| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_EXPM1_INCLUDED |
| 7 | #define BOOST_MATH_EXPM1_INCLUDED |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/config/no_tr1/cmath.hpp> |
| 14 | #include <math.h> // platform's ::expm1 |
| 15 | #include <boost/limits.hpp> |
| 16 | #include <boost/math/tools/config.hpp> |
| 17 | #include <boost/math/tools/series.hpp> |
| 18 | #include <boost/math/tools/precision.hpp> |
| 19 | #include <boost/math/tools/big_constant.hpp> |
| 20 | #include <boost/math/policies/error_handling.hpp> |
| 21 | #include <boost/math/tools/rational.hpp> |
| 22 | #include <boost/math/special_functions/math_fwd.hpp> |
| 23 | #include <boost/mpl/less_equal.hpp> |
| 24 | |
| 25 | #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS |
| 26 | # include <boost/static_assert.hpp> |
| 27 | #else |
| 28 | # include <boost/assert.hpp> |
| 29 | #endif |
| 30 | |
| 31 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 32 | // |
| 33 | // This is the only way we can avoid |
| 34 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 35 | // when building with -Wall -pedantic. Neither __extension__ |
| 36 | // nor #pragma diagnostic ignored work :( |
| 37 | // |
| 38 | #pragma GCC system_header |
| 39 | #endif |
| 40 | |
| 41 | namespace boost{ namespace math{ |
| 42 | |
| 43 | namespace detail |
| 44 | { |
| 45 | // Functor expm1_series returns the next term in the Taylor series |
| 46 | // x^k / k! |
| 47 | // each time that operator() is invoked. |
| 48 | // |
| 49 | template <class T> |
| 50 | struct expm1_series |
| 51 | { |
| 52 | typedef T result_type; |
| 53 | |
| 54 | expm1_series(T x) |
| 55 | : k(0), m_x(x), m_term(1) {} |
| 56 | |
| 57 | T operator()() |
| 58 | { |
| 59 | ++k; |
| 60 | m_term *= m_x; |
| 61 | m_term /= k; |
| 62 | return m_term; |
| 63 | } |
| 64 | |
| 65 | int count()const |
| 66 | { |
| 67 | return k; |
| 68 | } |
| 69 | |
| 70 | private: |
| 71 | int k; |
| 72 | const T m_x; |
| 73 | T m_term; |
| 74 | expm1_series(const expm1_series&); |
| 75 | expm1_series& operator=(const expm1_series&); |
| 76 | }; |
| 77 | |
| 78 | template <class T, class Policy, class tag> |
| 79 | struct expm1_initializer |
| 80 | { |
| 81 | struct init |
| 82 | { |
| 83 | init() |
| 84 | { |
| 85 | do_init(tag()); |
| 86 | } |
| 87 | template <int N> |
| 88 | static void do_init(const boost::integral_constant<int, N>&){} |
| 89 | static void do_init(const boost::integral_constant<int, 64>&) |
| 90 | { |
| 91 | expm1(T(0.5)); |
| 92 | } |
| 93 | static void do_init(const boost::integral_constant<int, 113>&) |
| 94 | { |
| 95 | expm1(T(0.5)); |
| 96 | } |
| 97 | void force_instantiate()const{} |
| 98 | }; |
| 99 | static const init initializer; |
| 100 | static void force_instantiate() |
| 101 | { |
| 102 | initializer.force_instantiate(); |
| 103 | } |
| 104 | }; |
| 105 | |
| 106 | template <class T, class Policy, class tag> |
| 107 | const typename expm1_initializer<T, Policy, tag>::init expm1_initializer<T, Policy, tag>::initializer; |
| 108 | |
| 109 | // |
| 110 | // Algorithm expm1 is part of C99, but is not yet provided by many compilers. |
| 111 | // |
| 112 | // This version uses a Taylor series expansion for 0.5 > |x| > epsilon. |
| 113 | // |
| 114 | template <class T, class Policy> |
| 115 | T expm1_imp(T x, const boost::integral_constant<int, 0>&, const Policy& pol) |
| 116 | { |
| 117 | BOOST_MATH_STD_USING |
| 118 | |
| 119 | T a = fabs(x); |
| 120 | if((boost::math::isnan)(a)) |
| 121 | { |
| 122 | return policies::raise_domain_error<T>("boost::math::expm1<%1%>(%1%)" , "expm1 requires a finite argument, but got %1%" , a, pol); |
| 123 | } |
| 124 | if(a > T(0.5f)) |
| 125 | { |
| 126 | if(a >= tools::log_max_value<T>()) |
| 127 | { |
| 128 | if(x > 0) |
| 129 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
| 130 | return -1; |
| 131 | } |
| 132 | return exp(x) - T(1); |
| 133 | } |
| 134 | if(a < tools::epsilon<T>()) |
| 135 | return x; |
| 136 | detail::expm1_series<T> s(x); |
| 137 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 138 | #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245) |
| 139 | T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter); |
| 140 | #else |
| 141 | T zero = 0; |
| 142 | T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero); |
| 143 | #endif |
| 144 | policies::check_series_iterations<T>("boost::math::expm1<%1%>(%1%)" , max_iter, pol); |
| 145 | return result; |
| 146 | } |
| 147 | |
| 148 | template <class T, class P> |
| 149 | T expm1_imp(T x, const boost::integral_constant<int, 53>&, const P& pol) |
| 150 | { |
| 151 | BOOST_MATH_STD_USING |
| 152 | |
| 153 | T a = fabs(x); |
| 154 | if(a > T(0.5L)) |
| 155 | { |
| 156 | if(a >= tools::log_max_value<T>()) |
| 157 | { |
| 158 | if(x > 0) |
| 159 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
| 160 | return -1; |
| 161 | } |
| 162 | return exp(x) - T(1); |
| 163 | } |
| 164 | if(a < tools::epsilon<T>()) |
| 165 | return x; |
| 166 | |
| 167 | static const float Y = 0.10281276702880859e1f; |
| 168 | static const T n[] = { static_cast<T>(-0.28127670288085937e-1), static_cast<T>(0.51278186299064534e0), static_cast<T>(-0.6310029069350198e-1), static_cast<T>(0.11638457975729296e-1), static_cast<T>(-0.52143390687521003e-3), static_cast<T>(0.21491399776965688e-4) }; |
| 169 | static const T d[] = { 1, static_cast<T>(-0.45442309511354755e0), static_cast<T>(0.90850389570911714e-1), static_cast<T>(-0.10088963629815502e-1), static_cast<T>(0.63003407478692265e-3), static_cast<T>(-0.17976570003654402e-4) }; |
| 170 | |
| 171 | T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); |
| 172 | return result; |
| 173 | } |
| 174 | |
| 175 | template <class T, class P> |
| 176 | T expm1_imp(T x, const boost::integral_constant<int, 64>&, const P& pol) |
| 177 | { |
| 178 | BOOST_MATH_STD_USING |
| 179 | |
| 180 | T a = fabs(x); |
| 181 | if(a > T(0.5L)) |
| 182 | { |
| 183 | if(a >= tools::log_max_value<T>()) |
| 184 | { |
| 185 | if(x > 0) |
| 186 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
| 187 | return -1; |
| 188 | } |
| 189 | return exp(x) - T(1); |
| 190 | } |
| 191 | if(a < tools::epsilon<T>()) |
| 192 | return x; |
| 193 | |
| 194 | static const float Y = 0.10281276702880859375e1f; |
| 195 | static const T n[] = { |
| 196 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.281276702880859375e-1), |
| 197 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.512980290285154286358e0), |
| 198 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.667758794592881019644e-1), |
| 199 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.131432469658444745835e-1), |
| 200 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.72303795326880286965e-3), |
| 201 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.447441185192951335042e-4), |
| 202 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.714539134024984593011e-6) |
| 203 | }; |
| 204 | static const T d[] = { |
| 205 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 206 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.461477618025562520389e0), |
| 207 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.961237488025708540713e-1), |
| 208 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.116483957658204450739e-1), |
| 209 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.873308008461557544458e-3), |
| 210 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.387922804997682392562e-4), |
| 211 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.807473180049193557294e-6) |
| 212 | }; |
| 213 | |
| 214 | T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); |
| 215 | return result; |
| 216 | } |
| 217 | |
| 218 | template <class T, class P> |
| 219 | T expm1_imp(T x, const boost::integral_constant<int, 113>&, const P& pol) |
| 220 | { |
| 221 | BOOST_MATH_STD_USING |
| 222 | |
| 223 | T a = fabs(x); |
| 224 | if(a > T(0.5L)) |
| 225 | { |
| 226 | if(a >= tools::log_max_value<T>()) |
| 227 | { |
| 228 | if(x > 0) |
| 229 | return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)" , 0, pol); |
| 230 | return -1; |
| 231 | } |
| 232 | return exp(x) - T(1); |
| 233 | } |
| 234 | if(a < tools::epsilon<T>()) |
| 235 | return x; |
| 236 | |
| 237 | static const float Y = 0.10281276702880859375e1f; |
| 238 | static const T n[] = { |
| 239 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.28127670288085937499999999999999999854e-1), |
| 240 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.51278156911210477556524452177540792214e0), |
| 241 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.63263178520747096729500254678819588223e-1), |
| 242 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.14703285606874250425508446801230572252e-1), |
| 243 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.8675686051689527802425310407898459386e-3), |
| 244 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.88126359618291165384647080266133492399e-4), |
| 245 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.25963087867706310844432390015463138953e-5), |
| 246 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.14226691087800461778631773363204081194e-6), |
| 247 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.15995603306536496772374181066765665596e-8), |
| 248 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.45261820069007790520447958280473183582e-10) |
| 249 | }; |
| 250 | static const T d[] = { |
| 251 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
| 252 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.45441264709074310514348137469214538853e0), |
| 253 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.96827131936192217313133611655555298106e-1), |
| 254 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.12745248725908178612540554584374876219e-1), |
| 255 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.11473613871583259821612766907781095472e-2), |
| 256 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.73704168477258911962046591907690764416e-4), |
| 257 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.34087499397791555759285503797256103259e-5), |
| 258 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.11114024704296196166272091230695179724e-6), |
| 259 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.23987051614110848595909588343223896577e-8), |
| 260 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.29477341859111589208776402638429026517e-10), |
| 261 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.13222065991022301420255904060628100924e-12) |
| 262 | }; |
| 263 | |
| 264 | T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); |
| 265 | return result; |
| 266 | } |
| 267 | |
| 268 | } // namespace detail |
| 269 | |
| 270 | template <class T, class Policy> |
| 271 | inline typename tools::promote_args<T>::type expm1(T x, const Policy& /* pol */) |
| 272 | { |
| 273 | typedef typename tools::promote_args<T>::type result_type; |
| 274 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 275 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
| 276 | typedef typename policies::normalise< |
| 277 | Policy, |
| 278 | policies::promote_float<false>, |
| 279 | policies::promote_double<false>, |
| 280 | policies::discrete_quantile<>, |
| 281 | policies::assert_undefined<> >::type forwarding_policy; |
| 282 | |
| 283 | typedef boost::integral_constant<int, |
| 284 | precision_type::value <= 0 ? 0 : |
| 285 | precision_type::value <= 53 ? 53 : |
| 286 | precision_type::value <= 64 ? 64 : |
| 287 | precision_type::value <= 113 ? 113 : 0 |
| 288 | > tag_type; |
| 289 | |
| 290 | detail::expm1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); |
| 291 | |
| 292 | return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expm1_imp( |
| 293 | static_cast<value_type>(x), |
| 294 | tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)" ); |
| 295 | } |
| 296 | |
| 297 | #ifdef expm1 |
| 298 | # ifndef BOOST_HAS_expm1 |
| 299 | # define BOOST_HAS_expm1 |
| 300 | # endif |
| 301 | # undef expm1 |
| 302 | #endif |
| 303 | |
| 304 | #if defined(BOOST_HAS_EXPM1) && !(defined(__osf__) && defined(__DECCXX_VER)) |
| 305 | # ifdef BOOST_MATH_USE_C99 |
| 306 | inline float expm1(float x, const policies::policy<>&){ return ::expm1f(x: x); } |
| 307 | # ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
| 308 | inline long double expm1(long double x, const policies::policy<>&){ return ::expm1l(x: x); } |
| 309 | # endif |
| 310 | # else |
| 311 | inline float expm1(float x, const policies::policy<>&){ return static_cast<float>(::expm1(x)); } |
| 312 | # endif |
| 313 | inline double expm1(double x, const policies::policy<>&){ return ::expm1(x: x); } |
| 314 | #endif |
| 315 | |
| 316 | template <class T> |
| 317 | inline typename tools::promote_args<T>::type expm1(T x) |
| 318 | { |
| 319 | return expm1(x, policies::policy<>()); |
| 320 | } |
| 321 | |
| 322 | #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) |
| 323 | inline float expm1(float z) |
| 324 | { |
| 325 | return expm1<float>(z); |
| 326 | } |
| 327 | inline double expm1(double z) |
| 328 | { |
| 329 | return expm1<double>(z); |
| 330 | } |
| 331 | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
| 332 | inline long double expm1(long double z) |
| 333 | { |
| 334 | return expm1<long double>(z); |
| 335 | } |
| 336 | #endif |
| 337 | #endif |
| 338 | |
| 339 | } // namespace math |
| 340 | } // namespace boost |
| 341 | |
| 342 | #endif // BOOST_MATH_HYPOT_INCLUDED |
| 343 | |
| 344 | |
| 345 | |
| 346 | |
| 347 | |