| 1 | // (C) Copyright John Maddock 2006. |
| 2 | // Use, modification and distribution are subject to the |
| 3 | // Boost Software License, Version 1.0. (See accompanying file |
| 4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
| 5 | |
| 6 | #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
| 7 | #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
| 8 | |
| 9 | #ifdef _MSC_VER |
| 10 | #pragma once |
| 11 | #endif |
| 12 | |
| 13 | #include <boost/math/tools/precision.hpp> |
| 14 | #include <boost/math/policies/error_handling.hpp> |
| 15 | #include <boost/math/tools/config.hpp> |
| 16 | #include <boost/math/special_functions/sign.hpp> |
| 17 | #include <boost/cstdint.hpp> |
| 18 | #include <limits> |
| 19 | |
| 20 | #ifdef BOOST_MATH_LOG_ROOT_ITERATIONS |
| 21 | # define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp> |
| 22 | # include BOOST_MATH_LOGGER_INCLUDE |
| 23 | # undef BOOST_MATH_LOGGER_INCLUDE |
| 24 | #else |
| 25 | # define BOOST_MATH_LOG_COUNT(count) |
| 26 | #endif |
| 27 | |
| 28 | namespace boost{ namespace math{ namespace tools{ |
| 29 | |
| 30 | template <class T> |
| 31 | class eps_tolerance |
| 32 | { |
| 33 | public: |
| 34 | eps_tolerance() |
| 35 | { |
| 36 | eps = 4 * tools::epsilon<T>(); |
| 37 | } |
| 38 | eps_tolerance(unsigned bits) |
| 39 | { |
| 40 | BOOST_MATH_STD_USING |
| 41 | eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>())); |
| 42 | } |
| 43 | bool operator()(const T& a, const T& b) |
| 44 | { |
| 45 | BOOST_MATH_STD_USING |
| 46 | return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b))); |
| 47 | } |
| 48 | private: |
| 49 | T eps; |
| 50 | }; |
| 51 | |
| 52 | struct equal_floor |
| 53 | { |
| 54 | equal_floor(){} |
| 55 | template <class T> |
| 56 | bool operator()(const T& a, const T& b) |
| 57 | { |
| 58 | BOOST_MATH_STD_USING |
| 59 | return floor(a) == floor(b); |
| 60 | } |
| 61 | }; |
| 62 | |
| 63 | struct equal_ceil |
| 64 | { |
| 65 | equal_ceil(){} |
| 66 | template <class T> |
| 67 | bool operator()(const T& a, const T& b) |
| 68 | { |
| 69 | BOOST_MATH_STD_USING |
| 70 | return ceil(a) == ceil(b); |
| 71 | } |
| 72 | }; |
| 73 | |
| 74 | struct equal_nearest_integer |
| 75 | { |
| 76 | equal_nearest_integer(){} |
| 77 | template <class T> |
| 78 | bool operator()(const T& a, const T& b) |
| 79 | { |
| 80 | BOOST_MATH_STD_USING |
| 81 | return floor(a + 0.5f) == floor(b + 0.5f); |
| 82 | } |
| 83 | }; |
| 84 | |
| 85 | namespace detail{ |
| 86 | |
| 87 | template <class F, class T> |
| 88 | void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd) |
| 89 | { |
| 90 | // |
| 91 | // Given a point c inside the existing enclosing interval |
| 92 | // [a, b] sets a = c if f(c) == 0, otherwise finds the new |
| 93 | // enclosing interval: either [a, c] or [c, b] and sets |
| 94 | // d and fd to the point that has just been removed from |
| 95 | // the interval. In other words d is the third best guess |
| 96 | // to the root. |
| 97 | // |
| 98 | BOOST_MATH_STD_USING // For ADL of std math functions |
| 99 | T tol = tools::epsilon<T>() * 2; |
| 100 | // |
| 101 | // If the interval [a,b] is very small, or if c is too close |
| 102 | // to one end of the interval then we need to adjust the |
| 103 | // location of c accordingly: |
| 104 | // |
| 105 | if((b - a) < 2 * tol * a) |
| 106 | { |
| 107 | c = a + (b - a) / 2; |
| 108 | } |
| 109 | else if(c <= a + fabs(a) * tol) |
| 110 | { |
| 111 | c = a + fabs(a) * tol; |
| 112 | } |
| 113 | else if(c >= b - fabs(b) * tol) |
| 114 | { |
| 115 | c = b - fabs(b) * tol; |
| 116 | } |
| 117 | // |
| 118 | // OK, lets invoke f(c): |
| 119 | // |
| 120 | T fc = f(c); |
| 121 | // |
| 122 | // if we have a zero then we have an exact solution to the root: |
| 123 | // |
| 124 | if(fc == 0) |
| 125 | { |
| 126 | a = c; |
| 127 | fa = 0; |
| 128 | d = 0; |
| 129 | fd = 0; |
| 130 | return; |
| 131 | } |
| 132 | // |
| 133 | // Non-zero fc, update the interval: |
| 134 | // |
| 135 | if(boost::math::sign(fa) * boost::math::sign(fc) < 0) |
| 136 | { |
| 137 | d = b; |
| 138 | fd = fb; |
| 139 | b = c; |
| 140 | fb = fc; |
| 141 | } |
| 142 | else |
| 143 | { |
| 144 | d = a; |
| 145 | fd = fa; |
| 146 | a = c; |
| 147 | fa= fc; |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | template <class T> |
| 152 | inline T safe_div(T num, T denom, T r) |
| 153 | { |
| 154 | // |
| 155 | // return num / denom without overflow, |
| 156 | // return r if overflow would occur. |
| 157 | // |
| 158 | BOOST_MATH_STD_USING // For ADL of std math functions |
| 159 | |
| 160 | if(fabs(denom) < 1) |
| 161 | { |
| 162 | if(fabs(denom * tools::max_value<T>()) <= fabs(num)) |
| 163 | return r; |
| 164 | } |
| 165 | return num / denom; |
| 166 | } |
| 167 | |
| 168 | template <class T> |
| 169 | inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb) |
| 170 | { |
| 171 | // |
| 172 | // Performs standard secant interpolation of [a,b] given |
| 173 | // function evaluations f(a) and f(b). Performs a bisection |
| 174 | // if secant interpolation would leave us very close to either |
| 175 | // a or b. Rationale: we only call this function when at least |
| 176 | // one other form of interpolation has already failed, so we know |
| 177 | // that the function is unlikely to be smooth with a root very |
| 178 | // close to a or b. |
| 179 | // |
| 180 | BOOST_MATH_STD_USING // For ADL of std math functions |
| 181 | |
| 182 | T tol = tools::epsilon<T>() * 5; |
| 183 | T c = a - (fa / (fb - fa)) * (b - a); |
| 184 | if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol)) |
| 185 | return (a + b) / 2; |
| 186 | return c; |
| 187 | } |
| 188 | |
| 189 | template <class T> |
| 190 | T quadratic_interpolate(const T& a, const T& b, T const& d, |
| 191 | const T& fa, const T& fb, T const& fd, |
| 192 | unsigned count) |
| 193 | { |
| 194 | // |
| 195 | // Performs quadratic interpolation to determine the next point, |
| 196 | // takes count Newton steps to find the location of the |
| 197 | // quadratic polynomial. |
| 198 | // |
| 199 | // Point d must lie outside of the interval [a,b], it is the third |
| 200 | // best approximation to the root, after a and b. |
| 201 | // |
| 202 | // Note: this does not guarantee to find a root |
| 203 | // inside [a, b], so we fall back to a secant step should |
| 204 | // the result be out of range. |
| 205 | // |
| 206 | // Start by obtaining the coefficients of the quadratic polynomial: |
| 207 | // |
| 208 | T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>()); |
| 209 | T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>()); |
| 210 | A = safe_div(T(A - B), T(d - a), T(0)); |
| 211 | |
| 212 | if(A == 0) |
| 213 | { |
| 214 | // failure to determine coefficients, try a secant step: |
| 215 | return secant_interpolate(a, b, fa, fb); |
| 216 | } |
| 217 | // |
| 218 | // Determine the starting point of the Newton steps: |
| 219 | // |
| 220 | T c; |
| 221 | if(boost::math::sign(A) * boost::math::sign(fa) > 0) |
| 222 | { |
| 223 | c = a; |
| 224 | } |
| 225 | else |
| 226 | { |
| 227 | c = b; |
| 228 | } |
| 229 | // |
| 230 | // Take the Newton steps: |
| 231 | // |
| 232 | for(unsigned i = 1; i <= count; ++i) |
| 233 | { |
| 234 | //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a); |
| 235 | c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a)); |
| 236 | } |
| 237 | if((c <= a) || (c >= b)) |
| 238 | { |
| 239 | // Oops, failure, try a secant step: |
| 240 | c = secant_interpolate(a, b, fa, fb); |
| 241 | } |
| 242 | return c; |
| 243 | } |
| 244 | |
| 245 | template <class T> |
| 246 | T cubic_interpolate(const T& a, const T& b, const T& d, |
| 247 | const T& e, const T& fa, const T& fb, |
| 248 | const T& fd, const T& fe) |
| 249 | { |
| 250 | // |
| 251 | // Uses inverse cubic interpolation of f(x) at points |
| 252 | // [a,b,d,e] to obtain an approximate root of f(x). |
| 253 | // Points d and e lie outside the interval [a,b] |
| 254 | // and are the third and forth best approximations |
| 255 | // to the root that we have found so far. |
| 256 | // |
| 257 | // Note: this does not guarantee to find a root |
| 258 | // inside [a, b], so we fall back to quadratic |
| 259 | // interpolation in case of an erroneous result. |
| 260 | // |
| 261 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b |
| 262 | << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb |
| 263 | << " fd = " << fd << " fe = " << fe); |
| 264 | T q11 = (d - e) * fd / (fe - fd); |
| 265 | T q21 = (b - d) * fb / (fd - fb); |
| 266 | T q31 = (a - b) * fa / (fb - fa); |
| 267 | T d21 = (b - d) * fd / (fd - fb); |
| 268 | T d31 = (a - b) * fb / (fb - fa); |
| 269 | BOOST_MATH_INSTRUMENT_CODE( |
| 270 | "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31 |
| 271 | << " d21 = " << d21 << " d31 = " << d31); |
| 272 | T q22 = (d21 - q11) * fb / (fe - fb); |
| 273 | T q32 = (d31 - q21) * fa / (fd - fa); |
| 274 | T d32 = (d31 - q21) * fd / (fd - fa); |
| 275 | T q33 = (d32 - q22) * fa / (fe - fa); |
| 276 | T c = q31 + q32 + q33 + a; |
| 277 | BOOST_MATH_INSTRUMENT_CODE( |
| 278 | "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32 |
| 279 | << " q33 = " << q33 << " c = " << c); |
| 280 | |
| 281 | if((c <= a) || (c >= b)) |
| 282 | { |
| 283 | // Out of bounds step, fall back to quadratic interpolation: |
| 284 | c = quadratic_interpolate(a, b, d, fa, fb, fd, 3); |
| 285 | BOOST_MATH_INSTRUMENT_CODE( |
| 286 | "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c); |
| 287 | } |
| 288 | |
| 289 | return c; |
| 290 | } |
| 291 | |
| 292 | } // namespace detail |
| 293 | |
| 294 | template <class F, class T, class Tol, class Policy> |
| 295 | std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
| 296 | { |
| 297 | // |
| 298 | // Main entry point and logic for Toms Algorithm 748 |
| 299 | // root finder. |
| 300 | // |
| 301 | BOOST_MATH_STD_USING // For ADL of std math functions |
| 302 | |
| 303 | static const char* function = "boost::math::tools::toms748_solve<%1%>" ; |
| 304 | |
| 305 | // |
| 306 | // Sanity check - are we allowed to iterate at all? |
| 307 | // |
| 308 | if (max_iter == 0) |
| 309 | return std::make_pair(ax, bx); |
| 310 | |
| 311 | boost::uintmax_t count = max_iter; |
| 312 | T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe; |
| 313 | static const T mu = 0.5f; |
| 314 | |
| 315 | // initialise a, b and fa, fb: |
| 316 | a = ax; |
| 317 | b = bx; |
| 318 | if(a >= b) |
| 319 | return boost::math::detail::pair_from_single(policies::raise_domain_error( |
| 320 | function, |
| 321 | "Parameters a and b out of order: a=%1%" , a, pol)); |
| 322 | fa = fax; |
| 323 | fb = fbx; |
| 324 | |
| 325 | if(tol(a, b) || (fa == 0) || (fb == 0)) |
| 326 | { |
| 327 | max_iter = 0; |
| 328 | if(fa == 0) |
| 329 | b = a; |
| 330 | else if(fb == 0) |
| 331 | a = b; |
| 332 | return std::make_pair(a, b); |
| 333 | } |
| 334 | |
| 335 | if(boost::math::sign(fa) * boost::math::sign(fb) > 0) |
| 336 | return boost::math::detail::pair_from_single(policies::raise_domain_error( |
| 337 | function, |
| 338 | "Parameters a and b do not bracket the root: a=%1%" , a, pol)); |
| 339 | // dummy value for fd, e and fe: |
| 340 | fe = e = fd = 1e5F; |
| 341 | |
| 342 | if(fa != 0) |
| 343 | { |
| 344 | // |
| 345 | // On the first step we take a secant step: |
| 346 | // |
| 347 | c = detail::secant_interpolate(a, b, fa, fb); |
| 348 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
| 349 | --count; |
| 350 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
| 351 | |
| 352 | if(count && (fa != 0) && !tol(a, b)) |
| 353 | { |
| 354 | // |
| 355 | // On the second step we take a quadratic interpolation: |
| 356 | // |
| 357 | c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); |
| 358 | e = d; |
| 359 | fe = fd; |
| 360 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
| 361 | --count; |
| 362 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | while(count && (fa != 0) && !tol(a, b)) |
| 367 | { |
| 368 | // save our brackets: |
| 369 | a0 = a; |
| 370 | b0 = b; |
| 371 | // |
| 372 | // Starting with the third step taken |
| 373 | // we can use either quadratic or cubic interpolation. |
| 374 | // Cubic interpolation requires that all four function values |
| 375 | // fa, fb, fd, and fe are distinct, should that not be the case |
| 376 | // then variable prof will get set to true, and we'll end up |
| 377 | // taking a quadratic step instead. |
| 378 | // |
| 379 | T min_diff = tools::min_value<T>() * 32; |
| 380 | bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); |
| 381 | if(prof) |
| 382 | { |
| 383 | c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); |
| 384 | BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!" ); |
| 385 | } |
| 386 | else |
| 387 | { |
| 388 | c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); |
| 389 | } |
| 390 | // |
| 391 | // re-bracket, and check for termination: |
| 392 | // |
| 393 | e = d; |
| 394 | fe = fd; |
| 395 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
| 396 | if((0 == --count) || (fa == 0) || tol(a, b)) |
| 397 | break; |
| 398 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
| 399 | // |
| 400 | // Now another interpolated step: |
| 401 | // |
| 402 | prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); |
| 403 | if(prof) |
| 404 | { |
| 405 | c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3); |
| 406 | BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!" ); |
| 407 | } |
| 408 | else |
| 409 | { |
| 410 | c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); |
| 411 | } |
| 412 | // |
| 413 | // Bracket again, and check termination condition, update e: |
| 414 | // |
| 415 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
| 416 | if((0 == --count) || (fa == 0) || tol(a, b)) |
| 417 | break; |
| 418 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
| 419 | // |
| 420 | // Now we take a double-length secant step: |
| 421 | // |
| 422 | if(fabs(fa) < fabs(fb)) |
| 423 | { |
| 424 | u = a; |
| 425 | fu = fa; |
| 426 | } |
| 427 | else |
| 428 | { |
| 429 | u = b; |
| 430 | fu = fb; |
| 431 | } |
| 432 | c = u - 2 * (fu / (fb - fa)) * (b - a); |
| 433 | if(fabs(c - u) > (b - a) / 2) |
| 434 | { |
| 435 | c = a + (b - a) / 2; |
| 436 | } |
| 437 | // |
| 438 | // Bracket again, and check termination condition: |
| 439 | // |
| 440 | e = d; |
| 441 | fe = fd; |
| 442 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
| 443 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
| 444 | BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a))); |
| 445 | if((0 == --count) || (fa == 0) || tol(a, b)) |
| 446 | break; |
| 447 | // |
| 448 | // And finally... check to see if an additional bisection step is |
| 449 | // to be taken, we do this if we're not converging fast enough: |
| 450 | // |
| 451 | if((b - a) < mu * (b0 - a0)) |
| 452 | continue; |
| 453 | // |
| 454 | // bracket again on a bisection: |
| 455 | // |
| 456 | e = d; |
| 457 | fe = fd; |
| 458 | detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd); |
| 459 | --count; |
| 460 | BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!" ); |
| 461 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
| 462 | } // while loop |
| 463 | |
| 464 | max_iter -= count; |
| 465 | if(fa == 0) |
| 466 | { |
| 467 | b = a; |
| 468 | } |
| 469 | else if(fb == 0) |
| 470 | { |
| 471 | a = b; |
| 472 | } |
| 473 | BOOST_MATH_LOG_COUNT(max_iter) |
| 474 | return std::make_pair(a, b); |
| 475 | } |
| 476 | |
| 477 | template <class F, class T, class Tol> |
| 478 | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter) |
| 479 | { |
| 480 | return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>()); |
| 481 | } |
| 482 | |
| 483 | template <class F, class T, class Tol, class Policy> |
| 484 | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
| 485 | { |
| 486 | if (max_iter <= 2) |
| 487 | return std::make_pair(ax, bx); |
| 488 | max_iter -= 2; |
| 489 | std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol); |
| 490 | max_iter += 2; |
| 491 | return r; |
| 492 | } |
| 493 | |
| 494 | template <class F, class T, class Tol> |
| 495 | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter) |
| 496 | { |
| 497 | return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>()); |
| 498 | } |
| 499 | |
| 500 | template <class F, class T, class Tol, class Policy> |
| 501 | std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
| 502 | { |
| 503 | BOOST_MATH_STD_USING |
| 504 | static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>" ; |
| 505 | // |
| 506 | // Set up initial brackets: |
| 507 | // |
| 508 | T a = guess; |
| 509 | T b = a; |
| 510 | T fa = f(a); |
| 511 | T fb = fa; |
| 512 | // |
| 513 | // Set up invocation count: |
| 514 | // |
| 515 | boost::uintmax_t count = max_iter - 1; |
| 516 | |
| 517 | int step = 32; |
| 518 | |
| 519 | if((fa < 0) == (guess < 0 ? !rising : rising)) |
| 520 | { |
| 521 | // |
| 522 | // Zero is to the right of b, so walk upwards |
| 523 | // until we find it: |
| 524 | // |
| 525 | while((boost::math::sign)(fb) == (boost::math::sign)(fa)) |
| 526 | { |
| 527 | if(count == 0) |
| 528 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%" , b, pol)); |
| 529 | // |
| 530 | // Heuristic: normally it's best not to increase the step sizes as we'll just end up |
| 531 | // with a really wide range to search for the root. However, if the initial guess was *really* |
| 532 | // bad then we need to speed up the search otherwise we'll take forever if we're orders of |
| 533 | // magnitude out. This happens most often if the guess is a small value (say 1) and the result |
| 534 | // we're looking for is close to std::numeric_limits<T>::min(). |
| 535 | // |
| 536 | if((max_iter - count) % step == 0) |
| 537 | { |
| 538 | factor *= 2; |
| 539 | if(step > 1) step /= 2; |
| 540 | } |
| 541 | // |
| 542 | // Now go ahead and move our guess by "factor": |
| 543 | // |
| 544 | a = b; |
| 545 | fa = fb; |
| 546 | b *= factor; |
| 547 | fb = f(b); |
| 548 | --count; |
| 549 | BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
| 550 | } |
| 551 | } |
| 552 | else |
| 553 | { |
| 554 | // |
| 555 | // Zero is to the left of a, so walk downwards |
| 556 | // until we find it: |
| 557 | // |
| 558 | while((boost::math::sign)(fb) == (boost::math::sign)(fa)) |
| 559 | { |
| 560 | if(fabs(a) < tools::min_value<T>()) |
| 561 | { |
| 562 | // Escape route just in case the answer is zero! |
| 563 | max_iter -= count; |
| 564 | max_iter += 1; |
| 565 | return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); |
| 566 | } |
| 567 | if(count == 0) |
| 568 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%" , a, pol)); |
| 569 | // |
| 570 | // Heuristic: normally it's best not to increase the step sizes as we'll just end up |
| 571 | // with a really wide range to search for the root. However, if the initial guess was *really* |
| 572 | // bad then we need to speed up the search otherwise we'll take forever if we're orders of |
| 573 | // magnitude out. This happens most often if the guess is a small value (say 1) and the result |
| 574 | // we're looking for is close to std::numeric_limits<T>::min(). |
| 575 | // |
| 576 | if((max_iter - count) % step == 0) |
| 577 | { |
| 578 | factor *= 2; |
| 579 | if(step > 1) step /= 2; |
| 580 | } |
| 581 | // |
| 582 | // Now go ahead and move are guess by "factor": |
| 583 | // |
| 584 | b = a; |
| 585 | fb = fa; |
| 586 | a /= factor; |
| 587 | fa = f(a); |
| 588 | --count; |
| 589 | BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
| 590 | } |
| 591 | } |
| 592 | max_iter -= count; |
| 593 | max_iter += 1; |
| 594 | std::pair<T, T> r = toms748_solve( |
| 595 | f, |
| 596 | (a < 0 ? b : a), |
| 597 | (a < 0 ? a : b), |
| 598 | (a < 0 ? fb : fa), |
| 599 | (a < 0 ? fa : fb), |
| 600 | tol, |
| 601 | count, |
| 602 | pol); |
| 603 | max_iter += count; |
| 604 | BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); |
| 605 | BOOST_MATH_LOG_COUNT(max_iter) |
| 606 | return r; |
| 607 | } |
| 608 | |
| 609 | template <class F, class T, class Tol> |
| 610 | inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter) |
| 611 | { |
| 612 | return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>()); |
| 613 | } |
| 614 | |
| 615 | } // namespace tools |
| 616 | } // namespace math |
| 617 | } // namespace boost |
| 618 | |
| 619 | |
| 620 | #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
| 621 | |
| 622 | |