1 | // (C) Copyright John Maddock 2006. |
2 | // Use, modification and distribution are subject to the |
3 | // Boost Software License, Version 1.0. (See accompanying file |
4 | // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) |
5 | |
6 | #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
7 | #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
8 | |
9 | #ifdef _MSC_VER |
10 | #pragma once |
11 | #endif |
12 | |
13 | #include <boost/math/tools/precision.hpp> |
14 | #include <boost/math/policies/error_handling.hpp> |
15 | #include <boost/math/tools/config.hpp> |
16 | #include <boost/math/special_functions/sign.hpp> |
17 | #include <boost/cstdint.hpp> |
18 | #include <limits> |
19 | |
20 | #ifdef BOOST_MATH_LOG_ROOT_ITERATIONS |
21 | # define BOOST_MATH_LOGGER_INCLUDE <boost/math/tools/iteration_logger.hpp> |
22 | # include BOOST_MATH_LOGGER_INCLUDE |
23 | # undef BOOST_MATH_LOGGER_INCLUDE |
24 | #else |
25 | # define BOOST_MATH_LOG_COUNT(count) |
26 | #endif |
27 | |
28 | namespace boost{ namespace math{ namespace tools{ |
29 | |
30 | template <class T> |
31 | class eps_tolerance |
32 | { |
33 | public: |
34 | eps_tolerance() |
35 | { |
36 | eps = 4 * tools::epsilon<T>(); |
37 | } |
38 | eps_tolerance(unsigned bits) |
39 | { |
40 | BOOST_MATH_STD_USING |
41 | eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>())); |
42 | } |
43 | bool operator()(const T& a, const T& b) |
44 | { |
45 | BOOST_MATH_STD_USING |
46 | return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b))); |
47 | } |
48 | private: |
49 | T eps; |
50 | }; |
51 | |
52 | struct equal_floor |
53 | { |
54 | equal_floor(){} |
55 | template <class T> |
56 | bool operator()(const T& a, const T& b) |
57 | { |
58 | BOOST_MATH_STD_USING |
59 | return floor(a) == floor(b); |
60 | } |
61 | }; |
62 | |
63 | struct equal_ceil |
64 | { |
65 | equal_ceil(){} |
66 | template <class T> |
67 | bool operator()(const T& a, const T& b) |
68 | { |
69 | BOOST_MATH_STD_USING |
70 | return ceil(a) == ceil(b); |
71 | } |
72 | }; |
73 | |
74 | struct equal_nearest_integer |
75 | { |
76 | equal_nearest_integer(){} |
77 | template <class T> |
78 | bool operator()(const T& a, const T& b) |
79 | { |
80 | BOOST_MATH_STD_USING |
81 | return floor(a + 0.5f) == floor(b + 0.5f); |
82 | } |
83 | }; |
84 | |
85 | namespace detail{ |
86 | |
87 | template <class F, class T> |
88 | void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd) |
89 | { |
90 | // |
91 | // Given a point c inside the existing enclosing interval |
92 | // [a, b] sets a = c if f(c) == 0, otherwise finds the new |
93 | // enclosing interval: either [a, c] or [c, b] and sets |
94 | // d and fd to the point that has just been removed from |
95 | // the interval. In other words d is the third best guess |
96 | // to the root. |
97 | // |
98 | BOOST_MATH_STD_USING // For ADL of std math functions |
99 | T tol = tools::epsilon<T>() * 2; |
100 | // |
101 | // If the interval [a,b] is very small, or if c is too close |
102 | // to one end of the interval then we need to adjust the |
103 | // location of c accordingly: |
104 | // |
105 | if((b - a) < 2 * tol * a) |
106 | { |
107 | c = a + (b - a) / 2; |
108 | } |
109 | else if(c <= a + fabs(a) * tol) |
110 | { |
111 | c = a + fabs(a) * tol; |
112 | } |
113 | else if(c >= b - fabs(b) * tol) |
114 | { |
115 | c = b - fabs(b) * tol; |
116 | } |
117 | // |
118 | // OK, lets invoke f(c): |
119 | // |
120 | T fc = f(c); |
121 | // |
122 | // if we have a zero then we have an exact solution to the root: |
123 | // |
124 | if(fc == 0) |
125 | { |
126 | a = c; |
127 | fa = 0; |
128 | d = 0; |
129 | fd = 0; |
130 | return; |
131 | } |
132 | // |
133 | // Non-zero fc, update the interval: |
134 | // |
135 | if(boost::math::sign(fa) * boost::math::sign(fc) < 0) |
136 | { |
137 | d = b; |
138 | fd = fb; |
139 | b = c; |
140 | fb = fc; |
141 | } |
142 | else |
143 | { |
144 | d = a; |
145 | fd = fa; |
146 | a = c; |
147 | fa= fc; |
148 | } |
149 | } |
150 | |
151 | template <class T> |
152 | inline T safe_div(T num, T denom, T r) |
153 | { |
154 | // |
155 | // return num / denom without overflow, |
156 | // return r if overflow would occur. |
157 | // |
158 | BOOST_MATH_STD_USING // For ADL of std math functions |
159 | |
160 | if(fabs(denom) < 1) |
161 | { |
162 | if(fabs(denom * tools::max_value<T>()) <= fabs(num)) |
163 | return r; |
164 | } |
165 | return num / denom; |
166 | } |
167 | |
168 | template <class T> |
169 | inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb) |
170 | { |
171 | // |
172 | // Performs standard secant interpolation of [a,b] given |
173 | // function evaluations f(a) and f(b). Performs a bisection |
174 | // if secant interpolation would leave us very close to either |
175 | // a or b. Rationale: we only call this function when at least |
176 | // one other form of interpolation has already failed, so we know |
177 | // that the function is unlikely to be smooth with a root very |
178 | // close to a or b. |
179 | // |
180 | BOOST_MATH_STD_USING // For ADL of std math functions |
181 | |
182 | T tol = tools::epsilon<T>() * 5; |
183 | T c = a - (fa / (fb - fa)) * (b - a); |
184 | if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol)) |
185 | return (a + b) / 2; |
186 | return c; |
187 | } |
188 | |
189 | template <class T> |
190 | T quadratic_interpolate(const T& a, const T& b, T const& d, |
191 | const T& fa, const T& fb, T const& fd, |
192 | unsigned count) |
193 | { |
194 | // |
195 | // Performs quadratic interpolation to determine the next point, |
196 | // takes count Newton steps to find the location of the |
197 | // quadratic polynomial. |
198 | // |
199 | // Point d must lie outside of the interval [a,b], it is the third |
200 | // best approximation to the root, after a and b. |
201 | // |
202 | // Note: this does not guarantee to find a root |
203 | // inside [a, b], so we fall back to a secant step should |
204 | // the result be out of range. |
205 | // |
206 | // Start by obtaining the coefficients of the quadratic polynomial: |
207 | // |
208 | T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>()); |
209 | T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>()); |
210 | A = safe_div(T(A - B), T(d - a), T(0)); |
211 | |
212 | if(A == 0) |
213 | { |
214 | // failure to determine coefficients, try a secant step: |
215 | return secant_interpolate(a, b, fa, fb); |
216 | } |
217 | // |
218 | // Determine the starting point of the Newton steps: |
219 | // |
220 | T c; |
221 | if(boost::math::sign(A) * boost::math::sign(fa) > 0) |
222 | { |
223 | c = a; |
224 | } |
225 | else |
226 | { |
227 | c = b; |
228 | } |
229 | // |
230 | // Take the Newton steps: |
231 | // |
232 | for(unsigned i = 1; i <= count; ++i) |
233 | { |
234 | //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a); |
235 | c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a)); |
236 | } |
237 | if((c <= a) || (c >= b)) |
238 | { |
239 | // Oops, failure, try a secant step: |
240 | c = secant_interpolate(a, b, fa, fb); |
241 | } |
242 | return c; |
243 | } |
244 | |
245 | template <class T> |
246 | T cubic_interpolate(const T& a, const T& b, const T& d, |
247 | const T& e, const T& fa, const T& fb, |
248 | const T& fd, const T& fe) |
249 | { |
250 | // |
251 | // Uses inverse cubic interpolation of f(x) at points |
252 | // [a,b,d,e] to obtain an approximate root of f(x). |
253 | // Points d and e lie outside the interval [a,b] |
254 | // and are the third and forth best approximations |
255 | // to the root that we have found so far. |
256 | // |
257 | // Note: this does not guarantee to find a root |
258 | // inside [a, b], so we fall back to quadratic |
259 | // interpolation in case of an erroneous result. |
260 | // |
261 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b |
262 | << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb |
263 | << " fd = " << fd << " fe = " << fe); |
264 | T q11 = (d - e) * fd / (fe - fd); |
265 | T q21 = (b - d) * fb / (fd - fb); |
266 | T q31 = (a - b) * fa / (fb - fa); |
267 | T d21 = (b - d) * fd / (fd - fb); |
268 | T d31 = (a - b) * fb / (fb - fa); |
269 | BOOST_MATH_INSTRUMENT_CODE( |
270 | "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31 |
271 | << " d21 = " << d21 << " d31 = " << d31); |
272 | T q22 = (d21 - q11) * fb / (fe - fb); |
273 | T q32 = (d31 - q21) * fa / (fd - fa); |
274 | T d32 = (d31 - q21) * fd / (fd - fa); |
275 | T q33 = (d32 - q22) * fa / (fe - fa); |
276 | T c = q31 + q32 + q33 + a; |
277 | BOOST_MATH_INSTRUMENT_CODE( |
278 | "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32 |
279 | << " q33 = " << q33 << " c = " << c); |
280 | |
281 | if((c <= a) || (c >= b)) |
282 | { |
283 | // Out of bounds step, fall back to quadratic interpolation: |
284 | c = quadratic_interpolate(a, b, d, fa, fb, fd, 3); |
285 | BOOST_MATH_INSTRUMENT_CODE( |
286 | "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c); |
287 | } |
288 | |
289 | return c; |
290 | } |
291 | |
292 | } // namespace detail |
293 | |
294 | template <class F, class T, class Tol, class Policy> |
295 | std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
296 | { |
297 | // |
298 | // Main entry point and logic for Toms Algorithm 748 |
299 | // root finder. |
300 | // |
301 | BOOST_MATH_STD_USING // For ADL of std math functions |
302 | |
303 | static const char* function = "boost::math::tools::toms748_solve<%1%>" ; |
304 | |
305 | // |
306 | // Sanity check - are we allowed to iterate at all? |
307 | // |
308 | if (max_iter == 0) |
309 | return std::make_pair(ax, bx); |
310 | |
311 | boost::uintmax_t count = max_iter; |
312 | T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe; |
313 | static const T mu = 0.5f; |
314 | |
315 | // initialise a, b and fa, fb: |
316 | a = ax; |
317 | b = bx; |
318 | if(a >= b) |
319 | return boost::math::detail::pair_from_single(policies::raise_domain_error( |
320 | function, |
321 | "Parameters a and b out of order: a=%1%" , a, pol)); |
322 | fa = fax; |
323 | fb = fbx; |
324 | |
325 | if(tol(a, b) || (fa == 0) || (fb == 0)) |
326 | { |
327 | max_iter = 0; |
328 | if(fa == 0) |
329 | b = a; |
330 | else if(fb == 0) |
331 | a = b; |
332 | return std::make_pair(a, b); |
333 | } |
334 | |
335 | if(boost::math::sign(fa) * boost::math::sign(fb) > 0) |
336 | return boost::math::detail::pair_from_single(policies::raise_domain_error( |
337 | function, |
338 | "Parameters a and b do not bracket the root: a=%1%" , a, pol)); |
339 | // dummy value for fd, e and fe: |
340 | fe = e = fd = 1e5F; |
341 | |
342 | if(fa != 0) |
343 | { |
344 | // |
345 | // On the first step we take a secant step: |
346 | // |
347 | c = detail::secant_interpolate(a, b, fa, fb); |
348 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
349 | --count; |
350 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
351 | |
352 | if(count && (fa != 0) && !tol(a, b)) |
353 | { |
354 | // |
355 | // On the second step we take a quadratic interpolation: |
356 | // |
357 | c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); |
358 | e = d; |
359 | fe = fd; |
360 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
361 | --count; |
362 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
363 | } |
364 | } |
365 | |
366 | while(count && (fa != 0) && !tol(a, b)) |
367 | { |
368 | // save our brackets: |
369 | a0 = a; |
370 | b0 = b; |
371 | // |
372 | // Starting with the third step taken |
373 | // we can use either quadratic or cubic interpolation. |
374 | // Cubic interpolation requires that all four function values |
375 | // fa, fb, fd, and fe are distinct, should that not be the case |
376 | // then variable prof will get set to true, and we'll end up |
377 | // taking a quadratic step instead. |
378 | // |
379 | T min_diff = tools::min_value<T>() * 32; |
380 | bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); |
381 | if(prof) |
382 | { |
383 | c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); |
384 | BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!" ); |
385 | } |
386 | else |
387 | { |
388 | c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); |
389 | } |
390 | // |
391 | // re-bracket, and check for termination: |
392 | // |
393 | e = d; |
394 | fe = fd; |
395 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
396 | if((0 == --count) || (fa == 0) || tol(a, b)) |
397 | break; |
398 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
399 | // |
400 | // Now another interpolated step: |
401 | // |
402 | prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); |
403 | if(prof) |
404 | { |
405 | c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3); |
406 | BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!" ); |
407 | } |
408 | else |
409 | { |
410 | c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); |
411 | } |
412 | // |
413 | // Bracket again, and check termination condition, update e: |
414 | // |
415 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
416 | if((0 == --count) || (fa == 0) || tol(a, b)) |
417 | break; |
418 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
419 | // |
420 | // Now we take a double-length secant step: |
421 | // |
422 | if(fabs(fa) < fabs(fb)) |
423 | { |
424 | u = a; |
425 | fu = fa; |
426 | } |
427 | else |
428 | { |
429 | u = b; |
430 | fu = fb; |
431 | } |
432 | c = u - 2 * (fu / (fb - fa)) * (b - a); |
433 | if(fabs(c - u) > (b - a) / 2) |
434 | { |
435 | c = a + (b - a) / 2; |
436 | } |
437 | // |
438 | // Bracket again, and check termination condition: |
439 | // |
440 | e = d; |
441 | fe = fd; |
442 | detail::bracket(f, a, b, c, fa, fb, d, fd); |
443 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
444 | BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a))); |
445 | if((0 == --count) || (fa == 0) || tol(a, b)) |
446 | break; |
447 | // |
448 | // And finally... check to see if an additional bisection step is |
449 | // to be taken, we do this if we're not converging fast enough: |
450 | // |
451 | if((b - a) < mu * (b0 - a0)) |
452 | continue; |
453 | // |
454 | // bracket again on a bisection: |
455 | // |
456 | e = d; |
457 | fe = fd; |
458 | detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd); |
459 | --count; |
460 | BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!" ); |
461 | BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); |
462 | } // while loop |
463 | |
464 | max_iter -= count; |
465 | if(fa == 0) |
466 | { |
467 | b = a; |
468 | } |
469 | else if(fb == 0) |
470 | { |
471 | a = b; |
472 | } |
473 | BOOST_MATH_LOG_COUNT(max_iter) |
474 | return std::make_pair(a, b); |
475 | } |
476 | |
477 | template <class F, class T, class Tol> |
478 | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter) |
479 | { |
480 | return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>()); |
481 | } |
482 | |
483 | template <class F, class T, class Tol, class Policy> |
484 | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
485 | { |
486 | if (max_iter <= 2) |
487 | return std::make_pair(ax, bx); |
488 | max_iter -= 2; |
489 | std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol); |
490 | max_iter += 2; |
491 | return r; |
492 | } |
493 | |
494 | template <class F, class T, class Tol> |
495 | inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter) |
496 | { |
497 | return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>()); |
498 | } |
499 | |
500 | template <class F, class T, class Tol, class Policy> |
501 | std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) |
502 | { |
503 | BOOST_MATH_STD_USING |
504 | static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>" ; |
505 | // |
506 | // Set up initial brackets: |
507 | // |
508 | T a = guess; |
509 | T b = a; |
510 | T fa = f(a); |
511 | T fb = fa; |
512 | // |
513 | // Set up invocation count: |
514 | // |
515 | boost::uintmax_t count = max_iter - 1; |
516 | |
517 | int step = 32; |
518 | |
519 | if((fa < 0) == (guess < 0 ? !rising : rising)) |
520 | { |
521 | // |
522 | // Zero is to the right of b, so walk upwards |
523 | // until we find it: |
524 | // |
525 | while((boost::math::sign)(fb) == (boost::math::sign)(fa)) |
526 | { |
527 | if(count == 0) |
528 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%" , b, pol)); |
529 | // |
530 | // Heuristic: normally it's best not to increase the step sizes as we'll just end up |
531 | // with a really wide range to search for the root. However, if the initial guess was *really* |
532 | // bad then we need to speed up the search otherwise we'll take forever if we're orders of |
533 | // magnitude out. This happens most often if the guess is a small value (say 1) and the result |
534 | // we're looking for is close to std::numeric_limits<T>::min(). |
535 | // |
536 | if((max_iter - count) % step == 0) |
537 | { |
538 | factor *= 2; |
539 | if(step > 1) step /= 2; |
540 | } |
541 | // |
542 | // Now go ahead and move our guess by "factor": |
543 | // |
544 | a = b; |
545 | fa = fb; |
546 | b *= factor; |
547 | fb = f(b); |
548 | --count; |
549 | BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
550 | } |
551 | } |
552 | else |
553 | { |
554 | // |
555 | // Zero is to the left of a, so walk downwards |
556 | // until we find it: |
557 | // |
558 | while((boost::math::sign)(fb) == (boost::math::sign)(fa)) |
559 | { |
560 | if(fabs(a) < tools::min_value<T>()) |
561 | { |
562 | // Escape route just in case the answer is zero! |
563 | max_iter -= count; |
564 | max_iter += 1; |
565 | return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); |
566 | } |
567 | if(count == 0) |
568 | return boost::math::detail::pair_from_single(policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%" , a, pol)); |
569 | // |
570 | // Heuristic: normally it's best not to increase the step sizes as we'll just end up |
571 | // with a really wide range to search for the root. However, if the initial guess was *really* |
572 | // bad then we need to speed up the search otherwise we'll take forever if we're orders of |
573 | // magnitude out. This happens most often if the guess is a small value (say 1) and the result |
574 | // we're looking for is close to std::numeric_limits<T>::min(). |
575 | // |
576 | if((max_iter - count) % step == 0) |
577 | { |
578 | factor *= 2; |
579 | if(step > 1) step /= 2; |
580 | } |
581 | // |
582 | // Now go ahead and move are guess by "factor": |
583 | // |
584 | b = a; |
585 | fb = fa; |
586 | a /= factor; |
587 | fa = f(a); |
588 | --count; |
589 | BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); |
590 | } |
591 | } |
592 | max_iter -= count; |
593 | max_iter += 1; |
594 | std::pair<T, T> r = toms748_solve( |
595 | f, |
596 | (a < 0 ? b : a), |
597 | (a < 0 ? a : b), |
598 | (a < 0 ? fb : fa), |
599 | (a < 0 ? fa : fb), |
600 | tol, |
601 | count, |
602 | pol); |
603 | max_iter += count; |
604 | BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); |
605 | BOOST_MATH_LOG_COUNT(max_iter) |
606 | return r; |
607 | } |
608 | |
609 | template <class F, class T, class Tol> |
610 | inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter) |
611 | { |
612 | return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>()); |
613 | } |
614 | |
615 | } // namespace tools |
616 | } // namespace math |
617 | } // namespace boost |
618 | |
619 | |
620 | #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP |
621 | |
622 | |