| 1 | // Copyright (c) 2000-2013 |
| 2 | // Joerg Walter, Mathias Koch. David Bellot |
| 3 | // |
| 4 | // Distributed under the Boost Software License, Version 1.0. (See |
| 5 | // accompanying file LICENSE_1_0.txt or copy at |
| 6 | // http://www.boost.org/LICENSE_1_0.txt) |
| 7 | // |
| 8 | // The authors gratefully acknowledge the support of |
| 9 | // GeNeSys mbH & Co. KG in producing this work. |
| 10 | // |
| 11 | #ifndef _BOOST_UBLAS_EXPRESSION_TYPE_ |
| 12 | #define _BOOST_UBLAS_EXPRESSION_TYPE_ |
| 13 | |
| 14 | #include <boost/numeric/ublas/exception.hpp> |
| 15 | #include <boost/numeric/ublas/traits.hpp> |
| 16 | #include <boost/numeric/ublas/functional.hpp> |
| 17 | |
| 18 | |
| 19 | // Expression templates based on ideas of Todd Veldhuizen and Geoffrey Furnish |
| 20 | // Iterators based on ideas of Jeremy Siek |
| 21 | |
| 22 | namespace boost { namespace numeric { namespace ublas { |
| 23 | |
| 24 | /** \brief Base class for uBLAS statically derived expressions using the the Barton Nackman trick |
| 25 | * |
| 26 | * This is a NonAssignable class |
| 27 | * Directly implement nonassignable - simplifes debugging call trace! |
| 28 | * |
| 29 | * \tparam E an expression type |
| 30 | */ |
| 31 | template<class E> |
| 32 | class ublas_expression { |
| 33 | public: |
| 34 | typedef E expression_type; |
| 35 | /* E can be an incomplete type - to define the following we would need more template arguments |
| 36 | typedef typename E::type_category type_category; |
| 37 | typedef typename E::value_type value_type; |
| 38 | */ |
| 39 | |
| 40 | protected: |
| 41 | ublas_expression () {} |
| 42 | ~ublas_expression () {} |
| 43 | private: |
| 44 | const ublas_expression& operator= (const ublas_expression &); |
| 45 | }; |
| 46 | |
| 47 | |
| 48 | /** \brief Base class for Scalar Expression models |
| 49 | * |
| 50 | * It does not model the Scalar Expression concept but all derived types should. |
| 51 | * The class defines a common base type and some common interface for all statically |
| 52 | * derived Scalar Expression classes. |
| 53 | * |
| 54 | * We implement the casts to the statically derived type. |
| 55 | * |
| 56 | * \tparam E an expression type |
| 57 | */ |
| 58 | template<class E> |
| 59 | class scalar_expression: |
| 60 | public ublas_expression<E> { |
| 61 | public: |
| 62 | typedef E expression_type; |
| 63 | typedef scalar_tag type_category; |
| 64 | |
| 65 | BOOST_UBLAS_INLINE |
| 66 | const expression_type &operator () () const { |
| 67 | return *static_cast<const expression_type *> (this); |
| 68 | } |
| 69 | BOOST_UBLAS_INLINE |
| 70 | expression_type &operator () () { |
| 71 | return *static_cast<expression_type *> (this); |
| 72 | } |
| 73 | }; |
| 74 | |
| 75 | template<class T> |
| 76 | class scalar_reference: |
| 77 | public scalar_expression<scalar_reference<T> > { |
| 78 | |
| 79 | typedef scalar_reference<T> self_type; |
| 80 | public: |
| 81 | typedef T value_type; |
| 82 | typedef const value_type &const_reference; |
| 83 | typedef typename boost::mpl::if_<boost::is_const<T>, |
| 84 | const_reference, |
| 85 | value_type &>::type reference; |
| 86 | typedef const self_type const_closure_type; |
| 87 | typedef const_closure_type closure_type; |
| 88 | |
| 89 | // Construction and destruction |
| 90 | BOOST_UBLAS_INLINE |
| 91 | explicit scalar_reference (reference t): |
| 92 | t_ (t) {} |
| 93 | |
| 94 | // Conversion |
| 95 | BOOST_UBLAS_INLINE |
| 96 | operator value_type () const { |
| 97 | return t_; |
| 98 | } |
| 99 | |
| 100 | // Assignment |
| 101 | BOOST_UBLAS_INLINE |
| 102 | scalar_reference &operator = (const scalar_reference &s) { |
| 103 | t_ = s.t_; |
| 104 | return *this; |
| 105 | } |
| 106 | template<class AE> |
| 107 | BOOST_UBLAS_INLINE |
| 108 | scalar_reference &operator = (const scalar_expression<AE> &ae) { |
| 109 | t_ = ae; |
| 110 | return *this; |
| 111 | } |
| 112 | |
| 113 | // Closure comparison |
| 114 | BOOST_UBLAS_INLINE |
| 115 | bool same_closure (const scalar_reference &sr) const { |
| 116 | return &t_ == &sr.t_; |
| 117 | } |
| 118 | |
| 119 | private: |
| 120 | reference t_; |
| 121 | }; |
| 122 | |
| 123 | template<class T> |
| 124 | class scalar_value: |
| 125 | public scalar_expression<scalar_value<T> > { |
| 126 | |
| 127 | typedef scalar_value<T> self_type; |
| 128 | public: |
| 129 | typedef T value_type; |
| 130 | typedef const value_type &const_reference; |
| 131 | typedef typename boost::mpl::if_<boost::is_const<T>, |
| 132 | const_reference, |
| 133 | value_type &>::type reference; |
| 134 | typedef const scalar_reference<const self_type> const_closure_type; |
| 135 | typedef scalar_reference<self_type> closure_type; |
| 136 | |
| 137 | // Construction and destruction |
| 138 | BOOST_UBLAS_INLINE |
| 139 | scalar_value (): |
| 140 | t_ () {} |
| 141 | BOOST_UBLAS_INLINE |
| 142 | scalar_value (const value_type &t): |
| 143 | t_ (t) {} |
| 144 | |
| 145 | BOOST_UBLAS_INLINE |
| 146 | operator value_type () const { |
| 147 | return t_; |
| 148 | } |
| 149 | |
| 150 | // Assignment |
| 151 | BOOST_UBLAS_INLINE |
| 152 | scalar_value &operator = (const scalar_value &s) { |
| 153 | t_ = s.t_; |
| 154 | return *this; |
| 155 | } |
| 156 | template<class AE> |
| 157 | BOOST_UBLAS_INLINE |
| 158 | scalar_value &operator = (const scalar_expression<AE> &ae) { |
| 159 | t_ = ae; |
| 160 | return *this; |
| 161 | } |
| 162 | |
| 163 | // Closure comparison |
| 164 | BOOST_UBLAS_INLINE |
| 165 | bool same_closure (const scalar_value &sv) const { |
| 166 | return this == &sv; // self closing on instances value |
| 167 | } |
| 168 | |
| 169 | private: |
| 170 | value_type t_; |
| 171 | }; |
| 172 | |
| 173 | |
| 174 | /** \brief Base class for Vector Expression models |
| 175 | * |
| 176 | * it does not model the Vector Expression concept but all derived types should. |
| 177 | * The class defines a common base type and some common interface for all |
| 178 | * statically derived Vector Expression classes. |
| 179 | * We implement the casts to the statically derived type. |
| 180 | */ |
| 181 | template<class E> |
| 182 | class vector_expression: |
| 183 | public ublas_expression<E> { |
| 184 | public: |
| 185 | static const unsigned complexity = 0; |
| 186 | typedef E expression_type; |
| 187 | typedef vector_tag type_category; |
| 188 | /* E can be an incomplete type - to define the following we would need more template arguments |
| 189 | typedef typename E::size_type size_type; |
| 190 | */ |
| 191 | |
| 192 | BOOST_UBLAS_INLINE |
| 193 | const expression_type &operator () () const { |
| 194 | return *static_cast<const expression_type *> (this); |
| 195 | } |
| 196 | BOOST_UBLAS_INLINE |
| 197 | expression_type &operator () () { |
| 198 | return *static_cast<expression_type *> (this); |
| 199 | } |
| 200 | |
| 201 | #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS |
| 202 | private: |
| 203 | // projection types |
| 204 | typedef vector_range<E> vector_range_type; |
| 205 | typedef vector_range<const E> const_vector_range_type; |
| 206 | typedef vector_slice<E> vector_slice_type; |
| 207 | typedef vector_slice<const E> const_vector_slice_type; |
| 208 | // vector_indirect_type will depend on the A template parameter |
| 209 | typedef basic_range<> default_range; // required to avoid range/slice name confusion |
| 210 | typedef basic_slice<> default_slice; |
| 211 | public: |
| 212 | BOOST_UBLAS_INLINE |
| 213 | const_vector_range_type operator () (const default_range &r) const { |
| 214 | return const_vector_range_type (operator () (), r); |
| 215 | } |
| 216 | BOOST_UBLAS_INLINE |
| 217 | vector_range_type operator () (const default_range &r) { |
| 218 | return vector_range_type (operator () (), r); |
| 219 | } |
| 220 | BOOST_UBLAS_INLINE |
| 221 | const_vector_slice_type operator () (const default_slice &s) const { |
| 222 | return const_vector_slice_type (operator () (), s); |
| 223 | } |
| 224 | BOOST_UBLAS_INLINE |
| 225 | vector_slice_type operator () (const default_slice &s) { |
| 226 | return vector_slice_type (operator () (), s); |
| 227 | } |
| 228 | template<class A> |
| 229 | BOOST_UBLAS_INLINE |
| 230 | const vector_indirect<const E, indirect_array<A> > operator () (const indirect_array<A> &ia) const { |
| 231 | return vector_indirect<const E, indirect_array<A> > (operator () (), ia); |
| 232 | } |
| 233 | template<class A> |
| 234 | BOOST_UBLAS_INLINE |
| 235 | vector_indirect<E, indirect_array<A> > operator () (const indirect_array<A> &ia) { |
| 236 | return vector_indirect<E, indirect_array<A> > (operator () (), ia); |
| 237 | } |
| 238 | |
| 239 | BOOST_UBLAS_INLINE |
| 240 | const_vector_range_type project (const default_range &r) const { |
| 241 | return const_vector_range_type (operator () (), r); |
| 242 | } |
| 243 | BOOST_UBLAS_INLINE |
| 244 | vector_range_type project (const default_range &r) { |
| 245 | return vector_range_type (operator () (), r); |
| 246 | } |
| 247 | BOOST_UBLAS_INLINE |
| 248 | const_vector_slice_type project (const default_slice &s) const { |
| 249 | return const_vector_slice_type (operator () (), s); |
| 250 | } |
| 251 | BOOST_UBLAS_INLINE |
| 252 | vector_slice_type project (const default_slice &s) { |
| 253 | return vector_slice_type (operator () (), s); |
| 254 | } |
| 255 | template<class A> |
| 256 | BOOST_UBLAS_INLINE |
| 257 | const vector_indirect<const E, indirect_array<A> > project (const indirect_array<A> &ia) const { |
| 258 | return vector_indirect<const E, indirect_array<A> > (operator () (), ia); |
| 259 | } |
| 260 | template<class A> |
| 261 | BOOST_UBLAS_INLINE |
| 262 | vector_indirect<E, indirect_array<A> > project (const indirect_array<A> &ia) { |
| 263 | return vector_indirect<E, indirect_array<A> > (operator () (), ia); |
| 264 | } |
| 265 | #endif |
| 266 | }; |
| 267 | |
| 268 | /** \brief Base class for Vector container models |
| 269 | * |
| 270 | * it does not model the Vector concept but all derived types should. |
| 271 | * The class defines a common base type and some common interface for all |
| 272 | * statically derived Vector classes |
| 273 | * We implement the casts to the statically derived type. |
| 274 | */ |
| 275 | template<class C> |
| 276 | class vector_container: |
| 277 | public vector_expression<C> { |
| 278 | public: |
| 279 | static const unsigned complexity = 0; |
| 280 | typedef C container_type; |
| 281 | typedef vector_tag type_category; |
| 282 | |
| 283 | BOOST_UBLAS_INLINE |
| 284 | const container_type &operator () () const { |
| 285 | return *static_cast<const container_type *> (this); |
| 286 | } |
| 287 | BOOST_UBLAS_INLINE |
| 288 | container_type &operator () () { |
| 289 | return *static_cast<container_type *> (this); |
| 290 | } |
| 291 | |
| 292 | #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS |
| 293 | using vector_expression<C>::operator (); |
| 294 | #endif |
| 295 | }; |
| 296 | |
| 297 | |
| 298 | /** \brief Base class for Matrix Expression models |
| 299 | * |
| 300 | * it does not model the Matrix Expression concept but all derived types should. |
| 301 | * The class defines a common base type and some common interface for all |
| 302 | * statically derived Matrix Expression classes |
| 303 | * We implement the casts to the statically derived type. |
| 304 | */ |
| 305 | template<class E> |
| 306 | class matrix_expression: |
| 307 | public ublas_expression<E> { |
| 308 | private: |
| 309 | typedef matrix_expression<E> self_type; |
| 310 | public: |
| 311 | static const unsigned complexity = 0; |
| 312 | typedef E expression_type; |
| 313 | typedef matrix_tag type_category; |
| 314 | /* E can be an incomplete type - to define the following we would need more template arguments |
| 315 | typedef typename E::size_type size_type; |
| 316 | */ |
| 317 | |
| 318 | BOOST_UBLAS_INLINE |
| 319 | const expression_type &operator () () const { |
| 320 | return *static_cast<const expression_type *> (this); |
| 321 | } |
| 322 | BOOST_UBLAS_INLINE |
| 323 | expression_type &operator () () { |
| 324 | return *static_cast<expression_type *> (this); |
| 325 | } |
| 326 | |
| 327 | #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS |
| 328 | private: |
| 329 | // projection types |
| 330 | typedef vector_range<E> vector_range_type; |
| 331 | typedef const vector_range<const E> const_vector_range_type; |
| 332 | typedef vector_slice<E> vector_slice_type; |
| 333 | typedef const vector_slice<const E> const_vector_slice_type; |
| 334 | typedef matrix_row<E> matrix_row_type; |
| 335 | typedef const matrix_row<const E> const_matrix_row_type; |
| 336 | typedef matrix_column<E> matrix_column_type; |
| 337 | typedef const matrix_column<const E> const_matrix_column_type; |
| 338 | typedef matrix_range<E> matrix_range_type; |
| 339 | typedef const matrix_range<const E> const_matrix_range_type; |
| 340 | typedef matrix_slice<E> matrix_slice_type; |
| 341 | typedef const matrix_slice<const E> const_matrix_slice_type; |
| 342 | // matrix_indirect_type will depend on the A template parameter |
| 343 | typedef basic_range<> default_range; // required to avoid range/slice name confusion |
| 344 | typedef basic_slice<> default_slice; |
| 345 | |
| 346 | public: |
| 347 | BOOST_UBLAS_INLINE |
| 348 | const_matrix_row_type operator [] (std::size_t i) const { |
| 349 | return const_matrix_row_type (operator () (), i); |
| 350 | } |
| 351 | BOOST_UBLAS_INLINE |
| 352 | matrix_row_type operator [] (std::size_t i) { |
| 353 | return matrix_row_type (operator () (), i); |
| 354 | } |
| 355 | BOOST_UBLAS_INLINE |
| 356 | const_matrix_row_type row (std::size_t i) const { |
| 357 | return const_matrix_row_type (operator () (), i); |
| 358 | } |
| 359 | BOOST_UBLAS_INLINE |
| 360 | matrix_row_type row (std::size_t i) { |
| 361 | return matrix_row_type (operator () (), i); |
| 362 | } |
| 363 | BOOST_UBLAS_INLINE |
| 364 | const_matrix_column_type column (std::size_t j) const { |
| 365 | return const_matrix_column_type (operator () (), j); |
| 366 | } |
| 367 | BOOST_UBLAS_INLINE |
| 368 | matrix_column_type column (std::size_t j) { |
| 369 | return matrix_column_type (operator () (), j); |
| 370 | } |
| 371 | |
| 372 | BOOST_UBLAS_INLINE |
| 373 | const_matrix_range_type operator () (const default_range &r1, const default_range &r2) const { |
| 374 | return const_matrix_range_type (operator () (), r1, r2); |
| 375 | } |
| 376 | BOOST_UBLAS_INLINE |
| 377 | matrix_range_type operator () (const default_range &r1, const default_range &r2) { |
| 378 | return matrix_range_type (operator () (), r1, r2); |
| 379 | } |
| 380 | BOOST_UBLAS_INLINE |
| 381 | const_matrix_slice_type operator () (const default_slice &s1, const default_slice &s2) const { |
| 382 | return const_matrix_slice_type (operator () (), s1, s2); |
| 383 | } |
| 384 | BOOST_UBLAS_INLINE |
| 385 | matrix_slice_type operator () (const default_slice &s1, const default_slice &s2) { |
| 386 | return matrix_slice_type (operator () (), s1, s2); |
| 387 | } |
| 388 | template<class A> |
| 389 | BOOST_UBLAS_INLINE |
| 390 | const matrix_indirect<const E, indirect_array<A> > operator () (const indirect_array<A> &ia1, const indirect_array<A> &ia2) const { |
| 391 | return matrix_indirect<const E, indirect_array<A> > (operator () (), ia1, ia2); |
| 392 | } |
| 393 | template<class A> |
| 394 | BOOST_UBLAS_INLINE |
| 395 | matrix_indirect<E, indirect_array<A> > operator () (const indirect_array<A> &ia1, const indirect_array<A> &ia2) { |
| 396 | return matrix_indirect<E, indirect_array<A> > (operator () (), ia1, ia2); |
| 397 | } |
| 398 | |
| 399 | BOOST_UBLAS_INLINE |
| 400 | const_matrix_range_type project (const default_range &r1, const default_range &r2) const { |
| 401 | return const_matrix_range_type (operator () (), r1, r2); |
| 402 | } |
| 403 | BOOST_UBLAS_INLINE |
| 404 | matrix_range_type project (const default_range &r1, const default_range &r2) { |
| 405 | return matrix_range_type (operator () (), r1, r2); |
| 406 | } |
| 407 | BOOST_UBLAS_INLINE |
| 408 | const_matrix_slice_type project (const default_slice &s1, const default_slice &s2) const { |
| 409 | return const_matrix_slice_type (operator () (), s1, s2); |
| 410 | } |
| 411 | BOOST_UBLAS_INLINE |
| 412 | matrix_slice_type project (const default_slice &s1, const default_slice &s2) { |
| 413 | return matrix_slice_type (operator () (), s1, s2); |
| 414 | } |
| 415 | template<class A> |
| 416 | BOOST_UBLAS_INLINE |
| 417 | const matrix_indirect<const E, indirect_array<A> > project (const indirect_array<A> &ia1, const indirect_array<A> &ia2) const { |
| 418 | return matrix_indirect<const E, indirect_array<A> > (operator () (), ia1, ia2); |
| 419 | } |
| 420 | template<class A> |
| 421 | BOOST_UBLAS_INLINE |
| 422 | matrix_indirect<E, indirect_array<A> > project (const indirect_array<A> &ia1, const indirect_array<A> &ia2) { |
| 423 | return matrix_indirect<E, indirect_array<A> > (operator () (), ia1, ia2); |
| 424 | } |
| 425 | #endif |
| 426 | }; |
| 427 | |
| 428 | #ifdef BOOST_UBLAS_NO_NESTED_CLASS_RELATION |
| 429 | struct iterator1_tag {}; |
| 430 | struct iterator2_tag {}; |
| 431 | |
| 432 | template<class I> |
| 433 | BOOST_UBLAS_INLINE |
| 434 | typename I::dual_iterator_type begin (const I &it, iterator1_tag) { |
| 435 | return it ().find2 (1, it.index1 (), 0); |
| 436 | } |
| 437 | template<class I> |
| 438 | BOOST_UBLAS_INLINE |
| 439 | typename I::dual_iterator_type end (const I &it, iterator1_tag) { |
| 440 | return it ().find2 (1, it.index1 (), it ().size2 ()); |
| 441 | } |
| 442 | template<class I> |
| 443 | BOOST_UBLAS_INLINE |
| 444 | typename I::dual_reverse_iterator_type rbegin (const I &it, iterator1_tag) { |
| 445 | return typename I::dual_reverse_iterator_type (end (it, iterator1_tag ())); |
| 446 | } |
| 447 | template<class I> |
| 448 | BOOST_UBLAS_INLINE |
| 449 | typename I::dual_reverse_iterator_type rend (const I &it, iterator1_tag) { |
| 450 | return typename I::dual_reverse_iterator_type (begin (it, iterator1_tag ())); |
| 451 | } |
| 452 | |
| 453 | template<class I> |
| 454 | BOOST_UBLAS_INLINE |
| 455 | typename I::dual_iterator_type begin (const I &it, iterator2_tag) { |
| 456 | return it ().find1 (1, 0, it.index2 ()); |
| 457 | } |
| 458 | template<class I> |
| 459 | BOOST_UBLAS_INLINE |
| 460 | typename I::dual_iterator_type end (const I &it, iterator2_tag) { |
| 461 | return it ().find1 (1, it ().size1 (), it.index2 ()); |
| 462 | } |
| 463 | template<class I> |
| 464 | BOOST_UBLAS_INLINE |
| 465 | typename I::dual_reverse_iterator_type rbegin (const I &it, iterator2_tag) { |
| 466 | return typename I::dual_reverse_iterator_type (end (it, iterator2_tag ())); |
| 467 | } |
| 468 | template<class I> |
| 469 | BOOST_UBLAS_INLINE |
| 470 | typename I::dual_reverse_iterator_type rend (const I &it, iterator2_tag) { |
| 471 | return typename I::dual_reverse_iterator_type (begin (it, iterator2_tag ())); |
| 472 | } |
| 473 | #endif |
| 474 | |
| 475 | /** \brief Base class for Matrix container models |
| 476 | * |
| 477 | * it does not model the Matrix concept but all derived types should. |
| 478 | * The class defines a common base type and some common interface for all |
| 479 | * statically derived Matrix classes |
| 480 | * We implement the casts to the statically derived type. |
| 481 | */ |
| 482 | template<class C> |
| 483 | class matrix_container: |
| 484 | public matrix_expression<C> { |
| 485 | public: |
| 486 | static const unsigned complexity = 0; |
| 487 | typedef C container_type; |
| 488 | typedef matrix_tag type_category; |
| 489 | |
| 490 | BOOST_UBLAS_INLINE |
| 491 | const container_type &operator () () const { |
| 492 | return *static_cast<const container_type *> (this); |
| 493 | } |
| 494 | BOOST_UBLAS_INLINE |
| 495 | container_type &operator () () { |
| 496 | return *static_cast<container_type *> (this); |
| 497 | } |
| 498 | |
| 499 | #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS |
| 500 | using matrix_expression<C>::operator (); |
| 501 | #endif |
| 502 | }; |
| 503 | |
| 504 | }}} |
| 505 | |
| 506 | #endif |
| 507 | |