| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 | |
| 3 | /* |
| 4 | Copyright (C) 2012 Peter Caspers |
| 5 | Copyright (C) 2013 Klaus Spanderen |
| 6 | |
| 7 | This file is part of QuantLib, a free-software/open-source library |
| 8 | for financial quantitative analysts and developers - http://quantlib.org/ |
| 9 | |
| 10 | QuantLib is free software: you can redistribute it and/or modify it |
| 11 | under the terms of the QuantLib license. You should have received a |
| 12 | copy of the license along with this program; if not, please email |
| 13 | <quantlib-dev@lists.sf.net>. The license is also available online at |
| 14 | <http://quantlib.org/license.shtml>. |
| 15 | |
| 16 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 17 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 18 | FOR A PARTICULAR PURPOSE. See the license for more details. |
| 19 | */ |
| 20 | |
| 21 | #include "ode.hpp" |
| 22 | #include "utilities.hpp" |
| 23 | #include <ql/math/matrixutilities/expm.hpp> |
| 24 | #include <ql/math/ode/adaptiverungekutta.hpp> |
| 25 | #include <complex> |
| 26 | |
| 27 | |
| 28 | using namespace QuantLib; |
| 29 | using namespace boost::unit_test_framework; |
| 30 | |
| 31 | using std::exp; |
| 32 | using std::sin; |
| 33 | |
| 34 | namespace { |
| 35 | |
| 36 | struct ode1 { |
| 37 | Real operator()(Real x, Real y) const { return y; } |
| 38 | }; |
| 39 | |
| 40 | struct ode2 { |
| 41 | std::complex<Real> operator()(Real x, |
| 42 | const std::complex<Real>& y) { |
| 43 | return std::complex<Real>(0.0,1.0)*y; |
| 44 | } |
| 45 | }; |
| 46 | |
| 47 | struct ode3 { |
| 48 | std::vector<Real> operator()(Real x, const std::vector<Real>& y) { |
| 49 | std::vector<Real> r(2); |
| 50 | r[0] = y[1]; r[1] = -y[0]; |
| 51 | return r; |
| 52 | } |
| 53 | }; |
| 54 | |
| 55 | struct ode4 { |
| 56 | std::vector<std::complex<Real> > operator()( |
| 57 | const std::complex<Real>& x, |
| 58 | const std::vector<std::complex<Real> >& y) { |
| 59 | std::vector<std::complex<Real> > r(2); |
| 60 | r[0] = y[1]; r[1] = -y[0]; |
| 61 | return r; |
| 62 | } |
| 63 | }; |
| 64 | |
| 65 | } |
| 66 | |
| 67 | void OdeTest::testAdaptiveRungeKutta() { |
| 68 | |
| 69 | BOOST_TEST_MESSAGE("Testing adaptive Runge Kutta..." ); |
| 70 | |
| 71 | AdaptiveRungeKutta<Real> rk_real(1E-12,1E-4,0.0); |
| 72 | AdaptiveRungeKutta<std::complex<Real> > rk_complex(1E-12,1E-4,0.0); |
| 73 | Real tol1 = 5E-10, tol2 = 2E-12, tol3 = 2E-12, tol4 = 2E-12; |
| 74 | |
| 75 | // f'=f, f(0)=1 |
| 76 | AdaptiveRungeKutta<Real>::OdeFct1d ode1_ = ode1(); |
| 77 | Real y10=1; |
| 78 | |
| 79 | // f'=f, f(0)=i |
| 80 | AdaptiveRungeKutta<std::complex<Real> >::OdeFct1d ode2_ = ode2(); |
| 81 | std::complex<Real> y20(0.0,1.0); |
| 82 | |
| 83 | // f''=-f, f(0)=0, f'(0)=1 |
| 84 | AdaptiveRungeKutta<Real>::OdeFct ode3_ = ode3(); |
| 85 | std::vector<Real> y30(2); y30[0] = 0.0; y30[1] = 1.0; |
| 86 | |
| 87 | // f''=-f, f(0)=1, f'(0)=i |
| 88 | AdaptiveRungeKutta<std::complex<Real> >::OdeFct ode4_ = ode4(); |
| 89 | std::vector<std::complex<Real> > y40(2); |
| 90 | y40[0] = 1.0; |
| 91 | y40[1] = std::complex<Real>(0.0,1.0); |
| 92 | |
| 93 | Real x=0.0; |
| 94 | Real y1 = y10; |
| 95 | std::complex<Real> y2 = y20; |
| 96 | std::vector<Real> y3 = y30; |
| 97 | std::vector<std::complex<Real> > y4 = y40; |
| 98 | |
| 99 | while (x<5.0) { |
| 100 | Real exact1 = exp(x: x); |
| 101 | std::complex<Real> exact2 = |
| 102 | std::exp(z: std::complex<Real>(0.0,x)) * std::complex<Real>(0.0,1.0); |
| 103 | Real exact3 = sin(x: x); |
| 104 | std::complex<Real> exact4 = std::exp(z: std::complex<Real>(0.0,x)); |
| 105 | |
| 106 | if ( std::fabs( x: exact1 - y1 ) > tol1 ) |
| 107 | BOOST_FAIL("Error in ode #1: exact solution at x=" << x |
| 108 | << " is " << exact1 |
| 109 | << ", numerical solution is " << y1 |
| 110 | << " difference " << std::fabs(exact1-y1) |
| 111 | << " outside tolerance " << tol1); |
| 112 | if ( abs( z: exact2 - y2 ) > tol2 ) |
| 113 | BOOST_FAIL("Error in ode #2: exact solution at x=" << x |
| 114 | << " is " << exact2 |
| 115 | << ", numerical solution is " << y2 |
| 116 | << " difference " << abs(exact2-y2) |
| 117 | << " outside tolerance " << tol2); |
| 118 | if ( std::fabs( x: exact3 - y3[0] ) > tol3 ) |
| 119 | BOOST_FAIL("Error in ode #3: exact solution at x=" << x |
| 120 | << " is " << exact3 |
| 121 | << ", numerical solution is " << y3[0] |
| 122 | << " difference " << std::fabs(exact3-y3[0]) |
| 123 | << " outside tolerance " << tol3); |
| 124 | if ( abs( z: exact4 - y4[0] ) > tol4 ) |
| 125 | BOOST_FAIL("Error in ode #4: exact solution at x=" << x |
| 126 | << " is " << exact4 |
| 127 | << ", numerical solution is " << y4[0] |
| 128 | << " difference " << abs(exact4-y4[0]) |
| 129 | << " outside tolerance " << tol4); |
| 130 | x+=0.01; |
| 131 | y1=rk_real(ode1_,y10,0.0,x); |
| 132 | y2=rk_complex(ode2_,y20,0.0,x); |
| 133 | y3=rk_real(ode3_,y30,0.0,x); |
| 134 | y4=rk_complex(ode4_,y40,0.0,x); |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | namespace { |
| 139 | Real frobenuiusNorm(const Matrix& m) { |
| 140 | return std::sqrt(x: DotProduct(v1: (m*transpose(m)).diagonal(), |
| 141 | v2: Array(m.rows(), 1.0))); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | void OdeTest::testMatrixExponential() { |
| 146 | BOOST_TEST_MESSAGE("Testing matrix exponential based on ode..." ); |
| 147 | |
| 148 | // Reference results are taken from |
| 149 | // http://www.millersville.edu/~bikenaga/linear-algebra/matrix-exponential/matrix-exponential.html |
| 150 | |
| 151 | Matrix m(3, 3); |
| 152 | m[0][0] = 5; m[0][1] =-6; m[0][2] =-6; |
| 153 | m[1][0] =-1; m[1][1] = 4; m[1][2] = 2; |
| 154 | m[2][0] = 3; m[2][1] =-6; m[2][2] =-4; |
| 155 | |
| 156 | const Real tol = 1e-12; |
| 157 | |
| 158 | for (Real t=0.01; t < 11; t+=t) { |
| 159 | const Matrix calculated = Expm(M: m, t, tol); |
| 160 | |
| 161 | Matrix expected(3, 3); |
| 162 | expected[0][0] = -3*std::exp(x: t)+4*std::exp(x: 2*t); |
| 163 | expected[0][1] = 6*std::exp(x: t)-6*std::exp(x: 2*t); |
| 164 | expected[0][2] = 6*std::exp(x: t)-6*std::exp(x: 2*t); |
| 165 | expected[1][0] = std::exp(x: t)- std::exp(x: 2*t); |
| 166 | expected[1][1] = -2*std::exp(x: t)+3*std::exp(x: 2*t); |
| 167 | expected[1][2] = -2*std::exp(x: t)+2*std::exp(x: 2*t); |
| 168 | expected[2][0] = -3*std::exp(x: t)+3*std::exp(x: 2*t); |
| 169 | expected[2][1] = 6*std::exp(x: t)-6*std::exp(x: 2*t); |
| 170 | expected[2][2] = 6*std::exp(x: t)-5*std::exp(x: 2*t); |
| 171 | |
| 172 | Matrix diff = calculated - expected; |
| 173 | Real relDiffNorm = frobenuiusNorm(m: diff)/frobenuiusNorm(m: expected); |
| 174 | |
| 175 | if ( std::fabs(x: relDiffNorm) > 100*tol) { |
| 176 | BOOST_FAIL("Failed to reproduce expected matrix exponential." |
| 177 | << "\n rel. difference norm: " << relDiffNorm |
| 178 | << "\n tolerance : " << 100*tol); |
| 179 | } |
| 180 | |
| 181 | const Matrix negativeTime = Expm(M: (-1)*m, t: -t, tol); |
| 182 | diff = negativeTime - expected; |
| 183 | relDiffNorm = frobenuiusNorm(m: diff)/frobenuiusNorm(m: expected); |
| 184 | |
| 185 | if ( std::fabs(x: relDiffNorm) > 100*tol) { |
| 186 | BOOST_FAIL("Failed to reproduce expected matrix exponential." |
| 187 | << "\n rel. difference norm: " << relDiffNorm |
| 188 | << "\n tolerance : " << 100*tol); |
| 189 | } |
| 190 | |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | void OdeTest::testMatrixExponentialOfZero() { |
| 195 | BOOST_TEST_MESSAGE("Testing matrix exponential of a zero matrix " |
| 196 | "based on ode..." ); |
| 197 | |
| 198 | Matrix m(3, 3, 0.0); |
| 199 | |
| 200 | constexpr double tol = 100*QL_EPSILON; |
| 201 | constexpr double t=1.0; |
| 202 | const Matrix calculated = Expm(M: m, t); |
| 203 | |
| 204 | for (Size i=0; i < calculated.rows(); ++i) { |
| 205 | for (Size j=0; j < calculated.columns(); ++j) { |
| 206 | const Real kroneckerDelta = (i==j)? 1.0 : 0.0; |
| 207 | if (std::fabs(x: calculated[i][j] -kroneckerDelta) > tol) { |
| 208 | BOOST_FAIL("Failed to reproduce expected matrix exponential." |
| 209 | << "\n tolerance : " << tol); |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | test_suite* OdeTest::suite() { |
| 216 | auto* suite = BOOST_TEST_SUITE("ode tests" ); |
| 217 | suite->add(QUANTLIB_TEST_CASE(&OdeTest::testAdaptiveRungeKutta)); |
| 218 | suite->add(QUANTLIB_TEST_CASE(&OdeTest::testMatrixExponential)); |
| 219 | suite->add(QUANTLIB_TEST_CASE(&OdeTest::testMatrixExponentialOfZero)); |
| 220 | return suite; |
| 221 | } |
| 222 | |