| 1 | // Copyright John Maddock 2007. |
| 2 | // Copyright Paul A. Bristow 2007 |
| 3 | // Use, modification and distribution are subject to the |
| 4 | // Boost Software License, Version 1.0. (See accompanying file |
| 5 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 6 | |
| 7 | #ifndef BOOST_MATH_SF_DETAIL_INV_T_HPP |
| 8 | #define BOOST_MATH_SF_DETAIL_INV_T_HPP |
| 9 | |
| 10 | #ifdef _MSC_VER |
| 11 | #pragma once |
| 12 | #endif |
| 13 | |
| 14 | #include <boost/math/special_functions/cbrt.hpp> |
| 15 | #include <boost/math/special_functions/round.hpp> |
| 16 | #include <boost/math/special_functions/trunc.hpp> |
| 17 | |
| 18 | namespace boost{ namespace math{ namespace detail{ |
| 19 | |
| 20 | // |
| 21 | // The main method used is due to Hill: |
| 22 | // |
| 23 | // G. W. Hill, Algorithm 396, Student's t-Quantiles, |
| 24 | // Communications of the ACM, 13(10): 619-620, Oct., 1970. |
| 25 | // |
| 26 | template <class T, class Policy> |
| 27 | T inverse_students_t_hill(T ndf, T u, const Policy& pol) |
| 28 | { |
| 29 | BOOST_MATH_STD_USING |
| 30 | BOOST_ASSERT(u <= 0.5); |
| 31 | |
| 32 | T a, b, c, d, q, x, y; |
| 33 | |
| 34 | if (ndf > 1e20f) |
| 35 | return -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>(); |
| 36 | |
| 37 | a = 1 / (ndf - 0.5f); |
| 38 | b = 48 / (a * a); |
| 39 | c = ((20700 * a / b - 98) * a - 16) * a + 96.36f; |
| 40 | d = ((94.5f / (b + c) - 3) / b + 1) * sqrt(a * constants::pi<T>() / 2) * ndf; |
| 41 | y = pow(d * 2 * u, 2 / ndf); |
| 42 | |
| 43 | if (y > (0.05f + a)) |
| 44 | { |
| 45 | // |
| 46 | // Asymptotic inverse expansion about normal: |
| 47 | // |
| 48 | x = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>(); |
| 49 | y = x * x; |
| 50 | |
| 51 | if (ndf < 5) |
| 52 | c += 0.3f * (ndf - 4.5f) * (x + 0.6f); |
| 53 | c += (((0.05f * d * x - 5) * x - 7) * x - 2) * x + b; |
| 54 | y = (((((0.4f * y + 6.3f) * y + 36) * y + 94.5f) / c - y - 3) / b + 1) * x; |
| 55 | y = boost::math::expm1(a * y * y, pol); |
| 56 | } |
| 57 | else |
| 58 | { |
| 59 | y = static_cast<T>(((1 / (((ndf + 6) / (ndf * y) - 0.089f * d - 0.822f) |
| 60 | * (ndf + 2) * 3) + 0.5 / (ndf + 4)) * y - 1) |
| 61 | * (ndf + 1) / (ndf + 2) + 1 / y); |
| 62 | } |
| 63 | q = sqrt(ndf * y); |
| 64 | |
| 65 | return -q; |
| 66 | } |
| 67 | // |
| 68 | // Tail and body series are due to Shaw: |
| 69 | // |
| 70 | // www.mth.kcl.ac.uk/~shaww/web_page/papers/Tdistribution06.pdf |
| 71 | // |
| 72 | // Shaw, W.T., 2006, "Sampling Student's T distribution - use of |
| 73 | // the inverse cumulative distribution function." |
| 74 | // Journal of Computational Finance, Vol 9 Issue 4, pp 37-73, Summer 2006 |
| 75 | // |
| 76 | template <class T, class Policy> |
| 77 | T inverse_students_t_tail_series(T df, T v, const Policy& pol) |
| 78 | { |
| 79 | BOOST_MATH_STD_USING |
| 80 | // Tail series expansion, see section 6 of Shaw's paper. |
| 81 | // w is calculated using Eq 60: |
| 82 | T w = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol) |
| 83 | * sqrt(df * constants::pi<T>()) * v; |
| 84 | // define some variables: |
| 85 | T np2 = df + 2; |
| 86 | T np4 = df + 4; |
| 87 | T np6 = df + 6; |
| 88 | // |
| 89 | // Calculate the coefficients d(k), these depend only on the |
| 90 | // number of degrees of freedom df, so at least in theory |
| 91 | // we could tabulate these for fixed df, see p15 of Shaw: |
| 92 | // |
| 93 | T d[7] = { 1, }; |
| 94 | d[1] = -(df + 1) / (2 * np2); |
| 95 | np2 *= (df + 2); |
| 96 | d[2] = -df * (df + 1) * (df + 3) / (8 * np2 * np4); |
| 97 | np2 *= df + 2; |
| 98 | d[3] = -df * (df + 1) * (df + 5) * (((3 * df) + 7) * df -2) / (48 * np2 * np4 * np6); |
| 99 | np2 *= (df + 2); |
| 100 | np4 *= (df + 4); |
| 101 | d[4] = -df * (df + 1) * (df + 7) * |
| 102 | ( (((((15 * df) + 154) * df + 465) * df + 286) * df - 336) * df + 64 ) |
| 103 | / (384 * np2 * np4 * np6 * (df + 8)); |
| 104 | np2 *= (df + 2); |
| 105 | d[5] = -df * (df + 1) * (df + 3) * (df + 9) |
| 106 | * (((((((35 * df + 452) * df + 1573) * df + 600) * df - 2020) * df) + 928) * df -128) |
| 107 | / (1280 * np2 * np4 * np6 * (df + 8) * (df + 10)); |
| 108 | np2 *= (df + 2); |
| 109 | np4 *= (df + 4); |
| 110 | np6 *= (df + 6); |
| 111 | d[6] = -df * (df + 1) * (df + 11) |
| 112 | * ((((((((((((945 * df) + 31506) * df + 425858) * df + 2980236) * df + 11266745) * df + 20675018) * df + 7747124) * df - 22574632) * df - 8565600) * df + 18108416) * df - 7099392) * df + 884736) |
| 113 | / (46080 * np2 * np4 * np6 * (df + 8) * (df + 10) * (df +12)); |
| 114 | // |
| 115 | // Now bring everything together to provide the result, |
| 116 | // this is Eq 62 of Shaw: |
| 117 | // |
| 118 | T rn = sqrt(df); |
| 119 | T div = pow(rn * w, 1 / df); |
| 120 | T power = div * div; |
| 121 | T result = tools::evaluate_polynomial<7, T, T>(d, power); |
| 122 | result *= rn; |
| 123 | result /= div; |
| 124 | return -result; |
| 125 | } |
| 126 | |
| 127 | template <class T, class Policy> |
| 128 | T inverse_students_t_body_series(T df, T u, const Policy& pol) |
| 129 | { |
| 130 | BOOST_MATH_STD_USING |
| 131 | // |
| 132 | // Body series for small N: |
| 133 | // |
| 134 | // Start with Eq 56 of Shaw: |
| 135 | // |
| 136 | T v = boost::math::tgamma_delta_ratio(df / 2, constants::half<T>(), pol) |
| 137 | * sqrt(df * constants::pi<T>()) * (u - constants::half<T>()); |
| 138 | // |
| 139 | // Workspace for the polynomial coefficients: |
| 140 | // |
| 141 | T c[11] = { 0, 1, }; |
| 142 | // |
| 143 | // Figure out what the coefficients are, note these depend |
| 144 | // only on the degrees of freedom (Eq 57 of Shaw): |
| 145 | // |
| 146 | T in = 1 / df; |
| 147 | c[2] = static_cast<T>(0.16666666666666666667 + 0.16666666666666666667 * in); |
| 148 | c[3] = static_cast<T>((0.0083333333333333333333 * in |
| 149 | + 0.066666666666666666667) * in |
| 150 | + 0.058333333333333333333); |
| 151 | c[4] = static_cast<T>(((0.00019841269841269841270 * in |
| 152 | + 0.0017857142857142857143) * in |
| 153 | + 0.026785714285714285714) * in |
| 154 | + 0.025198412698412698413); |
| 155 | c[5] = static_cast<T>((((2.7557319223985890653e-6 * in |
| 156 | + 0.00037477954144620811287) * in |
| 157 | - 0.0011078042328042328042) * in |
| 158 | + 0.010559964726631393298) * in |
| 159 | + 0.012039792768959435626); |
| 160 | c[6] = static_cast<T>(((((2.5052108385441718775e-8 * in |
| 161 | - 0.000062705427288760622094) * in |
| 162 | + 0.00059458674042007375341) * in |
| 163 | - 0.0016095979637646304313) * in |
| 164 | + 0.0061039211560044893378) * in |
| 165 | + 0.0038370059724226390893); |
| 166 | c[7] = static_cast<T>((((((1.6059043836821614599e-10 * in |
| 167 | + 0.000015401265401265401265) * in |
| 168 | - 0.00016376804137220803887) * in |
| 169 | + 0.00069084207973096861986) * in |
| 170 | - 0.0012579159844784844785) * in |
| 171 | + 0.0010898206731540064873) * in |
| 172 | + 0.0032177478835464946576); |
| 173 | c[8] = static_cast<T>(((((((7.6471637318198164759e-13 * in |
| 174 | - 3.9851014346715404916e-6) * in |
| 175 | + 0.000049255746366361445727) * in |
| 176 | - 0.00024947258047043099953) * in |
| 177 | + 0.00064513046951456342991) * in |
| 178 | - 0.00076245135440323932387) * in |
| 179 | + 0.000033530976880017885309) * in |
| 180 | + 0.0017438262298340009980); |
| 181 | c[9] = static_cast<T>((((((((2.8114572543455207632e-15 * in |
| 182 | + 1.0914179173496789432e-6) * in |
| 183 | - 0.000015303004486655377567) * in |
| 184 | + 0.000090867107935219902229) * in |
| 185 | - 0.00029133414466938067350) * in |
| 186 | + 0.00051406605788341121363) * in |
| 187 | - 0.00036307660358786885787) * in |
| 188 | - 0.00031101086326318780412) * in |
| 189 | + 0.00096472747321388644237); |
| 190 | c[10] = static_cast<T>(((((((((8.2206352466243297170e-18 * in |
| 191 | - 3.1239569599829868045e-7) * in |
| 192 | + 4.8903045291975346210e-6) * in |
| 193 | - 0.000033202652391372058698) * in |
| 194 | + 0.00012645437628698076975) * in |
| 195 | - 0.00028690924218514613987) * in |
| 196 | + 0.00035764655430568632777) * in |
| 197 | - 0.00010230378073700412687) * in |
| 198 | - 0.00036942667800009661203) * in |
| 199 | + 0.00054229262813129686486); |
| 200 | // |
| 201 | // The result is then a polynomial in v (see Eq 56 of Shaw): |
| 202 | // |
| 203 | return tools::evaluate_odd_polynomial<11, T, T>(c, v); |
| 204 | } |
| 205 | |
| 206 | template <class T, class Policy> |
| 207 | T inverse_students_t(T df, T u, T v, const Policy& pol, bool* pexact = 0) |
| 208 | { |
| 209 | // |
| 210 | // df = number of degrees of freedom. |
| 211 | // u = probability. |
| 212 | // v = 1 - u. |
| 213 | // l = lanczos type to use. |
| 214 | // |
| 215 | BOOST_MATH_STD_USING |
| 216 | bool invert = false; |
| 217 | T result = 0; |
| 218 | if(pexact) |
| 219 | *pexact = false; |
| 220 | if(u > v) |
| 221 | { |
| 222 | // function is symmetric, invert it: |
| 223 | std::swap(u, v); |
| 224 | invert = true; |
| 225 | } |
| 226 | if((floor(df) == df) && (df < 20)) |
| 227 | { |
| 228 | // |
| 229 | // we have integer degrees of freedom, try for the special |
| 230 | // cases first: |
| 231 | // |
| 232 | T tolerance = ldexp(1.0f, (2 * policies::digits<T, Policy>()) / 3); |
| 233 | |
| 234 | switch(itrunc(df, Policy())) |
| 235 | { |
| 236 | case 1: |
| 237 | { |
| 238 | // |
| 239 | // df = 1 is the same as the Cauchy distribution, see |
| 240 | // Shaw Eq 35: |
| 241 | // |
| 242 | if(u == 0.5) |
| 243 | result = 0; |
| 244 | else |
| 245 | result = -cos(constants::pi<T>() * u) / sin(constants::pi<T>() * u); |
| 246 | if(pexact) |
| 247 | *pexact = true; |
| 248 | break; |
| 249 | } |
| 250 | case 2: |
| 251 | { |
| 252 | // |
| 253 | // df = 2 has an exact result, see Shaw Eq 36: |
| 254 | // |
| 255 | result =(2 * u - 1) / sqrt(2 * u * v); |
| 256 | if(pexact) |
| 257 | *pexact = true; |
| 258 | break; |
| 259 | } |
| 260 | case 4: |
| 261 | { |
| 262 | // |
| 263 | // df = 4 has an exact result, see Shaw Eq 38 & 39: |
| 264 | // |
| 265 | T alpha = 4 * u * v; |
| 266 | T root_alpha = sqrt(alpha); |
| 267 | T r = 4 * cos(acos(root_alpha) / 3) / root_alpha; |
| 268 | T x = sqrt(r - 4); |
| 269 | result = u - 0.5f < 0 ? (T)-x : x; |
| 270 | if(pexact) |
| 271 | *pexact = true; |
| 272 | break; |
| 273 | } |
| 274 | case 6: |
| 275 | { |
| 276 | // |
| 277 | // We get numeric overflow in this area: |
| 278 | // |
| 279 | if(u < 1e-150) |
| 280 | return (invert ? -1 : 1) * inverse_students_t_hill(df, u, pol); |
| 281 | // |
| 282 | // Newton-Raphson iteration of a polynomial case, |
| 283 | // choice of seed value is taken from Shaw's online |
| 284 | // supplement: |
| 285 | // |
| 286 | T a = 4 * (u - u * u);//1 - 4 * (u - 0.5f) * (u - 0.5f); |
| 287 | T b = boost::math::cbrt(a); |
| 288 | static const T c = static_cast<T>(0.85498797333834849467655443627193); |
| 289 | T p = 6 * (1 + c * (1 / b - 1)); |
| 290 | T p0; |
| 291 | do{ |
| 292 | T p2 = p * p; |
| 293 | T p4 = p2 * p2; |
| 294 | T p5 = p * p4; |
| 295 | p0 = p; |
| 296 | // next term is given by Eq 41: |
| 297 | p = 2 * (8 * a * p5 - 270 * p2 + 2187) / (5 * (4 * a * p4 - 216 * p - 243)); |
| 298 | }while(fabs((p - p0) / p) > tolerance); |
| 299 | // |
| 300 | // Use Eq 45 to extract the result: |
| 301 | // |
| 302 | p = sqrt(p - df); |
| 303 | result = (u - 0.5f) < 0 ? (T)-p : p; |
| 304 | break; |
| 305 | } |
| 306 | #if 0 |
| 307 | // |
| 308 | // These are Shaw's "exact" but iterative solutions |
| 309 | // for even df, the numerical accuracy of these is |
| 310 | // rather less than Hill's method, so these are disabled |
| 311 | // for now, which is a shame because they are reasonably |
| 312 | // quick to evaluate... |
| 313 | // |
| 314 | case 8: |
| 315 | { |
| 316 | // |
| 317 | // Newton-Raphson iteration of a polynomial case, |
| 318 | // choice of seed value is taken from Shaw's online |
| 319 | // supplement: |
| 320 | // |
| 321 | static const T c8 = 0.85994765706259820318168359251872L; |
| 322 | T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); |
| 323 | T b = pow(a, T(1) / 4); |
| 324 | T p = 8 * (1 + c8 * (1 / b - 1)); |
| 325 | T p0 = p; |
| 326 | do{ |
| 327 | T p5 = p * p; |
| 328 | p5 *= p5 * p; |
| 329 | p0 = p; |
| 330 | // Next term is given by Eq 42: |
| 331 | p = 2 * (3 * p + (640 * (160 + p * (24 + p * (p + 4)))) / (-5120 + p * (-2048 - 960 * p + a * p5))) / 7; |
| 332 | }while(fabs((p - p0) / p) > tolerance); |
| 333 | // |
| 334 | // Use Eq 45 to extract the result: |
| 335 | // |
| 336 | p = sqrt(p - df); |
| 337 | result = (u - 0.5f) < 0 ? -p : p; |
| 338 | break; |
| 339 | } |
| 340 | case 10: |
| 341 | { |
| 342 | // |
| 343 | // Newton-Raphson iteration of a polynomial case, |
| 344 | // choice of seed value is taken from Shaw's online |
| 345 | // supplement: |
| 346 | // |
| 347 | static const T c10 = 0.86781292867813396759105692122285L; |
| 348 | T a = 4 * (u - u * u); //1 - 4 * (u - 0.5f) * (u - 0.5f); |
| 349 | T b = pow(a, T(1) / 5); |
| 350 | T p = 10 * (1 + c10 * (1 / b - 1)); |
| 351 | T p0; |
| 352 | do{ |
| 353 | T p6 = p * p; |
| 354 | p6 *= p6 * p6; |
| 355 | p0 = p; |
| 356 | // Next term given by Eq 43: |
| 357 | p = (8 * p) / 9 + (218750 * (21875 + 4 * p * (625 + p * (75 + 2 * p * (5 + p))))) / |
| 358 | (9 * (-68359375 + 8 * p * (-2343750 + p * (-546875 - 175000 * p + 8 * a * p6)))); |
| 359 | }while(fabs((p - p0) / p) > tolerance); |
| 360 | // |
| 361 | // Use Eq 45 to extract the result: |
| 362 | // |
| 363 | p = sqrt(p - df); |
| 364 | result = (u - 0.5f) < 0 ? -p : p; |
| 365 | break; |
| 366 | } |
| 367 | #endif |
| 368 | default: |
| 369 | goto calculate_real; |
| 370 | } |
| 371 | } |
| 372 | else |
| 373 | { |
| 374 | calculate_real: |
| 375 | if(df > 0x10000000) |
| 376 | { |
| 377 | result = -boost::math::erfc_inv(2 * u, pol) * constants::root_two<T>(); |
| 378 | if((pexact) && (df >= 1e20)) |
| 379 | *pexact = true; |
| 380 | } |
| 381 | else if(df < 3) |
| 382 | { |
| 383 | // |
| 384 | // Use a roughly linear scheme to choose between Shaw's |
| 385 | // tail series and body series: |
| 386 | // |
| 387 | T crossover = 0.2742f - df * 0.0242143f; |
| 388 | if(u > crossover) |
| 389 | { |
| 390 | result = boost::math::detail::inverse_students_t_body_series(df, u, pol); |
| 391 | } |
| 392 | else |
| 393 | { |
| 394 | result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); |
| 395 | } |
| 396 | } |
| 397 | else |
| 398 | { |
| 399 | // |
| 400 | // Use Hill's method except in the extreme tails |
| 401 | // where we use Shaw's tail series. |
| 402 | // The crossover point is roughly exponential in -df: |
| 403 | // |
| 404 | T crossover = ldexp(1.0f, iround(T(df / -0.654f), typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type())); |
| 405 | if(u > crossover) |
| 406 | { |
| 407 | result = boost::math::detail::inverse_students_t_hill(df, u, pol); |
| 408 | } |
| 409 | else |
| 410 | { |
| 411 | result = boost::math::detail::inverse_students_t_tail_series(df, u, pol); |
| 412 | } |
| 413 | } |
| 414 | } |
| 415 | return invert ? (T)-result : result; |
| 416 | } |
| 417 | |
| 418 | template <class T, class Policy> |
| 419 | inline T find_ibeta_inv_from_t_dist(T a, T p, T /*q*/, T* py, const Policy& pol) |
| 420 | { |
| 421 | T u = p / 2; |
| 422 | T v = 1 - u; |
| 423 | T df = a * 2; |
| 424 | T t = boost::math::detail::inverse_students_t(df, u, v, pol); |
| 425 | *py = t * t / (df + t * t); |
| 426 | return df / (df + t * t); |
| 427 | } |
| 428 | |
| 429 | template <class T, class Policy> |
| 430 | inline T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const boost::false_type*) |
| 431 | { |
| 432 | BOOST_MATH_STD_USING |
| 433 | // |
| 434 | // Need to use inverse incomplete beta to get |
| 435 | // required precision so not so fast: |
| 436 | // |
| 437 | T probability = (p > 0.5) ? 1 - p : p; |
| 438 | T t, x, y(0); |
| 439 | x = ibeta_inv(df / 2, T(0.5), 2 * probability, &y, pol); |
| 440 | if(df * y > tools::max_value<T>() * x) |
| 441 | t = policies::raise_overflow_error<T>("boost::math::students_t_quantile<%1%>(%1%,%1%)" , 0, pol); |
| 442 | else |
| 443 | t = sqrt(df * y / x); |
| 444 | // |
| 445 | // Figure out sign based on the size of p: |
| 446 | // |
| 447 | if(p < 0.5) |
| 448 | t = -t; |
| 449 | return t; |
| 450 | } |
| 451 | |
| 452 | template <class T, class Policy> |
| 453 | T fast_students_t_quantile_imp(T df, T p, const Policy& pol, const boost::true_type*) |
| 454 | { |
| 455 | BOOST_MATH_STD_USING |
| 456 | bool invert = false; |
| 457 | if((df < 2) && (floor(df) != df)) |
| 458 | return boost::math::detail::fast_students_t_quantile_imp(df, p, pol, static_cast<boost::false_type*>(0)); |
| 459 | if(p > 0.5) |
| 460 | { |
| 461 | p = 1 - p; |
| 462 | invert = true; |
| 463 | } |
| 464 | // |
| 465 | // Get an estimate of the result: |
| 466 | // |
| 467 | bool exact; |
| 468 | T t = inverse_students_t(df, p, T(1-p), pol, &exact); |
| 469 | if((t == 0) || exact) |
| 470 | return invert ? -t : t; // can't do better! |
| 471 | // |
| 472 | // Change variables to inverse incomplete beta: |
| 473 | // |
| 474 | T t2 = t * t; |
| 475 | T xb = df / (df + t2); |
| 476 | T y = t2 / (df + t2); |
| 477 | T a = df / 2; |
| 478 | // |
| 479 | // t can be so large that x underflows, |
| 480 | // just return our estimate in that case: |
| 481 | // |
| 482 | if(xb == 0) |
| 483 | return t; |
| 484 | // |
| 485 | // Get incomplete beta and it's derivative: |
| 486 | // |
| 487 | T f1; |
| 488 | T f0 = xb < y ? ibeta_imp(a, constants::half<T>(), xb, pol, false, true, &f1) |
| 489 | : ibeta_imp(constants::half<T>(), a, y, pol, true, true, &f1); |
| 490 | |
| 491 | // Get cdf from incomplete beta result: |
| 492 | T p0 = f0 / 2 - p; |
| 493 | // Get pdf from derivative: |
| 494 | T p1 = f1 * sqrt(y * xb * xb * xb / df); |
| 495 | // |
| 496 | // Second derivative divided by p1: |
| 497 | // |
| 498 | // yacas gives: |
| 499 | // |
| 500 | // In> PrettyForm(Simplify(D(t) (1 + t^2/v) ^ (-(v+1)/2))) |
| 501 | // |
| 502 | // | | v + 1 | | |
| 503 | // | -| ----- + 1 | | |
| 504 | // | | 2 | | |
| 505 | // -| | 2 | | |
| 506 | // | | t | | |
| 507 | // | | -- + 1 | | |
| 508 | // | ( v + 1 ) * | v | * t | |
| 509 | // --------------------------------------------- |
| 510 | // v |
| 511 | // |
| 512 | // Which after some manipulation is: |
| 513 | // |
| 514 | // -p1 * t * (df + 1) / (t^2 + df) |
| 515 | // |
| 516 | T p2 = t * (df + 1) / (t * t + df); |
| 517 | // Halley step: |
| 518 | t = fabs(t); |
| 519 | t += p0 / (p1 + p0 * p2 / 2); |
| 520 | return !invert ? -t : t; |
| 521 | } |
| 522 | |
| 523 | template <class T, class Policy> |
| 524 | inline T fast_students_t_quantile(T df, T p, const Policy& pol) |
| 525 | { |
| 526 | typedef typename policies::evaluation<T, Policy>::type value_type; |
| 527 | typedef typename policies::normalise< |
| 528 | Policy, |
| 529 | policies::promote_float<false>, |
| 530 | policies::promote_double<false>, |
| 531 | policies::discrete_quantile<>, |
| 532 | policies::assert_undefined<> >::type forwarding_policy; |
| 533 | |
| 534 | typedef boost::integral_constant<bool, |
| 535 | (std::numeric_limits<T>::digits <= 53) |
| 536 | && |
| 537 | (std::numeric_limits<T>::is_specialized) |
| 538 | && |
| 539 | (std::numeric_limits<T>::radix == 2) |
| 540 | > tag_type; |
| 541 | return policies::checked_narrowing_cast<T, forwarding_policy>(fast_students_t_quantile_imp(static_cast<value_type>(df), static_cast<value_type>(p), pol, static_cast<tag_type*>(0)), "boost::math::students_t_quantile<%1%>(%1%,%1%,%1%)" ); |
| 542 | } |
| 543 | |
| 544 | }}} // namespaces |
| 545 | |
| 546 | #endif // BOOST_MATH_SF_DETAIL_INV_T_HPP |
| 547 | |
| 548 | |
| 549 | |
| 550 | |