129 | // Note that almost all code will really go through the first |
| 130 | // or maybe second approximation. After than we're dealing with very |
| 131 | // small input values indeed: 80 and 128 bit long double's go all the |
| 132 | // way down to ~ 1e-5000 so the "tail" is rather long... |
| 133 | // |
| 134 | T x = sqrt(-log(q)); |
| 135 | if(x < 3) |
| 136 | { |
| 137 | // Max error found: 1.089051e-20 |
| 138 | static const float Y = 0.807220458984375f; |
| 139 | static const T P[] = { |
| 140 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.131102781679951906451), |
| 141 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.163794047193317060787), |
| 142 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.117030156341995252019), |
| 143 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.387079738972604337464), |
| 144 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.337785538912035898924), |
| 145 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.142869534408157156766), |
| 146 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0290157910005329060432), |
| 147 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00214558995388805277169), |
| 148 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.679465575181126350155e-6), |
| 149 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.285225331782217055858e-7), |
| 150 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.681149956853776992068e-9) |
| 151 | }; |
| 152 | static const T Q[] = { |
| 153 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 154 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.46625407242567245975), |
| 155 | BOOST_MATH_BIG_CONSTANT(T, 64, 5.38168345707006855425), |
| 156 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.77846592945843778382), |
| 157 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.59301921623620271374), |
| 158 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.848854343457902036425), |
| 159 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.152264338295331783612), |
| 160 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.01105924229346489121) |
| 161 | }; |
| 162 | T xs = x - 1.125f; |
| 163 | T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); |
| 164 | result = Y * x + R * x; |
| 165 | } |
| 166 | else if(x < 6) |
| 167 | { |
| 168 | // Max error found: 8.389174e-21 |
| 169 | static const float Y = 0.93995571136474609375f; |
| 170 | static const T P[] = { |
| 171 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0350353787183177984712), |
| 172 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00222426529213447927281), |
| 173 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0185573306514231072324), |
| 174 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00950804701325919603619), |
| 175 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00187123492819559223345), |
| 176 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000157544617424960554631), |
| 177 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.460469890584317994083e-5), |
| 178 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.230404776911882601748e-9), |
| 179 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.266339227425782031962e-11) |
| 180 | }; |
| 181 | static const T Q[] = { |
| 182 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 183 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.3653349817554063097), |
| 184 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.762059164553623404043), |
| 185 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.220091105764131249824), |
| 186 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0341589143670947727934), |
| 187 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00263861676657015992959), |
| 188 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.764675292302794483503e-4) |
| 189 | }; |
| 190 | T xs = x - 3; |
| 191 | T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); |
| 192 | result = Y * x + R * x; |
| 193 | } |
| 194 | else if(x < 18) |
| 195 | { |
| 196 | // Max error found: 1.481312e-19 |
| 197 | static const float Y = 0.98362827301025390625f; |
| 198 | static const T P[] = { |
| 199 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0167431005076633737133), |
| 200 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00112951438745580278863), |
| 201 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00105628862152492910091), |
| 202 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000209386317487588078668), |
| 203 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.149624783758342370182e-4), |
| 204 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.449696789927706453732e-6), |
| 205 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.462596163522878599135e-8), |
| 206 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.281128735628831791805e-13), |
| 207 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.99055709973310326855e-16) |
| 208 | }; |
| 209 | static const T Q[] = { |
| 210 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 211 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.591429344886417493481), |
| 212 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.138151865749083321638), |
| 213 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0160746087093676504695), |
| 214 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000964011807005165528527), |
| 215 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.275335474764726041141e-4), |
| 216 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.282243172016108031869e-6) |
| 217 | }; |
| 218 | T xs = x - 6; |
| 219 | T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); |
| 220 | result = Y * x + R * x; |
| 221 | } |
| 222 | else if(x < 44) |
| 223 | { |
| 224 | // Max error found: 5.697761e-20 |
| 225 | static const float Y = 0.99714565277099609375f; |
| 226 | static const T P[] = { |
| 227 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0024978212791898131227), |
| 228 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.779190719229053954292e-5), |
| 229 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.254723037413027451751e-4), |
| 230 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.162397777342510920873e-5), |
| 231 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.396341011304801168516e-7), |
| 232 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.411632831190944208473e-9), |
| 233 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.145596286718675035587e-11), |
| 234 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.116765012397184275695e-17) |
| 235 | }; |
| 236 | static const T Q[] = { |
| 237 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 238 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.207123112214422517181), |
| 239 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0169410838120975906478), |
| 240 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000690538265622684595676), |
| 241 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.145007359818232637924e-4), |
| 242 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.144437756628144157666e-6), |
| 243 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.509761276599778486139e-9) |
| 244 | }; |
| 245 | T xs = x - 18; |
| 246 | T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); |
| 247 | result = Y * x + R * x; |
| 248 | } |
| 249 | else |
| 250 | { |
| 251 | // Max error found: 1.279746e-20 |
| 252 | static const float Y = 0.99941349029541015625f; |
| 253 | static const T P[] = { |
| 254 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000539042911019078575891), |
| 255 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.28398759004727721098e-6), |
| 256 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.899465114892291446442e-6), |
| 257 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.229345859265920864296e-7), |
| 258 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.225561444863500149219e-9), |
| 259 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.947846627503022684216e-12), |
| 260 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.135880130108924861008e-14), |
| 261 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.348890393399948882918e-21) |
| 262 | }; |
| 263 | static const T Q[] = { |
| 264 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 265 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0845746234001899436914), |
| 266 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00282092984726264681981), |
| 267 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.468292921940894236786e-4), |
| 268 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.399968812193862100054e-6), |
| 269 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.161809290887904476097e-8), |
| 270 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.231558608310259605225e-11) |
| 271 | }; |
| 272 | T xs = x - 44; |
| 273 | T R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); |
| 274 | result = Y * x + R * x; |
| 275 | } |
| 276 | } |
| 277 | return result; |
| 278 | } |
| 279 | |
| 280 | template <class T, class Policy> |
| 281 | struct erf_roots |
| 282 | { |
| 283 | boost::math::tuple<T,T,T> operator()(const T& guess) |
| 284 | { |
| 285 | BOOST_MATH_STD_USING |
| 286 | T derivative = sign * (2 / sqrt(constants::pi<T>())) * exp(-(guess * guess)); |
| 287 | T derivative2 = -2 * guess * derivative; |
| 288 | return boost::math::make_tuple(((sign > 0) ? static_cast<T>(boost::math::erf(guess, Policy()) - target) : static_cast<T>(boost::math::erfc(guess, Policy())) - target), derivative, derivative2); |
| 289 | } |
| 290 | erf_roots(T z, int s) : target(z), sign(s) {} |
| 291 | private: |
| 292 | T target; |
| 293 | int sign; |
| 294 | }; |
| 295 | |
| 296 | template <class T, class Policy> |
| 297 | T erf_inv_imp(const T& p, const T& q, const Policy& pol, const boost::integral_constant<int, 0>*) |
| 298 | { |
| 299 | // |
| 300 | // Generic version, get a guess that's accurate to 64-bits (10^-19) |
| 301 | // |
| 302 | T guess = erf_inv_imp(p, q, pol, static_cast<boost::integral_constant<int, 64> const*>(0)); |
| 303 | T result; |
| 304 | // |
| 305 | // If T has more bit's than 64 in it's mantissa then we need to iterate, |
| 306 | // otherwise we can just return the result: |
| 307 | // |
| 308 | if(policies::digits<T, Policy>() > 64) |
| 309 | { |
| 310 | boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); |
| 311 | if(p <= 0.5) |
| 312 | { |
| 313 | result = tools::halley_iterate(detail::erf_roots<typename remove_cv<T>::type, Policy>(p, 1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter); |
| 314 | } |
| 315 | else |
| 316 | { |
| 317 | result = tools::halley_iterate(detail::erf_roots<typename remove_cv<T>::type, Policy>(q, -1), guess, static_cast<T>(0), tools::max_value<T>(), (policies::digits<T, Policy>() * 2) / 3, max_iter); |
| 318 | } |
| 319 | policies::check_root_iterations<T>("boost::math::erf_inv<%1%>" , max_iter, pol); |
| 320 | } |
| 321 | else |
| 322 | { |
| 323 | result = guess; |
| 324 | } |
| 325 | return result; |
| 326 | } |
| 327 | |
| 328 | template <class T, class Policy> |
| 329 | struct erf_inv_initializer |
| 330 | { |
| 331 | struct init |
| 332 | { |
| 333 | init() |
| 334 | { |
| 335 | do_init(); |
| 336 | } |
| 337 | static bool is_value_non_zero(T); |
| 338 | static void do_init() |
| 339 | { |
| 340 | // If std::numeric_limits<T>::digits is zero, we must not call |
| 341 | // our initialization code here as the precision presumably |
| 342 | // varies at runtime, and will not have been set yet. |
| 343 | if(std::numeric_limits<T>::digits) |
| 344 | { |
| 345 | boost::math::erf_inv(static_cast<T>(0.25), Policy()); |
| 346 | boost::math::erf_inv(static_cast<T>(0.55), Policy()); |
| 347 | boost::math::erf_inv(static_cast<T>(0.95), Policy()); |
| 348 | boost::math::erfc_inv(static_cast<T>(1e-15), Policy()); |
| 349 | // These following initializations must not be called if |
| 350 | // type T can not hold the relevant values without |
| 351 | // underflow to zero. We check this at runtime because |
| 352 | // some tools such as valgrind silently change the precision |
| 353 | // of T at runtime, and numeric_limits basically lies! |
| 354 | if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130)))) |
| 355 | boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-130)), Policy()); |
| 356 | |
| 357 | // Some compilers choke on constants that would underflow, even in code that isn't instantiated |
| 358 | // so try and filter these cases out in the preprocessor: |
| 359 | #if LDBL_MAX_10_EXP >= 800 |
| 360 | if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800)))) |
| 361 | boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-800)), Policy()); |
| 362 | if(is_value_non_zero(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900)))) |
| 363 | boost::math::erfc_inv(static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1e-900)), Policy()); |
| 364 | #else |
| 365 | if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800)))) |
| 366 | boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-800)), Policy()); |
| 367 | if(is_value_non_zero(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900)))) |
| 368 | boost::math::erfc_inv(static_cast<T>(BOOST_MATH_HUGE_CONSTANT(T, 64, 1e-900)), Policy()); |
| 369 | #endif |
| 370 | } |
| 371 | } |
| 372 | void force_instantiate()const{} |
| 373 | }; |
| 374 | static const init initializer; |
| 375 | static void force_instantiate() |
| 376 | { |
| 377 | initializer.force_instantiate(); |
| 378 | } |
| 379 | }; |
| 380 | |
| 381 | template <class T, class Policy> |
| 382 | const typename erf_inv_initializer<T, Policy>::init erf_inv_initializer<T, Policy>::initializer; |
| 383 | |
| 384 | template <class T, class Policy> |
| 385 | bool erf_inv_initializer<T, Policy>::init::is_value_non_zero(T v) |
| 386 | { |
| 387 | // This needs to be non-inline to detect whether v is non zero at runtime |
| 388 | // rather than at compile time, only relevant when running under valgrind |
| 389 | // which changes long double's to double's on the fly. |
| 390 | return v != 0; |
| 391 | } |
| 392 | |
| 393 | } // namespace detail |
| 394 | |
| 395 | template <class T, class Policy> |
| 396 | typename tools::promote_args<T>::type erfc_inv(T z, const Policy& pol) |
| 397 | { |
| 398 | typedef typename tools::promote_args<T>::type result_type; |
| 399 | |
| 400 | // |
| 401 | // Begin by testing for domain errors, and other special cases: |
| 402 | // |
| 403 | static const char* function = "boost::math::erfc_inv<%1%>(%1%, %1%)" ; |
| 404 | if((z < 0) || (z > 2)) |
| 405 | return policies::raise_domain_error<result_type>(function, "Argument outside range [0,2] in inverse erfc function (got p=%1%)." , z, pol); |
| 406 | if(z == 0) |
| 407 | return policies::raise_overflow_error<result_type>(function, 0, pol); |
| 408 | if(z == 2) |
| 409 | return -policies::raise_overflow_error<result_type>(function, 0, pol); |
| 410 | // |
| 411 | // Normalise the input, so it's in the range [0,1], we will |
| 412 | // negate the result if z is outside that range. This is a simple |
| 413 | // application of the erfc reflection formula: erfc(-z) = 2 - erfc(z) |
| 414 | // |
| 415 | result_type p, q, s; |
| 416 | if(z > 1) |
| 417 | { |
| 418 | q = 2 - z; |
| 419 | p = 1 - q; |
| 420 | s = -1; |
| 421 | } |
| 422 | else |
| 423 | { |
| 424 | p = 1 - z; |
| 425 | q = z; |
| 426 | s = 1; |
| 427 | } |
| 428 | // |
| 429 | // A bit of meta-programming to figure out which implementation |
| 430 | // to use, based on the number of bits in the mantissa of T: |
| 431 | // |
| 432 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
| 433 | typedef boost::integral_constant<int, |
| 434 | precision_type::value <= 0 ? 0 : |
| 435 | precision_type::value <= 64 ? 64 : 0 |
| 436 | > tag_type; |
| 437 | // |
| 438 | // Likewise use internal promotion, so we evaluate at a higher |
| 439 | // precision internally if it's appropriate: |
| 440 | // |
| 441 | typedef typename policies::evaluation<result_type, Policy>::type eval_type; |
| 442 | typedef typename policies::normalise< |
| 443 | Policy, |
| 444 | policies::promote_float<false>, |
| 445 | policies::promote_double<false>, |
| 446 | policies::discrete_quantile<>, |
| 447 | policies::assert_undefined<> >::type forwarding_policy; |
| 448 | |
| 449 | detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate(); |
| 450 | |
| 451 | // |
| 452 | // And get the result, negating where required: |
| 453 | // |
| 454 | return s * policies::checked_narrowing_cast<result_type, forwarding_policy>( |
| 455 | detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(0)), function); |
| 456 | } |
| 457 | |
| 458 | template <class T, class Policy> |
| 459 | typename tools::promote_args<T>::type erf_inv(T z, const Policy& pol) |
| 460 | { |
| 461 | typedef typename tools::promote_args<T>::type result_type; |
| 462 | |
| 463 | // |
| 464 | // Begin by testing for domain errors, and other special cases: |
| 465 | // |
| 466 | static const char* function = "boost::math::erf_inv<%1%>(%1%, %1%)" ; |
| 467 | if((z < -1) || (z > 1)) |
| 468 | return policies::raise_domain_error<result_type>(function, "Argument outside range [-1, 1] in inverse erf function (got p=%1%)." , z, pol); |
| 469 | if(z == 1) |
| 470 | return policies::raise_overflow_error<result_type>(function, 0, pol); |
| 471 | if(z == -1) |
| 472 | return -policies::raise_overflow_error<result_type>(function, 0, pol); |
| 473 | if(z == 0) |
| 474 | return 0; |
| 475 | // |
| 476 | // Normalise the input, so it's in the range [0,1], we will |
| 477 | // negate the result if z is outside that range. This is a simple |
| 478 | // application of the erf reflection formula: erf(-z) = -erf(z) |
| 479 | // |
| 480 | result_type p, q, s; |
| 481 | if(z < 0) |
| 482 | { |
| 483 | p = -z; |
| 484 | q = 1 - p; |
| 485 | s = -1; |
| 486 | } |
| 487 | else |
| 488 | { |
| 489 | p = z; |
| 490 | q = 1 - z; |
| 491 | s = 1; |
| 492 | } |
| 493 | // |
| 494 | // A bit of meta-programming to figure out which implementation |
| 495 | // to use, based on the number of bits in the mantissa of T: |
| 496 | // |
| 497 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
| 498 | typedef boost::integral_constant<int, |
| 499 | precision_type::value <= 0 ? 0 : |
| 500 | precision_type::value <= 64 ? 64 : 0 |
| 501 | > tag_type; |
| 502 | // |
| 503 | // Likewise use internal promotion, so we evaluate at a higher |
| 504 | // precision internally if it's appropriate: |
| 505 | // |
| 506 | typedef typename policies::evaluation<result_type, Policy>::type eval_type; |
| 507 | typedef typename policies::normalise< |
| 508 | Policy, |
| 509 | policies::promote_float<false>, |
| 510 | policies::promote_double<false>, |
| 511 | policies::discrete_quantile<>, |
| 512 | policies::assert_undefined<> >::type forwarding_policy; |
| 513 | // |
| 514 | // Likewise use internal promotion, so we evaluate at a higher |
| 515 | // precision internally if it's appropriate: |
| 516 | // |
| 517 | typedef typename policies::evaluation<result_type, Policy>::type eval_type; |
| 518 | |
| 519 | detail::erf_inv_initializer<eval_type, forwarding_policy>::force_instantiate(); |
| 520 | // |
| 521 | // And get the result, negating where required: |
| 522 | // |
| 523 | return s * policies::checked_narrowing_cast<result_type, forwarding_policy>( |
| 524 | detail::erf_inv_imp(static_cast<eval_type>(p), static_cast<eval_type>(q), forwarding_policy(), static_cast<tag_type const*>(0)), function); |
| 525 | } |
| 526 | |
| 527 | template <class T> |
| 528 | inline typename tools::promote_args<T>::type erfc_inv(T z) |
| 529 | { |
| 530 | return erfc_inv(z, policies::policy<>()); |
| 531 | } |
| 532 | |
| 533 | template <class T> |
| 534 | inline typename tools::promote_args<T>::type erf_inv(T z) |
| 535 | { |
| 536 | return erf_inv(z, policies::policy<>()); |
| 537 | } |
| 538 | |
| 539 | } // namespace math |
| 540 | } // namespace boost |
| 541 | |
| 542 | #ifdef _MSC_VER |
| 543 | #pragma warning(pop) |
| 544 | #endif |
| 545 | |
| 546 | #endif // BOOST_MATH_SF_ERF_INV_HPP |
| 547 | |
| 548 | |