| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2001, 2002, 2003 Sadruddin Rejeb |
| 5 | Copyright (C) 2003, 2004, 2005, 2006, 2008 Ferdinando Ametrano |
| 6 | Copyright (C) 2006 Mark Joshi |
| 7 | Copyright (C) 2006 StatPro Italia srl |
| 8 | Copyright (C) 2007 Cristina Duminuco |
| 9 | Copyright (C) 2007 Chiara Fornarola |
| 10 | Copyright (C) 2013 Gary Kennedy |
| 11 | Copyright (C) 2015 Peter Caspers |
| 12 | Copyright (C) 2017 Klaus Spanderen |
| 13 | Copyright (C) 2019 Wojciech Ślusarski |
| 14 | Copyright (C) 2020 Marcin Rybacki |
| 15 | |
| 16 | This file is part of QuantLib, a free-software/open-source library |
| 17 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 18 | |
| 19 | QuantLib is free software: you can redistribute it and/or modify it |
| 20 | under the terms of the QuantLib license. You should have received a |
| 21 | copy of the license along with this program; if not, please email |
| 22 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 23 | <http://quantlib.org/license.shtml>. |
| 24 | |
| 25 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 26 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 27 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 28 | */ |
| 29 | |
| 30 | /*! \file blackformula.hpp |
| 31 | \brief Black formula |
| 32 | */ |
| 33 | |
| 34 | #ifndef quantlib_blackformula_hpp |
| 35 | #define quantlib_blackformula_hpp |
| 36 | |
| 37 | #include <ql/instruments/payoffs.hpp> |
| 38 | #include <ql/option.hpp> |
| 39 | |
| 40 | namespace QuantLib { |
| 41 | |
| 42 | /*! Black 1976 formula |
| 43 | \warning instead of volatility it uses standard deviation, |
| 44 | i.e. volatility*sqrt(timeToMaturity) |
| 45 | */ |
| 46 | Real blackFormula(Option::Type optionType, |
| 47 | Real strike, |
| 48 | Real forward, |
| 49 | Real stdDev, |
| 50 | Real discount = 1.0, |
| 51 | Real displacement = 0.0); |
| 52 | |
| 53 | /*! Black 1976 formula |
| 54 | \warning instead of volatility it uses standard deviation, |
| 55 | i.e. volatility*sqrt(timeToMaturity) |
| 56 | */ |
| 57 | Real blackFormula(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 58 | Real forward, |
| 59 | Real stdDev, |
| 60 | Real discount = 1.0, |
| 61 | Real displacement = 0.0); |
| 62 | |
| 63 | /*! Black 1976 model forward derivative |
| 64 | \warning instead of volatility it uses standard deviation, |
| 65 | i.e. volatility*sqrt(timeToMaturity) |
| 66 | */ |
| 67 | Real blackFormulaForwardDerivative(Option::Type optionType, |
| 68 | Real strike, |
| 69 | Real forward, |
| 70 | Real stdDev, |
| 71 | Real discount = 1.0, |
| 72 | Real displacement = 0.0); |
| 73 | |
| 74 | /*! Black 1976 model forward derivative |
| 75 | \warning instead of volatility it uses standard deviation, |
| 76 | i.e. volatility*sqrt(timeToMaturity) |
| 77 | */ |
| 78 | Real blackFormulaForwardDerivative(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 79 | Real forward, |
| 80 | Real stdDev, |
| 81 | Real discount = 1.0, |
| 82 | Real displacement = 0.0); |
| 83 | |
| 84 | /*! Approximated Black 1976 implied standard deviation, |
| 85 | i.e. volatility*sqrt(timeToMaturity). |
| 86 | |
| 87 | It is calculated using Brenner and Subrahmanyan (1988) and Feinstein |
| 88 | (1988) approximation for at-the-money forward option, with the |
| 89 | extended moneyness approximation by Corrado and Miller (1996) |
| 90 | */ |
| 91 | Real blackFormulaImpliedStdDevApproximation(Option::Type optionType, |
| 92 | Real strike, |
| 93 | Real forward, |
| 94 | Real blackPrice, |
| 95 | Real discount = 1.0, |
| 96 | Real displacement = 0.0); |
| 97 | |
| 98 | /*! Approximated Black 1976 implied standard deviation, |
| 99 | i.e. volatility*sqrt(timeToMaturity). |
| 100 | |
| 101 | It is calculated using Brenner and Subrahmanyan (1988) and Feinstein |
| 102 | (1988) approximation for at-the-money forward option, with the |
| 103 | extended moneyness approximation by Corrado and Miller (1996) |
| 104 | */ |
| 105 | Real blackFormulaImpliedStdDevApproximation(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 106 | Real forward, |
| 107 | Real blackPrice, |
| 108 | Real discount = 1.0, |
| 109 | Real displacement = 0.0); |
| 110 | |
| 111 | /*! Approximated Black 1976 implied standard deviation, |
| 112 | i.e. volatility*sqrt(timeToMaturity). |
| 113 | |
| 114 | It is calculated following "An improved approach to computing |
| 115 | implied volatility", Chambers, Nawalkha, The Financial Review, |
| 116 | 2001, 89-100. The atm option price must be known to use this |
| 117 | method. |
| 118 | */ |
| 119 | Real blackFormulaImpliedStdDevChambers(Option::Type optionType, |
| 120 | Real strike, |
| 121 | Real forward, |
| 122 | Real blackPrice, |
| 123 | Real blackAtmPrice, |
| 124 | Real discount = 1.0, |
| 125 | Real displacement = 0.0); |
| 126 | |
| 127 | /*! Approximated Black 1976 implied standard deviation, |
| 128 | i.e. volatility*sqrt(timeToMaturity). |
| 129 | |
| 130 | It is calculated following "An improved approach to computing |
| 131 | implied volatility", Chambers, Nawalkha, The Financial Review, |
| 132 | 2001, 89-100. The atm option price must be known to use this |
| 133 | method. |
| 134 | */ |
| 135 | Real blackFormulaImpliedStdDevChambers(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 136 | Real forward, |
| 137 | Real blackPrice, |
| 138 | Real blackAtmPrice, |
| 139 | Real discount = 1.0, |
| 140 | Real displacement = 0.0); |
| 141 | |
| 142 | /*! Approximated Black 1976 implied standard deviation, |
| 143 | i.e. volatility*sqrt(timeToMaturity). |
| 144 | |
| 145 | It is calculated using |
| 146 | |
| 147 | "An Explicit Implicit Volatility Formula" |
| 148 | R. Radoicic, D. Stefanica, |
| 149 | https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2908494 |
| 150 | |
| 151 | "Tighter Bounds for Implied Volatility", |
| 152 | J. Gatheral, I. Matic, R. Radoicic, D. Stefanica |
| 153 | https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2922742 |
| 154 | */ |
| 155 | Real blackFormulaImpliedStdDevApproximationRS(Option::Type optionType, |
| 156 | Real strike, |
| 157 | Real forward, |
| 158 | Real blackPrice, |
| 159 | Real discount = 1.0, |
| 160 | Real displacement = 0.0); |
| 161 | |
| 162 | Real blackFormulaImpliedStdDevApproximationRS(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 163 | Real forward, |
| 164 | Real blackPrice, |
| 165 | Real discount = 1.0, |
| 166 | Real displacement = 0.0); |
| 167 | |
| 168 | |
| 169 | /*! Black 1976 implied standard deviation, |
| 170 | i.e. volatility*sqrt(timeToMaturity) |
| 171 | */ |
| 172 | Real blackFormulaImpliedStdDev(Option::Type optionType, |
| 173 | Real strike, |
| 174 | Real forward, |
| 175 | Real blackPrice, |
| 176 | Real discount = 1.0, |
| 177 | Real displacement = 0.0, |
| 178 | Real guess = Null<Real>(), |
| 179 | Real accuracy = 1.0e-6, |
| 180 | Natural maxIterations = 100); |
| 181 | |
| 182 | /*! Black 1976 implied standard deviation, |
| 183 | i.e. volatility*sqrt(timeToMaturity) |
| 184 | */ |
| 185 | Real blackFormulaImpliedStdDev(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 186 | Real forward, |
| 187 | Real blackPrice, |
| 188 | Real discount = 1.0, |
| 189 | Real displacement = 0.0, |
| 190 | Real guess = Null<Real>(), |
| 191 | Real accuracy = 1.0e-6, |
| 192 | Natural maxIterations = 100); |
| 193 | |
| 194 | /*! Black 1976 implied standard deviation, |
| 195 | i.e. volatility*sqrt(timeToMaturity) |
| 196 | |
| 197 | "An Adaptive Successive Over-relaxation Method for Computing the |
| 198 | Black-Scholes Implied Volatility" |
| 199 | M. Li, http://mpra.ub.uni-muenchen.de/6867/ |
| 200 | |
| 201 | |
| 202 | Starting point of the iteration is calculated based on |
| 203 | |
| 204 | "An Explicit Implicit Volatility Formula" |
| 205 | R. Radoicic, D. Stefanica, |
| 206 | https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2908494 |
| 207 | */ |
| 208 | Real blackFormulaImpliedStdDevLiRS(Option::Type optionType, |
| 209 | Real strike, |
| 210 | Real forward, |
| 211 | Real blackPrice, |
| 212 | Real discount = 1.0, |
| 213 | Real displacement = 0.0, |
| 214 | Real guess = Null<Real>(), |
| 215 | Real omega = 1.0, |
| 216 | Real accuracy = 1.0e-6, |
| 217 | Natural maxIterations = 100); |
| 218 | |
| 219 | Real blackFormulaImpliedStdDevLiRS(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 220 | Real forward, |
| 221 | Real blackPrice, |
| 222 | Real discount = 1.0, |
| 223 | Real displacement = 0.0, |
| 224 | Real guess = Null<Real>(), |
| 225 | Real omega = 1.0, |
| 226 | Real accuracy = 1.0e-6, |
| 227 | Natural maxIterations = 100); |
| 228 | |
| 229 | /*! Black 1976 probability of being in the money (in the bond martingale |
| 230 | measure), i.e. N(d2). |
| 231 | It is a risk-neutral probability, not the real world one. |
| 232 | \warning instead of volatility it uses standard deviation, |
| 233 | i.e. volatility*sqrt(timeToMaturity) |
| 234 | */ |
| 235 | Real blackFormulaCashItmProbability( |
| 236 | Option::Type optionType, Real strike, Real forward, Real stdDev, Real displacement = 0.0); |
| 237 | |
| 238 | /*! Black 1976 probability of being in the money (in the bond martingale |
| 239 | measure), i.e. N(d2). |
| 240 | It is a risk-neutral probability, not the real world one. |
| 241 | \warning instead of volatility it uses standard deviation, |
| 242 | i.e. volatility*sqrt(timeToMaturity) |
| 243 | */ |
| 244 | Real blackFormulaCashItmProbability(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 245 | Real forward, |
| 246 | Real stdDev, |
| 247 | Real displacement = 0.0); |
| 248 | |
| 249 | /*! Black 1976 probability of being in the money in the asset martingale |
| 250 | measure, i.e. N(d1). |
| 251 | It is a risk-neutral probability, not the real world one. |
| 252 | */ |
| 253 | Real blackFormulaAssetItmProbability( |
| 254 | Option::Type optionType, Real strike, Real forward, Real stdDev, Real displacement = 0.0); |
| 255 | |
| 256 | /*! Black 1976 probability of being in the money in the asset martingale |
| 257 | measure, i.e. N(d1). |
| 258 | It is a risk-neutral probability, not the real world one. |
| 259 | */ |
| 260 | Real blackFormulaAssetItmProbability(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 261 | Real forward, |
| 262 | Real stdDev, |
| 263 | Real displacement = 0.0); |
| 264 | |
| 265 | /*! Black 1976 formula for standard deviation derivative |
| 266 | \warning instead of volatility it uses standard deviation, i.e. |
| 267 | volatility*sqrt(timeToMaturity), and it returns the |
| 268 | derivative with respect to the standard deviation. |
| 269 | If T is the time to maturity Black vega would be |
| 270 | blackStdDevDerivative(strike, forward, stdDev)*sqrt(T) |
| 271 | */ |
| 272 | Real blackFormulaStdDevDerivative( |
| 273 | Real strike, Real forward, Real stdDev, Real discount = 1.0, Real displacement = 0.0); |
| 274 | |
| 275 | /*! Black 1976 formula for derivative with respect to implied vol, this |
| 276 | is basically the vega, but if you want 1% change multiply by 1% |
| 277 | */ |
| 278 | Real blackFormulaVolDerivative(Real strike, |
| 279 | Real forward, |
| 280 | Real stdDev, |
| 281 | Real expiry, |
| 282 | Real discount = 1.0, |
| 283 | Real displacement = 0.0); |
| 284 | |
| 285 | |
| 286 | /*! Black 1976 formula for standard deviation derivative |
| 287 | \warning instead of volatility it uses standard deviation, i.e. |
| 288 | volatility*sqrt(timeToMaturity), and it returns the |
| 289 | derivative with respect to the standard deviation. |
| 290 | If T is the time to maturity Black vega would be |
| 291 | blackStdDevDerivative(strike, forward, stdDev)*sqrt(T) |
| 292 | */ |
| 293 | Real blackFormulaStdDevDerivative(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 294 | Real forward, |
| 295 | Real stdDev, |
| 296 | Real discount = 1.0, |
| 297 | Real displacement = 0.0); |
| 298 | |
| 299 | /*! Black 1976 formula for second derivative by standard deviation |
| 300 | \warning instead of volatility it uses standard deviation, i.e. |
| 301 | volatility*sqrt(timeToMaturity), and it returns the |
| 302 | derivative with respect to the standard deviation. |
| 303 | */ |
| 304 | Real blackFormulaStdDevSecondDerivative( |
| 305 | Rate strike, Rate forward, Real stdDev, Real discount, Real displacement); |
| 306 | |
| 307 | /*! Black 1976 formula for second derivative by standard deviation |
| 308 | \warning instead of volatility it uses standard deviation, i.e. |
| 309 | volatility*sqrt(timeToMaturity), and it returns the |
| 310 | derivative with respect to the standard deviation. |
| 311 | */ |
| 312 | Real blackFormulaStdDevSecondDerivative(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 313 | Real forward, |
| 314 | Real stdDev, |
| 315 | Real discount = 1.0, |
| 316 | Real displacement = 0.0); |
| 317 | |
| 318 | /*! Black style formula when forward is normal rather than |
| 319 | log-normal. This is essentially the model of Bachelier. |
| 320 | |
| 321 | \warning Bachelier model needs absolute volatility, not |
| 322 | percentage volatility. Standard deviation is |
| 323 | absoluteVolatility*sqrt(timeToMaturity) |
| 324 | */ |
| 325 | Real bachelierBlackFormula( |
| 326 | Option::Type optionType, Real strike, Real forward, Real stdDev, Real discount = 1.0); |
| 327 | |
| 328 | /*! Black style formula when forward is normal rather than |
| 329 | log-normal. This is essentially the model of Bachelier. |
| 330 | |
| 331 | \warning Bachelier model needs absolute volatility, not |
| 332 | percentage volatility. Standard deviation is |
| 333 | absoluteVolatility*sqrt(timeToMaturity) |
| 334 | */ |
| 335 | Real bachelierBlackFormula(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 336 | Real forward, |
| 337 | Real stdDev, |
| 338 | Real discount = 1.0); |
| 339 | |
| 340 | /*! Bachelier Black model forward derivative. |
| 341 | |
| 342 | \warning Bachelier model needs absolute volatility, not |
| 343 | percentage volatility. Standard deviation is |
| 344 | absoluteVolatility*sqrt(timeToMaturity) |
| 345 | */ |
| 346 | Real bachelierBlackFormulaForwardDerivative( |
| 347 | Option::Type optionType, Real strike, Real forward, Real stdDev, Real discount = 1.0); |
| 348 | |
| 349 | /*! Bachelier Black model forward derivative. |
| 350 | |
| 351 | \warning Bachelier model needs absolute volatility, not |
| 352 | percentage volatility. Standard deviation is |
| 353 | absoluteVolatility*sqrt(timeToMaturity) |
| 354 | */ |
| 355 | Real bachelierBlackFormulaForwardDerivative( |
| 356 | const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 357 | Real forward, |
| 358 | Real stdDev, |
| 359 | Real discount = 1.0); |
| 360 | |
| 361 | /*! Approximated Bachelier implied volatility |
| 362 | |
| 363 | It is calculated using the analytic implied volatility approximation |
| 364 | of J. Choi, K Kim and M. Kwak (2009), “Numerical Approximation of the |
| 365 | Implied Volatility Under Arithmetic Brownian Motion”, |
| 366 | Applied Math. Finance, 16(3), pp. 261-268. |
| 367 | */ |
| 368 | Real bachelierBlackFormulaImpliedVol(Option::Type optionType, |
| 369 | Real strike, |
| 370 | Real forward, |
| 371 | Real tte, |
| 372 | Real bachelierPrice, |
| 373 | Real discount = 1.0); |
| 374 | |
| 375 | /*! Bachelier formula for standard deviation derivative |
| 376 | \warning instead of volatility it uses standard deviation, i.e. |
| 377 | volatility*sqrt(timeToMaturity), and it returns the |
| 378 | derivative with respect to the standard deviation. |
| 379 | If T is the time to maturity Black vega would be |
| 380 | blackStdDevDerivative(strike, forward, stdDev)*sqrt(T) |
| 381 | */ |
| 382 | |
| 383 | Real bachelierBlackFormulaStdDevDerivative(Real strike, |
| 384 | Real forward, |
| 385 | Real stdDev, |
| 386 | Real discount = 1.0); |
| 387 | |
| 388 | Real bachelierBlackFormulaStdDevDerivative(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 389 | Real forward, |
| 390 | Real stdDev, |
| 391 | Real discount = 1.0); |
| 392 | |
| 393 | /*! Bachelier formula for probability of being in the money in the asset martingale |
| 394 | measure, i.e. N(d). |
| 395 | It is a risk-neutral probability, not the real world one. |
| 396 | */ |
| 397 | Real bachelierBlackFormulaAssetItmProbability(Option::Type optionType, |
| 398 | Real strike, |
| 399 | Real forward, |
| 400 | Real stdDev); |
| 401 | |
| 402 | /*! Bachelier formula for of being in the money in the asset martingale |
| 403 | measure, i.e. N(d). |
| 404 | It is a risk-neutral probability, not the real world one. |
| 405 | */ |
| 406 | Real bachelierBlackFormulaAssetItmProbability(const ext::shared_ptr<PlainVanillaPayoff>& payoff, |
| 407 | Real forward, |
| 408 | Real stdDev); |
| 409 | |
| 410 | } |
| 411 | |
| 412 | #endif |
| 413 | |