1 | // (C) Copyright John Maddock 2006. |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_EXPM1_INCLUDED |
7 | #define BOOST_MATH_EXPM1_INCLUDED |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #endif |
12 | |
13 | #include <boost/config/no_tr1/cmath.hpp> |
14 | #include <math.h> // platform's ::expm1 |
15 | #include <boost/limits.hpp> |
16 | #include <boost/math/tools/config.hpp> |
17 | #include <boost/math/tools/series.hpp> |
18 | #include <boost/math/tools/precision.hpp> |
19 | #include <boost/math/tools/big_constant.hpp> |
20 | #include <boost/math/policies/error_handling.hpp> |
21 | #include <boost/math/tools/rational.hpp> |
22 | #include <boost/math/special_functions/math_fwd.hpp> |
23 | #include <boost/mpl/less_equal.hpp> |
24 | |
25 | #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS |
26 | # include <boost/static_assert.hpp> |
27 | #else |
28 | # include <boost/assert.hpp> |
29 | #endif |
30 | |
31 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
32 | // |
33 | // This is the only way we can avoid |
34 | // warning: non-standard suffix on floating constant [-Wpedantic] |
35 | // when building with -Wall -pedantic. Neither __extension__ |
36 | // nor #pragma diagnostic ignored work :( |
37 | // |
38 | #pragma GCC system_header |
39 | #endif |
40 | |
41 | namespace boost{ namespace math{ |
42 | |
43 | namespace detail |
44 | { |
45 | // Functor expm1_series returns the next term in the Taylor series |
46 | // x^k / k! |
47 | // each time that operator() is invoked. |
48 | // |
49 | template <class T> |
50 | struct expm1_series |
51 | { |
52 | typedef T result_type; |
53 | |
54 | expm1_series(T x) |
55 | : k(0), m_x(x), m_term(1) {} |
56 | |
57 | T operator()() |
58 | { |
59 | ++k; |
60 | m_term *= m_x; |
61 | m_term /= k; |
62 | return m_term; |
63 | } |
64 | |
65 | int count()const |
66 | { |
67 | return k; |
68 | } |
69 | |
70 | private: |
71 | int k; |
72 | const T m_x; |
73 | T m_term; |
74 | expm1_series(const expm1_series&); |
75 | expm1_series& operator=(const expm1_series&); |
76 | }; |
77 | |
78 | template <class T, class Policy, class tag> |
79 | struct expm1_initializer |
80 | { |
81 | struct init |
82 | { |
83 | init() |
84 | { |
85 | do_init(tag()); |
86 | } |
87 | template <int N> |
88 | static void do_init(const boost::integral_constant<int, N>&){} |
89 | static void do_init(const boost::integral_constant<int, 64>&) |
90 | { |
91 | expm1(T(0.5)); |
92 | } |
93 | static void do_init(const boost::integral_constant<int, 113>&) |
94 | { |
95 | expm1(T(0.5)); |
96 | } |
97 | void force_instantiate()const{} |
98 | }; |
99 | static const init initializer; |
100 | static void force_instantiate() |
101 | { |
102 | initializer.force_instantiate(); |
103 | } |
104 | }; |
105 | |
106 | template <class T, class Policy, class tag> |
107 | const typename expm1_initializer<T, Policy, tag>::init expm1_initializer<T, Policy, tag>::initializer; |
108 | |
109 | // |
110 | // Algorithm expm1 is part of C99, but is not yet provided by many compilers. |
111 | // |
112 | // This version uses a Taylor series expansion for 0.5 > |x| > epsilon. |
113 | // |
114 | template <class T, class Policy> |
115 | T expm1_imp(T x, const boost::integral_constant<int, 0>&, const Policy& pol) |
116 | { |
117 | BOOST_MATH_STD_USING |
118 | |
119 | T a = fabs(x); |
120 | if((boost::math::isnan)(a)) |
121 | { |
122 | return policies::raise_domain_error<T>("boost::math::expm1<%1%>(%1%)" , "expm1 requires a finite argument, but got %1%" , a, pol); |
123 | } |
124 | if(a > T(0.5f)) |
125 | { |
126 | if(a >= tools::log_max_value<T>()) |
127 | { |
128 | if(x > 0) |
129 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
130 | return -1; |
131 | } |
132 | return exp(x) - T(1); |
133 | } |
134 | if(a < tools::epsilon<T>()) |
135 | return x; |
136 | detail::expm1_series<T> s(x); |
137 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
138 | #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245) |
139 | T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter); |
140 | #else |
141 | T zero = 0; |
142 | T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero); |
143 | #endif |
144 | policies::check_series_iterations<T>("boost::math::expm1<%1%>(%1%)" , max_iter, pol); |
145 | return result; |
146 | } |
147 | |
148 | template <class T, class P> |
149 | T expm1_imp(T x, const boost::integral_constant<int, 53>&, const P& pol) |
150 | { |
151 | BOOST_MATH_STD_USING |
152 | |
153 | T a = fabs(x); |
154 | if(a > T(0.5L)) |
155 | { |
156 | if(a >= tools::log_max_value<T>()) |
157 | { |
158 | if(x > 0) |
159 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
160 | return -1; |
161 | } |
162 | return exp(x) - T(1); |
163 | } |
164 | if(a < tools::epsilon<T>()) |
165 | return x; |
166 | |
167 | static const float Y = 0.10281276702880859e1f; |
168 | static const T n[] = { static_cast<T>(-0.28127670288085937e-1), static_cast<T>(0.51278186299064534e0), static_cast<T>(-0.6310029069350198e-1), static_cast<T>(0.11638457975729296e-1), static_cast<T>(-0.52143390687521003e-3), static_cast<T>(0.21491399776965688e-4) }; |
169 | static const T d[] = { 1, static_cast<T>(-0.45442309511354755e0), static_cast<T>(0.90850389570911714e-1), static_cast<T>(-0.10088963629815502e-1), static_cast<T>(0.63003407478692265e-3), static_cast<T>(-0.17976570003654402e-4) }; |
170 | |
171 | T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); |
172 | return result; |
173 | } |
174 | |
175 | template <class T, class P> |
176 | T expm1_imp(T x, const boost::integral_constant<int, 64>&, const P& pol) |
177 | { |
178 | BOOST_MATH_STD_USING |
179 | |
180 | T a = fabs(x); |
181 | if(a > T(0.5L)) |
182 | { |
183 | if(a >= tools::log_max_value<T>()) |
184 | { |
185 | if(x > 0) |
186 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
187 | return -1; |
188 | } |
189 | return exp(x) - T(1); |
190 | } |
191 | if(a < tools::epsilon<T>()) |
192 | return x; |
193 | |
194 | static const float Y = 0.10281276702880859375e1f; |
195 | static const T n[] = { |
196 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.281276702880859375e-1), |
197 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.512980290285154286358e0), |
198 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.667758794592881019644e-1), |
199 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.131432469658444745835e-1), |
200 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.72303795326880286965e-3), |
201 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.447441185192951335042e-4), |
202 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.714539134024984593011e-6) |
203 | }; |
204 | static const T d[] = { |
205 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
206 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.461477618025562520389e0), |
207 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.961237488025708540713e-1), |
208 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.116483957658204450739e-1), |
209 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.873308008461557544458e-3), |
210 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.387922804997682392562e-4), |
211 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.807473180049193557294e-6) |
212 | }; |
213 | |
214 | T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); |
215 | return result; |
216 | } |
217 | |
218 | template <class T, class P> |
219 | T expm1_imp(T x, const boost::integral_constant<int, 113>&, const P& pol) |
220 | { |
221 | BOOST_MATH_STD_USING |
222 | |
223 | T a = fabs(x); |
224 | if(a > T(0.5L)) |
225 | { |
226 | if(a >= tools::log_max_value<T>()) |
227 | { |
228 | if(x > 0) |
229 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
230 | return -1; |
231 | } |
232 | return exp(x) - T(1); |
233 | } |
234 | if(a < tools::epsilon<T>()) |
235 | return x; |
236 | |
237 | static const float Y = 0.10281276702880859375e1f; |
238 | static const T n[] = { |
239 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.28127670288085937499999999999999999854e-1), |
240 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.51278156911210477556524452177540792214e0), |
241 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.63263178520747096729500254678819588223e-1), |
242 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.14703285606874250425508446801230572252e-1), |
243 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.8675686051689527802425310407898459386e-3), |
244 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.88126359618291165384647080266133492399e-4), |
245 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.25963087867706310844432390015463138953e-5), |
246 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.14226691087800461778631773363204081194e-6), |
247 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.15995603306536496772374181066765665596e-8), |
248 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.45261820069007790520447958280473183582e-10) |
249 | }; |
250 | static const T d[] = { |
251 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
252 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.45441264709074310514348137469214538853e0), |
253 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.96827131936192217313133611655555298106e-1), |
254 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.12745248725908178612540554584374876219e-1), |
255 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.11473613871583259821612766907781095472e-2), |
256 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.73704168477258911962046591907690764416e-4), |
257 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.34087499397791555759285503797256103259e-5), |
258 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.11114024704296196166272091230695179724e-6), |
259 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.23987051614110848595909588343223896577e-8), |
260 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.29477341859111589208776402638429026517e-10), |
261 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.13222065991022301420255904060628100924e-12) |
262 | }; |
263 | |
264 | T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); |
265 | return result; |
266 | } |
267 | |
268 | } // namespace detail |
269 | |
270 | template <class T, class Policy> |
271 | inline typename tools::promote_args<T>::type expm1(T x, const Policy& /* pol */) |
272 | { |
273 | typedef typename tools::promote_args<T>::type result_type; |
274 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
275 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
276 | typedef typename policies::normalise< |
277 | Policy, |
278 | policies::promote_float<false>, |
279 | policies::promote_double<false>, |
280 | policies::discrete_quantile<>, |
281 | policies::assert_undefined<> >::type forwarding_policy; |
282 | |
283 | typedef boost::integral_constant<int, |
284 | precision_type::value <= 0 ? 0 : |
285 | precision_type::value <= 53 ? 53 : |
286 | precision_type::value <= 64 ? 64 : |
287 | precision_type::value <= 113 ? 113 : 0 |
288 | > tag_type; |
289 | |
290 | detail::expm1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); |
291 | |
292 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expm1_imp( |
293 | static_cast<value_type>(x), |
294 | tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)" ); |
295 | } |
296 | |
297 | #ifdef expm1 |
298 | # ifndef BOOST_HAS_expm1 |
299 | # define BOOST_HAS_expm1 |
300 | # endif |
301 | # undef expm1 |
302 | #endif |
303 | |
304 | #if defined(BOOST_HAS_EXPM1) && !(defined(__osf__) && defined(__DECCXX_VER)) |
305 | # ifdef BOOST_MATH_USE_C99 |
306 | inline float expm1(float x, const policies::policy<>&){ return ::expm1f(x: x); } |
307 | # ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
308 | inline long double expm1(long double x, const policies::policy<>&){ return ::expm1l(x: x); } |
309 | # endif |
310 | # else |
311 | inline float expm1(float x, const policies::policy<>&){ return static_cast<float>(::expm1(x)); } |
312 | # endif |
313 | inline double expm1(double x, const policies::policy<>&){ return ::expm1(x: x); } |
314 | #endif |
315 | |
316 | template <class T> |
317 | inline typename tools::promote_args<T>::type expm1(T x) |
318 | { |
319 | return expm1(x, policies::policy<>()); |
320 | } |
321 | |
322 | #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) |
323 | inline float expm1(float z) |
324 | { |
325 | return expm1<float>(z); |
326 | } |
327 | inline double expm1(double z) |
328 | { |
329 | return expm1<double>(z); |
330 | } |
331 | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
332 | inline long double expm1(long double z) |
333 | { |
334 | return expm1<long double>(z); |
335 | } |
336 | #endif |
337 | #endif |
338 | |
339 | } // namespace math |
340 | } // namespace boost |
341 | |
342 | #endif // BOOST_MATH_HYPOT_INCLUDED |
343 | |
344 | |
345 | |
346 | |
347 | |