| 1 | use super::encoder::EncoderWriter; |
| 2 | use crate::engine::Engine; |
| 3 | use std::io; |
| 4 | |
| 5 | /// A `Write` implementation that base64-encodes data using the provided config and accumulates the |
| 6 | /// resulting base64 utf8 `&str` in a [StrConsumer] implementation (typically `String`), which is |
| 7 | /// then exposed via `into_inner()`. |
| 8 | /// |
| 9 | /// # Examples |
| 10 | /// |
| 11 | /// Buffer base64 in a new String: |
| 12 | /// |
| 13 | /// ``` |
| 14 | /// use std::io::Write; |
| 15 | /// use base64::engine::general_purpose; |
| 16 | /// |
| 17 | /// let mut enc = base64::write::EncoderStringWriter::new(&general_purpose::STANDARD); |
| 18 | /// |
| 19 | /// enc.write_all(b"asdf" ).unwrap(); |
| 20 | /// |
| 21 | /// // get the resulting String |
| 22 | /// let b64_string = enc.into_inner(); |
| 23 | /// |
| 24 | /// assert_eq!("YXNkZg==" , &b64_string); |
| 25 | /// ``` |
| 26 | /// |
| 27 | /// Or, append to an existing `String`, which implements `StrConsumer`: |
| 28 | /// |
| 29 | /// ``` |
| 30 | /// use std::io::Write; |
| 31 | /// use base64::engine::general_purpose; |
| 32 | /// |
| 33 | /// let mut buf = String::from("base64: " ); |
| 34 | /// |
| 35 | /// let mut enc = base64::write::EncoderStringWriter::from_consumer( |
| 36 | /// &mut buf, |
| 37 | /// &general_purpose::STANDARD); |
| 38 | /// |
| 39 | /// enc.write_all(b"asdf" ).unwrap(); |
| 40 | /// |
| 41 | /// // release the &mut reference on buf |
| 42 | /// let _ = enc.into_inner(); |
| 43 | /// |
| 44 | /// assert_eq!("base64: YXNkZg==" , &buf); |
| 45 | /// ``` |
| 46 | /// |
| 47 | /// # Performance |
| 48 | /// |
| 49 | /// Because it has to validate that the base64 is UTF-8, it is about 80% as fast as writing plain |
| 50 | /// bytes to a `io::Write`. |
| 51 | pub struct EncoderStringWriter<'e, E: Engine, S: StrConsumer> { |
| 52 | encoder: EncoderWriter<'e, E, Utf8SingleCodeUnitWriter<S>>, |
| 53 | } |
| 54 | |
| 55 | impl<'e, E: Engine, S: StrConsumer> EncoderStringWriter<'e, E, S> { |
| 56 | /// Create a EncoderStringWriter that will append to the provided `StrConsumer`. |
| 57 | pub fn from_consumer(str_consumer: S, engine: &'e E) -> Self { |
| 58 | EncoderStringWriter { |
| 59 | encoder: EncoderWriter::new(delegate:Utf8SingleCodeUnitWriter { str_consumer }, engine), |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | /// Encode all remaining buffered data, including any trailing incomplete input triples and |
| 64 | /// associated padding. |
| 65 | /// |
| 66 | /// Returns the base64-encoded form of the accumulated written data. |
| 67 | pub fn into_inner(mut self) -> S { |
| 68 | self.encoder |
| 69 | .finish() |
| 70 | .expect(msg:"Writing to a consumer should never fail" ) |
| 71 | .str_consumer |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | impl<'e, E: Engine> EncoderStringWriter<'e, E, String> { |
| 76 | /// Create a EncoderStringWriter that will encode into a new `String` with the provided config. |
| 77 | pub fn new(engine: &'e E) -> Self { |
| 78 | EncoderStringWriter::from_consumer(str_consumer:String::new(), engine) |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | impl<'e, E: Engine, S: StrConsumer> io::Write for EncoderStringWriter<'e, E, S> { |
| 83 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
| 84 | self.encoder.write(buf) |
| 85 | } |
| 86 | |
| 87 | fn flush(&mut self) -> io::Result<()> { |
| 88 | self.encoder.flush() |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | /// An abstraction around consuming `str`s produced by base64 encoding. |
| 93 | pub trait StrConsumer { |
| 94 | /// Consume the base64 encoded data in `buf` |
| 95 | fn consume(&mut self, buf: &str); |
| 96 | } |
| 97 | |
| 98 | /// As for io::Write, `StrConsumer` is implemented automatically for `&mut S`. |
| 99 | impl<S: StrConsumer + ?Sized> StrConsumer for &mut S { |
| 100 | fn consume(&mut self, buf: &str) { |
| 101 | (**self).consume(buf); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | /// Pushes the str onto the end of the String |
| 106 | impl StrConsumer for String { |
| 107 | fn consume(&mut self, buf: &str) { |
| 108 | self.push_str(string:buf); |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | /// A `Write` that only can handle bytes that are valid single-byte UTF-8 code units. |
| 113 | /// |
| 114 | /// This is safe because we only use it when writing base64, which is always valid UTF-8. |
| 115 | struct Utf8SingleCodeUnitWriter<S: StrConsumer> { |
| 116 | str_consumer: S, |
| 117 | } |
| 118 | |
| 119 | impl<S: StrConsumer> io::Write for Utf8SingleCodeUnitWriter<S> { |
| 120 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
| 121 | // Because we expect all input to be valid utf-8 individual bytes, we can encode any buffer |
| 122 | // length |
| 123 | let s: &str = std::str::from_utf8(buf).expect(msg:"Input must be valid UTF-8" ); |
| 124 | |
| 125 | self.str_consumer.consume(buf:s); |
| 126 | |
| 127 | Ok(buf.len()) |
| 128 | } |
| 129 | |
| 130 | fn flush(&mut self) -> io::Result<()> { |
| 131 | // no op |
| 132 | Ok(()) |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | #[cfg (test)] |
| 137 | mod tests { |
| 138 | use crate::{ |
| 139 | engine::Engine, tests::random_engine, write::encoder_string_writer::EncoderStringWriter, |
| 140 | }; |
| 141 | use rand::Rng; |
| 142 | use std::cmp; |
| 143 | use std::io::Write; |
| 144 | |
| 145 | #[test ] |
| 146 | fn every_possible_split_of_input() { |
| 147 | let mut rng = rand::thread_rng(); |
| 148 | let mut orig_data = Vec::<u8>::new(); |
| 149 | let mut normal_encoded = String::new(); |
| 150 | |
| 151 | let size = 5_000; |
| 152 | |
| 153 | for i in 0..size { |
| 154 | orig_data.clear(); |
| 155 | normal_encoded.clear(); |
| 156 | |
| 157 | orig_data.resize(size, 0); |
| 158 | rng.fill(&mut orig_data[..]); |
| 159 | |
| 160 | let engine = random_engine(&mut rng); |
| 161 | engine.encode_string(&orig_data, &mut normal_encoded); |
| 162 | |
| 163 | let mut stream_encoder = EncoderStringWriter::new(&engine); |
| 164 | // Write the first i bytes, then the rest |
| 165 | stream_encoder.write_all(&orig_data[0..i]).unwrap(); |
| 166 | stream_encoder.write_all(&orig_data[i..]).unwrap(); |
| 167 | |
| 168 | let stream_encoded = stream_encoder.into_inner(); |
| 169 | |
| 170 | assert_eq!(normal_encoded, stream_encoded); |
| 171 | } |
| 172 | } |
| 173 | #[test ] |
| 174 | fn incremental_writes() { |
| 175 | let mut rng = rand::thread_rng(); |
| 176 | let mut orig_data = Vec::<u8>::new(); |
| 177 | let mut normal_encoded = String::new(); |
| 178 | |
| 179 | let size = 5_000; |
| 180 | |
| 181 | for _ in 0..size { |
| 182 | orig_data.clear(); |
| 183 | normal_encoded.clear(); |
| 184 | |
| 185 | orig_data.resize(size, 0); |
| 186 | rng.fill(&mut orig_data[..]); |
| 187 | |
| 188 | let engine = random_engine(&mut rng); |
| 189 | engine.encode_string(&orig_data, &mut normal_encoded); |
| 190 | |
| 191 | let mut stream_encoder = EncoderStringWriter::new(&engine); |
| 192 | // write small nibbles of data |
| 193 | let mut offset = 0; |
| 194 | while offset < size { |
| 195 | let nibble_size = cmp::min(rng.gen_range(0..=64), size - offset); |
| 196 | let len = stream_encoder |
| 197 | .write(&orig_data[offset..offset + nibble_size]) |
| 198 | .unwrap(); |
| 199 | offset += len; |
| 200 | } |
| 201 | |
| 202 | let stream_encoded = stream_encoder.into_inner(); |
| 203 | |
| 204 | assert_eq!(normal_encoded, stream_encoded); |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |