| 1 | // (C) Copyright John Maddock 2005-2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_LOG1P_INCLUDED |
| 7 | #define BOOST_MATH_LOG1P_INCLUDED |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #pragma warning(push) |
| 12 | #pragma warning(disable:4702) // Unreachable code (release mode only warning) |
| 13 | #endif |
| 14 | |
| 15 | #include <boost/config/no_tr1/cmath.hpp> |
| 16 | #include <math.h> // platform's ::log1p |
| 17 | #include <boost/limits.hpp> |
| 18 | #include <boost/math/tools/config.hpp> |
| 19 | #include <boost/math/tools/series.hpp> |
| 20 | #include <boost/math/tools/rational.hpp> |
| 21 | #include <boost/math/tools/big_constant.hpp> |
| 22 | #include <boost/math/policies/error_handling.hpp> |
| 23 | #include <boost/math/special_functions/math_fwd.hpp> |
| 24 | |
| 25 | #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS |
| 26 | # include <boost/static_assert.hpp> |
| 27 | #else |
| 28 | # include <boost/assert.hpp> |
| 29 | #endif |
| 30 | |
| 31 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
| 32 | // |
| 33 | // This is the only way we can avoid |
| 34 | // warning: non-standard suffix on floating constant [-Wpedantic] |
| 35 | // when building with -Wall -pedantic. Neither __extension__ |
| 36 | // nor #pragma diagnostic ignored work :( |
| 37 | // |
| 38 | #pragma GCC system_header |
| 39 | #endif |
| 40 | |
| 41 | namespace boost{ namespace math{ |
| 42 | |
| 43 | namespace detail |
| 44 | { |
| 45 | // Functor log1p_series returns the next term in the Taylor series |
| 46 | // pow(-1, k-1)*pow(x, k) / k |
| 47 | // each time that operator() is invoked. |
| 48 | // |
| 49 | template <class T> |
| 50 | struct log1p_series |
| 51 | { |
| 52 | typedef T result_type; |
| 53 | |
| 54 | log1p_series(T x) |
| 55 | : k(0), m_mult(-x), m_prod(-1){} |
| 56 | |
| 57 | T operator()() |
| 58 | { |
| 59 | m_prod *= m_mult; |
| 60 | return m_prod / ++k; |
| 61 | } |
| 62 | |
| 63 | int count()const |
| 64 | { |
| 65 | return k; |
| 66 | } |
| 67 | |
| 68 | private: |
| 69 | int k; |
| 70 | const T m_mult; |
| 71 | T m_prod; |
| 72 | log1p_series(const log1p_series&); |
| 73 | log1p_series& operator=(const log1p_series&); |
| 74 | }; |
| 75 | |
| 76 | // Algorithm log1p is part of C99, but is not yet provided by many compilers. |
| 77 | // |
| 78 | // This version uses a Taylor series expansion for 0.5 > x > epsilon, which may |
| 79 | // require up to std::numeric_limits<T>::digits+1 terms to be calculated. |
| 80 | // It would be much more efficient to use the equivalence: |
| 81 | // log(1+x) == (log(1+x) * x) / ((1-x) - 1) |
| 82 | // Unfortunately many optimizing compilers make such a mess of this, that |
| 83 | // it performs no better than log(1+x): which is to say not very well at all. |
| 84 | // |
| 85 | template <class T, class Policy> |
| 86 | T log1p_imp(T const & x, const Policy& pol, const boost::integral_constant<int, 0>&) |
| 87 | { // The function returns the natural logarithm of 1 + x. |
| 88 | typedef typename tools::promote_args<T>::type result_type; |
| 89 | BOOST_MATH_STD_USING |
| 90 | |
| 91 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
| 92 | |
| 93 | if((x < -1) || (boost::math::isnan)(x)) |
| 94 | return policies::raise_domain_error<T>( |
| 95 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 96 | if(x == -1) |
| 97 | return -policies::raise_overflow_error<T>( |
| 98 | function, 0, pol); |
| 99 | |
| 100 | result_type a = abs(result_type(x)); |
| 101 | if(a > result_type(0.5f)) |
| 102 | return log(1 + result_type(x)); |
| 103 | // Note that without numeric_limits specialisation support, |
| 104 | // epsilon just returns zero, and our "optimisation" will always fail: |
| 105 | if(a < tools::epsilon<result_type>()) |
| 106 | return x; |
| 107 | detail::log1p_series<result_type> s(x); |
| 108 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 109 | #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245) |
| 110 | result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter); |
| 111 | #else |
| 112 | result_type zero = 0; |
| 113 | result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter, zero); |
| 114 | #endif |
| 115 | policies::check_series_iterations<T>(function, max_iter, pol); |
| 116 | return result; |
| 117 | } |
| 118 | |
| 119 | template <class T, class Policy> |
| 120 | T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 53>&) |
| 121 | { // The function returns the natural logarithm of 1 + x. |
| 122 | BOOST_MATH_STD_USING |
| 123 | |
| 124 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
| 125 | |
| 126 | if(x < -1) |
| 127 | return policies::raise_domain_error<T>( |
| 128 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 129 | if(x == -1) |
| 130 | return -policies::raise_overflow_error<T>( |
| 131 | function, 0, pol); |
| 132 | |
| 133 | T a = fabs(x); |
| 134 | if(a > 0.5f) |
| 135 | return log(1 + x); |
| 136 | // Note that without numeric_limits specialisation support, |
| 137 | // epsilon just returns zero, and our "optimisation" will always fail: |
| 138 | if(a < tools::epsilon<T>()) |
| 139 | return x; |
| 140 | |
| 141 | // Maximum Deviation Found: 1.846e-017 |
| 142 | // Expected Error Term: 1.843e-017 |
| 143 | // Maximum Relative Change in Control Points: 8.138e-004 |
| 144 | // Max Error found at double precision = 3.250766e-016 |
| 145 | static const T P[] = { |
| 146 | 0.15141069795941984e-16L, |
| 147 | 0.35495104378055055e-15L, |
| 148 | 0.33333333333332835L, |
| 149 | 0.99249063543365859L, |
| 150 | 1.1143969784156509L, |
| 151 | 0.58052937949269651L, |
| 152 | 0.13703234928513215L, |
| 153 | 0.011294864812099712L |
| 154 | }; |
| 155 | static const T Q[] = { |
| 156 | 1L, |
| 157 | 3.7274719063011499L, |
| 158 | 5.5387948649720334L, |
| 159 | 4.159201143419005L, |
| 160 | 1.6423855110312755L, |
| 161 | 0.31706251443180914L, |
| 162 | 0.022665554431410243L, |
| 163 | -0.29252538135177773e-5L |
| 164 | }; |
| 165 | |
| 166 | T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x); |
| 167 | result *= x; |
| 168 | |
| 169 | return result; |
| 170 | } |
| 171 | |
| 172 | template <class T, class Policy> |
| 173 | T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 64>&) |
| 174 | { // The function returns the natural logarithm of 1 + x. |
| 175 | BOOST_MATH_STD_USING |
| 176 | |
| 177 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
| 178 | |
| 179 | if(x < -1) |
| 180 | return policies::raise_domain_error<T>( |
| 181 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 182 | if(x == -1) |
| 183 | return -policies::raise_overflow_error<T>( |
| 184 | function, 0, pol); |
| 185 | |
| 186 | T a = fabs(x); |
| 187 | if(a > 0.5f) |
| 188 | return log(1 + x); |
| 189 | // Note that without numeric_limits specialisation support, |
| 190 | // epsilon just returns zero, and our "optimisation" will always fail: |
| 191 | if(a < tools::epsilon<T>()) |
| 192 | return x; |
| 193 | |
| 194 | // Maximum Deviation Found: 8.089e-20 |
| 195 | // Expected Error Term: 8.088e-20 |
| 196 | // Maximum Relative Change in Control Points: 9.648e-05 |
| 197 | // Max Error found at long double precision = 2.242324e-19 |
| 198 | static const T P[] = { |
| 199 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.807533446680736736712e-19), |
| 200 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.490881544804798926426e-18), |
| 201 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.333333333333333373941), |
| 202 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.17141290782087994162), |
| 203 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.62790522814926264694), |
| 204 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.13156411870766876113), |
| 205 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.408087379932853785336), |
| 206 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0706537026422828914622), |
| 207 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00441709903782239229447) |
| 208 | }; |
| 209 | static const T Q[] = { |
| 210 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
| 211 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.26423872346263928361), |
| 212 | BOOST_MATH_BIG_CONSTANT(T, 64, 7.48189472704477708962), |
| 213 | BOOST_MATH_BIG_CONSTANT(T, 64, 6.94757016732904280913), |
| 214 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.6493508622280767304), |
| 215 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.06884863623790638317), |
| 216 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.158292216998514145947), |
| 217 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00885295524069924328658), |
| 218 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.560026216133415663808e-6) |
| 219 | }; |
| 220 | |
| 221 | T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x); |
| 222 | result *= x; |
| 223 | |
| 224 | return result; |
| 225 | } |
| 226 | |
| 227 | template <class T, class Policy> |
| 228 | T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 24>&) |
| 229 | { // The function returns the natural logarithm of 1 + x. |
| 230 | BOOST_MATH_STD_USING |
| 231 | |
| 232 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
| 233 | |
| 234 | if(x < -1) |
| 235 | return policies::raise_domain_error<T>( |
| 236 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 237 | if(x == -1) |
| 238 | return -policies::raise_overflow_error<T>( |
| 239 | function, 0, pol); |
| 240 | |
| 241 | T a = fabs(x); |
| 242 | if(a > 0.5f) |
| 243 | return log(1 + x); |
| 244 | // Note that without numeric_limits specialisation support, |
| 245 | // epsilon just returns zero, and our "optimisation" will always fail: |
| 246 | if(a < tools::epsilon<T>()) |
| 247 | return x; |
| 248 | |
| 249 | // Maximum Deviation Found: 6.910e-08 |
| 250 | // Expected Error Term: 6.910e-08 |
| 251 | // Maximum Relative Change in Control Points: 2.509e-04 |
| 252 | // Max Error found at double precision = 6.910422e-08 |
| 253 | // Max Error found at float precision = 8.357242e-08 |
| 254 | static const T P[] = { |
| 255 | -0.671192866803148236519e-7L, |
| 256 | 0.119670999140731844725e-6L, |
| 257 | 0.333339469182083148598L, |
| 258 | 0.237827183019664122066L |
| 259 | }; |
| 260 | static const T Q[] = { |
| 261 | 1L, |
| 262 | 1.46348272586988539733L, |
| 263 | 0.497859871350117338894L, |
| 264 | -0.00471666268910169651936L |
| 265 | }; |
| 266 | |
| 267 | T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x); |
| 268 | result *= x; |
| 269 | |
| 270 | return result; |
| 271 | } |
| 272 | |
| 273 | template <class T, class Policy, class tag> |
| 274 | struct log1p_initializer |
| 275 | { |
| 276 | struct init |
| 277 | { |
| 278 | init() |
| 279 | { |
| 280 | do_init(tag()); |
| 281 | } |
| 282 | template <int N> |
| 283 | static void do_init(const boost::integral_constant<int, N>&){} |
| 284 | static void do_init(const boost::integral_constant<int, 64>&) |
| 285 | { |
| 286 | boost::math::log1p(static_cast<T>(0.25), Policy()); |
| 287 | } |
| 288 | void force_instantiate()const{} |
| 289 | }; |
| 290 | static const init initializer; |
| 291 | static void force_instantiate() |
| 292 | { |
| 293 | initializer.force_instantiate(); |
| 294 | } |
| 295 | }; |
| 296 | |
| 297 | template <class T, class Policy, class tag> |
| 298 | const typename log1p_initializer<T, Policy, tag>::init log1p_initializer<T, Policy, tag>::initializer; |
| 299 | |
| 300 | |
| 301 | } // namespace detail |
| 302 | |
| 303 | template <class T, class Policy> |
| 304 | inline typename tools::promote_args<T>::type log1p(T x, const Policy&) |
| 305 | { |
| 306 | typedef typename tools::promote_args<T>::type result_type; |
| 307 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
| 308 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
| 309 | typedef typename policies::normalise< |
| 310 | Policy, |
| 311 | policies::promote_float<false>, |
| 312 | policies::promote_double<false>, |
| 313 | policies::discrete_quantile<>, |
| 314 | policies::assert_undefined<> >::type forwarding_policy; |
| 315 | |
| 316 | typedef boost::integral_constant<int, |
| 317 | precision_type::value <= 0 ? 0 : |
| 318 | precision_type::value <= 53 ? 53 : |
| 319 | precision_type::value <= 64 ? 64 : 0 |
| 320 | > tag_type; |
| 321 | |
| 322 | detail::log1p_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); |
| 323 | |
| 324 | return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
| 325 | detail::log1p_imp(static_cast<value_type>(x), forwarding_policy(), tag_type()), "boost::math::log1p<%1%>(%1%)" ); |
| 326 | } |
| 327 | |
| 328 | #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) |
| 329 | // These overloads work around a type deduction bug: |
| 330 | inline float log1p(float z) |
| 331 | { |
| 332 | return log1p<float>(z); |
| 333 | } |
| 334 | inline double log1p(double z) |
| 335 | { |
| 336 | return log1p<double>(z); |
| 337 | } |
| 338 | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
| 339 | inline long double log1p(long double z) |
| 340 | { |
| 341 | return log1p<long double>(z); |
| 342 | } |
| 343 | #endif |
| 344 | #endif |
| 345 | |
| 346 | #ifdef log1p |
| 347 | # ifndef BOOST_HAS_LOG1P |
| 348 | # define BOOST_HAS_LOG1P |
| 349 | # endif |
| 350 | # undef log1p |
| 351 | #endif |
| 352 | |
| 353 | #if defined(BOOST_HAS_LOG1P) && !(defined(__osf__) && defined(__DECCXX_VER)) |
| 354 | # ifdef BOOST_MATH_USE_C99 |
| 355 | template <class Policy> |
| 356 | inline float log1p(float x, const Policy& pol) |
| 357 | { |
| 358 | if(x < -1) |
| 359 | return policies::raise_domain_error<float>( |
| 360 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 361 | if(x == -1) |
| 362 | return -policies::raise_overflow_error<float>( |
| 363 | "log1p<%1%>(%1%)" , 0, pol); |
| 364 | return ::log1pf(x: x); |
| 365 | } |
| 366 | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
| 367 | template <class Policy> |
| 368 | inline long double log1p(long double x, const Policy& pol) |
| 369 | { |
| 370 | if(x < -1) |
| 371 | return policies::raise_domain_error<long double>( |
| 372 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 373 | if(x == -1) |
| 374 | return -policies::raise_overflow_error<long double>( |
| 375 | "log1p<%1%>(%1%)" , 0, pol); |
| 376 | return ::log1pl(x: x); |
| 377 | } |
| 378 | #endif |
| 379 | #else |
| 380 | template <class Policy> |
| 381 | inline float log1p(float x, const Policy& pol) |
| 382 | { |
| 383 | if(x < -1) |
| 384 | return policies::raise_domain_error<float>( |
| 385 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 386 | if(x == -1) |
| 387 | return -policies::raise_overflow_error<float>( |
| 388 | "log1p<%1%>(%1%)" , 0, pol); |
| 389 | return ::log1p(x); |
| 390 | } |
| 391 | #endif |
| 392 | template <class Policy> |
| 393 | inline double log1p(double x, const Policy& pol) |
| 394 | { |
| 395 | if(x < -1) |
| 396 | return policies::raise_domain_error<double>( |
| 397 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 398 | if(x == -1) |
| 399 | return -policies::raise_overflow_error<double>( |
| 400 | "log1p<%1%>(%1%)" , 0, pol); |
| 401 | return ::log1p(x: x); |
| 402 | } |
| 403 | #elif defined(_MSC_VER) && (BOOST_MSVC >= 1400) |
| 404 | // |
| 405 | // You should only enable this branch if you are absolutely sure |
| 406 | // that your compilers optimizer won't mess this code up!! |
| 407 | // Currently tested with VC8 and Intel 9.1. |
| 408 | // |
| 409 | template <class Policy> |
| 410 | inline double log1p(double x, const Policy& pol) |
| 411 | { |
| 412 | if(x < -1) |
| 413 | return policies::raise_domain_error<double>( |
| 414 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 415 | if(x == -1) |
| 416 | return -policies::raise_overflow_error<double>( |
| 417 | "log1p<%1%>(%1%)" , 0, pol); |
| 418 | double u = 1+x; |
| 419 | if(u == 1.0) |
| 420 | return x; |
| 421 | else |
| 422 | return ::log(u)*(x/(u-1.0)); |
| 423 | } |
| 424 | template <class Policy> |
| 425 | inline float log1p(float x, const Policy& pol) |
| 426 | { |
| 427 | return static_cast<float>(boost::math::log1p(static_cast<double>(x), pol)); |
| 428 | } |
| 429 | #ifndef _WIN32_WCE |
| 430 | // |
| 431 | // For some reason this fails to compile under WinCE... |
| 432 | // Needs more investigation. |
| 433 | // |
| 434 | template <class Policy> |
| 435 | inline long double log1p(long double x, const Policy& pol) |
| 436 | { |
| 437 | if(x < -1) |
| 438 | return policies::raise_domain_error<long double>( |
| 439 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
| 440 | if(x == -1) |
| 441 | return -policies::raise_overflow_error<long double>( |
| 442 | "log1p<%1%>(%1%)" , 0, pol); |
| 443 | long double u = 1+x; |
| 444 | if(u == 1.0) |
| 445 | return x; |
| 446 | else |
| 447 | return ::logl(u)*(x/(u-1.0)); |
| 448 | } |
| 449 | #endif |
| 450 | #endif |
| 451 | |
| 452 | template <class T> |
| 453 | inline typename tools::promote_args<T>::type log1p(T x) |
| 454 | { |
| 455 | return boost::math::log1p(x, policies::policy<>()); |
| 456 | } |
| 457 | // |
| 458 | // Compute log(1+x)-x: |
| 459 | // |
| 460 | template <class T, class Policy> |
| 461 | inline typename tools::promote_args<T>::type |
| 462 | log1pmx(T x, const Policy& pol) |
| 463 | { |
| 464 | typedef typename tools::promote_args<T>::type result_type; |
| 465 | BOOST_MATH_STD_USING |
| 466 | static const char* function = "boost::math::log1pmx<%1%>(%1%)" ; |
| 467 | |
| 468 | if(x < -1) |
| 469 | return policies::raise_domain_error<T>( |
| 470 | function, "log1pmx(x) requires x > -1, but got x = %1%." , x, pol); |
| 471 | if(x == -1) |
| 472 | return -policies::raise_overflow_error<T>( |
| 473 | function, 0, pol); |
| 474 | |
| 475 | result_type a = abs(result_type(x)); |
| 476 | if(a > result_type(0.95f)) |
| 477 | return log(1 + result_type(x)) - result_type(x); |
| 478 | // Note that without numeric_limits specialisation support, |
| 479 | // epsilon just returns zero, and our "optimisation" will always fail: |
| 480 | if(a < tools::epsilon<result_type>()) |
| 481 | return -x * x / 2; |
| 482 | boost::math::detail::log1p_series<T> s(x); |
| 483 | s(); |
| 484 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
| 485 | #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) |
| 486 | T zero = 0; |
| 487 | T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero); |
| 488 | #else |
| 489 | T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter); |
| 490 | #endif |
| 491 | policies::check_series_iterations<T>(function, max_iter, pol); |
| 492 | return result; |
| 493 | } |
| 494 | |
| 495 | template <class T> |
| 496 | inline typename tools::promote_args<T>::type log1pmx(T x) |
| 497 | { |
| 498 | return log1pmx(x, policies::policy<>()); |
| 499 | } |
| 500 | |
| 501 | } // namespace math |
| 502 | } // namespace boost |
| 503 | |
| 504 | #ifdef _MSC_VER |
| 505 | #pragma warning(pop) |
| 506 | #endif |
| 507 | |
| 508 | #endif // BOOST_MATH_LOG1P_INCLUDED |
| 509 | |
| 510 | |
| 511 | |
| 512 | |