1 | // (C) Copyright John Maddock 2006. |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_SF_TRIGAMMA_HPP |
7 | #define BOOST_MATH_SF_TRIGAMMA_HPP |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #endif |
12 | |
13 | #include <boost/math/special_functions/math_fwd.hpp> |
14 | #include <boost/math/tools/rational.hpp> |
15 | #include <boost/math/tools/series.hpp> |
16 | #include <boost/math/tools/promotion.hpp> |
17 | #include <boost/math/policies/error_handling.hpp> |
18 | #include <boost/math/constants/constants.hpp> |
19 | #include <boost/mpl/comparison.hpp> |
20 | #include <boost/math/tools/big_constant.hpp> |
21 | #include <boost/math/special_functions/polygamma.hpp> |
22 | |
23 | #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) |
24 | // |
25 | // This is the only way we can avoid |
26 | // warning: non-standard suffix on floating constant [-Wpedantic] |
27 | // when building with -Wall -pedantic. Neither __extension__ |
28 | // nor #pragma diagnostic ignored work :( |
29 | // |
30 | #pragma GCC system_header |
31 | #endif |
32 | |
33 | namespace boost{ |
34 | namespace math{ |
35 | namespace detail{ |
36 | |
37 | template<class T, class Policy> |
38 | T polygamma_imp(const int n, T x, const Policy &pol); |
39 | |
40 | template <class T, class Policy> |
41 | T trigamma_prec(T x, const boost::integral_constant<int, 53>*, const Policy&) |
42 | { |
43 | // Max error in interpolated form: 3.736e-017 |
44 | static const T offset = BOOST_MATH_BIG_CONSTANT(T, 53, 2.1093254089355469); |
45 | static const T P_1_2[] = { |
46 | BOOST_MATH_BIG_CONSTANT(T, 53, -1.1093280605946045), |
47 | BOOST_MATH_BIG_CONSTANT(T, 53, -3.8310674472619321), |
48 | BOOST_MATH_BIG_CONSTANT(T, 53, -3.3703848401898283), |
49 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.28080574467981213), |
50 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.6638069578676164), |
51 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.64468386819102836), |
52 | }; |
53 | static const T Q_1_2[] = { |
54 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), |
55 | BOOST_MATH_BIG_CONSTANT(T, 53, 3.4535389668541151), |
56 | BOOST_MATH_BIG_CONSTANT(T, 53, 4.5208926987851437), |
57 | BOOST_MATH_BIG_CONSTANT(T, 53, 2.7012734178351534), |
58 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.64468798399785611), |
59 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.20314516859987728e-6), |
60 | }; |
61 | // Max error in interpolated form: 1.159e-017 |
62 | static const T P_2_4[] = { |
63 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.13803835004508849e-7), |
64 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.50000049158540261), |
65 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.6077979838469348), |
66 | BOOST_MATH_BIG_CONSTANT(T, 53, 2.5645435828098254), |
67 | BOOST_MATH_BIG_CONSTANT(T, 53, 2.0534873203680393), |
68 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.74566981111565923), |
69 | }; |
70 | static const T Q_2_4[] = { |
71 | BOOST_MATH_BIG_CONSTANT(T, 53, 1.0), |
72 | BOOST_MATH_BIG_CONSTANT(T, 53, 2.8822787662376169), |
73 | BOOST_MATH_BIG_CONSTANT(T, 53, 4.1681660554090917), |
74 | BOOST_MATH_BIG_CONSTANT(T, 53, 2.7853527819234466), |
75 | BOOST_MATH_BIG_CONSTANT(T, 53, 0.74967671848044792), |
76 | BOOST_MATH_BIG_CONSTANT(T, 53, -0.00057069112416246805), |
77 | }; |
78 | // Maximum Deviation Found: 6.896e-018 |
79 | // Expected Error Term : -6.895e-018 |
80 | // Maximum Relative Change in Control Points : 8.497e-004 |
81 | static const T P_4_inf[] = { |
82 | static_cast<T>(0.68947581948701249e-17L), |
83 | static_cast<T>(0.49999999999998975L), |
84 | static_cast<T>(1.0177274392923795L), |
85 | static_cast<T>(2.498208511343429L), |
86 | static_cast<T>(2.1921221359427595L), |
87 | static_cast<T>(1.5897035272532764L), |
88 | static_cast<T>(0.40154388356961734L), |
89 | }; |
90 | static const T Q_4_inf[] = { |
91 | static_cast<T>(1.0L), |
92 | static_cast<T>(1.7021215452463932L), |
93 | static_cast<T>(4.4290431747556469L), |
94 | static_cast<T>(2.9745631894384922L), |
95 | static_cast<T>(2.3013614809773616L), |
96 | static_cast<T>(0.28360399799075752L), |
97 | static_cast<T>(0.022892987908906897L), |
98 | }; |
99 | |
100 | if(x <= 2) |
101 | { |
102 | return (offset + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x); |
103 | } |
104 | else if(x <= 4) |
105 | { |
106 | T y = 1 / x; |
107 | return (1 + tools::evaluate_polynomial(P_2_4, y) / tools::evaluate_polynomial(Q_2_4, y)) / x; |
108 | } |
109 | T y = 1 / x; |
110 | return (1 + tools::evaluate_polynomial(P_4_inf, y) / tools::evaluate_polynomial(Q_4_inf, y)) / x; |
111 | } |
112 | |
113 | template <class T, class Policy> |
114 | T trigamma_prec(T x, const boost::integral_constant<int, 64>*, const Policy&) |
115 | { |
116 | // Max error in interpolated form: 1.178e-020 |
117 | static const T offset_1_2 = BOOST_MATH_BIG_CONSTANT(T, 64, 2.109325408935546875); |
118 | static const T P_1_2[] = { |
119 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.10932535608960258341), |
120 | BOOST_MATH_BIG_CONSTANT(T, 64, -4.18793841543017129052), |
121 | BOOST_MATH_BIG_CONSTANT(T, 64, -4.63865531898487734531), |
122 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.919832884430500908047), |
123 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.68074038333180423012), |
124 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.21172611429185622377), |
125 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.259635673503366427284), |
126 | }; |
127 | static const T Q_1_2[] = { |
128 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
129 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.77521119359546982995), |
130 | BOOST_MATH_BIG_CONSTANT(T, 64, 5.664338024578956321), |
131 | BOOST_MATH_BIG_CONSTANT(T, 64, 4.25995134879278028361), |
132 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.62956638448940402182), |
133 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.259635512844691089868), |
134 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.629642219810618032207e-8), |
135 | }; |
136 | // Max error in interpolated form: 3.912e-020 |
137 | static const T P_2_8[] = { |
138 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.387540035162952880976e-11), |
139 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.500000000276430504), |
140 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.21926880986360957306), |
141 | BOOST_MATH_BIG_CONSTANT(T, 64, 10.2550347708483445775), |
142 | BOOST_MATH_BIG_CONSTANT(T, 64, 18.9002075150709144043), |
143 | BOOST_MATH_BIG_CONSTANT(T, 64, 21.0357215832399705625), |
144 | BOOST_MATH_BIG_CONSTANT(T, 64, 13.4346512182925923978), |
145 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.98656291026448279118), |
146 | }; |
147 | static const T Q_2_8[] = { |
148 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
149 | BOOST_MATH_BIG_CONSTANT(T, 64, 6.10520430478613667724), |
150 | BOOST_MATH_BIG_CONSTANT(T, 64, 18.475001060603645512), |
151 | BOOST_MATH_BIG_CONSTANT(T, 64, 31.7087534567758405638), |
152 | BOOST_MATH_BIG_CONSTANT(T, 64, 31.908814523890465398), |
153 | BOOST_MATH_BIG_CONSTANT(T, 64, 17.4175479039227084798), |
154 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.98749106958394941276), |
155 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.000115917322224411128566), |
156 | }; |
157 | // Maximum Deviation Found: 2.635e-020 |
158 | // Expected Error Term : 2.635e-020 |
159 | // Maximum Relative Change in Control Points : 1.791e-003 |
160 | static const T P_8_inf[] = { |
161 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.263527875092466899848e-19), |
162 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.500000000000000058145), |
163 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0730121433777364138677), |
164 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.94505878379957149534), |
165 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.0517092358874932620529), |
166 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.07995383547483921121), |
167 | }; |
168 | static const T Q_8_inf[] = { |
169 | BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), |
170 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.187309046577818095504), |
171 | BOOST_MATH_BIG_CONSTANT(T, 64, 3.95255391645238842975), |
172 | BOOST_MATH_BIG_CONSTANT(T, 64, -1.14743283327078949087), |
173 | BOOST_MATH_BIG_CONSTANT(T, 64, 2.52989799376344914499), |
174 | BOOST_MATH_BIG_CONSTANT(T, 64, -0.627414303172402506396), |
175 | BOOST_MATH_BIG_CONSTANT(T, 64, 0.141554248216425512536), |
176 | }; |
177 | |
178 | if(x <= 2) |
179 | { |
180 | return (offset_1_2 + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x); |
181 | } |
182 | else if(x <= 8) |
183 | { |
184 | T y = 1 / x; |
185 | return (1 + tools::evaluate_polynomial(P_2_8, y) / tools::evaluate_polynomial(Q_2_8, y)) / x; |
186 | } |
187 | T y = 1 / x; |
188 | return (1 + tools::evaluate_polynomial(P_8_inf, y) / tools::evaluate_polynomial(Q_8_inf, y)) / x; |
189 | } |
190 | |
191 | template <class T, class Policy> |
192 | T trigamma_prec(T x, const boost::integral_constant<int, 113>*, const Policy&) |
193 | { |
194 | // Max error in interpolated form: 1.916e-035 |
195 | |
196 | static const T P_1_2[] = { |
197 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999082554457936871832533), |
198 | BOOST_MATH_BIG_CONSTANT(T, 113, -4.71237311120865266379041700054847734), |
199 | BOOST_MATH_BIG_CONSTANT(T, 113, -7.94125711970499027763789342500817316), |
200 | BOOST_MATH_BIG_CONSTANT(T, 113, -5.74657746697664735258222071695644535), |
201 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.404213349456398905981223965160595687), |
202 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.47877781178642876561595890095758896), |
203 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.07714151702455125992166949812126433), |
204 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.858877899162360138844032265418028567), |
205 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.20499222604410032375789018837922397), |
206 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0272103140348194747360175268778415049), |
207 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0015764849020876949848954081173520686), |
208 | }; |
209 | static const T Q_1_2[] = { |
210 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
211 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.71237311120863419878375031457715223), |
212 | BOOST_MATH_BIG_CONSTANT(T, 113, 9.58619118655339853449127952145877467), |
213 | BOOST_MATH_BIG_CONSTANT(T, 113, 11.0940067269829372437561421279054968), |
214 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.09075424749327792073276309969037885), |
215 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.87705890159891405185343806884451286), |
216 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.22758678701914477836330837816976782), |
217 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.249092040606385004109672077814668716), |
218 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0295750413900655597027079600025569048), |
219 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00157648490200498142247694709728858139), |
220 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.161264050344059471721062360645432809e-14), |
221 | }; |
222 | |
223 | // Max error in interpolated form: 8.958e-035 |
224 | static const T P_2_4[] = { |
225 | BOOST_MATH_BIG_CONSTANT(T, 113, -2.55843734739907925764326773972215085), |
226 | BOOST_MATH_BIG_CONSTANT(T, 113, -12.2830208240542011967952466273455887), |
227 | BOOST_MATH_BIG_CONSTANT(T, 113, -23.9195022162767993526575786066414403), |
228 | BOOST_MATH_BIG_CONSTANT(T, 113, -24.9256431504823483094158828285470862), |
229 | BOOST_MATH_BIG_CONSTANT(T, 113, -14.7979122765478779075108064826412285), |
230 | BOOST_MATH_BIG_CONSTANT(T, 113, -4.46654453928610666393276765059122272), |
231 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0191439033405649675717082465687845002), |
232 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.515412052554351265708917209749037352), |
233 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.195378348786064304378247325360320038), |
234 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0334761282624174313035014426794245393), |
235 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.002373665205942206348500250056602687), |
236 | }; |
237 | static const T Q_2_4[] = { |
238 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
239 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.80098558454419907830670928248659245), |
240 | BOOST_MATH_BIG_CONSTANT(T, 113, 9.99220727843170133895059300223445265), |
241 | BOOST_MATH_BIG_CONSTANT(T, 113, 11.8896146167631330735386697123464976), |
242 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.96613256683809091593793565879092581), |
243 | BOOST_MATH_BIG_CONSTANT(T, 113, 4.47254136149624110878909334574485751), |
244 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.48600982028196527372434773913633152), |
245 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.319570735766764237068541501137990078), |
246 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0407358345787680953107374215319322066), |
247 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.00237366520593271641375755486420859837), |
248 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.239554887903526152679337256236302116e-15), |
249 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.294749244740618656265237072002026314e-17), |
250 | }; |
251 | |
252 | static const T y_offset_2_4 = BOOST_MATH_BIG_CONSTANT(T, 113, 3.558437347412109375); |
253 | |
254 | // Max error in interpolated form: 4.319e-035 |
255 | static const T P_4_8[] = { |
256 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.166626112697021464248967707021688845e-16), |
257 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.499999999999997739552090249208808197), |
258 | BOOST_MATH_BIG_CONSTANT(T, 113, 6.40270945019053817915772473771553187), |
259 | BOOST_MATH_BIG_CONSTANT(T, 113, 41.3833374155000608013677627389343329), |
260 | BOOST_MATH_BIG_CONSTANT(T, 113, 166.803341854562809335667241074035245), |
261 | BOOST_MATH_BIG_CONSTANT(T, 113, 453.39964786925369319960722793414521), |
262 | BOOST_MATH_BIG_CONSTANT(T, 113, 851.153712317697055375935433362983944), |
263 | BOOST_MATH_BIG_CONSTANT(T, 113, 1097.70657567285059133109286478004458), |
264 | BOOST_MATH_BIG_CONSTANT(T, 113, 938.431232478455316020076349367632922), |
265 | BOOST_MATH_BIG_CONSTANT(T, 113, 487.268001604651932322080970189930074), |
266 | BOOST_MATH_BIG_CONSTANT(T, 113, 119.953445242335730062471193124820659), |
267 | }; |
268 | static const T Q_4_8[] = { |
269 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
270 | BOOST_MATH_BIG_CONSTANT(T, 113, 12.4720855670474488978638945855932398), |
271 | BOOST_MATH_BIG_CONSTANT(T, 113, 78.6093129753298570701376952709727391), |
272 | BOOST_MATH_BIG_CONSTANT(T, 113, 307.470246050318322489781182863190127), |
273 | BOOST_MATH_BIG_CONSTANT(T, 113, 805.140686101151538537565264188630079), |
274 | BOOST_MATH_BIG_CONSTANT(T, 113, 1439.12019760292146454787601409644413), |
275 | BOOST_MATH_BIG_CONSTANT(T, 113, 1735.6105285756048831268586001383127), |
276 | BOOST_MATH_BIG_CONSTANT(T, 113, 1348.32500712856328019355198611280536), |
277 | BOOST_MATH_BIG_CONSTANT(T, 113, 607.225985860570846699704222144650563), |
278 | BOOST_MATH_BIG_CONSTANT(T, 113, 119.952317857277045332558673164517227), |
279 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.000140165918355036060868680809129436084), |
280 | }; |
281 | |
282 | // Maximum Deviation Found: 2.867e-035 |
283 | // Expected Error Term : 2.866e-035 |
284 | // Maximum Relative Change in Control Points : 2.662e-004 |
285 | static const T P_8_16[] = { |
286 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.184828315274146610610872315609837439e-19), |
287 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.500000000000000004122475157735807738), |
288 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.02533865247313349284875558880415875), |
289 | BOOST_MATH_BIG_CONSTANT(T, 113, 13.5995927517457371243039532492642734), |
290 | BOOST_MATH_BIG_CONSTANT(T, 113, 35.3132224283087906757037999452941588), |
291 | BOOST_MATH_BIG_CONSTANT(T, 113, 67.1639424550714159157603179911505619), |
292 | BOOST_MATH_BIG_CONSTANT(T, 113, 83.5767733658513967581959839367419891), |
293 | BOOST_MATH_BIG_CONSTANT(T, 113, 71.073491212235705900866411319363501), |
294 | BOOST_MATH_BIG_CONSTANT(T, 113, 35.8621515614725564575893663483998663), |
295 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.72152231639983491987779743154333318), |
296 | }; |
297 | static const T Q_8_16[] = { |
298 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
299 | BOOST_MATH_BIG_CONSTANT(T, 113, 5.71734397161293452310624822415866372), |
300 | BOOST_MATH_BIG_CONSTANT(T, 113, 25.293404179620438179337103263274815), |
301 | BOOST_MATH_BIG_CONSTANT(T, 113, 62.2619767967468199111077640625328469), |
302 | BOOST_MATH_BIG_CONSTANT(T, 113, 113.955048909238993473389714972250235), |
303 | BOOST_MATH_BIG_CONSTANT(T, 113, 130.807138328938966981862203944329408), |
304 | BOOST_MATH_BIG_CONSTANT(T, 113, 102.423146902337654110717764213057753), |
305 | BOOST_MATH_BIG_CONSTANT(T, 113, 44.0424772805245202514468199602123565), |
306 | BOOST_MATH_BIG_CONSTANT(T, 113, 8.89898032477904072082994913461386099), |
307 | BOOST_MATH_BIG_CONSTANT(T, 113, -0.0296627336872039988632793863671456398), |
308 | }; |
309 | // Maximum Deviation Found: 1.079e-035 |
310 | // Expected Error Term : -1.079e-035 |
311 | // Maximum Relative Change in Control Points : 7.884e-003 |
312 | static const T P_16_inf[] = { |
313 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.0), |
314 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.500000000000000000000000000000087317), |
315 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.345625669885456215194494735902663968), |
316 | BOOST_MATH_BIG_CONSTANT(T, 113, 9.62895499360842232127552650044647769), |
317 | BOOST_MATH_BIG_CONSTANT(T, 113, 3.5936085382439026269301003761320812), |
318 | BOOST_MATH_BIG_CONSTANT(T, 113, 49.459599118438883265036646019410669), |
319 | BOOST_MATH_BIG_CONSTANT(T, 113, 7.77519237321893917784735690560496607), |
320 | BOOST_MATH_BIG_CONSTANT(T, 113, 74.4536074488178075948642351179304121), |
321 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.75209340397069050436806159297952699), |
322 | BOOST_MATH_BIG_CONSTANT(T, 113, 23.9292359711471667884504840186561598), |
323 | }; |
324 | static const T Q_16_inf[] = { |
325 | BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), |
326 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.357918006437579097055656138920742037), |
327 | BOOST_MATH_BIG_CONSTANT(T, 113, 19.1386039850709849435325005484512944), |
328 | BOOST_MATH_BIG_CONSTANT(T, 113, 0.874349081464143606016221431763364517), |
329 | BOOST_MATH_BIG_CONSTANT(T, 113, 98.6516097434855572678195488061432509), |
330 | BOOST_MATH_BIG_CONSTANT(T, 113, -16.1051972833382893468655223662534306), |
331 | BOOST_MATH_BIG_CONSTANT(T, 113, 154.316860216253720989145047141653727), |
332 | BOOST_MATH_BIG_CONSTANT(T, 113, -40.2026880424378986053105969312264534), |
333 | BOOST_MATH_BIG_CONSTANT(T, 113, 60.1679136674264778074736441126810223), |
334 | BOOST_MATH_BIG_CONSTANT(T, 113, -13.3414844622256422644504472438320114), |
335 | BOOST_MATH_BIG_CONSTANT(T, 113, 2.53795636200649908779512969030363442), |
336 | }; |
337 | |
338 | if(x <= 2) |
339 | { |
340 | return (2 + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x); |
341 | } |
342 | else if(x <= 4) |
343 | { |
344 | return (y_offset_2_4 + boost::math::tools::evaluate_polynomial(P_2_4, x) / tools::evaluate_polynomial(Q_2_4, x)) / (x * x); |
345 | } |
346 | else if(x <= 8) |
347 | { |
348 | T y = 1 / x; |
349 | return (1 + tools::evaluate_polynomial(P_4_8, y) / tools::evaluate_polynomial(Q_4_8, y)) / x; |
350 | } |
351 | else if(x <= 16) |
352 | { |
353 | T y = 1 / x; |
354 | return (1 + tools::evaluate_polynomial(P_8_16, y) / tools::evaluate_polynomial(Q_8_16, y)) / x; |
355 | } |
356 | T y = 1 / x; |
357 | return (1 + tools::evaluate_polynomial(P_16_inf, y) / tools::evaluate_polynomial(Q_16_inf, y)) / x; |
358 | } |
359 | |
360 | template <class T, class Tag, class Policy> |
361 | T trigamma_imp(T x, const Tag* t, const Policy& pol) |
362 | { |
363 | // |
364 | // This handles reflection of negative arguments, and all our |
365 | // error handling, then forwards to the T-specific approximation. |
366 | // |
367 | BOOST_MATH_STD_USING // ADL of std functions. |
368 | |
369 | T result = 0; |
370 | // |
371 | // Check for negative arguments and use reflection: |
372 | // |
373 | if(x <= 0) |
374 | { |
375 | // Reflect: |
376 | T z = 1 - x; |
377 | // Argument reduction for tan: |
378 | if(floor(x) == x) |
379 | { |
380 | return policies::raise_pole_error<T>("boost::math::trigamma<%1%>(%1%)" , 0, (1-x), pol); |
381 | } |
382 | T s = fabs(x) < fabs(z) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(z, pol); |
383 | return -trigamma_imp(z, t, pol) + boost::math::pow<2>(constants::pi<T>()) / (s * s); |
384 | } |
385 | if(x < 1) |
386 | { |
387 | result = 1 / (x * x); |
388 | x += 1; |
389 | } |
390 | return result + trigamma_prec(x, t, pol); |
391 | } |
392 | |
393 | template <class T, class Policy> |
394 | T trigamma_imp(T x, const boost::integral_constant<int, 0>*, const Policy& pol) |
395 | { |
396 | return polygamma_imp(1, x, pol); |
397 | } |
398 | // |
399 | // Initializer: ensure all our constants are initialized prior to the first call of main: |
400 | // |
401 | template <class T, class Policy> |
402 | struct trigamma_initializer |
403 | { |
404 | struct init |
405 | { |
406 | init() |
407 | { |
408 | typedef typename policies::precision<T, Policy>::type precision_type; |
409 | do_init(boost::integral_constant<bool, precision_type::value && (precision_type::value <= 113)>()); |
410 | } |
411 | void do_init(const boost::true_type&) |
412 | { |
413 | boost::math::trigamma(T(2.5), Policy()); |
414 | } |
415 | void do_init(const boost::false_type&){} |
416 | void force_instantiate()const{} |
417 | }; |
418 | static const init initializer; |
419 | static void force_instantiate() |
420 | { |
421 | initializer.force_instantiate(); |
422 | } |
423 | }; |
424 | |
425 | template <class T, class Policy> |
426 | const typename trigamma_initializer<T, Policy>::init trigamma_initializer<T, Policy>::initializer; |
427 | |
428 | } // namespace detail |
429 | |
430 | template <class T, class Policy> |
431 | inline typename tools::promote_args<T>::type |
432 | trigamma(T x, const Policy&) |
433 | { |
434 | typedef typename tools::promote_args<T>::type result_type; |
435 | typedef typename policies::evaluation<result_type, Policy>::type value_type; |
436 | typedef typename policies::precision<T, Policy>::type precision_type; |
437 | typedef boost::integral_constant<int, |
438 | precision_type::value <= 0 ? 0 : |
439 | precision_type::value <= 53 ? 53 : |
440 | precision_type::value <= 64 ? 64 : |
441 | precision_type::value <= 113 ? 113 : 0 |
442 | > tag_type; |
443 | typedef typename policies::normalise< |
444 | Policy, |
445 | policies::promote_float<false>, |
446 | policies::promote_double<false>, |
447 | policies::discrete_quantile<>, |
448 | policies::assert_undefined<> >::type forwarding_policy; |
449 | |
450 | // Force initialization of constants: |
451 | detail::trigamma_initializer<value_type, forwarding_policy>::force_instantiate(); |
452 | |
453 | return policies::checked_narrowing_cast<result_type, Policy>(detail::trigamma_imp( |
454 | static_cast<value_type>(x), |
455 | static_cast<const tag_type*>(0), forwarding_policy()), "boost::math::trigamma<%1%>(%1%)" ); |
456 | } |
457 | |
458 | template <class T> |
459 | inline typename tools::promote_args<T>::type |
460 | trigamma(T x) |
461 | { |
462 | return trigamma(x, policies::policy<>()); |
463 | } |
464 | |
465 | } // namespace math |
466 | } // namespace boost |
467 | #endif |
468 | |
469 | |