| 1 | // Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | // |
| 6 | // This file implements the asymptotic expansions of the incomplete |
| 7 | // gamma functions P(a, x) and Q(a, x), used when a is large and |
| 8 | // x ~ a. |
| 9 | // |
| 10 | // The primary reference is: |
| 11 | // |
| 12 | // "The Asymptotic Expansion of the Incomplete Gamma Functions" |
| 13 | // N. M. Temme. |
| 14 | // Siam J. Math Anal. Vol 10 No 4, July 1979, p757. |
| 15 | // |
| 16 | // A different way of evaluating these expansions, |
| 17 | // plus a lot of very useful background information is in: |
| 18 | // |
| 19 | // "A Set of Algorithms For the Incomplete Gamma Functions." |
| 20 | // N. M. Temme. |
| 21 | // Probability in the Engineering and Informational Sciences, |
| 22 | // 8, 1994, 291. |
| 23 | // |
| 24 | // An alternative implementation is in: |
| 25 | // |
| 26 | // "Computation of the Incomplete Gamma Function Ratios and their Inverse." |
| 27 | // A. R. Didonato and A. H. Morris. |
| 28 | // ACM TOMS, Vol 12, No 4, Dec 1986, p377. |
| 29 | // |
| 30 | // There are various versions of the same code below, each accurate |
| 31 | // to a different precision. To understand the code, refer to Didonato |
| 32 | // and Morris, from Eq 17 and 18 onwards. |
| 33 | // |
| 34 | // The coefficients used here are not taken from Didonato and Morris: |
| 35 | // the domain over which these expansions are used is slightly different |
| 36 | // to theirs, and their constants are not quite accurate enough for |
| 37 | // 128-bit long double's. Instead the coefficients were calculated |
| 38 | // using the methods described by Temme p762 from Eq 3.8 onwards. |
| 39 | // The values obtained agree with those obtained by Didonato and Morris |
| 40 | // (at least to the first 30 digits that they provide). |
| 41 | // At double precision the degrees of polynomial required for full |
| 42 | // machine precision are close to those recommended to Didonato and Morris, |
| 43 | // but of course many more terms are needed for larger types. |
| 44 | // |
| 45 | #ifndef BOOST_MATH_DETAIL_IGAMMA_LARGE |
| 46 | #define BOOST_MATH_DETAIL_IGAMMA_LARGE |
| 47 | |
| 48 | #ifdef _MSC_VER |
| 49 | #pragma once |
| 50 | #endif |
| 51 | |
| 52 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 53 | // |
| 54 | // This is the only way we can avoid |
| 55 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 56 | // when building with -Wall -pedantic. Neither __extension__ |
| 57 | // nor #pragma diagnostic ignored work :( |
| 58 | // |
| 59 | #pragma GCC system_header |
| 60 | #endif |
| 61 | |
| 62 | namespace boost{ namespace math{ namespace detail{ |
| 63 | |
| 64 | // This version will never be called (at runtime), it's a stub used |
| 65 | // when T is unsuitable to be passed to these routines: |
| 66 | // |
| 67 | template <class T, class Policy> |
| 68 | inline T igamma_temme_large(T, T, const Policy& /* pol */, boost::integral_constant<int, 0> const *) |
| 69 | { |
| 70 | // stub function, should never actually be called |
| 71 | BOOST_ASSERT(0); |
| 72 | return 0; |
| 73 | } |
| 74 | // |
| 75 | // This version is accurate for up to 64-bit mantissa's, |
| 76 | // (80-bit long double, or 10^-20). |
| 77 | // |
| 78 | template <class T, class Policy> |
| 79 | T igamma_temme_large(T a, T x, const Policy& pol, boost::integral_constant<int, 64> const *) |
| 80 | { |
| 81 | BOOST_MATH_STD_USING // ADL of std functions |
| 82 | T sigma = (x - a) / a; |
| 83 | T phi = -boost::math::log1pmx(sigma, pol); |
| 84 | T y = a * phi; |
| 85 | T z = sqrt(2 * phi); |
| 86 | if(x < a) |
| 87 | z = -z; |
| 88 | |
| 89 | T workspace[13]; |
| 90 | |
| 91 | static const T C0[] = { |
| 92 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.333333333333333333333), |
| 93 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0833333333333333333333), |
| 94 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0148148148148148148148), |
| 95 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00115740740740740740741), |
| 96 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000352733686067019400353), |
| 97 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0001787551440329218107), |
| 98 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.39192631785224377817e-4), |
| 99 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.218544851067999216147e-5), |
| 100 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.18540622107151599607e-5), |
| 101 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.829671134095308600502e-6), |
| 102 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.176659527368260793044e-6), |
| 103 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.670785354340149858037e-8), |
| 104 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.102618097842403080426e-7), |
| 105 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.438203601845335318655e-8), |
| 106 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.914769958223679023418e-9), |
| 107 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.255141939949462497669e-10), |
| 108 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.583077213255042506746e-10), |
| 109 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.243619480206674162437e-10), |
| 110 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.502766928011417558909e-11), |
| 111 | }; |
| 112 | workspace[0] = tools::evaluate_polynomial(C0, z); |
| 113 | |
| 114 | static const T C1[] = { |
| 115 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00185185185185185185185), |
| 116 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00347222222222222222222), |
| 117 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00264550264550264550265), |
| 118 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000990226337448559670782), |
| 119 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000205761316872427983539), |
| 120 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.40187757201646090535e-6), |
| 121 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.18098550334489977837e-4), |
| 122 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.764916091608111008464e-5), |
| 123 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.161209008945634460038e-5), |
| 124 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.464712780280743434226e-8), |
| 125 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.137863344691572095931e-6), |
| 126 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.575254560351770496402e-7), |
| 127 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.119516285997781473243e-7), |
| 128 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.175432417197476476238e-10), |
| 129 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.100915437106004126275e-8), |
| 130 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.416279299184258263623e-9), |
| 131 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.856390702649298063807e-10), |
| 132 | }; |
| 133 | workspace[1] = tools::evaluate_polynomial(C1, z); |
| 134 | |
| 135 | static const T C2[] = { |
| 136 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00413359788359788359788), |
| 137 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00268132716049382716049), |
| 138 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000771604938271604938272), |
| 139 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.200938786008230452675e-5), |
| 140 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000107366532263651605215), |
| 141 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.529234488291201254164e-4), |
| 142 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.127606351886187277134e-4), |
| 143 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.342357873409613807419e-7), |
| 144 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.137219573090629332056e-5), |
| 145 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.629899213838005502291e-6), |
| 146 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.142806142060642417916e-6), |
| 147 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.204770984219908660149e-9), |
| 148 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.140925299108675210533e-7), |
| 149 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.622897408492202203356e-8), |
| 150 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.136704883966171134993e-8), |
| 151 | }; |
| 152 | workspace[2] = tools::evaluate_polynomial(C2, z); |
| 153 | |
| 154 | static const T C3[] = { |
| 155 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000649434156378600823045), |
| 156 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000229472093621399176955), |
| 157 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000469189494395255712128), |
| 158 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000267720632062838852962), |
| 159 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.756180167188397641073e-4), |
| 160 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.239650511386729665193e-6), |
| 161 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.110826541153473023615e-4), |
| 162 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.56749528269915965675e-5), |
| 163 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.142309007324358839146e-5), |
| 164 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.278610802915281422406e-10), |
| 165 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.169584040919302772899e-6), |
| 166 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.809946490538808236335e-7), |
| 167 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.191111684859736540607e-7), |
| 168 | }; |
| 169 | workspace[3] = tools::evaluate_polynomial(C3, z); |
| 170 | |
| 171 | static const T C4[] = { |
| 172 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000861888290916711698605), |
| 173 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000784039221720066627474), |
| 174 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000299072480303190179733), |
| 175 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.146384525788434181781e-5), |
| 176 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.664149821546512218666e-4), |
| 177 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.396836504717943466443e-4), |
| 178 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.113757269706784190981e-4), |
| 179 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.250749722623753280165e-9), |
| 180 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.169541495365583060147e-5), |
| 181 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.890750753220530968883e-6), |
| 182 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.229293483400080487057e-6), |
| 183 | }; |
| 184 | workspace[4] = tools::evaluate_polynomial(C4, z); |
| 185 | |
| 186 | static const T C5[] = { |
| 187 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000336798553366358150309), |
| 188 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.697281375836585777429e-4), |
| 189 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000277275324495939207873), |
| 190 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000199325705161888477003), |
| 191 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.679778047793720783882e-4), |
| 192 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.141906292064396701483e-6), |
| 193 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.135940481897686932785e-4), |
| 194 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.801847025633420153972e-5), |
| 195 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.229148117650809517038e-5), |
| 196 | }; |
| 197 | workspace[5] = tools::evaluate_polynomial(C5, z); |
| 198 | |
| 199 | static const T C6[] = { |
| 200 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000531307936463992223166), |
| 201 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000592166437353693882865), |
| 202 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000270878209671804482771), |
| 203 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.790235323266032787212e-6), |
| 204 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.815396936756196875093e-4), |
| 205 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.561168275310624965004e-4), |
| 206 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.183291165828433755673e-4), |
| 207 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.307961345060330478256e-8), |
| 208 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.346515536880360908674e-5), |
| 209 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.20291327396058603727e-5), |
| 210 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.57887928631490037089e-6), |
| 211 | }; |
| 212 | workspace[6] = tools::evaluate_polynomial(C6, z); |
| 213 | |
| 214 | static const T C7[] = { |
| 215 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000344367606892377671254), |
| 216 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.517179090826059219337e-4), |
| 217 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000334931610811422363117), |
| 218 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000281269515476323702274), |
| 219 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000109765822446847310235), |
| 220 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.127410090954844853795e-6), |
| 221 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.277444515115636441571e-4), |
| 222 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.182634888057113326614e-4), |
| 223 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.578769494973505239894e-5), |
| 224 | }; |
| 225 | workspace[7] = tools::evaluate_polynomial(C7, z); |
| 226 | |
| 227 | static const T C8[] = { |
| 228 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000652623918595309418922), |
| 229 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000839498720672087279993), |
| 230 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000438297098541721005061), |
| 231 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.696909145842055197137e-6), |
| 232 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000166448466420675478374), |
| 233 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000127835176797692185853), |
| 234 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.462995326369130429061e-4), |
| 235 | }; |
| 236 | workspace[8] = tools::evaluate_polynomial(C8, z); |
| 237 | |
| 238 | static const T C9[] = { |
| 239 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000596761290192746250124), |
| 240 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.720489541602001055909e-4), |
| 241 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000678230883766732836162), |
| 242 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0006401475260262758451), |
| 243 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000277501076343287044992), |
| 244 | }; |
| 245 | workspace[9] = tools::evaluate_polynomial(C9, z); |
| 246 | |
| 247 | static const T C10[] = { |
| 248 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00133244544948006563713), |
| 249 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.0019144384985654775265), |
| 250 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00110893691345966373396), |
| 251 | }; |
| 252 | workspace[10] = tools::evaluate_polynomial(C10, z); |
| 253 | |
| 254 | static const T C11[] = { |
| 255 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00157972766073083495909), |
| 256 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.000162516262783915816899), |
| 257 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00206334210355432762645), |
| 258 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00213896861856890981541), |
| 259 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00101085593912630031708), |
| 260 | }; |
| 261 | workspace[11] = tools::evaluate_polynomial(C11, z); |
| 262 | |
| 263 | static const T C12[] = { |
| 264 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00407251211951401664727), |
| 265 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00640336283380806979482), |
| 266 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.00404101610816766177474), |
| 267 | }; |
| 268 | workspace[12] = tools::evaluate_polynomial(C12, z); |
| 269 | |
| 270 | T result = tools::evaluate_polynomial<13, T, T>(workspace, 1/a); |
| 271 | result *= exp(-y) / sqrt(2 * constants::pi<T>() * a); |
| 272 | if(x < a) |
| 273 | result = -result; |
| 274 | |
| 275 | result += boost::math::erfc(sqrt(y), pol) / 2; |
| 276 | |
| 277 | return result; |
| 278 | } |
| 279 | // |
| 280 | // This one is accurate for 53-bit mantissa's |
| 281 | // (IEEE double precision or 10^-17). |
| 282 | // |
| 283 | template <class T, class Policy> |
| 284 | T igamma_temme_large(T a, T x, const Policy& pol, boost::integral_constant<int, 53> const *) |
| 285 | { |
| 286 | BOOST_MATH_STD_USING // ADL of std functions |
| 287 | T sigma = (x - a) / a; |
| 288 | T phi = -boost::math::log1pmx(sigma, pol); |
| 289 | T y = a * phi; |
| 290 | T z = sqrt(2 * phi); |
| 291 | if(x < a) |
| 292 | z = -z; |
| 293 | |
| 294 | T workspace[10]; |
| 295 | |
| 296 | static const T C0[] = { |
| 297 | static_cast<T>(-0.33333333333333333L), |
| 298 | static_cast<T>(0.083333333333333333L), |
| 299 | static_cast<T>(-0.014814814814814815L), |
| 300 | static_cast<T>(0.0011574074074074074L), |
| 301 | static_cast<T>(0.0003527336860670194L), |
| 302 | static_cast<T>(-0.00017875514403292181L), |
| 303 | static_cast<T>(0.39192631785224378e-4L), |
| 304 | static_cast<T>(-0.21854485106799922e-5L), |
| 305 | static_cast<T>(-0.185406221071516e-5L), |
| 306 | static_cast<T>(0.8296711340953086e-6L), |
| 307 | static_cast<T>(-0.17665952736826079e-6L), |
| 308 | static_cast<T>(0.67078535434014986e-8L), |
| 309 | static_cast<T>(0.10261809784240308e-7L), |
| 310 | static_cast<T>(-0.43820360184533532e-8L), |
| 311 | static_cast<T>(0.91476995822367902e-9L), |
| 312 | }; |
| 313 | workspace[0] = tools::evaluate_polynomial(C0, z); |
| 314 | |
| 315 | static const T C1[] = { |
| 316 | static_cast<T>(-0.0018518518518518519L), |
| 317 | static_cast<T>(-0.0034722222222222222L), |
| 318 | static_cast<T>(0.0026455026455026455L), |
| 319 | static_cast<T>(-0.00099022633744855967L), |
| 320 | static_cast<T>(0.00020576131687242798L), |
| 321 | static_cast<T>(-0.40187757201646091e-6L), |
| 322 | static_cast<T>(-0.18098550334489978e-4L), |
| 323 | static_cast<T>(0.76491609160811101e-5L), |
| 324 | static_cast<T>(-0.16120900894563446e-5L), |
| 325 | static_cast<T>(0.46471278028074343e-8L), |
| 326 | static_cast<T>(0.1378633446915721e-6L), |
| 327 | static_cast<T>(-0.5752545603517705e-7L), |
| 328 | static_cast<T>(0.11951628599778147e-7L), |
| 329 | }; |
| 330 | workspace[1] = tools::evaluate_polynomial(C1, z); |
| 331 | |
| 332 | static const T C2[] = { |
| 333 | static_cast<T>(0.0041335978835978836L), |
| 334 | static_cast<T>(-0.0026813271604938272L), |
| 335 | static_cast<T>(0.00077160493827160494L), |
| 336 | static_cast<T>(0.20093878600823045e-5L), |
| 337 | static_cast<T>(-0.00010736653226365161L), |
| 338 | static_cast<T>(0.52923448829120125e-4L), |
| 339 | static_cast<T>(-0.12760635188618728e-4L), |
| 340 | static_cast<T>(0.34235787340961381e-7L), |
| 341 | static_cast<T>(0.13721957309062933e-5L), |
| 342 | static_cast<T>(-0.6298992138380055e-6L), |
| 343 | static_cast<T>(0.14280614206064242e-6L), |
| 344 | }; |
| 345 | workspace[2] = tools::evaluate_polynomial(C2, z); |
| 346 | |
| 347 | static const T C3[] = { |
| 348 | static_cast<T>(0.00064943415637860082L), |
| 349 | static_cast<T>(0.00022947209362139918L), |
| 350 | static_cast<T>(-0.00046918949439525571L), |
| 351 | static_cast<T>(0.00026772063206283885L), |
| 352 | static_cast<T>(-0.75618016718839764e-4L), |
| 353 | static_cast<T>(-0.23965051138672967e-6L), |
| 354 | static_cast<T>(0.11082654115347302e-4L), |
| 355 | static_cast<T>(-0.56749528269915966e-5L), |
| 356 | static_cast<T>(0.14230900732435884e-5L), |
| 357 | }; |
| 358 | workspace[3] = tools::evaluate_polynomial(C3, z); |
| 359 | |
| 360 | static const T C4[] = { |
| 361 | static_cast<T>(-0.0008618882909167117L), |
| 362 | static_cast<T>(0.00078403922172006663L), |
| 363 | static_cast<T>(-0.00029907248030319018L), |
| 364 | static_cast<T>(-0.14638452578843418e-5L), |
| 365 | static_cast<T>(0.66414982154651222e-4L), |
| 366 | static_cast<T>(-0.39683650471794347e-4L), |
| 367 | static_cast<T>(0.11375726970678419e-4L), |
| 368 | }; |
| 369 | workspace[4] = tools::evaluate_polynomial(C4, z); |
| 370 | |
| 371 | static const T C5[] = { |
| 372 | static_cast<T>(-0.00033679855336635815L), |
| 373 | static_cast<T>(-0.69728137583658578e-4L), |
| 374 | static_cast<T>(0.00027727532449593921L), |
| 375 | static_cast<T>(-0.00019932570516188848L), |
| 376 | static_cast<T>(0.67977804779372078e-4L), |
| 377 | static_cast<T>(0.1419062920643967e-6L), |
| 378 | static_cast<T>(-0.13594048189768693e-4L), |
| 379 | static_cast<T>(0.80184702563342015e-5L), |
| 380 | static_cast<T>(-0.22914811765080952e-5L), |
| 381 | }; |
| 382 | workspace[5] = tools::evaluate_polynomial(C5, z); |
| 383 | |
| 384 | static const T C6[] = { |
| 385 | static_cast<T>(0.00053130793646399222L), |
| 386 | static_cast<T>(-0.00059216643735369388L), |
| 387 | static_cast<T>(0.00027087820967180448L), |
| 388 | static_cast<T>(0.79023532326603279e-6L), |
| 389 | static_cast<T>(-0.81539693675619688e-4L), |
| 390 | static_cast<T>(0.56116827531062497e-4L), |
| 391 | static_cast<T>(-0.18329116582843376e-4L), |
| 392 | }; |
| 393 | workspace[6] = tools::evaluate_polynomial(C6, z); |
| 394 | |
| 395 | static const T C7[] = { |
| 396 | static_cast<T>(0.00034436760689237767L), |
| 397 | static_cast<T>(0.51717909082605922e-4L), |
| 398 | static_cast<T>(-0.00033493161081142236L), |
| 399 | static_cast<T>(0.0002812695154763237L), |
| 400 | static_cast<T>(-0.00010976582244684731L), |
| 401 | }; |
| 402 | workspace[7] = tools::evaluate_polynomial(C7, z); |
| 403 | |
| 404 | static const T C8[] = { |
| 405 | static_cast<T>(-0.00065262391859530942L), |
| 406 | static_cast<T>(0.00083949872067208728L), |
| 407 | static_cast<T>(-0.00043829709854172101L), |
| 408 | }; |
| 409 | workspace[8] = tools::evaluate_polynomial(C8, z); |
| 410 | workspace[9] = static_cast<T>(-0.00059676129019274625L); |
| 411 | |
| 412 | T result = tools::evaluate_polynomial<10, T, T>(workspace, 1/a); |
| 413 | result *= exp(-y) / sqrt(2 * constants::pi<T>() * a); |
| 414 | if(x < a) |
| 415 | result = -result; |
| 416 | |
| 417 | result += boost::math::erfc(sqrt(y), pol) / 2; |
| 418 | |
| 419 | return result; |
| 420 | } |
| 421 | // |
| 422 | // This one is accurate for 24-bit mantissa's |
| 423 | // (IEEE float precision, or 10^-8) |
| 424 | // |
| 425 | template <class T, class Policy> |
| 426 | T igamma_temme_large(T a, T x, const Policy& pol, boost::integral_constant<int, 24> const *) |
| 427 | { |
| 428 | BOOST_MATH_STD_USING // ADL of std functions |
| 429 | T sigma = (x - a) / a; |
| 430 | T phi = -boost::math::log1pmx(sigma, pol); |
| 431 | T y = a * phi; |
| 432 | T z = sqrt(2 * phi); |
| 433 | if(x < a) |
| 434 | z = -z; |
| 435 | |
| 436 | T workspace[3]; |
| 437 | |
| 438 | static const T C0[] = { |
| 439 | static_cast<T>(-0.333333333L), |
| 440 | static_cast<T>(0.0833333333L), |
| 441 | static_cast<T>(-0.0148148148L), |
| 442 | static_cast<T>(0.00115740741L), |
| 443 | static_cast<T>(0.000352733686L), |
| 444 | static_cast<T>(-0.000178755144L), |
| 445 | static_cast<T>(0.391926318e-4L), |
| 446 | }; |
| 447 | workspace[0] = tools::evaluate_polynomial(C0, z); |
| 448 | |
| 449 | static const T C1[] = { |
| 450 | static_cast<T>(-0.00185185185L), |
| 451 | static_cast<T>(-0.00347222222L), |
| 452 | static_cast<T>(0.00264550265L), |
| 453 | static_cast<T>(-0.000990226337L), |
| 454 | static_cast<T>(0.000205761317L), |
| 455 | }; |
| 456 | workspace[1] = tools::evaluate_polynomial(C1, z); |
| 457 | |
| 458 | static const T C2[] = { |
| 459 | static_cast<T>(0.00413359788L), |
| 460 | static_cast<T>(-0.00268132716L), |
| 461 | static_cast<T>(0.000771604938L), |
| 462 | }; |
| 463 | workspace[2] = tools::evaluate_polynomial(C2, z); |
| 464 | |
| 465 | T result = tools::evaluate_polynomial(workspace, 1/a); |
| 466 | result *= exp(-y) / sqrt(2 * constants::pi<T>() * a); |
| 467 | if(x < a) |
| 468 | result = -result; |
| 469 | |
| 470 | result += boost::math::erfc(sqrt(y), pol) / 2; |
| 471 | |
| 472 | return result; |
| 473 | } |
| 474 | // |
| 475 | // And finally, a version for 113-bit mantissa's |
| 476 | // (128-bit long doubles, or 10^-34). |
| 477 | // Note this one has been optimised for a > 200 |
| 478 | // It's use for a < 200 is not recommended, that would |
| 479 | // require many more terms in the polynomials. |
| 480 | // |
| 481 | template <class T, class Policy> |
| 482 | T igamma_temme_large(T a, T x, const Policy& pol, boost::integral_constant<int, 113> const *) |
| 483 | { |
| 484 | BOOST_MATH_STD_USING // ADL of std functions |
| 485 | T sigma = (x - a) / a; |
| 486 | T phi = -boost::math::log1pmx(sigma, pol); |
| 487 | T y = a * phi; |
| 488 | T z = sqrt(2 * phi); |
| 489 | if(x < a) |
| 490 | z = -z; |
| 491 | |
| 492 | T workspace[14]; |
| 493 | |
| 494 | static const T C0[] = { |
| 495 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.333333333333333333333333333333333333), |
| 496 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0833333333333333333333333333333333333), |
| 497 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0148148148148148148148148148148148148), |
| 498 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00115740740740740740740740740740740741), |
| 499 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0003527336860670194003527336860670194), |
| 500 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000178755144032921810699588477366255144), |
| 501 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.391926317852243778169704095630021556e-4), |
| 502 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.218544851067999216147364295512443661e-5), |
| 503 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.185406221071515996070179883622956325e-5), |
| 504 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.829671134095308600501624213166443227e-6), |
| 505 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.17665952736826079304360054245742403e-6), |
| 506 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.670785354340149858036939710029613572e-8), |
| 507 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.102618097842403080425739573227252951e-7), |
| 508 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.438203601845335318655297462244719123e-8), |
| 509 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.914769958223679023418248817633113681e-9), |
| 510 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.255141939949462497668779537993887013e-10), |
| 511 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.583077213255042506746408945040035798e-10), |
| 512 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.243619480206674162436940696707789943e-10), |
| 513 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.502766928011417558909054985925744366e-11), |
| 514 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.110043920319561347708374174497293411e-12), |
| 515 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.337176326240098537882769884169200185e-12), |
| 516 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.13923887224181620659193661848957998e-12), |
| 517 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.285348938070474432039669099052828299e-13), |
| 518 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.513911183424257261899064580300494205e-15), |
| 519 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.197522882943494428353962401580710912e-14), |
| 520 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.809952115670456133407115668702575255e-15), |
| 521 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.165225312163981618191514820265351162e-15), |
| 522 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.253054300974788842327061090060267385e-17), |
| 523 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.116869397385595765888230876507793475e-16), |
| 524 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.477003704982048475822167804084816597e-17), |
| 525 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.969912605905623712420709685898585354e-18), |
| 526 | }; |
| 527 | workspace[0] = tools::evaluate_polynomial(C0, z); |
| 528 | |
| 529 | static const T C1[] = { |
| 530 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00185185185185185185185185185185185185), |
| 531 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00347222222222222222222222222222222222), |
| 532 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026455026455026455026455026455026455), |
| 533 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000990226337448559670781893004115226337), |
| 534 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000205761316872427983539094650205761317), |
| 535 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.401877572016460905349794238683127572e-6), |
| 536 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.180985503344899778370285914867533523e-4), |
| 537 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.76491609160811100846374214980916921e-5), |
| 538 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.16120900894563446003775221882217767e-5), |
| 539 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.464712780280743434226135033938722401e-8), |
| 540 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.137863344691572095931187533077488877e-6), |
| 541 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.575254560351770496402194531835048307e-7), |
| 542 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.119516285997781473243076536699698169e-7), |
| 543 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.175432417197476476237547551202312502e-10), |
| 544 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.100915437106004126274577504686681675e-8), |
| 545 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.416279299184258263623372347219858628e-9), |
| 546 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.856390702649298063807431562579670208e-10), |
| 547 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.606721510160475861512701762169919581e-13), |
| 548 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.716249896481148539007961017165545733e-11), |
| 549 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.293318664377143711740636683615595403e-11), |
| 550 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.599669636568368872330374527568788909e-12), |
| 551 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.216717865273233141017100472779701734e-15), |
| 552 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.497833997236926164052815522048108548e-13), |
| 553 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.202916288237134247736694804325894226e-13), |
| 554 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.413125571381061004935108332558187111e-14), |
| 555 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.828651623988309644380188591057589316e-18), |
| 556 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.341003088693333279336339355910600992e-15), |
| 557 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.138541953028939715357034547426313703e-15), |
| 558 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.281234665322887466568860332727259483e-16), |
| 559 | }; |
| 560 | workspace[1] = tools::evaluate_polynomial(C1, z); |
| 561 | |
| 562 | static const T C2[] = { |
| 563 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0041335978835978835978835978835978836), |
| 564 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00268132716049382716049382716049382716), |
| 565 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000771604938271604938271604938271604938), |
| 566 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.200938786008230452674897119341563786e-5), |
| 567 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000107366532263651605215391223621676297), |
| 568 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.529234488291201254164217127180090143e-4), |
| 569 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.127606351886187277133779191392360117e-4), |
| 570 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.34235787340961380741902003904747389e-7), |
| 571 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.137219573090629332055943852926020279e-5), |
| 572 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.629899213838005502290672234278391876e-6), |
| 573 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.142806142060642417915846008822771748e-6), |
| 574 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.204770984219908660149195854409200226e-9), |
| 575 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.140925299108675210532930244154315272e-7), |
| 576 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.622897408492202203356394293530327112e-8), |
| 577 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.136704883966171134992724380284402402e-8), |
| 578 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.942835615901467819547711211663208075e-12), |
| 579 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.128722524000893180595479368872770442e-9), |
| 580 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.556459561343633211465414765894951439e-10), |
| 581 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.119759355463669810035898150310311343e-10), |
| 582 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.416897822518386350403836626692480096e-14), |
| 583 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.109406404278845944099299008640802908e-11), |
| 584 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.4662239946390135746326204922464679e-12), |
| 585 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.990510576390690597844122258212382301e-13), |
| 586 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.189318767683735145056885183170630169e-16), |
| 587 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.885922187259112726176031067028740667e-14), |
| 588 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.373782039804640545306560251777191937e-14), |
| 589 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.786883363903515525774088394065960751e-15), |
| 590 | }; |
| 591 | workspace[2] = tools::evaluate_polynomial(C2, z); |
| 592 | |
| 593 | static const T C3[] = { |
| 594 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000649434156378600823045267489711934156), |
| 595 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000229472093621399176954732510288065844), |
| 596 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000469189494395255712128140111679206329), |
| 597 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000267720632062838852962309752433209223), |
| 598 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.756180167188397641072538191879755666e-4), |
| 599 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.239650511386729665193314027333231723e-6), |
| 600 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.110826541153473023614770299726861227e-4), |
| 601 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.567495282699159656749963105701560205e-5), |
| 602 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.14230900732435883914551894470580433e-5), |
| 603 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.278610802915281422405802158211174452e-10), |
| 604 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.16958404091930277289864168795820267e-6), |
| 605 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.809946490538808236335278504852724081e-7), |
| 606 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.191111684859736540606728140872727635e-7), |
| 607 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.239286204398081179686413514022282056e-11), |
| 608 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.206201318154887984369925818486654549e-8), |
| 609 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.946049666185513217375417988510192814e-9), |
| 610 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.215410497757749078380130268468744512e-9), |
| 611 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.138882333681390304603424682490735291e-13), |
| 612 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.218947616819639394064123400466489455e-10), |
| 613 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.979099895117168512568262802255883368e-11), |
| 614 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.217821918801809621153859472011393244e-11), |
| 615 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.62088195734079014258166361684972205e-16), |
| 616 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.212697836327973697696702537114614471e-12), |
| 617 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.934468879151743333127396765626749473e-13), |
| 618 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.204536712267828493249215913063207436e-13), |
| 619 | }; |
| 620 | workspace[3] = tools::evaluate_polynomial(C3, z); |
| 621 | |
| 622 | static const T C4[] = { |
| 623 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000861888290916711698604702719929057378), |
| 624 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00078403922172006662747403488144228885), |
| 625 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000299072480303190179733389609932819809), |
| 626 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.146384525788434181781232535690697556e-5), |
| 627 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.664149821546512218665853782451862013e-4), |
| 628 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.396836504717943466443123507595386882e-4), |
| 629 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.113757269706784190980552042885831759e-4), |
| 630 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.250749722623753280165221942390057007e-9), |
| 631 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.169541495365583060147164356781525752e-5), |
| 632 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.890750753220530968882898422505515924e-6), |
| 633 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.229293483400080487057216364891158518e-6), |
| 634 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.295679413754404904696572852500004588e-10), |
| 635 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.288658297427087836297341274604184504e-7), |
| 636 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.141897394378032193894774303903982717e-7), |
| 637 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.344635804994648970659527720474194356e-8), |
| 638 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.230245171745280671320192735850147087e-12), |
| 639 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.394092330280464052750697640085291799e-9), |
| 640 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.186023389685045019134258533045185639e-9), |
| 641 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.435632300505661804380678327446262424e-10), |
| 642 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.127860010162962312660550463349930726e-14), |
| 643 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.467927502665791946200382739991760062e-11), |
| 644 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.214924647061348285410535341910721086e-11), |
| 645 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.490881561480965216323649688463984082e-12), |
| 646 | }; |
| 647 | workspace[4] = tools::evaluate_polynomial(C4, z); |
| 648 | |
| 649 | static const T C5[] = { |
| 650 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000336798553366358150308767592718210002), |
| 651 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.697281375836585777429398828575783308e-4), |
| 652 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00027727532449593920787336425196507501), |
| 653 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000199325705161888477003360405280844238), |
| 654 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.679778047793720783881640176604435742e-4), |
| 655 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.141906292064396701483392727105575757e-6), |
| 656 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.135940481897686932784583938837504469e-4), |
| 657 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.80184702563342015397192571980419684e-5), |
| 658 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.229148117650809517038048790128781806e-5), |
| 659 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.325247355129845395166230137750005047e-9), |
| 660 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.346528464910852649559195496827579815e-6), |
| 661 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.184471871911713432765322367374920978e-6), |
| 662 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.482409670378941807563762631738989002e-7), |
| 663 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.179894667217435153025754291716644314e-13), |
| 664 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.630619450001352343517516981425944698e-8), |
| 665 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.316241762877456793773762181540969623e-8), |
| 666 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.784092425369742929000839303523267545e-9), |
| 667 | }; |
| 668 | workspace[5] = tools::evaluate_polynomial(C5, z); |
| 669 | |
| 670 | static const T C6[] = { |
| 671 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00053130793646399222316574854297762391), |
| 672 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000592166437353693882864836225604401187), |
| 673 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000270878209671804482771279183488328692), |
| 674 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.790235323266032787212032944390816666e-6), |
| 675 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.815396936756196875092890088464682624e-4), |
| 676 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.561168275310624965003775619041471695e-4), |
| 677 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.183291165828433755673259749374098313e-4), |
| 678 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.307961345060330478256414192546677006e-8), |
| 679 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.346515536880360908673728529745376913e-5), |
| 680 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.202913273960586037269527254582695285e-5), |
| 681 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.578879286314900370889997586203187687e-6), |
| 682 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.233863067382665698933480579231637609e-12), |
| 683 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.88286007463304835250508524317926246e-7), |
| 684 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.474359588804081278032150770595852426e-7), |
| 685 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.125454150207103824457130611214783073e-7), |
| 686 | }; |
| 687 | workspace[6] = tools::evaluate_polynomial(C6, z); |
| 688 | |
| 689 | static const T C7[] = { |
| 690 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000344367606892377671254279625108523655), |
| 691 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.517179090826059219337057843002058823e-4), |
| 692 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000334931610811422363116635090580012327), |
| 693 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000281269515476323702273722110707777978), |
| 694 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000109765822446847310235396824500789005), |
| 695 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.127410090954844853794579954588107623e-6), |
| 696 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.277444515115636441570715073933712622e-4), |
| 697 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.182634888057113326614324442681892723e-4), |
| 698 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.578769494973505239894178121070843383e-5), |
| 699 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.493875893393627039981813418398565502e-9), |
| 700 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.105953670140260427338098566209633945e-5), |
| 701 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.616671437611040747858836254004890765e-6), |
| 702 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.175629733590604619378669693914265388e-6), |
| 703 | }; |
| 704 | workspace[7] = tools::evaluate_polynomial(C7, z); |
| 705 | |
| 706 | static const T C8[] = { |
| 707 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000652623918595309418922034919726622692), |
| 708 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000839498720672087279993357516764983445), |
| 709 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000438297098541721005061087953050560377), |
| 710 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.696909145842055197136911097362072702e-6), |
| 711 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00016644846642067547837384572662326101), |
| 712 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000127835176797692185853344001461664247), |
| 713 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.462995326369130429061361032704489636e-4), |
| 714 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.455790986792270771162749294232219616e-8), |
| 715 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.105952711258051954718238500312872328e-4), |
| 716 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.678334290486516662273073740749269432e-5), |
| 717 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.210754766662588042469972680229376445e-5), |
| 718 | }; |
| 719 | workspace[8] = tools::evaluate_polynomial(C8, z); |
| 720 | |
| 721 | static const T C9[] = { |
| 722 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000596761290192746250124390067179459605), |
| 723 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.720489541602001055908571930225015052e-4), |
| 724 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000678230883766732836161951166000673426), |
| 725 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000640147526026275845100045652582354779), |
| 726 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000277501076343287044992374518205845463), |
| 727 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.181970083804651510461686554030325202e-6), |
| 728 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.847950711706850318239732559632810086e-4), |
| 729 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.610519208250153101764709122740859458e-4), |
| 730 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.210739201834048624082975255893773306e-4), |
| 731 | }; |
| 732 | workspace[9] = tools::evaluate_polynomial(C9, z); |
| 733 | |
| 734 | static const T C10[] = { |
| 735 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00133244544948006563712694993432717968), |
| 736 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00191443849856547752650089885832852254), |
| 737 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0011089369134596637339607446329267522), |
| 738 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.993240412264229896742295262075817566e-6), |
| 739 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000508745012930931989848393025305956774), |
| 740 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00042735056665392884328432271160040444), |
| 741 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.000168588537679107988033552814662382059), |
| 742 | }; |
| 743 | workspace[10] = tools::evaluate_polynomial(C10, z); |
| 744 | |
| 745 | static const T C11[] = { |
| 746 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00157972766073083495908785631307733022), |
| 747 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000162516262783915816898635123980270998), |
| 748 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00206334210355432762645284467690276817), |
| 749 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00213896861856890981541061922797693947), |
| 750 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00101085593912630031708085801712479376), |
| 751 | }; |
| 752 | workspace[11] = tools::evaluate_polynomial(C11, z); |
| 753 | |
| 754 | static const T C12[] = { |
| 755 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00407251211951401664727281097914544601), |
| 756 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00640336283380806979482363809026579583), |
| 757 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.00404101610816766177473974858518094879), |
| 758 | }; |
| 759 | workspace[12] = tools::evaluate_polynomial(C12, z); |
| 760 | workspace[13] = -0.0059475779383993002845382844736066323L; |
| 761 | |
| 762 | T result = tools::evaluate_polynomial(workspace, T(1/a)); |
| 763 | result *= exp(-y) / sqrt(2 * constants::pi<T>() * a); |
| 764 | if(x < a) |
| 765 | result = -result; |
| 766 | |
| 767 | result += boost::math::erfc(sqrt(y), pol) / 2; |
| 768 | |
| 769 | return result; |
| 770 | } |
| 771 | |
| 772 | } // namespace detail |
| 773 | } // namespace math |
| 774 | } // namespace math |
| 775 | |
| 776 | |
| 777 | #endif // BOOST_MATH_DETAIL_IGAMMA_LARGE |
| 778 | |
| 779 | |