1 | // (C) Copyright John Maddock 2005-2006. |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_LOG1P_INCLUDED |
7 | #define BOOST_MATH_LOG1P_INCLUDED |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #pragma warning(push) |
12 | #pragma warning(disable:4702) // Unreachable code (release mode only warning) |
13 | #endif |
14 | |
15 | #include <boost/config/no_tr1/cmath.hpp> |
16 | #include <math.h> // platform's ::log1p |
17 | #include <boost/limits.hpp> |
18 | #include <boost/math/tools/config.hpp> |
19 | #include <boost/math/tools/series.hpp> |
20 | #include <boost/math/tools/rational.hpp> |
21 | #include <boost/math/tools/big_constant.hpp> |
22 | #include <boost/math/policies/error_handling.hpp> |
23 | #include <boost/math/special_functions/math_fwd.hpp> |
24 | |
25 | #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS |
26 | # include <boost/static_assert.hpp> |
27 | #else |
28 | # include <boost/assert.hpp> |
29 | #endif |
30 | |
31 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
32 | // |
33 | // This is the only way we can avoid |
34 | // warning: non-standard suffix on floating constant [-Wpedantic] |
35 | // when building with -Wall -pedantic. Neither __extension__ |
36 | // nor #pragma diagnostic ignored work :( |
37 | // |
38 | #pragma GCC system_header |
39 | #endif |
40 | |
41 | namespace boost{ namespace math{ |
42 | |
43 | namespace detail |
44 | { |
45 | // Functor log1p_series returns the next term in the Taylor series |
46 | // pow(-1, k-1)*pow(x, k) / k |
47 | // each time that operator() is invoked. |
48 | // |
49 | template <class T> |
50 | struct log1p_series |
51 | { |
52 | typedef T result_type; |
53 | |
54 | log1p_series(T x) |
55 | : k(0), m_mult(-x), m_prod(-1){} |
56 | |
57 | T operator()() |
58 | { |
59 | m_prod *= m_mult; |
60 | return m_prod / ++k; |
61 | } |
62 | |
63 | int count()const |
64 | { |
65 | return k; |
66 | } |
67 | |
68 | private: |
69 | int k; |
70 | const T m_mult; |
71 | T m_prod; |
72 | log1p_series(const log1p_series&); |
73 | log1p_series& operator=(const log1p_series&); |
74 | }; |
75 | |
76 | // Algorithm log1p is part of C99, but is not yet provided by many compilers. |
77 | // |
78 | // This version uses a Taylor series expansion for 0.5 > x > epsilon, which may |
79 | // require up to std::numeric_limits<T>::digits+1 terms to be calculated. |
80 | // It would be much more efficient to use the equivalence: |
81 | // log(1+x) == (log(1+x) * x) / ((1-x) - 1) |
82 | // Unfortunately many optimizing compilers make such a mess of this, that |
83 | // it performs no better than log(1+x): which is to say not very well at all. |
84 | // |
85 | template <class T, class Policy> |
86 | T log1p_imp(T const & x, const Policy& pol, const boost::integral_constant<int, 0>&) |
87 | { // The function returns the natural logarithm of 1 + x. |
88 | typedef typename tools::promote_args<T>::type result_type; |
89 | BOOST_MATH_STD_USING |
90 | |
91 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
92 | |
93 | if((x < -1) || (boost::math::isnan)(x)) |
94 | return policies::raise_domain_error<T>( |
95 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
96 | if(x == -1) |
97 | return -policies::raise_overflow_error<T>( |
98 | function, 0, pol); |
99 | |
100 | result_type a = abs(result_type(x)); |
101 | if(a > result_type(0.5f)) |
102 | return log(1 + result_type(x)); |
103 | // Note that without numeric_limits specialisation support, |
104 | // epsilon just returns zero, and our "optimisation" will always fail: |
105 | if(a < tools::epsilon<result_type>()) |
106 | return x; |
107 | detail::log1p_series<result_type> s(x); |
108 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
109 | #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245) |
110 | result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter); |
111 | #else |
112 | result_type zero = 0; |
113 | result_type result = tools::sum_series(s, policies::get_epsilon<result_type, Policy>(), max_iter, zero); |
114 | #endif |
115 | policies::check_series_iterations<T>(function, max_iter, pol); |
116 | return result; |
117 | } |
118 | |
119 | template <class T, class Policy> |
120 | T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 53>&) |
121 | { // The function returns the natural logarithm of 1 + x. |
122 | BOOST_MATH_STD_USING |
123 | |
124 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
125 | |
126 | if(x < -1) |
127 | return policies::raise_domain_error<T>( |
128 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
129 | if(x == -1) |
130 | return -policies::raise_overflow_error<T>( |
131 | function, 0, pol); |
132 | |
133 | T a = fabs(x); |
134 | if(a > 0.5f) |
135 | return log(1 + x); |
136 | // Note that without numeric_limits specialisation support, |
137 | // epsilon just returns zero, and our "optimisation" will always fail: |
138 | if(a < tools::epsilon<T>()) |
139 | return x; |
140 | |
141 | // Maximum Deviation Found: 1.846e-017 |
142 | // Expected Error Term: 1.843e-017 |
143 | // Maximum Relative Change in Control Points: 8.138e-004 |
144 | // Max Error found at double precision = 3.250766e-016 |
145 | static const T P[] = { |
146 | 0.15141069795941984e-16L, |
147 | 0.35495104378055055e-15L, |
148 | 0.33333333333332835L, |
149 | 0.99249063543365859L, |
150 | 1.1143969784156509L, |
151 | 0.58052937949269651L, |
152 | 0.13703234928513215L, |
153 | 0.011294864812099712L |
154 | }; |
155 | static const T Q[] = { |
156 | 1L, |
157 | 3.7274719063011499L, |
158 | 5.5387948649720334L, |
159 | 4.159201143419005L, |
160 | 1.6423855110312755L, |
161 | 0.31706251443180914L, |
162 | 0.022665554431410243L, |
163 | -0.29252538135177773e-5L |
164 | }; |
165 | |
166 | T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x); |
167 | result *= x; |
168 | |
169 | return result; |
170 | } |
171 | |
172 | template <class T, class Policy> |
173 | T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 64>&) |
174 | { // The function returns the natural logarithm of 1 + x. |
175 | BOOST_MATH_STD_USING |
176 | |
177 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
178 | |
179 | if(x < -1) |
180 | return policies::raise_domain_error<T>( |
181 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
182 | if(x == -1) |
183 | return -policies::raise_overflow_error<T>( |
184 | function, 0, pol); |
185 | |
186 | T a = fabs(x); |
187 | if(a > 0.5f) |
188 | return log(1 + x); |
189 | // Note that without numeric_limits specialisation support, |
190 | // epsilon just returns zero, and our "optimisation" will always fail: |
191 | if(a < tools::epsilon<T>()) |
192 | return x; |
193 | |
194 | // Maximum Deviation Found: 8.089e-20 |
195 | // Expected Error Term: 8.088e-20 |
196 | // Maximum Relative Change in Control Points: 9.648e-05 |
197 | // Max Error found at long double precision = 2.242324e-19 |
198 | static const T P[] = { |
199 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.807533446680736736712e-19), |
200 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.490881544804798926426e-18), |
201 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.333333333333333373941), |
202 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.17141290782087994162), |
203 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.62790522814926264694), |
204 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.13156411870766876113), |
205 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.408087379932853785336), |
206 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0706537026422828914622), |
207 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00441709903782239229447) |
208 | }; |
209 | static const T Q[] = { |
210 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
211 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.26423872346263928361), |
212 | BOOST_MATH_BIG_CONSTANT(T, 64, 7.48189472704477708962), |
213 | BOOST_MATH_BIG_CONSTANT(T, 64, 6.94757016732904280913), |
214 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.6493508622280767304), |
215 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.06884863623790638317), |
216 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.158292216998514145947), |
217 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.00885295524069924328658), |
218 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.560026216133415663808e-6) |
219 | }; |
220 | |
221 | T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x); |
222 | result *= x; |
223 | |
224 | return result; |
225 | } |
226 | |
227 | template <class T, class Policy> |
228 | T log1p_imp(T const& x, const Policy& pol, const boost::integral_constant<int, 24>&) |
229 | { // The function returns the natural logarithm of 1 + x. |
230 | BOOST_MATH_STD_USING |
231 | |
232 | static const char* function = "boost::math::log1p<%1%>(%1%)" ; |
233 | |
234 | if(x < -1) |
235 | return policies::raise_domain_error<T>( |
236 | function, "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
237 | if(x == -1) |
238 | return -policies::raise_overflow_error<T>( |
239 | function, 0, pol); |
240 | |
241 | T a = fabs(x); |
242 | if(a > 0.5f) |
243 | return log(1 + x); |
244 | // Note that without numeric_limits specialisation support, |
245 | // epsilon just returns zero, and our "optimisation" will always fail: |
246 | if(a < tools::epsilon<T>()) |
247 | return x; |
248 | |
249 | // Maximum Deviation Found: 6.910e-08 |
250 | // Expected Error Term: 6.910e-08 |
251 | // Maximum Relative Change in Control Points: 2.509e-04 |
252 | // Max Error found at double precision = 6.910422e-08 |
253 | // Max Error found at float precision = 8.357242e-08 |
254 | static const T P[] = { |
255 | -0.671192866803148236519e-7L, |
256 | 0.119670999140731844725e-6L, |
257 | 0.333339469182083148598L, |
258 | 0.237827183019664122066L |
259 | }; |
260 | static const T Q[] = { |
261 | 1L, |
262 | 1.46348272586988539733L, |
263 | 0.497859871350117338894L, |
264 | -0.00471666268910169651936L |
265 | }; |
266 | |
267 | T result = 1 - x / 2 + tools::evaluate_polynomial(P, x) / tools::evaluate_polynomial(Q, x); |
268 | result *= x; |
269 | |
270 | return result; |
271 | } |
272 | |
273 | template <class T, class Policy, class tag> |
274 | struct log1p_initializer |
275 | { |
276 | struct init |
277 | { |
278 | init() |
279 | { |
280 | do_init(tag()); |
281 | } |
282 | template <int N> |
283 | static void do_init(const boost::integral_constant<int, N>&){} |
284 | static void do_init(const boost::integral_constant<int, 64>&) |
285 | { |
286 | boost::math::log1p(static_cast<T>(0.25), Policy()); |
287 | } |
288 | void force_instantiate()const{} |
289 | }; |
290 | static const init initializer; |
291 | static void force_instantiate() |
292 | { |
293 | initializer.force_instantiate(); |
294 | } |
295 | }; |
296 | |
297 | template <class T, class Policy, class tag> |
298 | const typename log1p_initializer<T, Policy, tag>::init log1p_initializer<T, Policy, tag>::initializer; |
299 | |
300 | |
301 | } // namespace detail |
302 | |
303 | template <class T, class Policy> |
304 | inline typename tools::promote_args<T>::type log1p(T x, const Policy&) |
305 | { |
306 | typedef typename tools::promote_args<T>::type result_type; |
307 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
308 | typedef typename policies::precision<result_type, Policy>::type precision_type; |
309 | typedef typename policies::normalise< |
310 | Policy, |
311 | policies::promote_float<false>, |
312 | policies::promote_double<false>, |
313 | policies::discrete_quantile<>, |
314 | policies::assert_undefined<> >::type forwarding_policy; |
315 | |
316 | typedef boost::integral_constant<int, |
317 | precision_type::value <= 0 ? 0 : |
318 | precision_type::value <= 53 ? 53 : |
319 | precision_type::value <= 64 ? 64 : 0 |
320 | > tag_type; |
321 | |
322 | detail::log1p_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); |
323 | |
324 | return policies::checked_narrowing_cast<result_type, forwarding_policy>( |
325 | detail::log1p_imp(static_cast<value_type>(x), forwarding_policy(), tag_type()), "boost::math::log1p<%1%>(%1%)" ); |
326 | } |
327 | |
328 | #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) |
329 | // These overloads work around a type deduction bug: |
330 | inline float log1p(float z) |
331 | { |
332 | return log1p<float>(z); |
333 | } |
334 | inline double log1p(double z) |
335 | { |
336 | return log1p<double>(z); |
337 | } |
338 | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
339 | inline long double log1p(long double z) |
340 | { |
341 | return log1p<long double>(z); |
342 | } |
343 | #endif |
344 | #endif |
345 | |
346 | #ifdef log1p |
347 | # ifndef BOOST_HAS_LOG1P |
348 | # define BOOST_HAS_LOG1P |
349 | # endif |
350 | # undef log1p |
351 | #endif |
352 | |
353 | #if defined(BOOST_HAS_LOG1P) && !(defined(__osf__) && defined(__DECCXX_VER)) |
354 | # ifdef BOOST_MATH_USE_C99 |
355 | template <class Policy> |
356 | inline float log1p(float x, const Policy& pol) |
357 | { |
358 | if(x < -1) |
359 | return policies::raise_domain_error<float>( |
360 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
361 | if(x == -1) |
362 | return -policies::raise_overflow_error<float>( |
363 | "log1p<%1%>(%1%)" , 0, pol); |
364 | return ::log1pf(x: x); |
365 | } |
366 | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS |
367 | template <class Policy> |
368 | inline long double log1p(long double x, const Policy& pol) |
369 | { |
370 | if(x < -1) |
371 | return policies::raise_domain_error<long double>( |
372 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
373 | if(x == -1) |
374 | return -policies::raise_overflow_error<long double>( |
375 | "log1p<%1%>(%1%)" , 0, pol); |
376 | return ::log1pl(x: x); |
377 | } |
378 | #endif |
379 | #else |
380 | template <class Policy> |
381 | inline float log1p(float x, const Policy& pol) |
382 | { |
383 | if(x < -1) |
384 | return policies::raise_domain_error<float>( |
385 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
386 | if(x == -1) |
387 | return -policies::raise_overflow_error<float>( |
388 | "log1p<%1%>(%1%)" , 0, pol); |
389 | return ::log1p(x); |
390 | } |
391 | #endif |
392 | template <class Policy> |
393 | inline double log1p(double x, const Policy& pol) |
394 | { |
395 | if(x < -1) |
396 | return policies::raise_domain_error<double>( |
397 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
398 | if(x == -1) |
399 | return -policies::raise_overflow_error<double>( |
400 | "log1p<%1%>(%1%)" , 0, pol); |
401 | return ::log1p(x: x); |
402 | } |
403 | #elif defined(_MSC_VER) && (BOOST_MSVC >= 1400) |
404 | // |
405 | // You should only enable this branch if you are absolutely sure |
406 | // that your compilers optimizer won't mess this code up!! |
407 | // Currently tested with VC8 and Intel 9.1. |
408 | // |
409 | template <class Policy> |
410 | inline double log1p(double x, const Policy& pol) |
411 | { |
412 | if(x < -1) |
413 | return policies::raise_domain_error<double>( |
414 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
415 | if(x == -1) |
416 | return -policies::raise_overflow_error<double>( |
417 | "log1p<%1%>(%1%)" , 0, pol); |
418 | double u = 1+x; |
419 | if(u == 1.0) |
420 | return x; |
421 | else |
422 | return ::log(u)*(x/(u-1.0)); |
423 | } |
424 | template <class Policy> |
425 | inline float log1p(float x, const Policy& pol) |
426 | { |
427 | return static_cast<float>(boost::math::log1p(static_cast<double>(x), pol)); |
428 | } |
429 | #ifndef _WIN32_WCE |
430 | // |
431 | // For some reason this fails to compile under WinCE... |
432 | // Needs more investigation. |
433 | // |
434 | template <class Policy> |
435 | inline long double log1p(long double x, const Policy& pol) |
436 | { |
437 | if(x < -1) |
438 | return policies::raise_domain_error<long double>( |
439 | "log1p<%1%>(%1%)" , "log1p(x) requires x > -1, but got x = %1%." , x, pol); |
440 | if(x == -1) |
441 | return -policies::raise_overflow_error<long double>( |
442 | "log1p<%1%>(%1%)" , 0, pol); |
443 | long double u = 1+x; |
444 | if(u == 1.0) |
445 | return x; |
446 | else |
447 | return ::logl(u)*(x/(u-1.0)); |
448 | } |
449 | #endif |
450 | #endif |
451 | |
452 | template <class T> |
453 | inline typename tools::promote_args<T>::type log1p(T x) |
454 | { |
455 | return boost::math::log1p(x, policies::policy<>()); |
456 | } |
457 | // |
458 | // Compute log(1+x)-x: |
459 | // |
460 | template <class T, class Policy> |
461 | inline typename tools::promote_args<T>::type |
462 | log1pmx(T x, const Policy& pol) |
463 | { |
464 | typedef typename tools::promote_args<T>::type result_type; |
465 | BOOST_MATH_STD_USING |
466 | static const char* function = "boost::math::log1pmx<%1%>(%1%)" ; |
467 | |
468 | if(x < -1) |
469 | return policies::raise_domain_error<T>( |
470 | function, "log1pmx(x) requires x > -1, but got x = %1%." , x, pol); |
471 | if(x == -1) |
472 | return -policies::raise_overflow_error<T>( |
473 | function, 0, pol); |
474 | |
475 | result_type a = abs(result_type(x)); |
476 | if(a > result_type(0.95f)) |
477 | return log(1 + result_type(x)) - result_type(x); |
478 | // Note that without numeric_limits specialisation support, |
479 | // epsilon just returns zero, and our "optimisation" will always fail: |
480 | if(a < tools::epsilon<result_type>()) |
481 | return -x * x / 2; |
482 | boost::math::detail::log1p_series<T> s(x); |
483 | s(); |
484 | boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>(); |
485 | #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) |
486 | T zero = 0; |
487 | T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero); |
488 | #else |
489 | T result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter); |
490 | #endif |
491 | policies::check_series_iterations<T>(function, max_iter, pol); |
492 | return result; |
493 | } |
494 | |
495 | template <class T> |
496 | inline typename tools::promote_args<T>::type log1pmx(T x) |
497 | { |
498 | return log1pmx(x, policies::policy<>()); |
499 | } |
500 | |
501 | } // namespace math |
502 | } // namespace boost |
503 | |
504 | #ifdef _MSC_VER |
505 | #pragma warning(pop) |
506 | #endif |
507 | |
508 | #endif // BOOST_MATH_LOG1P_INCLUDED |
509 | |
510 | |
511 | |
512 | |