1 | #[doc = include_str!("panic.md" )] |
2 | #[macro_export ] |
3 | #[rustc_builtin_macro (core_panic)] |
4 | #[allow_internal_unstable (edition_panic)] |
5 | #[stable (feature = "core" , since = "1.6.0" )] |
6 | #[rustc_diagnostic_item = "core_panic_macro" ] |
7 | macro_rules! panic { |
8 | // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021` |
9 | // depending on the edition of the caller. |
10 | ($($arg:tt)*) => { |
11 | /* compiler built-in */ |
12 | }; |
13 | } |
14 | |
15 | /// Asserts that two expressions are equal to each other (using [`PartialEq`]). |
16 | /// |
17 | /// On panic, this macro will print the values of the expressions with their |
18 | /// debug representations. |
19 | /// |
20 | /// Like [`assert!`], this macro has a second form, where a custom |
21 | /// panic message can be provided. |
22 | /// |
23 | /// # Examples |
24 | /// |
25 | /// ``` |
26 | /// let a = 3; |
27 | /// let b = 1 + 2; |
28 | /// assert_eq!(a, b); |
29 | /// |
30 | /// assert_eq!(a, b, "we are testing addition with {} and {}" , a, b); |
31 | /// ``` |
32 | #[macro_export ] |
33 | #[stable (feature = "rust1" , since = "1.0.0" )] |
34 | #[cfg_attr (not(test), rustc_diagnostic_item = "assert_eq_macro" )] |
35 | #[allow_internal_unstable (panic_internals)] |
36 | macro_rules! assert_eq { |
37 | ($left:expr, $right:expr $(,)?) => { |
38 | match (&$left, &$right) { |
39 | (left_val, right_val) => { |
40 | if !(*left_val == *right_val) { |
41 | let kind = $crate::panicking::AssertKind::Eq; |
42 | // The reborrows below are intentional. Without them, the stack slot for the |
43 | // borrow is initialized even before the values are compared, leading to a |
44 | // noticeable slow down. |
45 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None); |
46 | } |
47 | } |
48 | } |
49 | }; |
50 | ($left:expr, $right:expr, $($arg:tt)+) => { |
51 | match (&$left, &$right) { |
52 | (left_val, right_val) => { |
53 | if !(*left_val == *right_val) { |
54 | let kind = $crate::panicking::AssertKind::Eq; |
55 | // The reborrows below are intentional. Without them, the stack slot for the |
56 | // borrow is initialized even before the values are compared, leading to a |
57 | // noticeable slow down. |
58 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+))); |
59 | } |
60 | } |
61 | } |
62 | }; |
63 | } |
64 | |
65 | /// Asserts that two expressions are not equal to each other (using [`PartialEq`]). |
66 | /// |
67 | /// On panic, this macro will print the values of the expressions with their |
68 | /// debug representations. |
69 | /// |
70 | /// Like [`assert!`], this macro has a second form, where a custom |
71 | /// panic message can be provided. |
72 | /// |
73 | /// # Examples |
74 | /// |
75 | /// ``` |
76 | /// let a = 3; |
77 | /// let b = 2; |
78 | /// assert_ne!(a, b); |
79 | /// |
80 | /// assert_ne!(a, b, "we are testing that the values are not equal" ); |
81 | /// ``` |
82 | #[macro_export ] |
83 | #[stable (feature = "assert_ne" , since = "1.13.0" )] |
84 | #[cfg_attr (not(test), rustc_diagnostic_item = "assert_ne_macro" )] |
85 | #[allow_internal_unstable (panic_internals)] |
86 | macro_rules! assert_ne { |
87 | ($left:expr, $right:expr $(,)?) => { |
88 | match (&$left, &$right) { |
89 | (left_val, right_val) => { |
90 | if *left_val == *right_val { |
91 | let kind = $crate::panicking::AssertKind::Ne; |
92 | // The reborrows below are intentional. Without them, the stack slot for the |
93 | // borrow is initialized even before the values are compared, leading to a |
94 | // noticeable slow down. |
95 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None); |
96 | } |
97 | } |
98 | } |
99 | }; |
100 | ($left:expr, $right:expr, $($arg:tt)+) => { |
101 | match (&($left), &($right)) { |
102 | (left_val, right_val) => { |
103 | if *left_val == *right_val { |
104 | let kind = $crate::panicking::AssertKind::Ne; |
105 | // The reborrows below are intentional. Without them, the stack slot for the |
106 | // borrow is initialized even before the values are compared, leading to a |
107 | // noticeable slow down. |
108 | $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+))); |
109 | } |
110 | } |
111 | } |
112 | }; |
113 | } |
114 | |
115 | /// Asserts that an expression matches the provided pattern. |
116 | /// |
117 | /// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print |
118 | /// the debug representation of the actual value shape that did not meet expectations. In contrast, |
119 | /// using [`assert!`] will only print that expectations were not met, but not why. |
120 | /// |
121 | /// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The |
122 | /// optional if guard can be used to add additional checks that must be true for the matched value, |
123 | /// otherwise this macro will panic. |
124 | /// |
125 | /// On panic, this macro will print the value of the expression with its debug representation. |
126 | /// |
127 | /// Like [`assert!`], this macro has a second form, where a custom panic message can be provided. |
128 | /// |
129 | /// # Examples |
130 | /// |
131 | /// ``` |
132 | /// #![feature(assert_matches)] |
133 | /// |
134 | /// use std::assert_matches::assert_matches; |
135 | /// |
136 | /// let a = Some(345); |
137 | /// let b = Some(56); |
138 | /// assert_matches!(a, Some(_)); |
139 | /// assert_matches!(b, Some(_)); |
140 | /// |
141 | /// assert_matches!(a, Some(345)); |
142 | /// assert_matches!(a, Some(345) | None); |
143 | /// |
144 | /// // assert_matches!(a, None); // panics |
145 | /// // assert_matches!(b, Some(345)); // panics |
146 | /// // assert_matches!(b, Some(345) | None); // panics |
147 | /// |
148 | /// assert_matches!(a, Some(x) if x > 100); |
149 | /// // assert_matches!(a, Some(x) if x < 100); // panics |
150 | /// ``` |
151 | #[unstable (feature = "assert_matches" , issue = "82775" )] |
152 | #[allow_internal_unstable (panic_internals)] |
153 | #[rustc_macro_transparency = "semitransparent" ] |
154 | pub macro assert_matches { |
155 | ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => { |
156 | match $left { |
157 | $( $pattern )|+ $( if $guard )? => {} |
158 | ref left_val => { |
159 | $crate::panicking::assert_matches_failed( |
160 | left_val, |
161 | $crate::stringify!($($pattern)|+ $(if $guard)?), |
162 | $crate::option::Option::None |
163 | ); |
164 | } |
165 | } |
166 | }, |
167 | ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => { |
168 | match $left { |
169 | $( $pattern )|+ $( if $guard )? => {} |
170 | ref left_val => { |
171 | $crate::panicking::assert_matches_failed( |
172 | left_val, |
173 | $crate::stringify!($($pattern)|+ $(if $guard)?), |
174 | $crate::option::Option::Some($crate::format_args!($($arg)+)) |
175 | ); |
176 | } |
177 | } |
178 | }, |
179 | } |
180 | |
181 | /// A macro for defining `#[cfg]` match-like statements. |
182 | /// |
183 | /// It is similar to the `if/elif` C preprocessor macro by allowing definition of a cascade of |
184 | /// `#[cfg]` cases, emitting the implementation which matches first. |
185 | /// |
186 | /// This allows you to conveniently provide a long list `#[cfg]`'d blocks of code |
187 | /// without having to rewrite each clause multiple times. |
188 | /// |
189 | /// Trailing `_` wildcard match arms are **optional** and they indicate a fallback branch when |
190 | /// all previous declarations do not evaluate to true. |
191 | /// |
192 | /// # Example |
193 | /// |
194 | /// ``` |
195 | /// #![feature(cfg_match)] |
196 | /// |
197 | /// cfg_match! { |
198 | /// cfg(unix) => { |
199 | /// fn foo() { /* unix specific functionality */ } |
200 | /// } |
201 | /// cfg(target_pointer_width = "32" ) => { |
202 | /// fn foo() { /* non-unix, 32-bit functionality */ } |
203 | /// } |
204 | /// _ => { |
205 | /// fn foo() { /* fallback implementation */ } |
206 | /// } |
207 | /// } |
208 | /// ``` |
209 | #[unstable (feature = "cfg_match" , issue = "115585" )] |
210 | #[rustc_diagnostic_item = "cfg_match" ] |
211 | pub macro cfg_match { |
212 | // with a final wildcard |
213 | ( |
214 | $(cfg($initial_meta:meta) => { $($initial_tokens:item)* })+ |
215 | _ => { $($extra_tokens:item)* } |
216 | ) => { |
217 | cfg_match! { |
218 | @__items (); |
219 | $((($initial_meta) ($($initial_tokens)*)),)+ |
220 | (() ($($extra_tokens)*)), |
221 | } |
222 | }, |
223 | |
224 | // without a final wildcard |
225 | ( |
226 | $(cfg($extra_meta:meta) => { $($extra_tokens:item)* })* |
227 | ) => { |
228 | cfg_match! { |
229 | @__items (); |
230 | $((($extra_meta) ($($extra_tokens)*)),)* |
231 | } |
232 | }, |
233 | |
234 | // Internal and recursive macro to emit all the items |
235 | // |
236 | // Collects all the previous cfgs in a list at the beginning, so they can be |
237 | // negated. After the semicolon is all the remaining items. |
238 | (@__items ($($_:meta,)*);) => {}, |
239 | ( |
240 | @__items ($($no:meta,)*); |
241 | (($($yes:meta)?) ($($tokens:item)*)), |
242 | $($rest:tt,)* |
243 | ) => { |
244 | // Emit all items within one block, applying an appropriate #[cfg]. The |
245 | // #[cfg] will require all `$yes` matchers specified and must also negate |
246 | // all previous matchers. |
247 | #[cfg(all( |
248 | $($yes,)? |
249 | not(any($($no),*)) |
250 | ))] |
251 | cfg_match! { @__identity $($tokens)* } |
252 | |
253 | // Recurse to emit all other items in `$rest`, and when we do so add all |
254 | // our `$yes` matchers to the list of `$no` matchers as future emissions |
255 | // will have to negate everything we just matched as well. |
256 | cfg_match! { |
257 | @__items ($($no,)* $($yes,)?); |
258 | $($rest,)* |
259 | } |
260 | }, |
261 | |
262 | // Internal macro to make __apply work out right for different match types, |
263 | // because of how macros match/expand stuff. |
264 | (@__identity $($tokens:item)*) => { |
265 | $($tokens)* |
266 | } |
267 | } |
268 | |
269 | /// Asserts that a boolean expression is `true` at runtime. |
270 | /// |
271 | /// This will invoke the [`panic!`] macro if the provided expression cannot be |
272 | /// evaluated to `true` at runtime. |
273 | /// |
274 | /// Like [`assert!`], this macro also has a second version, where a custom panic |
275 | /// message can be provided. |
276 | /// |
277 | /// # Uses |
278 | /// |
279 | /// Unlike [`assert!`], `debug_assert!` statements are only enabled in non |
280 | /// optimized builds by default. An optimized build will not execute |
281 | /// `debug_assert!` statements unless `-C debug-assertions` is passed to the |
282 | /// compiler. This makes `debug_assert!` useful for checks that are too |
283 | /// expensive to be present in a release build but may be helpful during |
284 | /// development. The result of expanding `debug_assert!` is always type checked. |
285 | /// |
286 | /// An unchecked assertion allows a program in an inconsistent state to keep |
287 | /// running, which might have unexpected consequences but does not introduce |
288 | /// unsafety as long as this only happens in safe code. The performance cost |
289 | /// of assertions, however, is not measurable in general. Replacing [`assert!`] |
290 | /// with `debug_assert!` is thus only encouraged after thorough profiling, and |
291 | /// more importantly, only in safe code! |
292 | /// |
293 | /// # Examples |
294 | /// |
295 | /// ``` |
296 | /// // the panic message for these assertions is the stringified value of the |
297 | /// // expression given. |
298 | /// debug_assert!(true); |
299 | /// |
300 | /// fn some_expensive_computation() -> bool { true } // a very simple function |
301 | /// debug_assert!(some_expensive_computation()); |
302 | /// |
303 | /// // assert with a custom message |
304 | /// let x = true; |
305 | /// debug_assert!(x, "x wasn't true!" ); |
306 | /// |
307 | /// let a = 3; let b = 27; |
308 | /// debug_assert!(a + b == 30, "a = {}, b = {}" , a, b); |
309 | /// ``` |
310 | #[macro_export ] |
311 | #[stable (feature = "rust1" , since = "1.0.0" )] |
312 | #[rustc_diagnostic_item = "debug_assert_macro" ] |
313 | #[allow_internal_unstable (edition_panic)] |
314 | macro_rules! debug_assert { |
315 | ($($arg:tt)*) => { |
316 | if $crate::cfg!(debug_assertions) { |
317 | $crate::assert!($($arg)*); |
318 | } |
319 | }; |
320 | } |
321 | |
322 | /// Asserts that two expressions are equal to each other. |
323 | /// |
324 | /// On panic, this macro will print the values of the expressions with their |
325 | /// debug representations. |
326 | /// |
327 | /// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non |
328 | /// optimized builds by default. An optimized build will not execute |
329 | /// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the |
330 | /// compiler. This makes `debug_assert_eq!` useful for checks that are too |
331 | /// expensive to be present in a release build but may be helpful during |
332 | /// development. The result of expanding `debug_assert_eq!` is always type checked. |
333 | /// |
334 | /// # Examples |
335 | /// |
336 | /// ``` |
337 | /// let a = 3; |
338 | /// let b = 1 + 2; |
339 | /// debug_assert_eq!(a, b); |
340 | /// ``` |
341 | #[macro_export ] |
342 | #[stable (feature = "rust1" , since = "1.0.0" )] |
343 | #[cfg_attr (not(test), rustc_diagnostic_item = "debug_assert_eq_macro" )] |
344 | macro_rules! debug_assert_eq { |
345 | ($($arg:tt)*) => { |
346 | if $crate::cfg!(debug_assertions) { |
347 | $crate::assert_eq!($($arg)*); |
348 | } |
349 | }; |
350 | } |
351 | |
352 | /// Asserts that two expressions are not equal to each other. |
353 | /// |
354 | /// On panic, this macro will print the values of the expressions with their |
355 | /// debug representations. |
356 | /// |
357 | /// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non |
358 | /// optimized builds by default. An optimized build will not execute |
359 | /// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the |
360 | /// compiler. This makes `debug_assert_ne!` useful for checks that are too |
361 | /// expensive to be present in a release build but may be helpful during |
362 | /// development. The result of expanding `debug_assert_ne!` is always type checked. |
363 | /// |
364 | /// # Examples |
365 | /// |
366 | /// ``` |
367 | /// let a = 3; |
368 | /// let b = 2; |
369 | /// debug_assert_ne!(a, b); |
370 | /// ``` |
371 | #[macro_export ] |
372 | #[stable (feature = "assert_ne" , since = "1.13.0" )] |
373 | #[cfg_attr (not(test), rustc_diagnostic_item = "debug_assert_ne_macro" )] |
374 | macro_rules! debug_assert_ne { |
375 | ($($arg:tt)*) => { |
376 | if $crate::cfg!(debug_assertions) { |
377 | $crate::assert_ne!($($arg)*); |
378 | } |
379 | }; |
380 | } |
381 | |
382 | /// Asserts that an expression matches the provided pattern. |
383 | /// |
384 | /// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can |
385 | /// print the debug representation of the actual value shape that did not meet expectations. In |
386 | /// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why. |
387 | /// |
388 | /// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The |
389 | /// optional if guard can be used to add additional checks that must be true for the matched value, |
390 | /// otherwise this macro will panic. |
391 | /// |
392 | /// On panic, this macro will print the value of the expression with its debug representation. |
393 | /// |
394 | /// Like [`assert!`], this macro has a second form, where a custom panic message can be provided. |
395 | /// |
396 | /// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized |
397 | /// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless |
398 | /// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for |
399 | /// checks that are too expensive to be present in a release build but may be helpful during |
400 | /// development. The result of expanding `debug_assert_matches!` is always type checked. |
401 | /// |
402 | /// # Examples |
403 | /// |
404 | /// ``` |
405 | /// #![feature(assert_matches)] |
406 | /// |
407 | /// use std::assert_matches::debug_assert_matches; |
408 | /// |
409 | /// let a = Some(345); |
410 | /// let b = Some(56); |
411 | /// debug_assert_matches!(a, Some(_)); |
412 | /// debug_assert_matches!(b, Some(_)); |
413 | /// |
414 | /// debug_assert_matches!(a, Some(345)); |
415 | /// debug_assert_matches!(a, Some(345) | None); |
416 | /// |
417 | /// // debug_assert_matches!(a, None); // panics |
418 | /// // debug_assert_matches!(b, Some(345)); // panics |
419 | /// // debug_assert_matches!(b, Some(345) | None); // panics |
420 | /// |
421 | /// debug_assert_matches!(a, Some(x) if x > 100); |
422 | /// // debug_assert_matches!(a, Some(x) if x < 100); // panics |
423 | /// ``` |
424 | #[unstable (feature = "assert_matches" , issue = "82775" )] |
425 | #[allow_internal_unstable (assert_matches)] |
426 | #[rustc_macro_transparency = "semitransparent" ] |
427 | pub macro debug_assert_matches($($arg:tt)*) { |
428 | if $crate::cfg!(debug_assertions) { |
429 | $crate::assert_matches::assert_matches!($($arg)*); |
430 | } |
431 | } |
432 | |
433 | /// Returns whether the given expression matches the provided pattern. |
434 | /// |
435 | /// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be |
436 | /// used to add additional checks that must be true for the matched value, otherwise this macro will |
437 | /// return `false`. |
438 | /// |
439 | /// When testing that a value matches a pattern, it's generally preferable to use |
440 | /// [`assert_matches!`] as it will print the debug representation of the value if the assertion |
441 | /// fails. |
442 | /// |
443 | /// # Examples |
444 | /// |
445 | /// ``` |
446 | /// let foo = 'f' ; |
447 | /// assert!(matches!(foo, 'A' ..='Z' | 'a' ..='z' )); |
448 | /// |
449 | /// let bar = Some(4); |
450 | /// assert!(matches!(bar, Some(x) if x > 2)); |
451 | /// ``` |
452 | #[macro_export ] |
453 | #[stable (feature = "matches_macro" , since = "1.42.0" )] |
454 | #[cfg_attr (not(test), rustc_diagnostic_item = "matches_macro" )] |
455 | macro_rules! matches { |
456 | ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => { |
457 | match $expression { |
458 | $pattern $(if $guard)? => true, |
459 | _ => false |
460 | } |
461 | }; |
462 | } |
463 | |
464 | /// Unwraps a result or propagates its error. |
465 | /// |
466 | /// The [`?` operator][propagating-errors] was added to replace `try!` |
467 | /// and should be used instead. Furthermore, `try` is a reserved word |
468 | /// in Rust 2018, so if you must use it, you will need to use the |
469 | /// [raw-identifier syntax][ris]: `r#try`. |
470 | /// |
471 | /// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator |
472 | /// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html |
473 | /// |
474 | /// `try!` matches the given [`Result`]. In case of the `Ok` variant, the |
475 | /// expression has the value of the wrapped value. |
476 | /// |
477 | /// In case of the `Err` variant, it retrieves the inner error. `try!` then |
478 | /// performs conversion using `From`. This provides automatic conversion |
479 | /// between specialized errors and more general ones. The resulting |
480 | /// error is then immediately returned. |
481 | /// |
482 | /// Because of the early return, `try!` can only be used in functions that |
483 | /// return [`Result`]. |
484 | /// |
485 | /// # Examples |
486 | /// |
487 | /// ``` |
488 | /// use std::io; |
489 | /// use std::fs::File; |
490 | /// use std::io::prelude::*; |
491 | /// |
492 | /// enum MyError { |
493 | /// FileWriteError |
494 | /// } |
495 | /// |
496 | /// impl From<io::Error> for MyError { |
497 | /// fn from(e: io::Error) -> MyError { |
498 | /// MyError::FileWriteError |
499 | /// } |
500 | /// } |
501 | /// |
502 | /// // The preferred method of quick returning Errors |
503 | /// fn write_to_file_question() -> Result<(), MyError> { |
504 | /// let mut file = File::create("my_best_friends.txt" )?; |
505 | /// file.write_all(b"This is a list of my best friends." )?; |
506 | /// Ok(()) |
507 | /// } |
508 | /// |
509 | /// // The previous method of quick returning Errors |
510 | /// fn write_to_file_using_try() -> Result<(), MyError> { |
511 | /// let mut file = r#try!(File::create("my_best_friends.txt" )); |
512 | /// r#try!(file.write_all(b"This is a list of my best friends." )); |
513 | /// Ok(()) |
514 | /// } |
515 | /// |
516 | /// // This is equivalent to: |
517 | /// fn write_to_file_using_match() -> Result<(), MyError> { |
518 | /// let mut file = r#try!(File::create("my_best_friends.txt" )); |
519 | /// match file.write_all(b"This is a list of my best friends." ) { |
520 | /// Ok(v) => v, |
521 | /// Err(e) => return Err(From::from(e)), |
522 | /// } |
523 | /// Ok(()) |
524 | /// } |
525 | /// ``` |
526 | #[macro_export ] |
527 | #[stable (feature = "rust1" , since = "1.0.0" )] |
528 | #[deprecated (since = "1.39.0" , note = "use the `?` operator instead" )] |
529 | #[doc (alias = "?" )] |
530 | macro_rules! r#try { |
531 | ($expr:expr $(,)?) => { |
532 | match $expr { |
533 | $crate::result::Result::Ok(val) => val, |
534 | $crate::result::Result::Err(err) => { |
535 | return $crate::result::Result::Err($crate::convert::From::from(err)); |
536 | } |
537 | } |
538 | }; |
539 | } |
540 | |
541 | /// Writes formatted data into a buffer. |
542 | /// |
543 | /// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be |
544 | /// formatted according to the specified format string and the result will be passed to the writer. |
545 | /// The writer may be any value with a `write_fmt` method; generally this comes from an |
546 | /// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro |
547 | /// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an |
548 | /// [`io::Result`]. |
549 | /// |
550 | /// See [`std::fmt`] for more information on the format string syntax. |
551 | /// |
552 | /// [`std::fmt`]: ../std/fmt/index.html |
553 | /// [`fmt::Write`]: crate::fmt::Write |
554 | /// [`io::Write`]: ../std/io/trait.Write.html |
555 | /// [`fmt::Result`]: crate::fmt::Result |
556 | /// [`io::Result`]: ../std/io/type.Result.html |
557 | /// |
558 | /// # Examples |
559 | /// |
560 | /// ``` |
561 | /// use std::io::Write; |
562 | /// |
563 | /// fn main() -> std::io::Result<()> { |
564 | /// let mut w = Vec::new(); |
565 | /// write!(&mut w, "test" )?; |
566 | /// write!(&mut w, "formatted {}" , "arguments" )?; |
567 | /// |
568 | /// assert_eq!(w, b"testformatted arguments" ); |
569 | /// Ok(()) |
570 | /// } |
571 | /// ``` |
572 | /// |
573 | /// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects |
574 | /// implementing either, as objects do not typically implement both. However, the module must |
575 | /// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming |
576 | /// them: |
577 | /// |
578 | /// ``` |
579 | /// use std::fmt::Write as _; |
580 | /// use std::io::Write as _; |
581 | /// |
582 | /// fn main() -> Result<(), Box<dyn std::error::Error>> { |
583 | /// let mut s = String::new(); |
584 | /// let mut v = Vec::new(); |
585 | /// |
586 | /// write!(&mut s, "{} {}" , "abc" , 123)?; // uses fmt::Write::write_fmt |
587 | /// write!(&mut v, "s = {:?}" , s)?; // uses io::Write::write_fmt |
588 | /// assert_eq!(v, b"s = \"abc 123 \"" ); |
589 | /// Ok(()) |
590 | /// } |
591 | /// ``` |
592 | /// |
593 | /// If you also need the trait names themselves, such as to implement one or both on your types, |
594 | /// import the containing module and then name them with a prefix: |
595 | /// |
596 | /// ``` |
597 | /// # #![allow(unused_imports)] |
598 | /// use std::fmt::{self, Write as _}; |
599 | /// use std::io::{self, Write as _}; |
600 | /// |
601 | /// struct Example; |
602 | /// |
603 | /// impl fmt::Write for Example { |
604 | /// fn write_str(&mut self, _s: &str) -> core::fmt::Result { |
605 | /// unimplemented!(); |
606 | /// } |
607 | /// } |
608 | /// ``` |
609 | /// |
610 | /// Note: This macro can be used in `no_std` setups as well. |
611 | /// In a `no_std` setup you are responsible for the implementation details of the components. |
612 | /// |
613 | /// ```no_run |
614 | /// use core::fmt::Write; |
615 | /// |
616 | /// struct Example; |
617 | /// |
618 | /// impl Write for Example { |
619 | /// fn write_str(&mut self, _s: &str) -> core::fmt::Result { |
620 | /// unimplemented!(); |
621 | /// } |
622 | /// } |
623 | /// |
624 | /// let mut m = Example{}; |
625 | /// write!(&mut m, "Hello World" ).expect("Not written" ); |
626 | /// ``` |
627 | #[macro_export ] |
628 | #[stable (feature = "rust1" , since = "1.0.0" )] |
629 | #[cfg_attr (not(test), rustc_diagnostic_item = "write_macro" )] |
630 | macro_rules! write { |
631 | ($dst:expr, $($arg:tt)*) => { |
632 | $dst.write_fmt($crate::format_args!($($arg)*)) |
633 | }; |
634 | } |
635 | |
636 | /// Write formatted data into a buffer, with a newline appended. |
637 | /// |
638 | /// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone |
639 | /// (no additional CARRIAGE RETURN (`\r`/`U+000D`). |
640 | /// |
641 | /// For more information, see [`write!`]. For information on the format string syntax, see |
642 | /// [`std::fmt`]. |
643 | /// |
644 | /// [`std::fmt`]: ../std/fmt/index.html |
645 | /// |
646 | /// # Examples |
647 | /// |
648 | /// ``` |
649 | /// use std::io::{Write, Result}; |
650 | /// |
651 | /// fn main() -> Result<()> { |
652 | /// let mut w = Vec::new(); |
653 | /// writeln!(&mut w)?; |
654 | /// writeln!(&mut w, "test" )?; |
655 | /// writeln!(&mut w, "formatted {}" , "arguments" )?; |
656 | /// |
657 | /// assert_eq!(&w[..], " \ntest \nformatted arguments \n" .as_bytes()); |
658 | /// Ok(()) |
659 | /// } |
660 | /// ``` |
661 | #[macro_export ] |
662 | #[stable (feature = "rust1" , since = "1.0.0" )] |
663 | #[cfg_attr (not(test), rustc_diagnostic_item = "writeln_macro" )] |
664 | #[allow_internal_unstable (format_args_nl)] |
665 | macro_rules! writeln { |
666 | ($dst:expr $(,)?) => { |
667 | $crate::write!($dst, " \n" ) |
668 | }; |
669 | ($dst:expr, $($arg:tt)*) => { |
670 | $dst.write_fmt($crate::format_args_nl!($($arg)*)) |
671 | }; |
672 | } |
673 | |
674 | /// Indicates unreachable code. |
675 | /// |
676 | /// This is useful any time that the compiler can't determine that some code is unreachable. For |
677 | /// example: |
678 | /// |
679 | /// * Match arms with guard conditions. |
680 | /// * Loops that dynamically terminate. |
681 | /// * Iterators that dynamically terminate. |
682 | /// |
683 | /// If the determination that the code is unreachable proves incorrect, the |
684 | /// program immediately terminates with a [`panic!`]. |
685 | /// |
686 | /// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which |
687 | /// will cause undefined behavior if the code is reached. |
688 | /// |
689 | /// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked |
690 | /// |
691 | /// # Panics |
692 | /// |
693 | /// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a |
694 | /// fixed, specific message. |
695 | /// |
696 | /// Like `panic!`, this macro has a second form for displaying custom values. |
697 | /// |
698 | /// # Examples |
699 | /// |
700 | /// Match arms: |
701 | /// |
702 | /// ``` |
703 | /// # #[allow (dead_code)] |
704 | /// fn foo(x: Option<i32>) { |
705 | /// match x { |
706 | /// Some(n) if n >= 0 => println!("Some(Non-negative)" ), |
707 | /// Some(n) if n < 0 => println!("Some(Negative)" ), |
708 | /// Some(_) => unreachable!(), // compile error if commented out |
709 | /// None => println!("None" ) |
710 | /// } |
711 | /// } |
712 | /// ``` |
713 | /// |
714 | /// Iterators: |
715 | /// |
716 | /// ``` |
717 | /// # #[allow (dead_code)] |
718 | /// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3 |
719 | /// for i in 0.. { |
720 | /// if 3*i < i { panic!("u32 overflow" ); } |
721 | /// if x < 3*i { return i-1; } |
722 | /// } |
723 | /// unreachable!("The loop should always return" ); |
724 | /// } |
725 | /// ``` |
726 | #[macro_export ] |
727 | #[rustc_builtin_macro (unreachable)] |
728 | #[allow_internal_unstable (edition_panic)] |
729 | #[stable (feature = "rust1" , since = "1.0.0" )] |
730 | #[cfg_attr (not(test), rustc_diagnostic_item = "unreachable_macro" )] |
731 | macro_rules! unreachable { |
732 | // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021` |
733 | // depending on the edition of the caller. |
734 | ($($arg:tt)*) => { |
735 | /* compiler built-in */ |
736 | }; |
737 | } |
738 | |
739 | /// Indicates unimplemented code by panicking with a message of "not implemented". |
740 | /// |
741 | /// This allows your code to type-check, which is useful if you are prototyping or |
742 | /// implementing a trait that requires multiple methods which you don't plan to use all of. |
743 | /// |
744 | /// The difference between `unimplemented!` and [`todo!`] is that while `todo!` |
745 | /// conveys an intent of implementing the functionality later and the message is "not yet |
746 | /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented". |
747 | /// |
748 | /// Also, some IDEs will mark `todo!`s. |
749 | /// |
750 | /// # Panics |
751 | /// |
752 | /// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a |
753 | /// fixed, specific message. |
754 | /// |
755 | /// Like `panic!`, this macro has a second form for displaying custom values. |
756 | /// |
757 | /// [`todo!`]: crate::todo |
758 | /// |
759 | /// # Examples |
760 | /// |
761 | /// Say we have a trait `Foo`: |
762 | /// |
763 | /// ``` |
764 | /// trait Foo { |
765 | /// fn bar(&self) -> u8; |
766 | /// fn baz(&self); |
767 | /// fn qux(&self) -> Result<u64, ()>; |
768 | /// } |
769 | /// ``` |
770 | /// |
771 | /// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense |
772 | /// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined |
773 | /// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions |
774 | /// to allow our code to compile. |
775 | /// |
776 | /// We still want to have our program stop running if the unimplemented methods are |
777 | /// reached. |
778 | /// |
779 | /// ``` |
780 | /// # trait Foo { |
781 | /// # fn bar(&self) -> u8; |
782 | /// # fn baz(&self); |
783 | /// # fn qux(&self) -> Result<u64, ()>; |
784 | /// # } |
785 | /// struct MyStruct; |
786 | /// |
787 | /// impl Foo for MyStruct { |
788 | /// fn bar(&self) -> u8 { |
789 | /// 1 + 1 |
790 | /// } |
791 | /// |
792 | /// fn baz(&self) { |
793 | /// // It makes no sense to `baz` a `MyStruct`, so we have no logic here |
794 | /// // at all. |
795 | /// // This will display "thread 'main' panicked at 'not implemented'". |
796 | /// unimplemented!(); |
797 | /// } |
798 | /// |
799 | /// fn qux(&self) -> Result<u64, ()> { |
800 | /// // We have some logic here, |
801 | /// // We can add a message to unimplemented! to display our omission. |
802 | /// // This will display: |
803 | /// // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'". |
804 | /// unimplemented!("MyStruct isn't quxable" ); |
805 | /// } |
806 | /// } |
807 | /// |
808 | /// fn main() { |
809 | /// let s = MyStruct; |
810 | /// s.bar(); |
811 | /// } |
812 | /// ``` |
813 | #[macro_export ] |
814 | #[stable (feature = "rust1" , since = "1.0.0" )] |
815 | #[cfg_attr (not(test), rustc_diagnostic_item = "unimplemented_macro" )] |
816 | #[allow_internal_unstable (panic_internals)] |
817 | macro_rules! unimplemented { |
818 | () => { |
819 | $crate::panicking::panic("not implemented" ) |
820 | }; |
821 | ($($arg:tt)+) => { |
822 | $crate::panic!("not implemented: {}" , $crate::format_args!($($arg)+)) |
823 | }; |
824 | } |
825 | |
826 | /// Indicates unfinished code. |
827 | /// |
828 | /// This can be useful if you are prototyping and just |
829 | /// want a placeholder to let your code pass type analysis. |
830 | /// |
831 | /// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys |
832 | /// an intent of implementing the functionality later and the message is "not yet |
833 | /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented". |
834 | /// |
835 | /// Also, some IDEs will mark `todo!`s. |
836 | /// |
837 | /// # Panics |
838 | /// |
839 | /// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a |
840 | /// fixed, specific message. |
841 | /// |
842 | /// Like `panic!`, this macro has a second form for displaying custom values. |
843 | /// |
844 | /// # Examples |
845 | /// |
846 | /// Here's an example of some in-progress code. We have a trait `Foo`: |
847 | /// |
848 | /// ``` |
849 | /// trait Foo { |
850 | /// fn bar(&self) -> u8; |
851 | /// fn baz(&self); |
852 | /// fn qux(&self) -> Result<u64, ()>; |
853 | /// } |
854 | /// ``` |
855 | /// |
856 | /// We want to implement `Foo` on one of our types, but we also want to work on |
857 | /// just `bar()` first. In order for our code to compile, we need to implement |
858 | /// `baz()` and `qux()`, so we can use `todo!`: |
859 | /// |
860 | /// ``` |
861 | /// # trait Foo { |
862 | /// # fn bar(&self) -> u8; |
863 | /// # fn baz(&self); |
864 | /// # fn qux(&self) -> Result<u64, ()>; |
865 | /// # } |
866 | /// struct MyStruct; |
867 | /// |
868 | /// impl Foo for MyStruct { |
869 | /// fn bar(&self) -> u8 { |
870 | /// 1 + 1 |
871 | /// } |
872 | /// |
873 | /// fn baz(&self) { |
874 | /// // Let's not worry about implementing baz() for now |
875 | /// todo!(); |
876 | /// } |
877 | /// |
878 | /// fn qux(&self) -> Result<u64, ()> { |
879 | /// // We can add a message to todo! to display our omission. |
880 | /// // This will display: |
881 | /// // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'". |
882 | /// todo!("MyStruct is not yet quxable" ); |
883 | /// } |
884 | /// } |
885 | /// |
886 | /// fn main() { |
887 | /// let s = MyStruct; |
888 | /// s.bar(); |
889 | /// |
890 | /// // We aren't even using baz() or qux(), so this is fine. |
891 | /// } |
892 | /// ``` |
893 | #[macro_export ] |
894 | #[stable (feature = "todo_macro" , since = "1.40.0" )] |
895 | #[cfg_attr (not(test), rustc_diagnostic_item = "todo_macro" )] |
896 | #[allow_internal_unstable (panic_internals)] |
897 | macro_rules! todo { |
898 | () => { |
899 | $crate::panicking::panic("not yet implemented" ) |
900 | }; |
901 | ($($arg:tt)+) => { |
902 | $crate::panic!("not yet implemented: {}" , $crate::format_args!($($arg)+)) |
903 | }; |
904 | } |
905 | |
906 | /// Definitions of built-in macros. |
907 | /// |
908 | /// Most of the macro properties (stability, visibility, etc.) are taken from the source code here, |
909 | /// with exception of expansion functions transforming macro inputs into outputs, |
910 | /// those functions are provided by the compiler. |
911 | pub(crate) mod builtin { |
912 | |
913 | /// Causes compilation to fail with the given error message when encountered. |
914 | /// |
915 | /// This macro should be used when a crate uses a conditional compilation strategy to provide |
916 | /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`], |
917 | /// but emits an error during *compilation* rather than at *runtime*. |
918 | /// |
919 | /// # Examples |
920 | /// |
921 | /// Two such examples are macros and `#[cfg]` environments. |
922 | /// |
923 | /// Emit a better compiler error if a macro is passed invalid values. Without the final branch, |
924 | /// the compiler would still emit an error, but the error's message would not mention the two |
925 | /// valid values. |
926 | /// |
927 | /// ```compile_fail |
928 | /// macro_rules! give_me_foo_or_bar { |
929 | /// (foo) => {}; |
930 | /// (bar) => {}; |
931 | /// ($x:ident) => { |
932 | /// compile_error!("This macro only accepts `foo` or `bar`" ); |
933 | /// } |
934 | /// } |
935 | /// |
936 | /// give_me_foo_or_bar!(neither); |
937 | /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`" |
938 | /// ``` |
939 | /// |
940 | /// Emit a compiler error if one of a number of features isn't available. |
941 | /// |
942 | /// ```compile_fail |
943 | /// #[cfg(not(any(feature = "foo" , feature = "bar" )))] |
944 | /// compile_error!("Either feature \"foo \" or \"bar \" must be enabled for this crate." ); |
945 | /// ``` |
946 | #[stable (feature = "compile_error_macro" , since = "1.20.0" )] |
947 | #[rustc_builtin_macro ] |
948 | #[macro_export ] |
949 | macro_rules! compile_error { |
950 | ($msg:expr $(,)?) => {{ /* compiler built-in */ }}; |
951 | } |
952 | |
953 | /// Constructs parameters for the other string-formatting macros. |
954 | /// |
955 | /// This macro functions by taking a formatting string literal containing |
956 | /// `{}` for each additional argument passed. `format_args!` prepares the |
957 | /// additional parameters to ensure the output can be interpreted as a string |
958 | /// and canonicalizes the arguments into a single type. Any value that implements |
959 | /// the [`Display`] trait can be passed to `format_args!`, as can any |
960 | /// [`Debug`] implementation be passed to a `{:?}` within the formatting string. |
961 | /// |
962 | /// This macro produces a value of type [`fmt::Arguments`]. This value can be |
963 | /// passed to the macros within [`std::fmt`] for performing useful redirection. |
964 | /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are |
965 | /// proxied through this one. `format_args!`, unlike its derived macros, avoids |
966 | /// heap allocations. |
967 | /// |
968 | /// You can use the [`fmt::Arguments`] value that `format_args!` returns |
969 | /// in `Debug` and `Display` contexts as seen below. The example also shows |
970 | /// that `Debug` and `Display` format to the same thing: the interpolated |
971 | /// format string in `format_args!`. |
972 | /// |
973 | /// ```rust |
974 | /// let debug = format!("{:?}" , format_args!("{} foo {:?}" , 1, 2)); |
975 | /// let display = format!("{}" , format_args!("{} foo {:?}" , 1, 2)); |
976 | /// assert_eq!("1 foo 2" , display); |
977 | /// assert_eq!(display, debug); |
978 | /// ``` |
979 | /// |
980 | /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html) |
981 | /// for details of the macro argument syntax, and further information. |
982 | /// |
983 | /// [`Display`]: crate::fmt::Display |
984 | /// [`Debug`]: crate::fmt::Debug |
985 | /// [`fmt::Arguments`]: crate::fmt::Arguments |
986 | /// [`std::fmt`]: ../std/fmt/index.html |
987 | /// [`format!`]: ../std/macro.format.html |
988 | /// [`println!`]: ../std/macro.println.html |
989 | /// |
990 | /// # Examples |
991 | /// |
992 | /// ``` |
993 | /// use std::fmt; |
994 | /// |
995 | /// let s = fmt::format(format_args!("hello {}" , "world" )); |
996 | /// assert_eq!(s, format!("hello {}" , "world" )); |
997 | /// ``` |
998 | /// |
999 | /// # Lifetime limitation |
1000 | /// |
1001 | /// Except when no formatting arguments are used, |
1002 | /// the produced `fmt::Arguments` value borrows temporary values, |
1003 | /// which means it can only be used within the same expression |
1004 | /// and cannot be stored for later use. |
1005 | /// This is a known limitation, see [#92698](https://github.com/rust-lang/rust/issues/92698). |
1006 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1007 | #[cfg_attr (not(test), rustc_diagnostic_item = "format_args_macro" )] |
1008 | #[allow_internal_unsafe ] |
1009 | #[allow_internal_unstable (fmt_internals)] |
1010 | #[rustc_builtin_macro ] |
1011 | #[macro_export ] |
1012 | macro_rules! format_args { |
1013 | ($fmt:expr) => {{ /* compiler built-in */ }}; |
1014 | ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }}; |
1015 | } |
1016 | |
1017 | /// Same as [`format_args`], but can be used in some const contexts. |
1018 | /// |
1019 | /// This macro is used by the panic macros for the `const_panic` feature. |
1020 | /// |
1021 | /// This macro will be removed once `format_args` is allowed in const contexts. |
1022 | #[unstable (feature = "const_format_args" , issue = "none" )] |
1023 | #[allow_internal_unstable (fmt_internals, const_fmt_arguments_new)] |
1024 | #[rustc_builtin_macro ] |
1025 | #[macro_export ] |
1026 | macro_rules! const_format_args { |
1027 | ($fmt:expr) => {{ /* compiler built-in */ }}; |
1028 | ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }}; |
1029 | } |
1030 | |
1031 | /// Same as [`format_args`], but adds a newline in the end. |
1032 | #[unstable ( |
1033 | feature = "format_args_nl" , |
1034 | issue = "none" , |
1035 | reason = "`format_args_nl` is only for internal \ |
1036 | language use and is subject to change" |
1037 | )] |
1038 | #[allow_internal_unstable (fmt_internals)] |
1039 | #[rustc_builtin_macro ] |
1040 | #[macro_export ] |
1041 | macro_rules! format_args_nl { |
1042 | ($fmt:expr) => {{ /* compiler built-in */ }}; |
1043 | ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }}; |
1044 | } |
1045 | |
1046 | /// Inspects an environment variable at compile time. |
1047 | /// |
1048 | /// This macro will expand to the value of the named environment variable at |
1049 | /// compile time, yielding an expression of type `&'static str`. Use |
1050 | /// [`std::env::var`] instead if you want to read the value at runtime. |
1051 | /// |
1052 | /// [`std::env::var`]: ../std/env/fn.var.html |
1053 | /// |
1054 | /// If the environment variable is not defined, then a compilation error |
1055 | /// will be emitted. To not emit a compile error, use the [`option_env!`] |
1056 | /// macro instead. A compilation error will also be emitted if the |
1057 | /// environment variable is not a vaild Unicode string. |
1058 | /// |
1059 | /// # Examples |
1060 | /// |
1061 | /// ``` |
1062 | /// let path: &'static str = env!("PATH" ); |
1063 | /// println!("the $PATH variable at the time of compiling was: {path}" ); |
1064 | /// ``` |
1065 | /// |
1066 | /// You can customize the error message by passing a string as the second |
1067 | /// parameter: |
1068 | /// |
1069 | /// ```compile_fail |
1070 | /// let doc: &'static str = env!("documentation" , "what's that?!" ); |
1071 | /// ``` |
1072 | /// |
1073 | /// If the `documentation` environment variable is not defined, you'll get |
1074 | /// the following error: |
1075 | /// |
1076 | /// ```text |
1077 | /// error: what's that?! |
1078 | /// ``` |
1079 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1080 | #[rustc_builtin_macro ] |
1081 | #[macro_export ] |
1082 | #[rustc_diagnostic_item = "env_macro" ] // useful for external lints |
1083 | macro_rules! env { |
1084 | ($name:expr $(,)?) => {{ /* compiler built-in */ }}; |
1085 | ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }}; |
1086 | } |
1087 | |
1088 | /// Optionally inspects an environment variable at compile time. |
1089 | /// |
1090 | /// If the named environment variable is present at compile time, this will |
1091 | /// expand into an expression of type `Option<&'static str>` whose value is |
1092 | /// `Some` of the value of the environment variable. If the environment |
1093 | /// variable is not present, then this will expand to `None`. See |
1094 | /// [`Option<T>`][Option] for more information on this type. Use |
1095 | /// [`std::env::var`] instead if you want to read the value at runtime. |
1096 | /// |
1097 | /// [`std::env::var`]: ../std/env/fn.var.html |
1098 | /// |
1099 | /// A compile time error is never emitted when using this macro regardless |
1100 | /// of whether the environment variable is present or not. |
1101 | /// To emit a compile error if the environment variable is not present, |
1102 | /// use the [`env!`] macro instead. |
1103 | /// |
1104 | /// # Examples |
1105 | /// |
1106 | /// ``` |
1107 | /// let key: Option<&'static str> = option_env!("SECRET_KEY" ); |
1108 | /// println!("the secret key might be: {key:?}" ); |
1109 | /// ``` |
1110 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1111 | #[rustc_builtin_macro ] |
1112 | #[macro_export ] |
1113 | #[rustc_diagnostic_item = "option_env_macro" ] // useful for external lints |
1114 | macro_rules! option_env { |
1115 | ($name:expr $(,)?) => {{ /* compiler built-in */ }}; |
1116 | } |
1117 | |
1118 | /// Concatenates identifiers into one identifier. |
1119 | /// |
1120 | /// This macro takes any number of comma-separated identifiers, and |
1121 | /// concatenates them all into one, yielding an expression which is a new |
1122 | /// identifier. Note that hygiene makes it such that this macro cannot |
1123 | /// capture local variables. Also, as a general rule, macros are only |
1124 | /// allowed in item, statement or expression position. That means while |
1125 | /// you may use this macro for referring to existing variables, functions or |
1126 | /// modules etc, you cannot define a new one with it. |
1127 | /// |
1128 | /// # Examples |
1129 | /// |
1130 | /// ``` |
1131 | /// #![feature(concat_idents)] |
1132 | /// |
1133 | /// # fn main() { |
1134 | /// fn foobar() -> u32 { 23 } |
1135 | /// |
1136 | /// let f = concat_idents!(foo, bar); |
1137 | /// println!("{}" , f()); |
1138 | /// |
1139 | /// // fn concat_idents!(new, fun, name) { } // not usable in this way! |
1140 | /// # } |
1141 | /// ``` |
1142 | #[unstable ( |
1143 | feature = "concat_idents" , |
1144 | issue = "29599" , |
1145 | reason = "`concat_idents` is not stable enough for use and is subject to change" |
1146 | )] |
1147 | #[rustc_builtin_macro ] |
1148 | #[macro_export ] |
1149 | macro_rules! concat_idents { |
1150 | ($($e:ident),+ $(,)?) => {{ /* compiler built-in */ }}; |
1151 | } |
1152 | |
1153 | /// Concatenates literals into a byte slice. |
1154 | /// |
1155 | /// This macro takes any number of comma-separated literals, and concatenates them all into |
1156 | /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals |
1157 | /// concatenated left-to-right. The literals passed can be any combination of: |
1158 | /// |
1159 | /// - byte literals (`b'r'`) |
1160 | /// - byte strings (`b"Rust"`) |
1161 | /// - arrays of bytes/numbers (`[b'A', 66, b'C']`) |
1162 | /// |
1163 | /// # Examples |
1164 | /// |
1165 | /// ``` |
1166 | /// #![feature(concat_bytes)] |
1167 | /// |
1168 | /// # fn main() { |
1169 | /// let s: &[u8; 6] = concat_bytes!(b'A' , b"BC" , [68, b'E' , 70]); |
1170 | /// assert_eq!(s, b"ABCDEF" ); |
1171 | /// # } |
1172 | /// ``` |
1173 | #[unstable (feature = "concat_bytes" , issue = "87555" )] |
1174 | #[rustc_builtin_macro ] |
1175 | #[macro_export ] |
1176 | macro_rules! concat_bytes { |
1177 | ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }}; |
1178 | } |
1179 | |
1180 | /// Concatenates literals into a static string slice. |
1181 | /// |
1182 | /// This macro takes any number of comma-separated literals, yielding an |
1183 | /// expression of type `&'static str` which represents all of the literals |
1184 | /// concatenated left-to-right. |
1185 | /// |
1186 | /// Integer and floating point literals are [stringified](core::stringify) in order to be |
1187 | /// concatenated. |
1188 | /// |
1189 | /// # Examples |
1190 | /// |
1191 | /// ``` |
1192 | /// let s = concat!("test" , 10, 'b' , true); |
1193 | /// assert_eq!(s, "test10btrue" ); |
1194 | /// ``` |
1195 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1196 | #[rustc_builtin_macro ] |
1197 | #[macro_export ] |
1198 | macro_rules! concat { |
1199 | ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }}; |
1200 | } |
1201 | |
1202 | /// Expands to the line number on which it was invoked. |
1203 | /// |
1204 | /// With [`column!`] and [`file!`], these macros provide debugging information for |
1205 | /// developers about the location within the source. |
1206 | /// |
1207 | /// The expanded expression has type `u32` and is 1-based, so the first line |
1208 | /// in each file evaluates to 1, the second to 2, etc. This is consistent |
1209 | /// with error messages by common compilers or popular editors. |
1210 | /// The returned line is *not necessarily* the line of the `line!` invocation itself, |
1211 | /// but rather the first macro invocation leading up to the invocation |
1212 | /// of the `line!` macro. |
1213 | /// |
1214 | /// # Examples |
1215 | /// |
1216 | /// ``` |
1217 | /// let current_line = line!(); |
1218 | /// println!("defined on line: {current_line}" ); |
1219 | /// ``` |
1220 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1221 | #[rustc_builtin_macro ] |
1222 | #[macro_export ] |
1223 | macro_rules! line { |
1224 | () => { |
1225 | /* compiler built-in */ |
1226 | }; |
1227 | } |
1228 | |
1229 | /// Expands to the column number at which it was invoked. |
1230 | /// |
1231 | /// With [`line!`] and [`file!`], these macros provide debugging information for |
1232 | /// developers about the location within the source. |
1233 | /// |
1234 | /// The expanded expression has type `u32` and is 1-based, so the first column |
1235 | /// in each line evaluates to 1, the second to 2, etc. This is consistent |
1236 | /// with error messages by common compilers or popular editors. |
1237 | /// The returned column is *not necessarily* the line of the `column!` invocation itself, |
1238 | /// but rather the first macro invocation leading up to the invocation |
1239 | /// of the `column!` macro. |
1240 | /// |
1241 | /// # Examples |
1242 | /// |
1243 | /// ``` |
1244 | /// let current_col = column!(); |
1245 | /// println!("defined on column: {current_col}" ); |
1246 | /// ``` |
1247 | /// |
1248 | /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two |
1249 | /// invocations return the same value, but the third does not. |
1250 | /// |
1251 | /// ``` |
1252 | /// let a = ("foobar" , column!()).1; |
1253 | /// let b = ("人之初性本善" , column!()).1; |
1254 | /// let c = ("f̅o̅o̅b̅a̅r̅" , column!()).1; // Uses combining overline (U+0305) |
1255 | /// |
1256 | /// assert_eq!(a, b); |
1257 | /// assert_ne!(b, c); |
1258 | /// ``` |
1259 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1260 | #[rustc_builtin_macro ] |
1261 | #[macro_export ] |
1262 | macro_rules! column { |
1263 | () => { |
1264 | /* compiler built-in */ |
1265 | }; |
1266 | } |
1267 | |
1268 | /// Expands to the file name in which it was invoked. |
1269 | /// |
1270 | /// With [`line!`] and [`column!`], these macros provide debugging information for |
1271 | /// developers about the location within the source. |
1272 | /// |
1273 | /// The expanded expression has type `&'static str`, and the returned file |
1274 | /// is not the invocation of the `file!` macro itself, but rather the |
1275 | /// first macro invocation leading up to the invocation of the `file!` |
1276 | /// macro. |
1277 | /// |
1278 | /// # Examples |
1279 | /// |
1280 | /// ``` |
1281 | /// let this_file = file!(); |
1282 | /// println!("defined in file: {this_file}" ); |
1283 | /// ``` |
1284 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1285 | #[rustc_builtin_macro ] |
1286 | #[macro_export ] |
1287 | macro_rules! file { |
1288 | () => { |
1289 | /* compiler built-in */ |
1290 | }; |
1291 | } |
1292 | |
1293 | /// Stringifies its arguments. |
1294 | /// |
1295 | /// This macro will yield an expression of type `&'static str` which is the |
1296 | /// stringification of all the tokens passed to the macro. No restrictions |
1297 | /// are placed on the syntax of the macro invocation itself. |
1298 | /// |
1299 | /// Note that the expanded results of the input tokens may change in the |
1300 | /// future. You should be careful if you rely on the output. |
1301 | /// |
1302 | /// # Examples |
1303 | /// |
1304 | /// ``` |
1305 | /// let one_plus_one = stringify!(1 + 1); |
1306 | /// assert_eq!(one_plus_one, "1 + 1" ); |
1307 | /// ``` |
1308 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1309 | #[rustc_builtin_macro ] |
1310 | #[macro_export ] |
1311 | macro_rules! stringify { |
1312 | ($($t:tt)*) => { |
1313 | /* compiler built-in */ |
1314 | }; |
1315 | } |
1316 | |
1317 | /// Includes a UTF-8 encoded file as a string. |
1318 | /// |
1319 | /// The file is located relative to the current file (similarly to how |
1320 | /// modules are found). The provided path is interpreted in a platform-specific |
1321 | /// way at compile time. So, for instance, an invocation with a Windows path |
1322 | /// containing backslashes `\` would not compile correctly on Unix. |
1323 | /// |
1324 | /// This macro will yield an expression of type `&'static str` which is the |
1325 | /// contents of the file. |
1326 | /// |
1327 | /// # Examples |
1328 | /// |
1329 | /// Assume there are two files in the same directory with the following |
1330 | /// contents: |
1331 | /// |
1332 | /// File 'spanish.in': |
1333 | /// |
1334 | /// ```text |
1335 | /// adiós |
1336 | /// ``` |
1337 | /// |
1338 | /// File 'main.rs': |
1339 | /// |
1340 | /// ```ignore (cannot-doctest-external-file-dependency) |
1341 | /// fn main() { |
1342 | /// let my_str = include_str!("spanish.in" ); |
1343 | /// assert_eq!(my_str, "adiós \n" ); |
1344 | /// print!("{my_str}" ); |
1345 | /// } |
1346 | /// ``` |
1347 | /// |
1348 | /// Compiling 'main.rs' and running the resulting binary will print "adiós". |
1349 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1350 | #[rustc_builtin_macro ] |
1351 | #[macro_export ] |
1352 | #[cfg_attr (not(test), rustc_diagnostic_item = "include_str_macro" )] |
1353 | macro_rules! include_str { |
1354 | ($file:expr $(,)?) => {{ /* compiler built-in */ }}; |
1355 | } |
1356 | |
1357 | /// Includes a file as a reference to a byte array. |
1358 | /// |
1359 | /// The file is located relative to the current file (similarly to how |
1360 | /// modules are found). The provided path is interpreted in a platform-specific |
1361 | /// way at compile time. So, for instance, an invocation with a Windows path |
1362 | /// containing backslashes `\` would not compile correctly on Unix. |
1363 | /// |
1364 | /// This macro will yield an expression of type `&'static [u8; N]` which is |
1365 | /// the contents of the file. |
1366 | /// |
1367 | /// # Examples |
1368 | /// |
1369 | /// Assume there are two files in the same directory with the following |
1370 | /// contents: |
1371 | /// |
1372 | /// File 'spanish.in': |
1373 | /// |
1374 | /// ```text |
1375 | /// adiós |
1376 | /// ``` |
1377 | /// |
1378 | /// File 'main.rs': |
1379 | /// |
1380 | /// ```ignore (cannot-doctest-external-file-dependency) |
1381 | /// fn main() { |
1382 | /// let bytes = include_bytes!("spanish.in" ); |
1383 | /// assert_eq!(bytes, b"adi \xc3\xb3s \n" ); |
1384 | /// print!("{}" , String::from_utf8_lossy(bytes)); |
1385 | /// } |
1386 | /// ``` |
1387 | /// |
1388 | /// Compiling 'main.rs' and running the resulting binary will print "adiós". |
1389 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1390 | #[rustc_builtin_macro ] |
1391 | #[macro_export ] |
1392 | #[cfg_attr (not(test), rustc_diagnostic_item = "include_bytes_macro" )] |
1393 | macro_rules! include_bytes { |
1394 | ($file:expr $(,)?) => {{ /* compiler built-in */ }}; |
1395 | } |
1396 | |
1397 | /// Expands to a string that represents the current module path. |
1398 | /// |
1399 | /// The current module path can be thought of as the hierarchy of modules |
1400 | /// leading back up to the crate root. The first component of the path |
1401 | /// returned is the name of the crate currently being compiled. |
1402 | /// |
1403 | /// # Examples |
1404 | /// |
1405 | /// ``` |
1406 | /// mod test { |
1407 | /// pub fn foo() { |
1408 | /// assert!(module_path!().ends_with("test" )); |
1409 | /// } |
1410 | /// } |
1411 | /// |
1412 | /// test::foo(); |
1413 | /// ``` |
1414 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1415 | #[rustc_builtin_macro ] |
1416 | #[macro_export ] |
1417 | macro_rules! module_path { |
1418 | () => { |
1419 | /* compiler built-in */ |
1420 | }; |
1421 | } |
1422 | |
1423 | /// Evaluates boolean combinations of configuration flags at compile-time. |
1424 | /// |
1425 | /// In addition to the `#[cfg]` attribute, this macro is provided to allow |
1426 | /// boolean expression evaluation of configuration flags. This frequently |
1427 | /// leads to less duplicated code. |
1428 | /// |
1429 | /// The syntax given to this macro is the same syntax as the [`cfg`] |
1430 | /// attribute. |
1431 | /// |
1432 | /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For |
1433 | /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for |
1434 | /// the condition, regardless of what `cfg!` is evaluating. |
1435 | /// |
1436 | /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute |
1437 | /// |
1438 | /// # Examples |
1439 | /// |
1440 | /// ``` |
1441 | /// let my_directory = if cfg!(windows) { |
1442 | /// "windows-specific-directory" |
1443 | /// } else { |
1444 | /// "unix-directory" |
1445 | /// }; |
1446 | /// ``` |
1447 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1448 | #[rustc_builtin_macro ] |
1449 | #[macro_export ] |
1450 | macro_rules! cfg { |
1451 | ($($cfg:tt)*) => { |
1452 | /* compiler built-in */ |
1453 | }; |
1454 | } |
1455 | |
1456 | /// Parses a file as an expression or an item according to the context. |
1457 | /// |
1458 | /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you |
1459 | /// are looking for. Usually, multi-file Rust projects use |
1460 | /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and |
1461 | /// modules are explained in the Rust-by-Example book |
1462 | /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is |
1463 | /// explained in the Rust Book |
1464 | /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html). |
1465 | /// |
1466 | /// The included file is placed in the surrounding code |
1467 | /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If |
1468 | /// the included file is parsed as an expression and variables or functions share names across |
1469 | /// both files, it could result in variables or functions being different from what the |
1470 | /// included file expected. |
1471 | /// |
1472 | /// The included file is located relative to the current file (similarly to how modules are |
1473 | /// found). The provided path is interpreted in a platform-specific way at compile time. So, |
1474 | /// for instance, an invocation with a Windows path containing backslashes `\` would not |
1475 | /// compile correctly on Unix. |
1476 | /// |
1477 | /// # Uses |
1478 | /// |
1479 | /// The `include!` macro is primarily used for two purposes. It is used to include |
1480 | /// documentation that is written in a separate file and it is used to include [build artifacts |
1481 | /// usually as a result from the `build.rs` |
1482 | /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script). |
1483 | /// |
1484 | /// When using the `include` macro to include stretches of documentation, remember that the |
1485 | /// included file still needs to be a valid Rust syntax. It is also possible to |
1486 | /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or |
1487 | /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain |
1488 | /// text or markdown file. |
1489 | /// |
1490 | /// # Examples |
1491 | /// |
1492 | /// Assume there are two files in the same directory with the following contents: |
1493 | /// |
1494 | /// File 'monkeys.in': |
1495 | /// |
1496 | /// ```ignore (only-for-syntax-highlight) |
1497 | /// ['🙈' , '🙊' , '🙉' ] |
1498 | /// .iter() |
1499 | /// .cycle() |
1500 | /// .take(6) |
1501 | /// .collect::<String>() |
1502 | /// ``` |
1503 | /// |
1504 | /// File 'main.rs': |
1505 | /// |
1506 | /// ```ignore (cannot-doctest-external-file-dependency) |
1507 | /// fn main() { |
1508 | /// let my_string = include!("monkeys.in" ); |
1509 | /// assert_eq!("🙈🙊🙉🙈🙊🙉" , my_string); |
1510 | /// println!("{my_string}" ); |
1511 | /// } |
1512 | /// ``` |
1513 | /// |
1514 | /// Compiling 'main.rs' and running the resulting binary will print |
1515 | /// "🙈🙊🙉🙈🙊🙉". |
1516 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1517 | #[rustc_builtin_macro ] |
1518 | #[macro_export ] |
1519 | #[rustc_diagnostic_item = "include_macro" ] // useful for external lints |
1520 | macro_rules! include { |
1521 | ($file:expr $(,)?) => {{ /* compiler built-in */ }}; |
1522 | } |
1523 | |
1524 | /// Asserts that a boolean expression is `true` at runtime. |
1525 | /// |
1526 | /// This will invoke the [`panic!`] macro if the provided expression cannot be |
1527 | /// evaluated to `true` at runtime. |
1528 | /// |
1529 | /// # Uses |
1530 | /// |
1531 | /// Assertions are always checked in both debug and release builds, and cannot |
1532 | /// be disabled. See [`debug_assert!`] for assertions that are not enabled in |
1533 | /// release builds by default. |
1534 | /// |
1535 | /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if |
1536 | /// violated could lead to unsafety. |
1537 | /// |
1538 | /// Other use-cases of `assert!` include testing and enforcing run-time |
1539 | /// invariants in safe code (whose violation cannot result in unsafety). |
1540 | /// |
1541 | /// # Custom Messages |
1542 | /// |
1543 | /// This macro has a second form, where a custom panic message can |
1544 | /// be provided with or without arguments for formatting. See [`std::fmt`] |
1545 | /// for syntax for this form. Expressions used as format arguments will only |
1546 | /// be evaluated if the assertion fails. |
1547 | /// |
1548 | /// [`std::fmt`]: ../std/fmt/index.html |
1549 | /// |
1550 | /// # Examples |
1551 | /// |
1552 | /// ``` |
1553 | /// // the panic message for these assertions is the stringified value of the |
1554 | /// // expression given. |
1555 | /// assert!(true); |
1556 | /// |
1557 | /// fn some_computation() -> bool { true } // a very simple function |
1558 | /// |
1559 | /// assert!(some_computation()); |
1560 | /// |
1561 | /// // assert with a custom message |
1562 | /// let x = true; |
1563 | /// assert!(x, "x wasn't true!" ); |
1564 | /// |
1565 | /// let a = 3; let b = 27; |
1566 | /// assert!(a + b == 30, "a = {}, b = {}" , a, b); |
1567 | /// ``` |
1568 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1569 | #[rustc_builtin_macro ] |
1570 | #[macro_export ] |
1571 | #[rustc_diagnostic_item = "assert_macro" ] |
1572 | #[allow_internal_unstable (panic_internals, edition_panic, generic_assert_internals)] |
1573 | macro_rules! assert { |
1574 | ($cond:expr $(,)?) => {{ /* compiler built-in */ }}; |
1575 | ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }}; |
1576 | } |
1577 | |
1578 | /// Prints passed tokens into the standard output. |
1579 | #[unstable ( |
1580 | feature = "log_syntax" , |
1581 | issue = "29598" , |
1582 | reason = "`log_syntax!` is not stable enough for use and is subject to change" |
1583 | )] |
1584 | #[rustc_builtin_macro ] |
1585 | #[macro_export ] |
1586 | macro_rules! log_syntax { |
1587 | ($($arg:tt)*) => { |
1588 | /* compiler built-in */ |
1589 | }; |
1590 | } |
1591 | |
1592 | /// Enables or disables tracing functionality used for debugging other macros. |
1593 | #[unstable ( |
1594 | feature = "trace_macros" , |
1595 | issue = "29598" , |
1596 | reason = "`trace_macros` is not stable enough for use and is subject to change" |
1597 | )] |
1598 | #[rustc_builtin_macro ] |
1599 | #[macro_export ] |
1600 | macro_rules! trace_macros { |
1601 | (true) => {{ /* compiler built-in */ }}; |
1602 | (false) => {{ /* compiler built-in */ }}; |
1603 | } |
1604 | |
1605 | /// Attribute macro used to apply derive macros. |
1606 | /// |
1607 | /// See [the reference] for more info. |
1608 | /// |
1609 | /// [the reference]: ../../../reference/attributes/derive.html |
1610 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1611 | #[rustc_builtin_macro ] |
1612 | pub macro derive ($item:item) { |
1613 | /* compiler built-in */ |
1614 | } |
1615 | |
1616 | /// Attribute macro used to apply derive macros for implementing traits |
1617 | /// in a const context. |
1618 | /// |
1619 | /// See [the reference] for more info. |
1620 | /// |
1621 | /// [the reference]: ../../../reference/attributes/derive.html |
1622 | #[unstable (feature = "derive_const" , issue = "none" )] |
1623 | #[rustc_builtin_macro ] |
1624 | pub macro derive_const ($item:item) { |
1625 | /* compiler built-in */ |
1626 | } |
1627 | |
1628 | /// Attribute macro applied to a function to turn it into a unit test. |
1629 | /// |
1630 | /// See [the reference] for more info. |
1631 | /// |
1632 | /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute |
1633 | #[stable (feature = "rust1" , since = "1.0.0" )] |
1634 | #[allow_internal_unstable (test, rustc_attrs, coverage_attribute)] |
1635 | #[rustc_builtin_macro ] |
1636 | pub macro test ($item:item) { |
1637 | /* compiler built-in */ |
1638 | } |
1639 | |
1640 | /// Attribute macro applied to a function to turn it into a benchmark test. |
1641 | #[unstable ( |
1642 | feature = "test" , |
1643 | issue = "50297" , |
1644 | soft, |
1645 | reason = "`bench` is a part of custom test frameworks which are unstable" |
1646 | )] |
1647 | #[allow_internal_unstable (test, rustc_attrs, coverage_attribute)] |
1648 | #[rustc_builtin_macro ] |
1649 | pub macro bench ($item:item) { |
1650 | /* compiler built-in */ |
1651 | } |
1652 | |
1653 | /// An implementation detail of the `#[test]` and `#[bench]` macros. |
1654 | #[unstable ( |
1655 | feature = "custom_test_frameworks" , |
1656 | issue = "50297" , |
1657 | reason = "custom test frameworks are an unstable feature" |
1658 | )] |
1659 | #[allow_internal_unstable (test, rustc_attrs)] |
1660 | #[rustc_builtin_macro ] |
1661 | pub macro test_case ($item:item) { |
1662 | /* compiler built-in */ |
1663 | } |
1664 | |
1665 | /// Attribute macro applied to a static to register it as a global allocator. |
1666 | /// |
1667 | /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html). |
1668 | #[stable (feature = "global_allocator" , since = "1.28.0" )] |
1669 | #[allow_internal_unstable (rustc_attrs)] |
1670 | #[rustc_builtin_macro ] |
1671 | pub macro global_allocator ($item:item) { |
1672 | /* compiler built-in */ |
1673 | } |
1674 | |
1675 | /// Attribute macro applied to a function to register it as a handler for allocation failure. |
1676 | /// |
1677 | /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html). |
1678 | #[unstable (feature = "alloc_error_handler" , issue = "51540" )] |
1679 | #[allow_internal_unstable (rustc_attrs)] |
1680 | #[rustc_builtin_macro ] |
1681 | pub macro alloc_error_handler($item:item) { |
1682 | /* compiler built-in */ |
1683 | } |
1684 | |
1685 | /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise. |
1686 | #[unstable ( |
1687 | feature = "cfg_accessible" , |
1688 | issue = "64797" , |
1689 | reason = "`cfg_accessible` is not fully implemented" |
1690 | )] |
1691 | #[rustc_builtin_macro ] |
1692 | pub macro cfg_accessible ($item:item) { |
1693 | /* compiler built-in */ |
1694 | } |
1695 | |
1696 | /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to. |
1697 | #[unstable ( |
1698 | feature = "cfg_eval" , |
1699 | issue = "82679" , |
1700 | reason = "`cfg_eval` is a recently implemented feature" |
1701 | )] |
1702 | #[rustc_builtin_macro ] |
1703 | pub macro cfg_eval ($($tt:tt)*) { |
1704 | /* compiler built-in */ |
1705 | } |
1706 | |
1707 | /// Unstable placeholder for type ascription. |
1708 | #[allow_internal_unstable (builtin_syntax)] |
1709 | #[unstable ( |
1710 | feature = "type_ascription" , |
1711 | issue = "23416" , |
1712 | reason = "placeholder syntax for type ascription" |
1713 | )] |
1714 | pub macro type_ascribe($expr:expr, $ty:ty) { |
1715 | builtin # type_ascribe($expr, $ty) |
1716 | } |
1717 | |
1718 | #[cfg (not(bootstrap))] |
1719 | /// Unstable placeholder for deref patterns. |
1720 | #[allow_internal_unstable (builtin_syntax)] |
1721 | #[unstable ( |
1722 | feature = "deref_patterns" , |
1723 | issue = "87121" , |
1724 | reason = "placeholder syntax for deref patterns" |
1725 | )] |
1726 | pub macro deref($pat:pat) { |
1727 | builtin # deref($pat) |
1728 | } |
1729 | |
1730 | /// Derive macro for `rustc-serialize`. Should not be used in new code. |
1731 | #[rustc_builtin_macro ] |
1732 | #[unstable ( |
1733 | feature = "rustc_encodable_decodable" , |
1734 | issue = "none" , |
1735 | soft, |
1736 | reason = "derive macro for `rustc-serialize`; should not be used in new code" |
1737 | )] |
1738 | #[deprecated (since = "1.52.0" , note = "rustc-serialize is deprecated and no longer supported" )] |
1739 | #[doc (hidden)] // While technically stable, using it is unstable, and deprecated. Hide it. |
1740 | pub macro RustcDecodable($item:item) { |
1741 | /* compiler built-in */ |
1742 | } |
1743 | |
1744 | /// Derive macro for `rustc-serialize`. Should not be used in new code. |
1745 | #[rustc_builtin_macro ] |
1746 | #[unstable ( |
1747 | feature = "rustc_encodable_decodable" , |
1748 | issue = "none" , |
1749 | soft, |
1750 | reason = "derive macro for `rustc-serialize`; should not be used in new code" |
1751 | )] |
1752 | #[deprecated (since = "1.52.0" , note = "rustc-serialize is deprecated and no longer supported" )] |
1753 | #[doc (hidden)] // While technically stable, using it is unstable, and deprecated. Hide it. |
1754 | pub macro RustcEncodable($item:item) { |
1755 | /* compiler built-in */ |
1756 | } |
1757 | } |
1758 | |